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Abstract 

Background: Traditionally, the merit of a rearrangement scenario between two gene orders has been measured 

based on a parsimony criteria alone; two scenarios with the same number of rearrangements are considered equally 

good. In this paper, we acknowledge that each rearrangement has a certain likelihood of occurring based on biologi-

cal constraints, e.g. physical proximity of the DNA segments implicated or repetitive sequences.

Results: We propose optimization problems with the objective of maximizing overall likelihood, by weighting the 

rearrangements. We study a binary weight function suitable to the representation of sets of genome positions that 

are most likely to have swapped adjacencies. We give a polynomial-time algorithm for the problem of finding a mini-

mum weight double cut and join scenario among all minimum length scenarios. In the process we solve an optimiza-

tion problem on colored noncrossing partitions, which is a generalization of the MAXIMUM INDEPENDENT SET problem on 

circle graphs.

Conclusions: We introduce a model for weighting genome rearrangements and show that under simple yet reason-

able conditions, a fundamental distance can be computed in polynomial time. This is achieved by solving a generali-

zation of the MAXIMUM INDEPENDENT SET problem on circle graphs. Several variants of the problem are also mentioned.

Keywords: Double cut and join (DCJ), Weighted genome rearrangement, Noncrossing partitions, Chromatin 

conformation, Hi-C
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Background

A huge body of work exists on modeling the evolution of 

whole chromosomes  [1]. �e main difference between 

such models is the set of rearrangements that they allow. 

�e moves of interest are usually inversion, transposition, 

translocation, chromosome fission and fusion, deletion, 

insertion, and duplication.

Almost all versions of the problem are NP-Hard if con-

tent modifying operations such at duplication, loss, and 

insertion are allowed  [2, 3]. Fortunately, a model that 

considers genomes with equal content (i.e., no duplica-

tions or insertions/deletions) is quite pertinent, par-

ticularly in eukaryotes, since syntenic blocks of genes 

can be assigned between genomes so that each block 

occurs exactly once in each genome. For two genomes 

with equal content, double cut and join (DCJ) has been 

the model of choice since it elegantly includes inversion, 

translocation, chromosome circularization and lineariza-

tion, as well as chromosome fission and fusion [4, 5].

One of the most important problems in comparative 

genomics is the inference of ancestral gene orders, i.e., 

paleogenetics. Given a realistic model of evolution, one 

can infer ancestral adjacencies of high confidence from 

present-day genomes  [6–8]. However, methods that 

attempt to infer deeper structure for ancestral species 

suffer due to the huge number of parsimonious scenarios 

between genomes [9–11].

�e apparent difficulty of the ancestral inference prob-

lem—because of the potentially astronomical num-

ber of parsimonious sorting scenarios—highlights the 

importance of methods that infer scenarios that con-

form to some extra biological constraints. Yet, aside 
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from methods that weight inversions based on their 

length  [12–16], to our knowledge no algorithmic work 

exists in this direction.

In this paper we use a weight function on rearrange-

ments suitable for modeling positional constraints, i.e., 

sets of positions in the genome that are likely to swap 

adjacencies. Two examples of constraints that fit this par-

adigm are: (1) the physical 3D location of DNA segments 

in a nucleus and, (2) repetitive sequences that are the 

cause or consequence of rearrangement mechanisms. We 

illustrate the utility of our model with 3D constraints in 

the “Positional constraints as colored adjacencies” section.

We propose a general optimization problem that mini-

mizes the sum of weights over the moves in a scenario. 

A more constrained version of the problem asks for such 

a scenario out of all possible unweighted parsimonious 

scenarios. Our algorithm solves this version of the prob-

lem in polynomial time given a binary weight function, 

despite an exponential growth of the number of parsimo-

nious DCJ scenarios with respect to the distance [17, 18]. 

�e commutation properties of DCJ moves as studied 

in  [17] link certain DCJ scenarios to noncrossing parti-

tions. Our algorithm relies on solving a new optimization 

problem on colored noncrossing partitions, called M-

 N C P. It is a gener-

alization of the M I S problem 

on circle graphs [19–21].

Genomes as sets of signed integers

A gene, or more generally a syntenic block of genes, will 

be represented by a signed integer. A chromosome is 

a sequence of blocks, and a genome is a set of chromo-

somes. �us, we write a genome in list notation where a 

block is a positive integer if read in one direction in the 

genome, and a negative integer if read in the opposite 

direction. For example, a genome A can be written as

where ◦ represents a telomere at the end of a linear chro-

mosome. Genome A has two linear chromosomes and a 

circular chromosome (9, 10).

Alternatively, the organization of the blocks on the 

chromosomes can be given by the set of adjacencies 

between the extremities of consecutive blocks. A block 

b has a tail extremity, written bt, and a head extrem-

ity, written bh. �us, the adjacency between 5 and −1 in 

A is {5h, 1h}. A block that is on the end of a linear chro-

mosome implies a telomeric adjacency. �e first chro-

mosome has two such adjacencies: {◦, 5t} and {8t , ◦}. A 

circular chromosome has no telomeres, i.e., the last block 

is adjacent to the first. We can write genome A using 

adjacencies as

{(◦, 5,−1,−2, 6,−4,−8, ◦), (◦,−3, 7, ◦), (9, 10)},

DCJ and sorting DCJs

Double cut and join (DCJ) is an operation on a genome 

that cuts one or two adjacencies, and glues the resulting 

ends back together according to the following rules [4]:

1. If a single adjacency is cut, then add new telomeres 

to the resulting ends (resulting in two new telomeric 

adjacencies).

2. If two adjacencies are cut, then glue the adjacencies 

back in one of two new ways.

Application of a single DCJ corresponds to diverse 

genomic operations such as inversion, chromosome lin-

earization and circularization, transposition, and excision 

of a circular chromosome.

�e DCJ distance between genomes A and B is the mini-

mum number of DCJ moves needed to transform A into 

B. DCJs that move A closer to B, called sorting DCJs, can 

be found using a graph. �e colored adjacency graph for A 

and B is a graph G(A, B, col) whose vertices are the extremi-

ties and telomeres of A and B, and whose edges are colored 

by the color function col. For each adjacency in A or B an 

adjacency edge links the corresponding nodes of the adja-

cency, and a cross edge links non-telomere vertices from A 

to vertices with the same label in B. �e graph for genomes

is given in Fig. 1. It is easy to confirm that the adjacency 

and cross edges each form a matching, so that each con-

nected component of the graph will be either a cycle or 

a path. Note that connected components of the graph 

are only loosely related to the chromosomes; connected 

components can span multiple chromosomes.

We denote a cross edge by the label of the vertices that 

they connect. We denote the connected components of 

the graph by the set of cross edges that comprise them. 

�e connected components of the graph in Fig.  1 are 

{5t , 4h, 6h}, {5h, 6t , 2t , 1h, }, {1t , 2h, 3t , 7t}, {8t , 7h}, and 

{3h, 4t , 8h}. �e length of a path or a cycle is the number 

of cross edges it has.

To find sorting DCJs, we categorize the connected 

components by length. In Fig.  1 there is one cycle, two 

even-length paths, and two odd-length paths. �e for-

mula for the DCJ distance is

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}

,
{

{9h, 10t}, {10h, 9t}
}}

.

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}}

, and

B =
{{

{◦, 1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}, {5h, 6t}, {6h, ◦}
}

,
{

{◦, 7t}, {7h, 8t}, {8h, ◦}
}}
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where N is the number of blocks, C is the number of cycles, 

and I is the number of odd-length paths in G(A,  B)  [4]. 

Figure 2 depicts a comprehensive list of the possible sort-

ing DCJs on an adjacency graph, and describes the condi-

tions under which they may be applied. See Proposition 1 

of [17] for a more thorough treatment. G(A, A), for some 

genome A, will always have 2M paths of length one and 

N − M cycles of length two, where M is the number of 

chromosomes and N is the number of blocks.

The minimum weighted rearrangements problem

Consider a genome Ai made of a set of linear or circular 

chromosomes. Each rearrangement on this genome may 

have a certain likelihood of occurring. In the “Local-

ity and the adjacency graph” section we will describe 

a DCJ move on G(Ai,B) as a reconnection of two adja-

cency edges of G(Ai,B); the resulting graph G(Ai+1,B) is 

identical to G(Ai,B) aside from the connectivity of two 

adjacency edges. �erefore there is a bijection between 

(1)dDCJ (A,B) = N − (C + I/2)
edges of G(Ai,B) and edges of G(Ai+1,B), so we can 

weight all pairs of genome adjacencies occurring in a 

sorting scenario by weighting all pairs of adjacency edges 

in G(A, B). For the set P of all pairs of adjacency edges in 

genome A, the weight function for a pair is w : P �→ R+,  

where R+ denotes the non-negative real numbers. �e 

higher the value of w the less likely the rearrangement 

is to occur, e.g., a value of 0 represents a most likely 

rearrangement.

A sequence of rearrangements ρ1, ρ2, . . . , ρd such that 

(· · · ((Aρ1)ρ2) · · · ρd) = B is called a sorting scenario. 

�e weight of a scenario is the sum of the weights of all 

the rearrangements in the scenario, i.e., 
∑

d

i=1
w(ρi). �e 

M W R problem is the 

following.

Problem 1 M W R 

INPUT: Genomes A and B and a weight function w.

OUTPUT: A scenario of rearrangements turning A 

into B.

MEASURE: �e weight of the scenario.

5  1  2 6  4  8  3 7

1 2 3 4 5 6 7 8

- - - - -

Fig. 1 The colored adjacency graph G(A, B, col). Black edges are adjacency edges and gray edges are cross edges. The color function col maps 

adjacency edges of genome A to the alphabet {a, b, c, d}

a b c

ed

Fig. 2 All possible DCJs that move one genome closer to the other. Adjacency edges are contracted, so that only the cross edges are shown in the 

connected components. Endpoints that are affected by the DCJ are circled. In the top row, extracting a cycle from (a) an even-length path, (b) an 

odd-length path, and (c) a cycle are depicted. Even-length paths can be combined to form two odd-length paths if one of the paths has endpoints 

in genome A and the other in genome B, as depicted in (d). An even-length path can be split into two odd length paths if the split is done in the 

genome with fewer vertices in the path, as depicted in (e)
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Positional constraints as colored adjacencies

Although chromosomes are represented as linear or cir-

cular sequences of syntenic blocks, in reality they cor-

respond to molecules whose conformation within the 

nucleus is complex. Recent technological advances, called 

Hi-C, allow the mapping of chromosome conformation 

in various cell types and species  [22–26]. �e positional 

constraints introduced here are based on the principle 

that rearrangements (DCJ moves) involving pairs of adja-

cencies that are close in 3D space are more frequent than 

others. �is model is supported by the pioneering work of 

Véron et al.  [27], who showed that loci that are distant in 

the linear ordering of the human chromosome yet close 

in the ordering of the mouse chromosome, are physi-

cally close (in 3D) in the human chromosome. Recently 

we have conducted a study on rearrangement scenarios 

showing that breakpoint pairs comprising a rearrange-

ment are closer than expected by chance for intrachromo-

somal and interchromosomal rearrangements. �is is true 

for multiple cell types from multiple laboratories [28]. In 

this paper, we use the observation that many moves are 

local to constrain the rearrangement scenarios that we 

compute. We call this the positional constraint.

We incorporate the constraint by grouping adjacen-

cies of the genome into classes that are more likely to 

swap endpoints. �is idea is illustrated in Fig.  3, where 

the physical (3D) structure of genome A is drawn and the 

adjacencies are grouped into colored localities. Accord-

ing to Véron et al.  [27] and our recent results [28], rear-

rangements are more likely to occur between adjacencies 

at the same position.

Locality and the adjacency graph

Each adjacency edge in G corresponds to an adjacency in 

genome A or B. �e color of an adjacency is given to the 

adjacency edge it corresponds to. Figure 1 shows a coloring 

for the adjacencies of genome A that matches the localities 

in Fig. 3. �e application of a DCJ operation to a genome 

has the effect of swapping the endpoints of two adjacency 

edges, or splitting an adjacency edge as in the case of Fig. 4e.

�roughout a DCJ sorting scenario, adjacency edges 

always keep the same color. �us, each DCJ operation 

corresponds to one of two possible updates of the same 

pair of adjacency edges, as depicted in Fig. 4a.

A positional weight function

Categorize rearrangements into two sets: those that are 

likely, and those that are not. Such a categorization of 

rearrangements is powerful enough to encapsulate the 

positional property discussed earlier.

A DCJ ρ acts on one or two adjacencies. Our model 

labels each adjacency with some color from an alphabet 

�, and weights a DCJ based on the colors that are acted 

upon. Call iρ and jρ the adjacencies affected by ρ; iρ = jρ 

if the DCJ acts on only a single adjacency, e.g., case (e) 

in Fig.  2. �e color of an adjacency iρ is written col(iρ). 

Given a DCJ ρ, our weight function is

We call those DCJ moves that have zero weight likely, 

while we call all others rare. It is trivial to evaluate our 

weight function for a given DCJ; simply check the colors 

of the two adjacency edges that are affected.

Two restricted versions of the general problem are now 

described. �e problem M L S is 

exactly M W R with 

the positional weight function w.

Problem 2 (MLS ) M L S 

INPUT: Genomes A and B and positional weight func-

tion w.

OUTPUT: A scenario of rearrangements turning A 

into B.

MEASURE: �e weight of the scenario.

�e problem M L P S-

 introduces the constraint that the scenario output 

is also a parsimonious scenario, i.e., a scenario of mini-

mum length.

w(ρ) =

{

0 if iρ = jρ or col(iρ) = col(jρ)

1 otherwise.

AB C

Fig. 3 A A 2D cartoon of a possible 3D configuration for genome A. Adjacencies between syntenic blocks are classified by physically close regions, 

which are marked by dashed circles and labeled by the alphabet {a, b, c, d}. B Genome A after a reciprocal translocation has occurred at position b. C 

Genome A after an excision has occurred at position b
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Problem 3 (MLPS ) M L P 

S 

INPUT: Genomes A and B and positional weight func-

tion w.

OUTPUT: A parsimonious scenario of rearrange-

ments turning A into B.

MEASURE: �e weight of the scenario.

Minimum local parsimonious scenario

Since a solution to M L P 

S is limited to sorting moves, most connected 

components of G(A, B, col) must be sorted independently 

of each other, the exception being for even-length paths; 

all but one DCJ in Fig. 2 act on a single connected com-

ponent. We first give a method for computing the num-

ber of rare operations per connected component when 

no pair of even-length paths exist, as in Fig. 2d. We then 

show in the “Even-length paths” section how to solve the 

problem when such pairs exist.

Colored partitions

Consider a connected component C of the graph 

G(A,  B,  col). If C is monochromatic, i.e., has adjacency 

edges of a single color, then the component can be sorted 

with likely DCJs according to the listed moves in Fig.  2; 

the move that operates on more than one component in 

Fig. 2d need not be used since each path can be split on its 

own with a local move, as in Fig. 2e. If C is polychromatic 

then DCJs must be performed to separate the colors, since 

a fully sorted genome has components that each have only 

a single colored adjacency edge in genome A.

Recall that AA-paths and BB-paths are paths that 

start and end in the same genome. In this subsec-

tion, we assume that there does not exist both an AA

-path and a BB-path in the graph (Fig.  2d). Ouangra-

oua and Bergeron established that the DCJs in a sorting 

scenario can be done in any order for such a graph and 

that every component will be sorted independently, 

thereby defining a noncrossing partition on each com-

ponent (see section. 3 and 4 of [17]). Later in this sec-

tion we show that M L P 

S on a single component is equivalent to the 

following problem concerning a generalization of non-

crossing partitions. A partition of a set is a collection of 

pairwise disjoint subsets whose union is the entire set. 

�e subsets are called classes. [1,  n] is the set of inte-

gers from 1 to n.

Definition 1 A noncrossing partition is a partition 

P of [1, n] such that for any classes Si, Sj ∈ P if we have 

p < q < p′
< q′ for p, p′

∈ Si and q, q′
∈ Sj, then Si = Sj. 

A noncrossing colored partition is a noncrossing partition 

where for any p, p′
∈ Si, col(p) = col(p′).

Another way to define a noncrossing partition is on 

a convex polygon. A noncrossing partition is a parti-

tion of the vertices of an n-gon with the property that if 

you draw a line between all pairs of vertices in the same 

class, for all classes, then no two lines from different 

classes intersect. A colored partition has colored verti-

ces, and respects the property that any pair of vertices in 

the same class of the partition have the same color (see 

Fig. 5A, B).

Problem 4 (MNCP) M N C  

P 

INPUT: Set size n, color set �, and color function 

col : [1, n] → �.

OUTPUT: A noncrossing colored partition.

MEASURE: �e cardinality of the partition.

We present a polynomial-time algorithm for the M-

 N C P problem, 

a b

Fig. 4 The update of colors by a DCJ. a Adjacency edges with colors x and y are reconfigured in two different ways for the same DCJ operation. In 

this case the reconfigurations are achieved by swapping either both right-hand endpoints or both left-hand endpoints of the adjacency edges.  

b The adjacency edge with color x is split to make two adjacencies of color x with two new telomeres
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which according to Lemma 2 (later in this section) gives a 

solution to M L P S 

on a single component. We describe the algorithm on an 

instance that has been embedded on a line where the left-

most vertex ① represents the smallest element of the set, 

as shown in Fig. 5C. For an interval [i, j], let NCP(i, j) be 

the number of classes in the MNCP on that subproblem. 

�us, NCP(1,  n) corresponds to the M N-

 C P of [1, n].

For any interval [i, j] we have NCP(i, i) = 1, and the fol-

lowing recurrence.

�e first case corresponds to the creation of a new class 

with the single element j. �e second case is applicable 

when element j is the same color as element i; in this 

case i and j become part of the same class, all the other 

classes staying the same. �e third case tests combina-

tions of subproblems; this case is pertinent when the 

col(i) = col(k − 1) or col(k) = col(j). It is easy to con-

firm that any feasible solution to MNCP is scored by the 

recurrence. �is dynamic program runs in O(n3) time.

We now show the link between MLPS and MNCP. 

Consider component C to be sorted. Pick an arbitrary 

vertex of C if it is a cycle, or either endpoint of C if it is a 

path, and consider an ordering of the vertices of genome 

A based on a traversal of the edges of C from that ver-

tex. Embed the vertices of the component on a cir-

cle with respect to that ordering, and the edges so that 

they remain inside the circle. Call this a circular embed-

ding of the component. Consider a sorting scenario for 

C that corresponds to a sequence of adjacency graphs 

NCP(i, j) = min



























NCP(i, j − 1) + 1 for i < j,

NCP(i, j − 1) for i < j

and col(i) = col(j)

NCP(i, k − 1) + NCP(k , j) for all k

where i < k < j

C0,C1, . . . ,Cd (C = C0). Call C◦

i
 the graph Ci with vertices 

embedded according to the circular embedding of C0.

Lemma 1 [17] C◦

i
 has no pair of crossing adjacency 

edges for any i.

Proof By construction, all adjacency edges in C◦

0
 con-

nect adjacent vertices on the circle, so none of them 

cross. Assume that C◦

j  has crossing adjacency edges and 

C◦

j−1
 does not. �is implies that the jth DCJ did not split 

a component. �is is a contradiction since every sorting 

move on C splits a component, never creating both an 

AA-path and BB-path.  �

Lemma 2 Given a connected component C, M 

L P S on C can be solved by 

M N C P.

Proof First, transform an instance of MLPS on a single 

component to an instance of MNCP. Given a cycle C rep-

resenting genomes A and B, map the set of elements [1, n] 

from the set of adjacency edges of A ordered according to 

a circular embedding of C. �e color function col maps 

each element to its corresponding adjacency edge’s color.

Now transform an optimal solution of MNCP into an 

optimal solution for MLPS. Clearly, any partition of [1, n] 

corresponds to a partition of adjacency edges of genome A. 

We show that there always exists a scenario of DCJs whose 

prefix separates C into connected components according 

to the partition. Any two edges of the same component 

can be chosen for a DCJ [17] and the DCJs on a cycle can 

be done in any order (Lemma 1). Since the ordering of the 

edges on the cycle corresponds to the ordering on [1, n], an 

edge partition of size k can be achieved with k − 1 DCJs. 

Since k is minimum over all feasible partitions and the 
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Fig. 5 Colored partitions for the set [1, 8] where col(1) = b, col(2) = a, col(3) = b, col(4) = c, col(5) = a, col(6) = d, col(7) = a, and col(8) = c.  

Vertices are circles numbered by their order in the set [1, 8] and labeled by their color. Thick black lines are drawn between vertices that are in the 

same class of the partition. A The crossing partition {{1, 3}, {2, 5, 7}, {4, 8}, {6}}. B The optimal noncrossing partition {{1, 3}, {2}, {4, 8}, {5, 7}, {6}}. C The 

instance embedded on a line
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remaining DCJs of the scenario are likely, the constructed 

scenario has a minimum number of rare DCJs.  �

In fact, the two problems are equivalent. We omit the 

reduction in the other direction since it is out of the 

scope of this paper.

Even‑length paths

A M N C P can 

be computed in polynomial time for a single component 

independent of all others. Yet it is possible to mix com-

ponents in a parsimonious DCJ scenario. As described in 

Fig. 2, the only parsimonious DCJs that mix components 

are those that act on one edge from an AA-path and one 

edge from a BB-path. Call AA (BB respectively) the set 

of AA-paths (BB-paths respectively) in the adjacency 

graph. �e key observation is that once a path has been 

mixed with another, the result is always two odd-length 

paths which subsequently cannot be mixed with any 

other. �us we devote this section to the computation of 

which pairs of paths (p, q) ∈ AA × BB will be mixed in an 

optimal solution, and which paths will remain unmixed.

Any pair (p,  q) can be mixed in several ways. For all 

possible DCJs that mix them, we compute the MNCP on 

the resulting components. �e minimum MNCP over 

all mixings is the cost in rare moves for mixing the two 

paths. To compute the pairs of paths to be mixed in an 

optimal solution, we use the inverse of these costs—the 

number of likely moves—as weights in a bipartite graph.

Take the elements of AA and BB as vertices in a com-

plete bipartite graph, and label each edge (p,  q) with the 

maximum number of likely DCJs for the mixing of paths 

p and q. Any even-length path could alternatively be used 

independently of any other, so there is a vertex v′ for each 

v ∈ AA ∪ BB with a single edge (v, v′) labeled by the num-

ber of likely moves on v alone (computed using the MNCP 

on that component). Algorithm 1 computes the minimum 

number of rare DCJs in a parsimonious scenario. It is easy 

to modify the algorithm to give the list of DCJs. 

Algorithm 1 MLPS(A, B)

Require: genomes A and B.

Ensure: cost of parsimonious scenario with a minimum number of rare DCJs.

⊲ Sort the graph components by type:

C ← set of cycles in G(A, B, col)
P ← set of odd-length paths in G(A, B, col)
AA ← set of AA-paths in G(A, B, col)
BB ← set of BB-paths in G(A, B, col)

⊲ Compute the cost of the cycles and odd-length paths:

cost ← 0
for c ∈ C do

cost ← cost + MNCPonComp(c, col) − 1
end for

for p ∈ P do

cost ← cost + MNCPonComp(p, col) − 1
end for

⊲ Compute the cost of the even-length paths:

for p ∈ AA do ⊲ Compute weights for not mixing AA vertices:

VA ← VA ∪ {p, p′}
w(p, p′) ← MNCPonComp(p, col) − 1

end for

for q ∈ BB do ⊲ Compute weights for not mixing BB vertices:

VB ← VB ∪ {q, q′}
w(q, q′) ← MNCPonComp(q, col) − 1

end for

for p ∈ AA do ⊲ Compute weights for mixings:

for q ∈ BB do

w(p, q) ← maxMix(p, q)
end for

end for

⊲ Build the bipartite graph and compute the matching:

cost ← cost + d(AA) + d(BB) − maxMatching(VA, VB , w)
return cost
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�e function MNCPonComp(c,  col) computes the 

M N C P on the 

given component c. In other words it builds the color 

function col according to the component c and then calls 

MNCP(1,  n,  col) where n is the number of adjacency 

edges on the A side of the component c. �e function 

maxMix(p, q) computes the maximum number of likely 

DCJs over all possible DCJs that use one edge from p and 

one edge from q. �e function d(AA) computes the sum 

of DCJ distances from each component in AA using For-

mula 1. �e function maxMatching(VA,VB,w) builds the 

bipartite graph with vertices VA on one side and vertices 

VB on the other, and the edges described by the weight 

function w.

To summarize, any path can be mixed at most once 

in a parsimonious scenario. Potential mixings, as well as 

potential non-mixings, are encoded into a bipartite graph 

with edges weighted by the cost of a mix. A maximum 

weight matching in this graph corresponds to a scenario 

that minimizes the number of rare moves on the paths. 

All other connected components of the graph are sorted 

using the M N C P-

 on the component.

�e running time of our algorithm is dominated by the 

weighting of the edges on the bipartite graph. Consider 

all mixings done between elements of AA and elements 

of BB. A particular adjacency edge e from a given path 

p ∈ AA will take part in exactly one DCJ with every edge 

f from a path q ∈ BB throughout the weighting process. 

�erefore for each pair (e, f), e being an edge from a path 

in AA and f being an edge from a path in BB, we will com-

pute the MNCP on the resulting mix. If the number of 

edges in the paths AA (respectively BB) is n(AA) (respec-

tively n(BB)), then the running time of our algorithm is 

O(n(AA)n(BB)n3). In the worst case, half of the edges are 

used in AA-paths and half in BB-paths, yielding a run-

ning time of O(n5).

Faster mixing of even‑length paths

In the previous section, edges of the bipartite graph are 

scored by the function maxMix that computes the maxi-

mum number of likely DCJs over all possible mixings of 

two paths. �e analysis includes the multiplicative term 

n(AA)n(BB) reflecting the process of actually trying all 

possible mixings when labeling the edges of the bipartite 

graph. We now show how to mix paths more efficiently.

Define the A-edges of a component of the graph G(A, B) 

to be those edges connecting two nodes in genome A. 

Consider paths p ∈ AA and q ∈ BB where p is the path 

with A-edges e1, e2, . . . , ek and telomeres t1 and t2, and 

q is the path with A-edges f1, f2, . . . , fℓ and telomeres t3 

and t4 (see Fig. 6). Construct two different cycles from p 

and q, cycle c1 results from joining t1 to t3 and t2 to t4 

by cross edges, and cycle c2 results from joining t1 to t4 

and t2 to t3. �e A-edges of p can then be ordered cir-

cularly in c1 where edge e1 follows edge ek. Similarly, f1 

follows fℓ in c2. We show that there is a bijection between 

scenarios that start by mixing p and q, and scenarios that 

act on one of these two cycles by first performing a DCJ 

between an e edge and an f edge.

�ere is an obvious bijection between edges of p ∪ q 

and c1, and between edges of p ∪ q and c2. Consider the 

mix move acting on edge ei in p and fj in q. �e result is 

either:

1. paths e1, e2, . . . , ei, fj−1, fj−2, . . . , f1  

and ek , ek−1, . . . , ei+1, fj , fj+1, . . . , fℓ, or

2. paths e1, e2, . . . , ei−1, fj , fj−1, . . . , f1  

and ek , ek−1, . . . , ei, fj+1, fj+2, . . . , fℓ, or

3. paths e1, e2, . . . , ei, fj+1, fj+2, . . . , fℓ  

and ek , ek−1, . . . , ek , ek−1, . . . , ei+1, fj , fj−1, . . . , f1, or

4. paths e1, e2, . . . , ei−1, fj , fj+1, . . . , fℓ  

and ek , ek−1, . . . , ei, fj−1, fj−2, . . . , f1.

�e DCJ acting on ei and fj in c1 yields two cycles par-

titioning the edges as they are in either Case 1 or Case 2. 

�e DCJ acting on ei and fj in c2 yields two cycles parti-

tioning the edges as they are in either Case 3 or Case 4. 

Since odd length paths and cycles can only be sorted by 

cycle-extraction moves (see Fig. 2), each scenario mixing 

ei and fj maps to a scenario on c1 or c2. �e bijection fol-

lows from the fact that moves on a cycle can be ordered 

in any way (Lemma 1).

Due to the bijection between mixing scenarios 

on p and q, and scenarios on c1 or c2, the MNCP 

by mixing p and q must be either the MNCP on c1 

or the MNCP on c2. �us, our algorithm to com-

pute maxMix(p,  q) returns the maximum of 

MNCPonComp(c1,  col) or MNCPonComp(c2,  col) or 

MNCPonComp(p, col) + MNCPonComp(q, col).

Our new version of maxMix removes a linear factor 

from the overall computation time. Note a1, . . . , ax the 

... ... ... ...

Fig. 6 An AA-path and a BB-path
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sizes of the paths in AA and b1, . . . , by the sizes of the 

paths in BB so that |AA| =
∑

x

i=0
ai and |BB| =

∑y
j=0

bj.

"Colored partitions" section shows that the number of 

steps required to solve MNCP on a component of size 

m is less than c × m
3, for some constant c. For each pair 

of paths, we compute MNCPonComp three times, so 

the number of steps required to label all the edges of the 

complete bipartite graph is at most

�e terms y, x, |AA|, and |BB| are clearly O(n). Since the 

largest terms 
∑

x

i=0
a
3

i
 and 

∑y
j=0

b3i  are in O(n3), the com-

plexity of the bipartite graph labeling step is O(n4). Since 

sorting all non-even paths takes O(n3) time, our complete 

algorithm takes O(n4) time in the worst case.

Conclusion

�e number of parsimonious DCJ scenarios between two 

genomes is exponential in the distance between them. 

However, many of the scenarios are probably unrealistic 

in the biological sense. �is paper takes a step towards 

modeling realistic scenarios by posing optimization prob-

lems that take into account positional constraints. An 

example of such a positional constraint is the 3D proxim-

ity of genome segments given by Hi-C experiments.

An O(n4) algorithm is proposed for computing a par-

simonious DCJ scenario that is most likely, given an 

edge-coloring function that classifies DCJ as “likely” or 

“unlikely”. In practice the algorithm will be O(n3) since 

we expect long even-length paths to be rare in nature. 

For example, the adjacency graph for the mouse/human 

syntenic map built by Véron et al.  [27] from one-to-one 

orthologs in Biomart has only 182 edges in even-length 

paths out of a total of 13,302 edges. �e largest con-

nected component has 35 edges.

From a biological perspective, a solution to M 

L P S corresponds to find-

ing a maximum likelihood scenario in a situation where 

likely and unlikely scenarios are both rare, and the differ-

ence between the likelihoods of likely and unlikely moves 

is not very large. In this situation, a most parsimonious 

scenario made of k unlikely moves is more likely than a 

non-parsimonious scenario made of k + 1 likely moves. 

�us the maximum likelihood scenario is the most 

3c

x
∑

i=0

y
∑

j=0

(ai + bj)
3 = 3c

x
∑

i=0

y
∑

j=0

(a3i + b3j + 3a2i bj + 3aib
2

j )

= 3c
(

y

x
∑

i=0

a3i + x

y
∑

j=0

b3j + 3|BB|

x
∑

i=0

a2i + 3|AA|

y
∑

j=0

b2j

)

.

parsimonious scenario that involves the smallest number 

of unlikely moves.

We introduce the M N C 

P problem—a generalization of the M-

 I S problem on circle graphs—for 

weighting the edges of a bipartite graph, on which we 

obtain a maximum matching. While this technique is 

essential to our algorithm for finding DCJ scenarios, we 

believe it will also come in handy for an algorithm that 

finds likely inversion scenarios (e.g., for handling the infa-

mous “hurdles”). A multitude of biologically relevant var-

iations on this problem exist, including variations on the 

model of genome rearrangement, a variant where edges 

have multiple colors, and a bi-directional sorting variant 

where edges are weighted on both genomes according to 

the chromatin conformation on each. Models that incor-

porate uncertainty or evolution in the Hi-C data would 

also be relevant. We hope that this work provokes fur-

ther study from both the algorithmic and the biological 

perspectives.
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