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Abstract. We introduce a model for non-preemptive scheduling under
uncertainty. In this model, we combine the main characteristics of online
and stochastic scheduling in a simple and natural way. Job processing
times are assumed to be stochastic, but in contrast to traditional stochas-
tic scheduling models, we assume that jobs arrive online, and there is no
knowledge about the jobs that will arrive in the future. The particular
setting we analyze is parallel machine scheduling, with the objective to
minimize the total weighted completion times of jobs. We propose sim-
ple, combinatorial online scheduling policies for that model, and derive
performance guarantees that match the currently best known perfor-
mance guarantees for stochastic and online parallel machine scheduling.
For processing times that follow NBUE distributions, we improve upon
previously best known performance bounds from stochastic scheduling,
even though we consider a more general setting.

Keywords. Stochastic scheduling, online optimization, average comple-
tion time, policies.

1 Introduction & Model

We consider the classical problem of nonpreemptive scheduling on single and
identical parallel machines to minimize the sum of weighted completion times
under uncertainty.

In order to cope with uncertainty about the future, there are two major frame-
works in the theory of machine scheduling, one is the stochastic scheduling
model, the other online scheduling model(s). The main characteristic of stochas-
tic scheduling, in contrast to deterministic models, is the fact that the processing
times of jobs are subject to random fluctuations, and the actual processing times
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become known only upon completion of the jobs. It is generally assumed, though,
that the respective random variables, or at least their first moments, are known
beforehand. In online scheduling, the assumption is that the instance is pre-
sented to the scheduler only piecewise. Depending on the precise model, jobs are
arriving either one-by-one (sequence model), or over time (time-stamp model).
The job characteristics such as weight and processing time are usually disclosed
upon arrival of the job, and decisions must be made without any knowledge of
the jobs to come.

In this paper, we suggest a model that generalizes both, the stochastic scheduling
model as well as the online scheduling models. We call it the Stochastic Online
Scheduling (Sos) model. Like in online scheduling, we assume that the instance
is presented to the scheduler piecewise, and nothing is known about jobs that
might arrive in the future. Once a job arrives, like in stochastic scheduling, we
assume that its weight and first moment of its processing time are disclosed, but
the actual processing time remains unknown until the job completes.

2 Policies & Performance

We derive worst case performance guarantees for the expected performance of
simple, combinatorial online scheduling policies for the stochastic online schedul-
ing model on a single machine and on identical parallel machines, respectively.
For the analysis of policies respecting release dates, we restrict ourselves to ran-
dom variables that we call δ-NBUE. This is a generalization of NBUE random
variables.

Definition 1 (δ-NBUE). A non-negative random variable X is δ-NBUE if,
for δ ≥ 1,

E [X − t |X > t ] ≤ δ E [X] for all t ≥ 0.

Ordinary NBUE distributions are by definition 1-NBUE.

In our performance analysis, we crucially exploit the fact that lower bounds on
the expected value of an optimal policy known from stochastic scheduling carry
over to the Sos setting. We utilize the following lower bound by Möhring, Schulz
and Uetz [1] on the expected performance E

[
ZOPT

]
of an optimal stochastic

scheduling policy.

Lemma 1 (Möhring et al. [1]). For any instance of P|rj |E [
∑

wj Cj ], we
have that

E [Zopt] ≥
∑

j

wj

∑
k∈H(j)

E [P k]
m

− (m− 1)(∆− 1)
2m

∑
j

wjE [P j ] ,

where ∆ bounds the squared coefficient of variation of the processing times, that
is, Var[P j ]/E [P j ]

2 ≤ ∆ for all jobs j = 1, . . . , n and some ∆ ≥ 0.
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2.1 Stochastic online scheduling on a single machine

For the single machine problem 1|rj |E [
∑

wjCj ] in the stochastic online schedul-
ing model we consider the following policy which was proposed for parallel ma-
chines by Megow and Schulz in [2] in the deterministic online setting.

α-Shift-WSEPT
Modify the release date rj of each job j such that r′j = max{rj , α E [P j ]},
for some fixed α > 0. At any time t, when the machine is idle, start the
job with highest priority in the WSEPT order (i.e., the job with highest
ratio of weight to expected processing time) among all available jobs,
respecting the modified release dates.

Theorem 1. The α-Shift-WSEPT algorithm is a (δ + 2)-approximation for
the Sos problem 1|rj |E [

∑
wjCj ], for δ-NBUE processing times. The best choice

of the parameter α is α = 1.

For NBUE distributed processing times this result matches the best known LP
based performance bound derived by Möhring et. al [1] for stochastic scheduling.
In the online setting, the best possible algorithm is exactly 2-competitive which
is shown in [3], [4].

2.2 Stochastic online scheduling on parallel machines

In the parallel machine environment we apply the following simple, combinato-
rial scheduling policy that we call MinIncrease. We schedule jobs that have
been assigned to the same machine in the α-Shift-WSEPT order. The online
decisions on job-to-machine assignments are made as follows: as soon as a job is
presented, we assign it to that machine where it causes the minimal increase in
total expected objective value, given the jobs on each machine would be sched-
uled in WSEPT order (non-increasing ratios of weight over expected processing
times). Note, that in order to assign jobs to machines, we completely ignore re-
lease dates and information about real processing times which could be observed
from the schedule.

Theorem 2. Consider the stochastic online scheduling problem P|rj |E [
∑

wj Cj ].
Given that all processing times are δ-NBUE, the MinIncrease policy is a ρ–
approximation, where

ρ = 1 + max{1 +
δ

α
, α + δ +

(m− 1)(∆ + 1)
(2m)

} .

Here, ∆ is such that Var[P j ]/E [P j ]
2 ≤ ∆ for all jobs j. In particular, since all

processing times are δ-NBUE, we know that ∆ ≤ 2δ−1 in the above performance
bound.
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For NBUE processing times, where we can choose ∆ = δ = 1, the approx-
imation ratio is minimal for α = (

√
5m2 − 2m + 1−m + 1)/(2m), obtaining a

ratio of less than (5 +
√

5)/2 − 1/(2m) ≈ 3.62 − 1/(2m), improving upon the
previously best known approximation ratio of 4−1/m from [1] for the stochas-
tic problem. Moreover, for deterministic instances this performance matches the
currently best known competitive ratio of 3.28 from [2] for deterministic online
scheduling.

In the special setting where all release dates are equal, our MinIncrease policy
indeed chooses for each job j the machine where it causes the least increase in
the expected value, given the previously assigned jobs. We prove a performance
ratio of

1 +
(∆ + 1)(m− 1)

2m

which matches exactly the currently best known performance guarantee for the
classical stochastic setting, which was derived for the performance of the WSEPT
rule in [1]. The WSEPT rule, however, requires the knowledge of all jobs with
their weights wj and expected processing times E [P j ] at the outset.

Finally, we remark that the MinIncrease policy can be seen as derandomized
version of a policy that assign jobs uniformly at random to one of the machines.
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