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Abstract.  This paper introduces models and algorithms for a dial-a-ride problem arising in 
the transportation of patients by non-profit organizations such as the Austrian Red Cross. 
This problem is characterized by the presence of heterogeneous vehicles and patients. In 
our problem, two types of vehicles are used, each providing a different capacity for four 
different modes of transportation. Patients may request to be transported either seated, on 
a stretcher or in a wheelchair. In addition, some may require accompanying persons. The 
problem is to construct a minimum-cost routing plan satisfying service related criteria, 
expressed in terms of time windows, as well as driver related constraints expressed in 
terms of maximum route duration limits and mandatory lunch breaks. We introduce both a 
three-index and a set partitioning formulation of the problem. The linear programming 
relaxation of the latter is solved by a column generation algorithm providing tight lower 
bounds on the optimal solution value. We also propose a variable neighborhood search 
heuristic which yields high quality solutions on realistic test instances. Finally, we integrate 
the heuristic and the column generation approach into a collaborative framework. 
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1 Introduction

Our study was motivated by a problem faced by non-profit organizations such as the Austrian
Red Cross (ARC) in the field of patient transportation. These organizations have to devise
daily routing plans for their ambulances to serve a set of transportation requests that have been
formulated in advance. Each request is defined by origin and destination locations, a number
of passengers to be transported, and a time at which the passengers should either be picked-up
at the origin or dropped-off at the destination.

The ARC disposes of vehicles of two different types, each type providing a different capacity
for four modes of transportation: staff seat, patient seat, stretcher and wheelchair. Each patient
may demand to be transported either seated, on a stretcher, or in a wheelchair. Accompanying
persons may also be present and seating room for them has to be provided on the vehicle.
Accompanying persons are allowed to use a staff seat. They may also use a patient seat or sit
on the stretcher. Patients that can be transported seated are not allowed to use a staff seat.
They can, however, be transported on the stretcher in the case where there are no more patient
seats available. Patients that have to be transported on a stretcher or in a wheelchair can only
be transported in the corresponding mode. Finally, some users require the presence of a second
staff member aboard the vehicle.

The ambulance dispatcher has to assign drivers to vehicles (there are usually fewer drivers
than available vehicles) and driver related constraints have to be taken into account in the
planning process. These constraints refer to maximum shift lengths and mandatory breaks.
Non-profit organizations like the ARC have to ensure that their expenses are kept low while
providing a reasonably high service level. Thus, the aim is to construct a routing plan that is
of minimum routing cost while respecting service related criteria, expressed in terms of time
windows, as well as labor regulations. The resulting problem can be defined as a Heterogeneous
Dial-A-Ride-Problem with Driver related constraints (HDARPD).

To address this complex routing problem we propose a Variable Neighborhood Search (VNS)
heuristic relying on several neighborhood operators. We also introduce a column generation
algorithm that is used to compute lower bounds based on a set-partitioning formulation of the
problem. These bounds are used to assess the quality of the solutions produced by the heuristic.
Finally, we discuss how the heuristic and the column generation approach can be integrated
into a collaborative framework.

The contributions of this work are fourfold. First, we introduce a formulation for the
HDARPD that incorporates routing and driver deployment decisions. This integration is made
possible by the fact that the time frame within which regular patient transportation is performed
corresponds to the drivers’ work shifts. Second, a column generation algorithm is proposed. The
central new aspect lies in the way the maximum route duration limit together with a non-empty
time window at the start depot is treated in the dynamic programming part. Third, an efficient
meta-heuristic algorithm tailored to the problem is presented. Fourth, the integration of the
two methods into a collaborative scheme is investigated.

The remainder of the paper is organized as follows. The next section discusses related
literature. Section 3 then introduces some notation and two mathematical formulations of
the problem. These are followed by the column generation algorithm in Sections 4 and 5,
respectively, and by the VNS heuristic in Section 6. Computational experiments are reported
in Section 7 and are followed by the conclusion.
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2 Related Work

Dial-A-Ride Problems (DARP) are generalizations of Pickup and Delivery Problems with Time
Windows (PDPTW). In the DARP people are being transported instead of goods. This gives
rise to the issue of service quality which can be ensured either through additional constraints
or with extra terms in the objective function. The first approach is followed, e.g., by Parragh
et al. (2009), while we adopt the latter approach in this paper.

Like the majority of the works published on the DARP, we address here its static version.
Previous publications considering heterogeneous versions of the DARP involve, e.g., the work
of Toth and Vigo (1997). The heterogeneity considered by these authors refers to two modes of
transportation (seated passengers and passengers in wheelchairs) and to several different types
of vehicles. The authors have devised a parallel insertion heuristic and a tabu thresholding
algorithm for this problem. Another heterogeneous version of the DARP was described by
Melachrinoudis et al. (2007). They developed a tabu search heuristic for a problem with several
different types of vehicles in terms of capacity limits but only one mode of transportation.
Heterogeneous vehicles in terms of capacity were also considered by Rekiek et al. (2006) who
introduced a grouping genetic algorithm.

In the context of a dynamic environment, Beaudry et al. (2009) have adapted the tabu search
heuristic of Cordeau and Laporte (2003) to solve a heterogeneous DARP that arises in large
hospitals. It involves transportation requests requiring three different modes of transportation
(seated, on a bed, or in a wheelchair) and several different types of vehicles. Another recent
implementation of a computer-based planning system for a dynamic problem in a large German
hospital, considering specific constraints such as multi-dimensional capacities, was reported by
Hanne et al. (2009).

For overviews of the DARP and the closely related PDPTW, we refer the reader to Berbeglia
et al. (2007), Cordeau and Laporte (2007) and Parragh et al. (2008a,b).

In related research, Xu et al. (2003) have addressed a practical pickup and delivery problem
with multiple vehicle types, multiple time windows and several compatibility constraints both
between requests and between requests and vehicles. In addition, first-in-first-out loading rules
and driver work rules were taken into account. This problem was solved by a heuristic column
generation algorithm in which several pricing heuristics are employed. In their experiments, the
solution obtained at the root node is often integer. If not, a Mixed Integer Program (MIP) is
solved on the set of generated columns. Column generation integrated into a branch-and-cut
framework has also been successfully applied to the standard PDPTW by Ropke and Cordeau
(2009). This algorithm has outperformed an earlier branch-and-cut algorithm by Ropke et al.
(2007) in terms of the maximum problem size that can be solved. These results indicate that the
use of a column generation-based algorithm is a promising direction. Finally, a combination of
column generation with a local search method has recently been studied by Danna and Le Pape
(2005) in the form of a so-called collaborative scheme.

In an earlier study, Parragh (2009b) has analyzed and solved a restricted version of the
HDARPD, focusing solely on heterogeneous users and fleet aspects. For this simpler variant,
state-of-the-art branch-and-cut algorithms for the DARP (Cordeau, 2006, Ropke et al., 2007)
were successfully adapted. In the present work, maximum user ride times are not considered
explicitly but rather implicitly in terms of time windows at both the pick-up and the drop-off
locations. This modification makes the application of column generation possible and allows us
to solve much larger instances.
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3 Problem Formulation

In the following the basic notation needed to formulate the HDARPD is given. Thereafter, two
different problem formulations are presented: a three-index model and a more compact set-
partitioning formulation. The latter will serve as the basis for the proposed column generation
framework.

3.1 Notation

The HDARPD is modeled on a complete directed graph G = (V,A), where V is the set of
vertices and A the set of arcs. To each arc (i, j) are associated a non-negative travel cost cij

and a non-negative travel time tij. A set of n customer requests, each consisting of a pickup
and delivery vertex pair {i, n + i}, have to be served. The set of pickup vertices is denoted by
P = {1, . . . , n} and the set of delivery vertices by D = {n + 1, . . . , 2n}.

At every pickup vertex one patient has to be transported and this patient may demand
one of three different transportation modes. For every transportation mode r ∈ R, where
R = {0, 1, 2, 3} denotes the set of transportation modes, let qr

i denote the load of passenger i
with respect to mode r. Passengers may have to be transported seated (q1

i = 1), on a stretcher
(q2

i = 1), or in a wheelchair (q3
i = 1). Each patient may also require an accompanying person

(q0
i = 1). The demand at every delivery vertex is equal to qr

n+i = −qr
i for all r ∈ R. In addition,

a patient may need additional personnel (referred to as “attendants” in the following), besides
the driver, to be on the vehicle. This is represented by the binary parameter ai taking value
1 if an attendant is needed, and 0 otherwise. Furthermore, let Va be the set of all vertices
demanding an attendant on board the vehicle. Attendants occupy a staff seat when they are
on the vehicle.

Every user specifies a time window [ei, li] either for the pick-up (origin) or for the drop-off
(destination) location, and the beginning of service has to start within this time window. In
case a vehicle arrives too early, it has to wait until service is possible. A maximum passenger
ride time L is implicitly considered in order to provide reasonable service quality. This is
done by artificially constructing a time window at the origin (resp. destination) relative to the
time window given at the corresponding destination (resp. origin): in case of an outbound
request (a time window is given for the destination), the time window at the origin i is set
to ei = max {0, en+i − L− di} and li = min

{

ln+i − ti,n+i − di, H̄
}

, where H̄ is the end of the
planning horizon. In case of an inbound request (a time window is given for the origin), the
destination time window is set to en+i = ei + di + ti,n+i and ln+i = min

{

li + di + L, H̄
}

. The
parameter di denotes the service time at vertex i.

A set K of m heterogeneous vehicles is available to serve the transportation requests. Each
vehicle k ∈ K is associated with constants Cr,k giving the amount of resource r available on
the vehicle. The ARC disposes of two basic vehicle types. Type 1 (T1) provides 1 staff seat,
6 patient seats, and 1 wheelchair place. Type 2 (T2) provides 2 staff seats, 1 patient seat,
1 stretcher, and 1 wheelchair place. Patients demanding to be transported seated may use a
patient seat or the stretcher. Patients demanding a stretcher can only be transported on a
stretcher. The same applies to wheelchair passengers. Accompanying persons, however, may
use a staff seat or a patient seat. They may also use the stretcher if no other transportation
mode is available.

Each route has to start at the depot vertex 0 within a prespecified time window and finish at
the end depot 2n+2, respecting a route duration limit T . This limit is based on Austrian labor
regulations. Driver working shifts are limited to 8.5 hours per day including a (lunch) break of
H = 30 minutes that has to start within a given time window [eH , lH ]. The lunch break can be
held at every vertex. In addition, only a certain number of drivers md (usually md < m) and
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only a limited number of attendants (in Austria these are employees serving their alternative
service) ma are available. An attendant can only work during morning or afternoon periods
on a vehicle. An attendant working in the morning has to return to the noon depot 2n + 1
within a certain time window [e2n+1, l2n+1]. An attendant working in the afternoon has to be
picked-up at the noon depot within the time window. In case there are more drivers available
than actually needed to serve all requests, the excess drivers may be employed for attendant
duties, serving only half of the day on a vehicle.

Thus, the set of all vertices is given by V = P ∪D ∪ {0, 2n + 1, 2n + 2}, and the set of all
arcs by A = {(i, j) : i ∈ V \ {2n + 2} , j ∈ V \ {0} , i 6= j}.

3.2 A three-index formulation

We now introduce a three-index formulation based on the following binary decision variables:

xk
ij =

{

1, if arc (i, j) is traversed by vehicle k,

0, otherwise,

zk
0 =

{

1, if a driver is assigned to vehicle k,

0, otherwise,

zk
1 =

{

1, if an attendant is assigned to vehicle k in the morning,

0, otherwise,

zk
2 =

{

1, if an attendant is assigned to vehicle k in the afternoon,

0, otherwise,

vk
i =

{

1, if the lunch break is held at vertex i,

0, otherwise.

In addition, we let u ∈ {0, . . . ,md} denote the number of drivers that serve as additional

attendants, while Bk
i and Qr,k

i denote, respectively, the beginning of service of vehicle k at
vertex i and the load of the vehicle with respect to resource r when leaving vertex i. Finally,
let W k

H represent the waiting time until the lunch break on vehicle k.
The objective considered is the minimization of total routing costs:

min
∑

k∈K

∑

i∈V

∑

j∈V

cijx
k
ij . (1)

For ease of exposition, we introduce the constraints of the model in several groups. The first
group contains the demand constraints and defines the basic structure of the routes:

∑

k∈K

∑

j∈V

xk
ij = 1 ∀i ∈ P, (2)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j = 0 ∀i ∈ P, k ∈ K, (3)

∑

i∈V

xk
ij −

∑

i∈V

xk
ji = 0 ∀j ∈ P ∪D ∪ {2n + 1} , k ∈ K, (4)

∑

j∈V

xk
0j = zk

0 ∀k ∈ K, (5)

∑

i∈V

xk
i,2n+2 = zk

0 ∀k ∈ K, (6)

xk
ij ∈ {0, 1} ∀i, j ∈ V, k ∈ K, (7)

zk
0 ∈ {0, 1} ∀k ∈ K. (8)
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Constraints (2) ensure that each request is served exactly once while (3) ensure that each
origin-destination pair is visited by the same vehicle. Flow conservation is imposed by equalities
(4). The subsequent equalities (5) and (6) guarantee that, if a driver is assigned to a vehicle,
the vehicle starts at and returns to the depot.

Attendant related conditions form another block of constraints:

∑

i∈V

xk
i,2n+1 = max

{

zk
1 , zk

2

}

∀k ∈ K, (9)

Q0,k
0 ≥ zk

1 ∀k ∈ K, (10)

xk
i,2n+1 = 1 ⇒ Q0,k

2n+1 ≥ Q0,k
i − zk

1 + zk
2 ∀i ∈ V, k ∈ K, (11)

xk
i,2n+1 = 1 ⇒ Qr,k

2n+1 ≥ Qr,k
i ∀i ∈ V k ∈ K, r ∈ R \ {0} , (12)

zk
1 + zk

2 ≥ ai

∑

j∈V

xk
ij ∀i ∈ V, k ∈ K, (13)

zk
1 , zk

2 ∈ {0, 1} ∀k ∈ K. (14)

Equalities (9) make sure that the noon depot is used if an attendant is assigned to the
corresponding vehicle for morning or afternoon periods. This is necessary to ensure either the
appropriate pick-up or drop-off of the attendant at the beginning or at the end of the shift. An
attendant assigned to a vehicle requires a staff seat and this is modeled in inequalities (10)-
(12). Furthermore, a user demanding an attendant aboard the vehicle can only be visited if an
attendant is on the vehicle, which is reflected by constraints (13).

Consistency of resource and load variables is guaranteed by the following constraints:

xk
ij = 1 ⇒ Qr,k

j ≥ Qr,k
i + qr

j ∀i ∈ V, j ∈ V \ {2n + 1} , k ∈ K, r ∈ R, (15)

2
∑

r′=r

Qr′,k
i ≤

2
∑

r′=r

Cr′,k ∀i ∈ V, k ∈ K, r ∈ R \ {3} , (16)

Q3,k
i ≤ C3,k ∀i ∈ V, k ∈ K, (17)

Qr,k
i ≥ 0 ∀i ∈ V, k ∈ K, r ∈ R. (18)

Inequalities (15) ensure load propagation from one vertex to the next. Upgrading constraints
for resources 0, 1, and 2 are given by (16). They guarantee that capacity restrictions regarding
these resources are not violated and that each patient demanding resource 0, 1 or 2 can only
be loaded if there is either enough capacity of the resource demanded or of another one with
a higher number (0 = staff seat, 1 = patient seat, 2 = stretcher). Finally, constraints (17)
guarantee that patients demanding resource 3 (wheelchair place) can only be transported if
there is enough capacity of resource 3.

Suppose an empty T2 vehicle (2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place)
visits two origin locations in a row. At each location a seated patient with an accompanying
person has to be picked up. The first seated passenger will fill the patient seat, the accompanying
person the first staff seat. If it were not possible to have seated patients sit on the stretcher,
the second origin location could not be visited. However, the given upgrading conditions allow
seated passengers to sit on the stretcher. Therefore, origin location two can be visited. The
seated passenger will use the stretcher and the accompanying person the second staff seat.
Suppose the same two origin locations were visited by an empty T1 vehicle (1 staff seat, 6
patient seats, 1 wheelchair place). In this case the first seated patient would again use a patient
seat and the accompanying person the staff seat. At the second location there is no more empty
staff seat available. However, again due to the given upgrading possibilities, the accompanying
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person can use a patient seat. Thus, after visiting location two, three patient seats and the staff
seat will be occupied.

The next inequalities define the beginning of service for each vertex:

xk
ij = 1 ∧ vk

i = 0 ⇒ Bk
j ≥ Bk

i + di + tij ∀i, j ∈ V, k ∈ K, (19)

xk
ij = 1 ∧ vk

i = 1 ⇒ Bk
j ≥ Bk

i + di + tij + W k
H + H ∀i, j ∈ V, k ∈ K, (20)

Bk
n+i ≥ Bk

i ∀i ∈ P, k ∈ K, (21)

Bk
2n+2 −Bk

0 ≤ T ∀k ∈ K, (22)
∑

i∈V

vk
i ≥ zk

0 ∀k ∈ K, (23)

vk
i ∈ {0, 1} ∀i ∈ V, k ∈ K. (24)

If vertex i is chosen for the lunch break (vi = 1), in addition to the service time associated
with this vertex, the vehicle will wait (see variable W k

H) at this vertex until the lunch break
time window starts and then stay until the lunch break has been concluded. Note that these
constraints also take care of subtour elimination given that tij + di > 0 for all i, j ∈ V : i 6= j.
Inequalities (21) ensure that every user’s pick-up location is visited before the corresponding
drop-off location. Total route duration is limited by (22). If a driver is assigned to a vehicle
then constraints (23) ensure that the associated route contains a break.

The different limits on the beginning of service are given in the following:

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (25)

zk
1 = 1 ∧ zk

2 = 0 ⇒ Bk
0 ≤ Bk

i ≤ Bk
2n+1 ∀i ∈ Va, k ∈ K, (26)

zk
1 = 0 ∧ zk

2 = 1 ⇒ Bk
2n+1 ≤ Bk

i ≤ Bk
2n+2 ∀i ∈ Va, k ∈ K, (27)

vk
i = 1 ⇒ eH ≤ Bk

i + di + W k
H ≤ lH ∀i ∈ V, k ∈ K, (28)

W k
H ≥ 0 ∀k ∈ K. (29)

Standard time window constraints are modeled by (25). Additional time related constraints
provide new bounds on the beginning of service at those vertices where an attendant is required.
Bounds for morning periods are given by (26) and for afternoon periods in (27). In case
an attendant is present during both periods, no additional bounds are needed. Furthermore,
constraints (28) guarantee that the lunch break starts within the lunch break time window
[eH , lH ].

Finally, inequalities (30) and (31) limit the number of drivers and attendants that can be
assigned to vehicles. Each driver who is used for attendant duties, instead of driving, can be
employed for either morning or afternoon periods, thus increasing the number of attendants
available and decreasing the number of drivers by the same amount u:

∑

k∈K

zk
0 ≤ md − u, (30)

∑

k∈K

zk
1 +

∑

k∈K

zk
2 ≤ mc + u, (31)

u ∈ {0, . . . ,md} . (32)

3.3 A set-partitioning formulation

The HDARPD can be reformulated in a more compact way. Let T denote the set of available
vehicle types and Ωt the set of feasible routes for vehicles of type t ∈ T . Let also Ω be the set
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of all feasible routes, i.e., Ω =
⋃

t∈T Ωt. Furthermore, let mt denote the number of available
vehicles of type t. For each route ω ∈ Ω, let cω be the cost of the route while the constants
biω and gω represent the number of times vertex i ∈ P is traversed by ω and the number of
attendants needed by route ω, respectively. Finally, variable yω takes value 1 if and only if route
ω is used in the solution. The problem can thus be formulated as the following set-partitioning
problem (SP):

min
∑

ω∈Ω

cωyω (33)

subject to

∑

ω∈Ω

biωyω = 1 ∀i ∈ P, (34)

∑

ω∈Ωt

yω ≤ mt ∀t ∈ T , (35)

∑

ω∈Ω

yω ≤ md − u, (36)

∑

ω∈Ω

gωyω ≤ ma + u, (37)

u ≥ 0, (38)

yω ∈ {0, 1} ∀ω ∈ Ω. (39)

The objective function (33) minimizes the total cost of the selected routes. Constraints (34)
guarantee that every request is served exactly once. Inequalities (35) limit the number of
vehicles of type t that can be used in the solution. Constraint (36) ensures that at most as
many vehicles are used as there are drivers. Drivers that are not needed in routes may be
employed as additional attendants, thus increasing the number of attendants that can be used
by u in constraint (37).

To compute a lower bound, the linear programming relaxation of SP (LSP) can be solved,
where LSP is obtained by replacing (39) with

yω ≥ 0 ∀ω ∈ Ω. (40)

Due to the large size of Ω the above formulation will not be solved directly. Instead, a
restricted version of this problem, considering only a small subset of columns Ω′ ⊂ Ω, will be
solved. The set Ω′ is generated by solving LSP using column generation. In column generation
LSP decomposes into a (restricted) master problem and |T | subproblems, one for each vehicle
type. Let πi, σt, λ, and φ be the dual variables associated with constraints (34) for index i,
with constraints (35) for index t, and with constraint (36) and (37), respectively. The reduced
cost of column yω corresponding to route ω ∈ Ωt is given by

c̄ω = cω −
∑

i∈P

biωπi − σt − λ− gωφ. (41)

Subproblem t corresponds to finding a single vehicle route ω ∈ Ωt for a vehicle of type t such
that its reduced cost c̄ω is minimum. It is subject to constraints (3)-(29), omitting superscript
k, setting z0 = 1, and replacing k by t in the case of the capacities Cr,t. The index t refers to
the vehicle type.
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4 Solving the Column Generation Subproblem

In order to find negative reduced cost columns we implemented a label setting shortest path
algorithm and several heuristics. The use of heuristics, aiding the exact procedure in finding
negative reduced cost paths, may yield significant run time reductions (see Savelsbergh and Sol,
1998). Following the findings of Ropke and Cordeau (2009) in the context of the PDPTW, our
label setting algorithm considers only elementary paths, i.e. every vertex can be visited at most
once in a path. This requires storing and processing additional information during the solution
of the subproblem, but usually yields better results than the use of a non-elementary shortest
path problem because it provides stronger lower bounds.

In the following the elementary shortest path algorithm will first be described in detail.
Thereafter, the heuristics will be briefly discussed.

4.1 The label setting shortest path algorithm

The labeling algorithm implemented is based on the one described by Ropke and Cordeau (2009)
for solving the elementary shortest path problem with time windows, capacity, and pickup and
delivery. The subproblem we have to solve is also a constrained shortest path problem. It can
be described as an elementary shortest path problem with time windows, multiple capacities,
pickup and delivery, and route duration constraints.

4.1.1 Lunch break and attendant requirements

To properly treat the lunch break requirements and the presence of attendants on the vehicle,
three additional artificial vertices are introduced in the graph: one denoted by 2n + 3 for the
morning attendant, one denoted by 2n + 4 for the afternoon attendant, and one denoted by
2n + 5 for the lunch stop. If a path contains the morning attendant vertex, an attendant is
aboard the vehicle during the morning shift. Similarly, if the afternoon attendant vertex is part
of the path, an attendant is assigned to the vehicle in the afternoon. Every path has to contain
the lunch vertex, with one exception: if the vehicle returns to the end depot before the end of
the lunch time window and the lunch has not yet taken place, it is assumed that it is held at
the end depot. The vertex that is followed by the lunch vertex on the constructed graph is the
one where the lunch break will be held.

In the graph, vertex 2n + 3 can only be visited from the origin depot 0 and 2n + 4 only
from the noon depot 2n + 1. Travel times for these vertices are set to t0,2n+3 = t2n+1,2n+4 = 0,
t2n+3,j = t0,j and t2n+4,j = t2n+1,j for all j. In the case of the lunch vertex, travel times from
all vertices to this vertex are set to ti,2n+5 = 0 for all i. Let now i2n+5 denote the vertex visited
directly before the lunch vertex. The travel times from the lunch vertex are dynamically set to
t2n+5,j = ti2n+5,j. The time windows of the attendant pickup vertices are set to the beginning
and the end of the planning horizon, respectively. In the case of the lunch vertex a time window
is given, i.e., e2n+5 = eH and l2n+5 = lH (see above). The service times at the attendant vertices
are set to d2n+3 = d2n+4 = 0 and to d2n+5 = H in case of the lunch vertex. The load is set
to q0

2n+3 = q0
2n+4 = 1 at the attendant vertices and to zero for all other resources of artificial

vertices.

4.1.2 Label management

For each label the following data is stored: η - the vertex of the label, δ - the departure time
at η, Qr

cum - the cumulative load of resource r when leaving vertex η, ccum - the accumulated
cost up to vertex η, b ∈ {0, 1} - whether a lunch stop has already taken place or not, α ∈ {0, 1}
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- whether an attendant is aboard the vehicle or not, o ∈ {0, 1} - whether the noon depot has
already been visited or not, V ⊆ {0, . . . , 2n + 5} - the set of vertices visited along the path,
O ⊆ {1, . . . , n} - the set of open requests, f - the forward time slack, wcum - the accumulated
waiting time, and a pointer to its parent label. The resources f and wcum are needed to check
whether the route duration limit can be respected; f gives the maximum time the departure
at the noon depot can be shifted forward in time. Section 4.1.4 will explain these resources in
further detail.

The extension of a label κ along an arc (η(κ), j) is only possible if the following holds:

δ(κ) + tη(κ),j ≤ lj, (42)

Qr
cum(κ) + qr

j +
2

∑

r′=r+1

qr′

j ≤ Cr,t
cum ∀r ∈ R,

(43)

α(κ) ≥ aj, (44)

(1− b(κ))(max
{

δ(κ) + tη(κ),j , ej

}

+ dj) ≤ lH , (45)

max
{

max
{

δ(κ) + tη(κ),j , ej

}

+ dj , (1− b(κ))eH

}

+ (1− b(κ))H − e0 − F 0
j ≤ T, (46)

j /∈ V(κ). (47)

Here, Cr,t
cum is set to Cr,t+

∑2
r′=r+1 Cr′,t. The final time slack F 0

j at vertex j is given by F 0
j =

min
{

min[f(κ), lj − (δ(κ) + tη(κ),j) + wcum(κ)], wcum(κ) + max(0, ej − (δ(κ) + tη(κ),j)
}

, i.e. the

minimum over all forward time slacks and the total waiting time until vertex j (see Section
4.1.4 for further details). Condition (42) ensures time window feasibility: the departure from
the previous vertex η(κ) plus the travel time from η(κ) to j has to be smaller than or equal
to the end of the time window at vertex j. According to condition (43) a path can only be
extended along arc (η(κ), j) if all loading restrictions are satisfied. Condition (44) states that if
vertex j demands an attendant aboard the vehicle (aj = 1), it can only be visited if an attendant
is currently on the vehicle (α(κ) = 1). In the case where the lunch node is not yet part of the
path, extension along arc (η(κ), j) is only possible if it can still be feasibly inserted after vertex
j. This is taken care of by (45). Feasibility with respect to route duration is guaranteed by
condition (46). For further details on this issue we refer to Section 4.1.4. Finally, elementarity
is ensured by (47).

Moreover, κ and j must comply with the following conditions:

j ∈ D ⇒ j − n ∈ O(κ), (48)

j = 2n + 2⇒ O(κ) = ∅ ∧ α− o ≤ 0. (49)

Condition (48) ensures that if j is a delivery, it can only be visited if the request is open, i.e.
the corresponding pickup has already been visited. Condition (49) ensures that a label can only
be extended to the end depot 2n + 2 if there are no more open requests and if the noon depot
was visited, in case an attendant is currently on the vehicle.

If a label can feasibly be extended along arc (η(κ), j), a new label κ′ is generated at vertex j:

η(κ′) = j, (50)

δ(κ′) = max
{

δ(κ) + tη(κ),j , ej

}

+ dj , (51)

Q0
cum(κ′) =

{

Q0
cum(κ)− 1 if j = 2n + 1 ∧ α(κ) = 1,

Q0
cum(κ) + q0

j +
∑2

r′=1 qr′

j otherwise,
(52)
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Qr
cum(κ′) = Qr

cum(κ) + qr
j +

2
∑

r′=r+1

qr′

j ∀r ∈ R \ {0} , (53)

ccum(κ′) = ccum(κ) + c̄η(κ),j , (54)

b(κ′) =

{

1 if j = 2n + 5,

b(κ) otherwise,
(55)

α(κ′) =















1 if j ∈ {2n + 3, 2n + 4} ,

0 if j = 2n + 1,

α(κ) otherwise,

(56)

o(κ′) =

{

1 if j = 2n + 1,

o(κ) otherwise,
(57)

V(κ′) = V(κ) ∪ {j} , (58)

O(κ′) =















O(κ) ∪ {j} if j ∈ P,

O(κ) \ {j − n} if j ∈ D,

O(κ) otherwise,

(59)

wcum(κ′) = wcum(κ) + max
{

0, ej − (δ(κ) + tη(κ),j)
}

(60)

f(κ′) = min
{

f(κ), wcum(κ) + lj − (δ(κ) + tη(κ),j)
}

. (61)

At the origin depot (the first vertex along each path) these labels are initialized by setting
δ(0) = e0, Qr

cum(0) = 0 for all r ∈ R, ccum = 0, b(0) = 0, α(0) = 0, o = 0, f(0) = l0 − e0, and
wcum(0) = 0.

4.1.3 Dominance

The dominance criterion used here is similar to the one denoted by DOM1’ by Ropke and
Cordeau (2009). Let U(κ) denote the set of unreachable requests of label κ, where U(κ) =

V ∪
{

i ∈ P : δ(κ) + tη(κ),i > li
}

. According to this criterion a label κ dominates another label

κ′ if

η(κ) = η(κ′), δ(κ) ≤ δ(κ′), ccum(κ) ≤ ccum(κ′),U(κ) ⊆ U(κ′),O(κ) ⊆ O(κ′). (62)

In addition, in our case, the following has to hold:

min {f(κ), wcum(κ)} ≥ min
{

f(κ′), wcum(κ′)
}

, (63)

b(κ) = b(κ′), α(κ) = α(κ′), o(κ) = o(κ′). (64)

This implies that the amount of time by which the departure from the origin depot can be
shifted forward in time in label κ has to be at least as large as in label κ′. If the lunch node
or the noon depot were already visited by the partial path represented by label κ the same
has to be true for κ′. The same applies to whether an attendant is aboard the vehicle or not.
Furthermore, we only apply the dominance check to labels with η ∈ V .

4.1.4 Time windows at the start depot and minimum route duration

Imposing a route duration limit together with a non-empty time window at the origin depot in
a label setting algorithm requires further adjustments. One option, introduced by Desaulniers
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and Villeneuve (2000) and reviewed by Irnich (2008), consists in appending two resources to
each label, coupled by a max-term, denoted as q and z. These are extended as follows:

q(κ′) = tη(κ),j + max
{

q(κ)− (tη(κ),j + dη(κ)), z(κ) − lj
}

(65)

z(κ′) = tη(κ),j + max
{

z(κ), q(κ) − (tη(κ),j + dη(κ)) + ej

}

. (66)

Here, we show that this is equivalent to using the forward time slack notion developed by
Savelsbergh (1992).

The idea of Desaulniers and Villeneuve (2000) can be explained as follows. Let U =
{0, 1, 2, . . . , ñ} denote a feasible path. The earliest possible departure time ẽj at node j when
traveling along U can be calculated as

ẽ0 = e0, (67)

ẽj = max {ẽj−1 + (dj−1 + tj−1,j), ej} ∀j ∈ {1, . . . , ñ} . (68)

Similarly, the latest arrival time l̃j at node j for which waiting can be avoided can be
computed by setting

l̃0 = l0, (69)

l̃j = min
{

l̃j−1 + (dj−1 + tj−1,j), lj
}

∀j ∈ {1, . . . , ñ} . (70)

Let now U be a feasible (partial) path starting at the origin depot 0 and ending at node i. Then,
let si =

∑

(k,l)∈U (tkl + dk) denote the sum of actual travel times along U (including service time
but excluding waiting time), the following two parameters can be defined:

q̃i = si − l̃i, (71)

z̃i = max {si, q̃i + ẽi} . (72)

Then the minimum duration of path U (ending at i) is equal to max {z̃i, q̃i + δi}, where δi

denotes the departure time from vertex i.
Now it can be shown that q̃i is equivalent to the forward time slack defined by Savelsbergh

(1992). Let f̃0
i denote the forward time slack from the origin depot to the end of the path U

(here node i). It is the maximum amount of time by which the departure at the depot can be
shifted forward without violating any other time window constraint. It is computed as follows
(where Bj denotes the beginning of service at node j):

f̃0
i = min

0≤j≤i







lj −



B0 +
j

∑

p=1

(dp−1 + tp−1,p)











. (73)

Let us assume that e0 = 0 and therefore B0 = 0. We obtain,

f̃0
i = min

0≤j≤i







lj −
j

∑

p=1

(dp−1 + tp−1,p)







. (74)

Let us now rewrite l̃i as

l̃i = min
0≤j≤i







lj +
i

∑

p=j+1

(dp−1 + tp−1,p)







, (75)
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and replace l̃i by this formulation in q̃i. We obtain

q̃i =
i

∑

p=1

(dp−1 + tp−1,p)− min
0≤j≤i







lj +
i

∑

p=j+1

(dp−1 + tp−1,p)







(76)

= − min
0≤j≤i







lj −
j

∑

p=1

(dp−1 + tp−1,p)







. (77)

This shows that q̃i = −f̃0
i . Furthermore, let us examine the minimum route duration time as

defined by Desaulniers and Villeneuve (2000) and given by max {z̃i, q̃i + δi}. We still assume
that B0 = e0 = 0. By substituting z̃i this term can be rewritten as max {si, q̃i + ẽi, q̃i + δi} =
max {si, q̃i + max(ẽi, δi)}. If δi is computed correctly it will always be greater than or equal
to ẽi in our case. Therefore, max {si, q̃i + δi} is equivalent to the above expression. Now if we
denote by w̃i the accumulated waiting time until node i, it is easy to see that δi−w̃i = si. Thus,
max {si, q̃i + δi} = δi−min(−q̃i, w̃i) = δi−min(f̃0

i , w̃i). This corresponds to what Cordeau and
Laporte (2003) use to compute the minimum duration of a given route.

Thus, to handle a time window at the start depot together with a route duration limit, the
notion of forward time slack defined by Savelsbergh (1992) can be used. In order to do so, we
use the additional resources wcum and f (see above). To generalize what has been shown to
the case of e0 > 0, these resources are initialized, as already pointed out, with f(0) = l0 − B0

(B0 = e0) and wcum(0) = 0.

4.1.5 Label elimination

Labels that are currently in the queue of labels to be processed can be eliminated if the deliveries
of open requests cannot be reached in a feasible path. As in Ropke (2005) and Ropke and
Cordeau (2009) we consider sets of one and two deliveries and one set of three deliveries. The
last set consists of the delivery that is furthest away from the current vertex, the delivery that
is furthest away from these two, and the delivery that is furthest away from the current vertex
and the two previously selected deliveries. If for one of these sets of deliveries no path can be
found that serves all deliveries in the set in a feasible way, the label can be eliminated.

In addition to these sets of deliveries, we check whether there is an attendant on the vehicle
and whether the noon depot has not been visited yet. If this is the case and the noon depot
cannot be reached in a feasible way from the current vertex, the label can also be eliminated.

4.2 Heuristic algorithms

To accelerate the column generation process several heuristic procedures are used to generate
negative reduced cost columns. These can be divided into two classes; those based on the
labeling algorithm, and those that rely on simple construction and improvement principles.

4.2.1 Heuristics based on the labeling algorithm

Two of the heuristic algorithms used to generate columns are based on the exact labeling
algorithm. Both were also used by Ropke and Cordeau (2009) in the context of the PDPTW.
The first heuristic (LimLabels) simply limits the number of labels that can be in the queue of
unprocessed labels at any time. At first the limit is set to 500. If no negative reduced cost
column can be found with this limit, it is increased to 1000. If again no negative reduced cost
columns are generated the limit is set to 2000. The second heuristic (LimGraph) applies the
exact labeling algorithm on a reduced graph. Two reduced graphs are used. In Graph G5 every
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pickup and delivery vertex is only connected to the five closest pickup vertices and the five
closest delivery vertices. In addition, if not already present, connections between each pickup
vertex and its corresponding delivery vertex are added, and the start depot is connected to all
pickup vertices and the morning attendant node; the noon depot is connected to the afternoon
attendant node; all delivery vertices are connected to the end depot. All vertices except the
end depot are connected to the lunch node and the noon depot. The morning attendant node,
the afternoon attendant node and the lunch node are connected to all vertices except the start
depot. The second reduced Graph G10 is constructed in the same way. However, instead of the
five closest pickups and deliveries, it considers the ten closest.

4.2.2 Construction/improvement based heuristics

The four remaining pricing heuristics use construction or improvement algorithms. Like the
labeling heuristics described above, they are based on those used by Ropke and Cordeau (2009)
to solve the PDPTW. ConstrHeur is a simple construction heuristic that starts from every
pickup and delivery vertex pair and iteratively adds requests by means of a best insertion
criterion regarding reduced cost. RandConstrHeur is also a construction heuristic but here
randomized best insertion is used to insert additional requests. The randomization process
favors requests that least increase the reduced costs of the partial route. In both construction
heuristics, every time a new request is inserted, the resulting route is checked to see whether it
has a negative reduced cost. If this is the case, the corresponding column is generated. After
the check, the route undergoes local search based improvement (see Section 6.3), minimizing
actual routing cost, and considering only moves that yield a feasible route. In the case where
this results in another negative reduced cost route, the corresponding column is again added to
the pool. Heuristic LNSCurrBasis applies Large Neighborhood Search (LNS) (Shaw, 1998) on
the routes in the current basis. It works as follows. In a removal step, up to 50% of the requests
forming the route are randomly removed from it. In an insertion step, requests are reinserted
using randomized best insertion as described above. These two steps are repeated until no
further improvement can be found. Between 15 and 20 non-improving steps are performed.
Finally, LNSRandConstr simply improves all solutions obtained by the randomized construction
algorithm with LNS.

5 The Column Generation Framework

The overall column generation framework that we use to solve the HDARPD is summarized in
Algorithm 1. During the initialization phase initial columns are generated (see Section 5.1) and
added to Ω′, and a number of pre-processing steps (see Section 5.2) are applied. Then, LSP is
solved on Ω′ and the dual variable values associated with the different constraints are retrieved.
Based on these values, negative reduced cost columns are generated using the different heuristics
in a certain sequence (see Section 5.3) and if all fail, then the exact dynamic programming
procedure is called. All new negative reduced cost columns are added to Ω′ and the LSP is
solved again. This is repeated until no new negative reduced cost column can be identified. In
this case, the optimal solution to LSP has been found. Additionally, every 10 iterations the
proposed VNS heuristic (see Section 6) is applied to the current solution of LSP. This process
is represented in Figure 1. The so-called collaborative scheme is described in further detail in
Section 5.4.
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Algorithm 1 The column generation framework

initialization generate initial columns by VNS, introduce artificial columns and add them
to Ω′, do pre-processing (graph pruning, time window tightening)
repeat

solve LSP on Ω′

every 10 iterations apply VNS to the current LSP solution (collaborative scheme)
generate new negative reduced cost columns heuristically (ConstrHeur, LNSCurrBasis,
RandConstrHeur, LNSRandConstr, LimLabels, LimGraph)
if no negative reduced cost columns are found then

run exact label setting algorithm to find negative reduced cost columns
end if
add new negative reduced cost columns to Ω′

until no more negative reduced cost columns can be found
return optimal solution of LSP

Master
problem

Sub-
problem

dual
values

new
columns

VNS

integer or
fractional

solution

new (relaxed)
integer

solution

Figure 1: The collaborative scheme

5.1 Initial columns

An initial set of columns is generated by means of a heuristic algorithm, namely a VNS. The
VNS is described in detail in Section 6. A limit of 2 × 104 iterations is applied regardless of
whether a feasible solution can be found within this time limit or not. Here, ascending moves are
not allowed. In addition, one artificial column for each i ∈ P is generated, having a coefficient
of 1 in the row corresponding to the demand constraint for request i and zeros in all other rows.
These columns are given a sufficiently large cost of M .

5.2 Pre-processing

Before starting the column generation process, several pre-processing steps are performed. These
are mostly based on time window tightening and graph pruning techniques. They are based
on those described in detail by Cordeau (2006). In addition, we use the cyclic time window
tightening steps described by Desrochers et al. (1992) and Kallehauge et al. (2005):

ek := max

{

ek,min[lk,min
(i,k)

(ei + (tik + di))]

}

, (78)

ek := max

{

ek,min[lk,min
(k,j)

(ej − (tkj + dk))]

}

, (79)
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lk := min

{

lk,max[ek,max
(i,k)

(li + (tik + di))]

}

, (80)

lk := min

{

lk,max[ek,max
(k,j)

(lj − (tkj + dk))]

}

. (81)

These steps are repeated until no further time window tightening is possible. Note that the
only arcs considered are those that have not been eliminated in previous pre-processing steps.
Arcs that would lead to an infeasible solution regarding vehicle capacity restrictions are also
removed from the graph.

5.3 Sequence of pricing heuristics

The first pricing heuristic invoked to find new negative reduced cost columns is selected using
a roulette wheel mechanism. Initially, only ConstrHeur can be chosen. Its score is set to one,
while the score of all others is set to zero. Thereafter, in every column generation iteration the
score of the heuristic that obtained one or more new negative reduced cost columns is increased
by one. Thus, its probability of being chosen as the first heuristic to be tried is increased.
The heuristics are ordered as in Ropke and Cordeau (2009): ConstrHeur - LNSCurrBasis -
RandConstrHeur - LNSRandConstr - LimLabels - LimGraph. If ConstrHeur is chosen as the
first heuristic but it fails to yield a new negative reduced cost column for either vehicle types,
we switch to LNSCurrBasis. If LNSCurrBasis fails we switch to RandConstrHeur and so on. If
LNSCurrBasis is chosen as the first heuristic and fails to obtain negative reduced cost columns,
only the heuristics following LNSCurrBasis in the list are tried in the above order. This applies
to all heuristics. If also LimGraph (the last one on the list) fails to generate negative reduced cost
columns, the exact label setting algorithm is started. If this procedure also fails to generate
negative reduced cost columns, the optimal solution of the relaxed problem (LSP) has been
found. In the case where it is also integer the optimal solution of SP has been found. In all
labeling algorithms we stop as soon as 50 negative reduced cost columns have been generated.
All labeling algorithms use a sorted queue of unprocessed labels. Labels are ordered according
to increasing reduced cost.

LSP is solved again on Ω′ every time at least one new negative reduced cost column for either
vehicle type could be generated. Every heuristic tries to find negative reduced cost columns for
T1 and T2 vehicles in alternating order. If new negative reduced cost columns for T1 vehicles
are generated, before re-solving LSP on the updated Ω′, their validity for T2 vehicles is checked.
In case they are valid, they are added to the column pool for T2 vehicles. Only then LSP is
solved. This is not done if one of the heuristics yields new negative reduced cost columns for
T2 vehicles; it is not very likely that columns for T2 vehicles are also valid for T1 vehicles.

5.4 Collaborative scheme

Every 10 iterations (one iteration corresponds to finding one or more negative reduced cost
columns, adding these columns to Ω′, and solving LSP) the optimal solution of the current LSP
is passed to the VNS. If there is still an artificial column in the basis the VNS resumes the
search using the last incumbent of the previous run. If there are no more artificial columns in
the basis, two different scenarios may occur: either the solution is integer and it is passed to the
VNS as is, or the solution is fractional. In the latter case, all duplicate requests are removed
before passing it on to the VNS. Duplicate requests are kept on the route that is associated with
the yω closest to one. Empty routes are eliminated. In this case there can be more vehicles in
use of a certain type, due to the fractionality of the solution, than actually available. However,
it is still passed to the VNS keeping all increased limits on the number of routes per vehicle type
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and setting the number of drivers available to m̄d = max(md,mcg−1) (mcg gives the number of
routes used after having removed duplicate requests). Thus, at most as many drivers as there
are currently needed minus one or, in case this number is smaller than the original limit, at
most the original number of drivers can be used. A new best solution generated by the VNS
might be infeasible regarding the number of vehicles of a certain vehicle type employed and in
terms of the number of drivers, but no other constraint. This entails that the resulting columns
might not be combinable as such but they are all feasible. If the solution obtained by the VNS
is of lower cost (actual costs not reduced costs) than the current solution of the master problem
after being converted into an integer solution, the corresponding routes are transformed into
columns and added to the master. Here the VNS is run for 104 iterations and ascending moves
are not considered, i.e. a deteriorating solution cannot become a new incumbent solution (see
Section 6.4). This collaborative scheme is inspired by Danna and Le Pape (2005). In contrast to
Danna and Le Pape (2005), however, we do not only use the collaborative local search method
to improve the best integer solution found so far. We use it to improve the current optimal
solution, regardless of whether it is integer of fractional.

6 Variable Neighborhood Search

This section introduces the VNS heuristic that we have developed to solve the HDARPD.
VNS was introduced by Mladenović and Hansen (1997) and, as summarized in Algorithm 2,
it consists of four major design elements: the initialization phase, the shaking operators, the
iterative improvement mechanism, and the decision whether to move to the new solution or not.

Algorithm 2 Variable neighborhood search

initialization {determine an initial solution s and set h← 1}
repeat

shaking {determine a solution s′ in the neighborhood h of s}
iterative improvement {apply local search to s′ yielding s′′}
move or not {if s′′ meets the acceptance requirements the incumbent solution s is replaced
by s′′ and h← 1, otherwise h← (h mod hmax) + 1; if s′′ is feasible and better than sbest,
set sbest ← s′′}

until some stopping criterion is met
return sbest

In the initialization phase a first incumbent solution s is generated. In the repeat loop the
algorithm iterates through neighborhoods of different sizes. At each iteration a solution s′ is
generated at random in the neighborhood of the current incumbent solution s (shaking phase).
The new solution s′ may be improved by means of an iterative improvement procedure (local
search) yielding s′′. If s′′ meets the acceptance criteria (move or not) it replaces s and becomes
the new incumbent. In this case or whenever the largest neighborhood size is reached, the
search continues with the smallest neighborhood. If s′′ does not constitute a new incumbent,
the size of the neighborhood is increased.

Infeasibilities are allowed during the search and they are penalized through the following
evaluation function:

f̂(s) = c(s) +
∑

r∈R

α̂rqr(s) + β̂d(s) + γ̂w(s) + ζ̂a(s). (82)

The term c(s) gives the routing cost of solution s. The terms qr(s), d(s), w(s), and a(s)
represent load violations (∀r ∈ R), duration violations, time window violations, and attendant
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violations (if there are more attendants needed in s than there are available), respectively. The
associated penalty parameters α̂r, β̂, γ̂, and ζ̂ are dynamically adjusted throughout the search
(see Parragh et al. (2010) and Parragh (2009a) for details). Note that a solution s can only
become a new best solution sbest if qr(s) = d(s) = w(s) = a(s) = 0 for all r ∈ R.

This VNS is based on the ones developed by Parragh et al. (2009, 2010) and Parragh
(2009a) for the standard DARP and the multi-objective DARP. Its different design elements
are described in further detail in the following.

6.1 Initialization

The initialization procedure generates an initial solution which will often be infeasible. It is
constructed as follows. In a first step the average number of requests per vehicle is computed
and rounded to the next integer. Then, all requests are inserted into routes in the order in
which they appear in the instance file, starting with the first route of the first type, opening the
next route as soon as the average number of requests per vehicle has been reached. If a request
does not fit into a route due to a lack of the demanded resource on the current vehicle, it is
inserted into the next vehicle route with this resource available. The procedure ends as soon as
all requests have been inserted into some route. Finally all routes are checked to see whether a
request demands an attendant aboard the vehicle. If this is the case, the noon depot is inserted
at the best possible position and an attendant is assigned to the corresponding vehicle for the
corresponding shift (morning or afternoon).

6.2 Shaking

During the shaking phase four different neighborhood operators are employed: the first swaps
two sequences of vertices, the next two are based on the move operator, and the last one makes
use of the ejection chain idea described by Glover (1996). A swap, a move, and an ejection chain
neighborhood operator in combination with a “zero split” neighborhood have been successfully
employed by Parragh et al. (2009) in a solution framework for the multi-objective DARP,
and, in a refined version, by Parragh et al. (2010) in the context of the standard DARP. The
neighborhood operators employed in the current work are based on those. They had to be
adapted, however, in order to cope with the special characteristics of the HDARPD.

Swap neighborhood In the swap neighborhood (S) two sequences of vertices are exchanged.
Two routes are chosen at random from all routes currently in use (vehicles not assigned to
a driver are not considered). Then, the starting points and the lengths of the sequences to
be moved are randomly selected. Insertion into the new routes is conducted in a one by one
fashion: considering each request at a time and inserting it into its best position, using the
notion of critical vertices as described by Cordeau and Laporte (2003). Note that if a sequence
of vertices is moved their corresponding origins (destinations) have to be moved as well. The
neighborhood size in this context refers to the maximum length (number of vertices) of the two
sequences.

Move neighborhoods The first move neighborhood (M) consists in moving requests from
their current routes to other routes. First, the requests to be moved are randomly chosen from
the set of all requests. Second, for each request to be moved an insertion route is determined
across all routes, excluding the request’s original route. At most one additional route that is
currently not assigned to a driver can be considered. As described in further detail in Parragh
(2009a), insertion routes are either selected randomly or the “closest” route in terms of spatial
distance is taken. Random and “closeness” selection are chosen with a probability of 0.5 each.
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Third, the selected requests are moved to the best position in their new routes (again using the
notion of critical vertices). The size of this neighborhood structure is defined by the maximum
number of requests moved.

The second move neighborhood (Mx) distinguishes itself from the first one in the way the
insertion routes are selected. Here only random selection is employed. Furthermore, all routes,
also those lacking a driver, are eligible for selection.

Chain neighborhood The third neighborhood is referred to as chain neighborhood (C). It
works in a similar way as the ejection chain neighborhood defined by Glover (1996). In contrast
to its original version, the number of routes affected is a parameter. From the first route a
sequence of requests (selected as in the swap neighborhood) is moved to the second route. In a
second step, the sequence that decreases the evaluation function value of the second route by
the most is moved to a third route (it may also be the first route). The second step is repeated
until the maximum number of sequences moved has been reached. All insertions of sequences
into their new routes are done one by one in the best possible way using the notion of critical
vertices. All routes are selected randomly. Here the neighborhood size represents at the same
time the number of sequences moved and the maximum sequence length. Again, empty routes
may be selected.

Repair function Both of the move operators as well as the chain neighborhood operators
may construct a solution with more vehicles in use than drivers available. Such a solution has
to be “repaired”. The repair procedure employed here simply chooses one route at random out
of all non-empty routes and redistributes the requests forming this route to other non-empty
routes. Request insertion is done one by one in the best possible way, again using the notion of
critical vertices. The repair procedure is repeated until the number of vehicles in use meets the
number of available drivers.

Neighborhood sequence The shaking operators described above are applied in the following
order: S1 – M1 – C1 – S2 – M2 – C2 – S3 – M3 – C3 – S4 – M4 – C4 – Mx4 (the number given in
addition to the neighborhood abbreviation indicates the neighborhood size). This means that
the first neighborhood (h = 1) corresponds to applying the shaking operator S1, whereas, e.g. in
case of h = 6 operator C2 will be used. In Parragh et al. (2009, 2010), the last neighborhood is
the parameterless zero split neighborhood which distributes requests forming a natural sequence
to other routes. Here, Mx4 is the last neighborhood. In combination with the repair function it
is the strongest diversification mechanism in place, regarding the number of request relocated
together with the amount of change possible in terms of the number of vehicles of each vehicle
type employed.

6.3 Iterative improvement

At every iteration, after moving requests and repairing the resulting solution, the obtained
solution may undergo local search based improvement. As in Parragh et al. (2010), if c(s′) <
1.02c(s), s is automatically subject to local search based improvement, otherwise it has a 1%
chance to undergo local search. If s′ meets the acceptance criteria to become the new incumbent
solution it is also subject to local search based improvement, given that c(s′) > 1.05c(s). In
any case only those routes that are affected by the shaking step are improved. Here again the
notion of critical vertices is used. The search moves along each of these routes. At every origin
it removes the corresponding request and reinserts it, starting at the beginning of the route, at
every possible position. If an improving position is found, the request is kept at its new position
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and the search restarts at the first origin on the route (first improvement). If no improving
position is encountered, the request is kept at its original position and the search continues
with the next origin on the route. The improvement heuristic terminates as soon as the last
origin on the route has been reached and no improving position has been found.

6.4 Move or not

The decision as to whether the search moves to the new solution s′′ or not is based on a simulated
annealing acceptance criterion (Kirkpatrick et al., 1983, C̆erny, 1985). As in Parragh et al.
(2010), in the case where f̂(s′′) < f̂(s), s′′ is always accepted. In the case where f̂(s′′) ≥ f̂(s), s

is accepted with a probability equal to exp(− f̂(s′′)−f̂(sbest)

t̂
). The temperature t̂ is set such that

as soon as the first feasible solution has been identified, a solution that is 0.5% worse than the
current best solution is accepted with probability 0.2. Before the first feasible solution has been
identified every solution that has an evaluation function value f̂(s′′) ≤ 1.05f̂ (s) is accepted with
a probability of 1%.

6.5 Route evaluation

Every time a route is modified its routing cost and constraint violations have to be evaluated.
Here the notion of forward time slack, as for the label setting algorithm in Section 4.1.4, is
applied. In a first step the lunch location is determined. Thereafter the forward time slack is
calculated. In a separate procedure the noon depot is either inserted in the best possible way
or removed, in case there are no more requests on the route that demand an attendant. In the
local search step, the noon depot insertion/removal procedure is only invoked at the very end.
The same applies to the request insertion routine. Whenever a request is removed from a route
it is also invoked.

7 Computational Experiments

All programs were implemented in C++. In the column generation framework, the LP solver of
CPLEX 11.1 was used together with Concert Technology 2.6. All experiments were carried out
on a 3.2 GHz Pentium D computer with a memory of 4 GB. Both solution procedures have been
tested on three artificial data sets and on real-world data. In the following we first describe the
characteristics of the different instances and we then discuss the results obtained.

7.1 Artificial instances

For each instance of the data set “A” introduced by Cordeau (2006), containing between 16 and
48 requests and between 2 and 4 vehicles, three instances with different degrees of heterogeneity
have been generated. The characteristics of these instances are summarized in Table 1. Setting
“X” is the most homogeneous one: 50% of the original users have been converted into seated
passengers; 25% into patients on stretchers; and 25% into persons needing a wheelchair. The
probability that an accompanying person (AP) is present has been set to zero. The number of
attendants available has been randomly set to between 0.5 of and 1.5 times the number of drivers
available (rounded up to the next integer). The probability for an attendant to be demanded by
a patient has been set to 25%. For setting “Y”, 25% of the original users have been transformed
into seated patients, 25% into patients on stretchers and 50% into wheelchair patients; 10% of
all patients are assumed to be accompanied by someone. The number of attendants has been
randomly set to at least the number of drivers available and at most to twice the number of
drivers. The probability for an attendant to be demanded by a patient has been set to 50%.
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In the third setting, denoted by “Z”, 83% of the patients are assumed to be seated, 11% are
assumed to be on a stretcher, and 6% are assumed to be in a wheelchair. This setting is based
on the data provided by the ARC. Finally, the probability for a patient to be accompanied
by someone has been set to 50%. All other settings are equal to those of data set “Y”. In all
instances the vehicle fleet consists of 2 T1 and 4 T2 vehicles and the number of available drivers
has been set to the original number of vehicles. At the start depot a 60-minute time window
has been set, and the maximum route duration has been reduced by 60 minutes with respect
to the original data. As before it is equal for all vehicles. The time window at the noon depot
has been set to e2n+1 = e0 + T/2 and l2n+1 = e2n+1 + 15.

Table 1: Artificial instances - data

Probability for patient to be Probability Probability
Data set seated on stretcher in wheelchair for AP AT demanded ma fleet

X 0.50 0.25 0.25 0.00 0.25 ⌈m(0.5 + ρ)⌉ 2 T1, 4 T2
Y 0.25 0.25 0.50 0.10 0.50 ⌈m(1 + ρ)⌉ 2 T1, 4 T2
Z 0.83 0.11 0.06 0.50 0.50 ⌈m(1 + ρ)⌉ 2 T1, 4 T2

AP = accompanying person, AT = attendant
ρ randomly chosen in [0, 1]
T1: 1 staff seat, 6 patient seats, 1 wheelchair place
T2: 2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place

7.2 Real-world instances

We have also applied the different solution algorithms to 15 real-world instances from the
ARC. They possess the following characteristics. As in data set “Z” 83% of the passengers are
seated patients, 11% have to be transported on a stretcher, and 6% in a wheelchair; 50% of all
these passengers take an accompanying person with them and about 40% demand additional
personnel (an attendant) on the vehicle. Three T1 vehicles and 31 T2 vehicles are available. The
maximum route duration (driver working hours) is 510 minutes. The lunch break has to start
between 11 am and 2 pm. It lasts 30 minutes. Every driver starts working between 6:30 and
8:30 am. These two points in time give the time window at the start depot. The time window at
the noon depot lasts from 12:30 to 1:00 pm. Users specify a time window for either the pick-up
or the drop-off location. Time window width is equal to 30 minutes. Maximum user ride times
have been set to Li = ti,n+i + 30 for all i ∈ P . As mentioned above, ride time limits are not
explicitly considered; depending on which time window has been specified by the user, the time
window for the corresponding location without time window is set relative to the existing time
window; in the case of a time window at the destination, it is set to ei = en+i − (Li + di) and
li = ln+i − (ti,n+i + di) at the origin; in the case of a time window at the origin, it is set to
en+i = ei + di + ti,n+i and ln+i = li + di + Li at the corresponding destination.

7.3 Column generation results

In a first step two versions of the column generation framework were tested on the artificial
data sets. The first version only uses pure column generation, while in the second version the
collaborative scheme is employed. Table 2 gives the results for pure column generation while
Table 3 gives the results for the collaborative scheme. The following information is provided.
First, the time needed to compute the initial VNS solution and the total run time, excluding
the initial VNS, of the respective program is given. Then, the lower bounds and the best integer
solutions found throughout the search are given. In the case where the time limit was reached,
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no lower bound can be given. Within a time limit of one hour, both procedures solve 26 out
of 36 instances. Within an increased time limit of five days, four instances remain unsolved,
in the case of pure column generation. With the collaborative scheme in place, three instances
remain unsolved. Tables 2 and 3 contain the results obtained with the increased limit. The
best integer solution found throughout the search is either the optimal integer solution, in the
case the obtained lower bound is integer, or the solution obtained from solving SP on the set
of generated columns within a run time limit of 10 minutes. Furthermore, the status of the
obtained lower bound is given (integer (int.), fractional (frac.), or infeasible (inf.)). This is
followed by the total number of columns generated, and by the number of times the different
pricing procedures found at least one new negative reduced cost column. Rows X̄, Ȳ , and Z̄
give the average values for the respective data set. Row XY Z gives the total average values
across all data sets.

In both cases, pure column generation and the collaborative approach, the two heuristic
pricing procedures which prove to be the most useful are ConstrHeur and LimLabels. Also,
all other heuristic pricing procedures contribute a number of negative reduced cost columns
and thus should not be left out. When comparing the two tables, the following differences
can be observed. In the case of the smaller instances, pure column generation is faster than
the collaborative approach. This is due to the fact that in the case of the smaller instances,
the initial VNS quite often already finds the optimal solution and thus, intermediate calls to
the VNS do not improve this solution. They only increase computation times. This relation
changes in the case of the larger instances. Here, in some cases the collaborative approach
is faster while in others, lower computation times are due to pure column generation. The
intuition is that calls to the intermediate VNS are not always useful although in many cases
they are. When comparing the best integer solution found during the search, the collaborative
approach outperforms pure column generation on average. When comparing the results of each
instance individually, the collaborative scheme is better or equal in all but two cases. The most
remarkable difference is certainly the fact that with the collaborative scheme in place instance
a4-48 of data set “X” can be solved within the time limit, while in the case of pure column
generation this instance cannot be solved.

Given these results, it seems fair to say that the integration of a collaborative local search
method into the column generation framework has a positive impact on the performance of the
whole method. As the original real-world instances are too large to be solved with either of the
two exact procedures, results for these will only be provided for the heuristic method.

7.4 Heuristic results

In Table 4 the results obtained by means of the proposed VNS for the artificial data sets
are presented. A limit of 105 iterations is used as stopping criterion. For each data set the
following information can be taken from the table: the name of the instance; the average
solution values over five random runs; the best solution values out of these five runs; and the
respective percentage deviations from the lower bounds (see above). The average percentage
gap between the lower bound and the obtained average solution value is less than 2% for all
three data sets. Computing times are not really low, but acceptable (less than 9 minutes on
average). The rather long computing times with respect to the low total iteration limit are due
to the complex evaluation procedure, including a possible repositioning of the noon depot and
the appropriate choice of the lunch break location.

As mentioned above, all real-world instances were too large to be solved by means of column
generation. Therefore, in order to get an idea of how difficult practical instances are, we
generated two additional real-world based data sets. In these two data sets, the number of
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requests in every instance has been reduced by a factor of 5 or 3 with respect to the original
data, respectively, and the time window length has been decreased to 15 minutes. For those
instances that could be solved by the column generation framework, the obtained lower bound
will serve to assess the solution quality of the proposed VNS.

Table 5 contains the results obtained for 8 instances that have been reduced by the factor 5
with respect to the original data. Overall, 7 out of these 8 instances could be solved by means of
column generation. The following information is provided: the name of the instance; the size of
the instance in terms of the total number of requests n; the number of drivers md; the number
of attendants ma available; the lower bound, where known; and for each iteration limit, the
average and the best solution value out of 5 random runs, the corresponding deviation from the
lower bound, and the total average run time in seconds. All lower bound solutions are fractional,
with one exception. In the case of instance aug1108a the obtained lower bound is integer. On
average, the proposed VNS yields solutions within 3.17 percent of the lower bound, using 105

iterations. With an increased limit of 2× 105 iterations, the average percentage gap is reduced
to 2.49. In the case of instance mai1805a, the lower bound solution is highly fractional. This
explains why the obtained gap between the heuristic upper bound and the column generation
lower bound is so large. It can be assumed that it is at least partly due to a larger integrality
gap with respect to the other instances. Total run times are below 16 minutes for all instances.

Table 6 provides similar information to Table 5. However, for this medium size data set,
which is again based on the available real-world data, considering only every third request, and
reducing the number of available drivers and attendants accordingly, lower bounds cannot be
computed. Thus, we only provide average and best solution values for the proposed VNS within
a limit of 105 and 2 × 105 iterations. The percentage deviations presented in Table 6 give the
deviations from the best solutions encountered with the two iteration limits. As expected, more
iterations lead, on average, to better solution values.

Finally, Table 7 provides the results for those data sets that are based on ARC data from 15
days in the city of Graz. As mentioned above, all of them are too large to be solved by means
of column generation. Therefore, only the proposed VNS is applied. Because of the large size
of these instances, two different iteration limits have been used. First, VNS is run for 5 × 105

iterations. This configuration results in solution values that are on average 3.77% worse than
the best solution found during both experimental settings. On average, slightly less than 3
hours of run time is needed. Then, the limit is increased to 106 iterations. In less than twice
the time (on average 5.5 hours), the average gap from the best known solution is reduced to
1.47%.

For the smallest instances containing up to 50 requests, 105 iterations will lead to solutions
of high quality when compared to the lower bound. For medium size real-world instances,
however, more iterations are necessary to yield solutions of acceptable quality. In the case of
the largest real-world instances, a limit of 5× 105 or even 106 iterations, if time allows, should
be used.

8 Conclusion

This paper has described a heterogeneous dial-a-ride problem with driver related constraints
and has introduced two new formulations of the problem. A column generation approach has
been proposed to compute lower bounds based on the set-partitioning formulation. A variable
neighborhood search heuristic has also been developed. Computational experiments show that
on the artificial instances, high quality solutions are obtained within rather short run times. A
collaborative scheme, integrating the VNS heuristic into the column generation framework, has
also been developed. Comparisons with the pure column generation show that the collaborative
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scheme improves the efficiency of the original method. We hope that the methods proposed in
this paper will serve as the basis for the development of a computer aided routing tool that will
support ambulance dispatchers at the Austrian Red Cross in their day-to-day work.
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Table 2: Artificial instances - pure column generation

CPU Number of times new best cols found by

Init.
VNS

All LB
Best
int.

Stat. Cols
Constr-

Heur

LNS-

Curr-

Basis

Rand-

Constr-

Heur

LNS-

Rand-

Constr

Lim-

Labels

Lim-

Graph

X

a2-16 17.50 5.77 299.37 299.37 int. 662 6 1 6 3 5 0
a2-20 79.78 94.93 376.70 376.70 int. 2282 44 9 32 5 27 0
a2-24 133.54 3518.32 461.66 461.66 int. 4217 30 53 13 3 47 0
a3-18 17.80 14.83 291.68 291.68 int. 1232 10 5 9 5 3 0
a3-24 47.53 166.43 351.19 361.39 frac. 2786 51 9 24 5 32 1
a3-30 112.62 4668.83 510.79 510.79 int. 6336 87 39 50 24 93 12
a3-36 - - - 602.52 - 14800 123 216 5 6 50 47
a4-16 20.42 4.12 - - inf. 711 12 8 4 1 2 0
a4-24 34.63 41.92 388.95 393.57 frac. 2275 23 4 3 1 10 0
a4-32 101.56 557.36 504.79 509.23 frac. 5136 41 40 5 6 28 0
a4-40 - - - 610.15 - 12448 147 113 1 6 41 32
a4-48 - - - 670.06 - 18725 109 72 103 19 89 47

X 62.82 1008.06 398.14 462.46 5968 57 47 21 7 36

Y

a2-16 54.42 5.79 - - inf. 1111 15 4 10 2 2 0
a2-20 77.59 27.98 371.62 371.62 int. 1968 52 10 33 9 21 0
a2-24 234.72 1742.20 - - inf. 3389 18 54 27 13 35 0
a3-18 25.30 4.63 295.39 295.39 int. 596 9 2 6 1 3 0
a3-24 92.05 69.11 353.13 359.75 frac. 2806 37 14 37 9 26 0
a3-30 110.69 3278.17 487.13 487.13 int. 7752 86 11 30 26 38 24
a3-36 - - - 620.27 - 13328 186 49 40 19 61 47
a4-16 20.46 2.18 - - inf. 544 8 2 4 0 4 0
a4-24 59.90 82.75 - - inf. 2019 28 24 16 4 14 0
a4-32 96.58 645.16 504.91 510.73 frac. 4751 46 35 3 1 21 4
a4-40 148.65 6287.23 587.56 590.21 frac. 8161 70 25 21 14 61 30
a4-48 198.22 276470.00 717.95 717.95 int. 22932 140 52 107 37 227 122

Y 101.69 26237.75 473.96 494.13 5780 58 24 28 11 43 19

Z

a2-16 41.77 7.98 308.30 308.30 int. 1091 24 2 9 3 6 0
a2-20 97.43 449.47 398.65 398.65 int. 2877 39 15 52 12 40 0
a2-24 125.06 1293.53 423.05 423.05 int. 3965 95 31 34 11 47 0
a3-18 26.15 4.40 297.24 297.24 int. 783 13 6 2 1 2 0
a3-24 54.97 104.19 354.19 355.15 frac. 2159 34 10 28 7 26 0
a3-30 122.81 863.53 495.70 498.43 frac. 5322 91 42 27 5 33 1
a3-36 174.07 100628.00 569.36 570.60 frac. 12123 103 18 46 30 93 95
a4-16 25.77 3.30 - - inf. 697 11 6 10 0 2 0
a4-24 39.24 47.68 388.69 388.69 int. 1903 24 8 13 6 11 0
a4-32 121.32 769.89 498.34 513.98 frac. 4040 67 47 13 8 22 0
a4-40 119.20 58136.70 581.86 604.28 frac. 9632 72 52 45 12 20 33
a4-48 248.59 57015.70 679.21 679.21 int. 12740 100 39 93 30 163 55

Z 99.70 18277.03 454.05 457.96 4778 56 23 31 10 39 15

XY Z 90.01 16156.63 456.34 469.26 5508 57 31 27 10 39 15

Cols = columns, frac. = fractional, inf. = infeasible, Init. = initial, int. = integer, LB = lower bound,
Stat. = status.
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Table 3: Artificial instances - collaborative scheme
CPU Number of times new best cols found by

Init.
VNS

All LB
Best
int.

Stat. Cols
Constr-

Heur

LNS-

Curr-

Basis

Rand-

Constr-

Heur

LNS-

Rand-

Constr

Lim-

Labels

Lim-

Graph

X

a2-16 17.50 17.65 299.37 299.37 int. 660 7 3 6 0 7 0
a2-20 79.51 149.48 376.70 376.70 int. 1919 24 7 23 3 18 0
a2-24 132.04 4892.11 461.66 461.66 int. 4453 29 93 28 7 50 0
a3-18 17.70 15.43 291.68 291.68 int. 1143 9 3 6 0 3 0
a3-24 47.82 322.04 351.19 358.29 frac. 2886 52 11 23 16 30 2
a3-30 112.75 1617.41 510.79 510.79 int. 5897 103 21 58 17 77 11
a3-36 - - - 600.83 - 16178 129 171 15 10 75 80
a4-16 20.47 5.94 - - inf. 665 9 4 7 1 2 0
a4-24 34.33 33.94 388.95 392.37 frac. 2157 17 0 6 0 8 0
a4-32 100.33 675.10 504.79 509.23 frac. 4829 38 15 10 5 30 1
a4-40 - - - 608.55 - 14533 181 44 57 32 83 46
a4-48 159.00 192018.00 665.11 665.74 frac. 19313 114 43 63 42 110 86

X 72.15 19974.71 459.97 461.38 6211 59 35 25 11 41 19

Y

a2-16 54.31 24.04 - - inf. 1132 13 3 4 5 5 0
a2-20 77.34 107.12 371.62 371.62 int. 1649 28 7 40 4 11 0
a2-24 234.83 709.20 - - inf. 3415 19 48 29 4 32 0
a3-18 24.96 6.29 295.39 295.39 int. 716 9 1 3 0 4 0
a3-24 91.86 223.08 353.13 355.47 frac. 2863 39 21 46 15 25 0
a3-30 107.60 2540.69 487.13 487.13 int. 7400 61 8 30 5 46 30
a3-36 - - - 598.62 - 13803 175 40 37 9 79 58
a4-16 20.40 3.06 - - inf. 557 10 1 2 1 3 0
a4-24 59.76 110.69 - - inf. 2113 26 25 17 4 10 0
a4-32 95.43 689.41 504.91 507.34 frac. 4990 47 44 3 2 21 5
a4-40 145.27 8329.59 587.56 590.21 frac. 8080 76 24 8 4 62 28
a4-48 197.55 218190.00 717.95 717.95 int. 21355 206 47 113 50 254 99

Y 100.85 20993.92 489.45 490.46 5673 59 22 28 9 46 18

Z

a2-16 41.80 32.49 308.30 308.30 int. 972 24 4 14 2 3 0
a2-20 97.05 247.69 398.65 398.65 int. 2415 57 22 48 12 19 0
a2-24 124.48 696.34 423.05 423.05 int. 4178 81 32 35 12 38 0
a3-18 26.11 22.23 297.24 297.24 int. 842 13 8 4 6 2 0
a3-24 54.03 217.16 354.19 355.15 frac. 2275 40 21 46 11 22 0
a3-30 121.22 1370.22 495.70 501.60 frac. 5716 73 40 53 21 54 1
a3-36 169.32 191169.00 569.36 579.61 frac. 12599 99 8 65 54 99 96
a4-16 25.67 8.07 - - inf. 630 11 11 2 1 3 0
a4-24 38.77 61.82 388.69 388.69 int. 1837 19 6 7 5 10 0
a4-32 121.41 680.31 498.34 504.26 frac. 4027 50 35 10 3 20 1
a4-40 118.14 29156.20 581.86 603.86 frac. 9511 76 38 23 23 29 26
a4-48 246.36 55650.80 679.21 679.21 int. 12386 81 37 68 37 145 60

Z 98.70 23276.03 454.05 458.15 4782 52 22 31 16 37 15

XY Z 91.37 21514.93 465.66 467.95 5555 57 26 28 12 41 18

Cols = columns, frac. = fractional, inf. = infeasible, Init. = initial, int. = integer, LB = lower bound,
Stat. = status.
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Table 4: Artificial instances - VNS (105 iterations, 5 runs)

Data set X Data set Y Data set Z

Avg. % Best % CPU Avg. % Best % CPU Avg. % Best % CPU

a2-16 299.37 0.00 299.37 0.00 201.34 - - - - - 308.30 0.00 308.30 0.00 270.89
a2-20 377.14 0.12 376.70 0.00 345.76 371.62 0.00 371.62 0.00 680.22 398.65 0.00 398.65 0.00 436.34
a2-24 461.66 0.00 461.66 0.00 685.8 - - - - - 426.08 0.72 425.30 0.53 633.21
a3-18 291.68 0.00 291.68 0.00 89.72 295.39 0.00 295.39 0.00 132.68 297.24 0.00 297.24 0.00 128.09
a3-24 359.72 2.43 356.30 1.45 247.14 361.66 2.42 360.78 2.17 314.13 361.00 1.92 355.15 0.27 280.76
a3-30 512.34 0.30 510.79 0.00 516.5 496.02 1.82 487.13 0.00 527.24 506.05 2.09 498.29 0.52 555.64
a3-36 614.31 - 604.35 - 987.97 617.55 - 596.61 - 1108.15 580.01 1.87 572.55 0.56 942.36
a4-16 - - - - - - - - - - - - - - -
a4-24 402.44 3.47 394.34 1.38 169.8 - - - - - 396.92 2.12 393.13 1.14 180.79
a4-32 516.21 2.26 513.10 1.64 367.19 508.30 0.67 507.29 0.47 340.34 506.36 1.61 504.44 1.22 353.16
a4-40 623.57 - 613.33 - 753.95 595.90 1.42 592.55 0.85 644.27 600.02 3.12 595.72 2.38 617.07
a4-48 689.15 3.61 680.27 2.28 862.78 734.42 2.29 728.74 1.50 1122.68 697.64 2.71 684.56 0.79 1164.09

Avg. 467.96 1.35 463.81 0.75 475.27 497.61 1.23 492.51 0.71 608.71 461.66 1.47 457.58 0.67 505.67

Avg. = average

Table 5: Real world based instances (5 times smaller) - VNS (5 runs)

VNS 105 iterations VNS 2x105 iterations

n md ma LB Avg. % Best % CPU Avg. % Best % CPU

aug0508a 29 4 6 377.32 384.96 2.02 383.10 1.53 274.54 383.64 1.68 378.89 0.42 519.25
aug1108a 30 4 6 449.74 458.75 2.00 451.03 0.29 229.47 459.30 2.13 453.15 0.76 445.85
aug1208a 34 4 6 426.01 431.95 1.39 428.99 0.70 313.55 436.23 2.40 428.99 0.70 671.22
aug1308a 33 4 6 474.38 480.80 1.35 479.66 1.11 316.00 483.59 1.94 479.66 1.11 651.54
mai0605a 41 5 7 471.47 488.11 3.53 485.94 3.07 287.16 483.61 2.58 473.38 0.41 590.89
mai0705a 42 5 7 - 664.30 - 654.11 - 471.91 640.08 - 627.32 - 769.51
mai1805a 54 6 9 582.38 623.57 7.07 603.78 3.67 495.44 622.99 6.97 615.81 5.74 937.00
mai2105a 28 4 5 390.65 409.49 4.82 391.62 0.25 190.51 399.35 2.23 391.10 0.12 375.15

Avg. 453.14 492.74 3.17 484.78 1.52 322.32 488.60 2.49 481.04 1.16 620.05

Avg. = average

Table 6: Real world based instances (3 times smaller) - VNS (5 runs)

VNS 105 iterations VNS 2x105 iterations

n md ma All best Avg. % Best % CPU Avg. % Best % CPU

aug0508b 49 6 9 667.90 676.06 1.22 667.90 0.00 461.64 676.76 1.33 670.34 0.36 833.46
aug1108b 51 6 9 693.31 712.22 2.73 693.31 0.00 428.37 706.65 1.92 696.80 0.50 802.34
aug1208b 58 7 10 718.02 733.79 2.20 718.02 0.00 404.47 735.34 2.41 730.46 1.73 788.95
aug1308b 55 7 10 643.30 653.10 1.52 643.30 0.00 355.91 650.33 1.09 644.15 0.13 731.29
feb0402b 60 7 11 684.51 703.89 2.83 695.09 1.55 444.74 697.84 1.95 684.51 0.00 847.73
mai0605b 69 8 11 764.79 785.08 2.65 764.79 0.00 498.42 777.71 1.69 769.87 0.66 969.59
mai1805b 91 10 15 1107.04 1167.19 5.43 1140.29 3.00 743.60 1129.74 2.05 1107.04 0.00 1362.91
nov0411b 79 9 13 867.97 902.28 3.95 878.21 1.18 598.93 882.35 1.66 867.97 0.00 1173.83

Avg. 768.36 791.70 2.82 775.11 0.72 492.01 782.09 1.76 771.39 0.42 938.76

Avg. = average
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Table 7: Real world instances - VNS (5 runs)

VNS 5 × 105 iterations VNS 106 iterations

n md ma All best Avg. % Best % CPU Avg. % Best % CPU

aug0508 147 17 26 1374.33 1406.03 2.31 1379.42 0.37 6797.44 1392.12 1.29 1374.33 0.00 12241.06
aug1108 154 18 27 1415.55 1447.50 2.26 1422.90 0.52 5121.00 1429.40 0.98 1415.55 0.00 10179.36
aug1208 174 19 29 1632.16 1688.72 3.47 1673.86 2.55 7854.12 1666.13 2.08 1632.16 0.00 15394.96
aug1308 166 19 29 1552.40 1600.94 3.13 1576.00 1.52 6729.45 1565.90 0.87 1552.40 0.00 12795.56
feb0202 233 20 30 2087.65 2144.81 2.74 2103.59 0.76 20555.08 2113.63 1.24 2087.65 0.00 37997.24
feb0402 182 21 32 1677.70 1722.32 2.66 1701.25 1.40 7484.74 1696.75 1.14 1677.70 0.00 14200.60
feb1002 186 18 27 1804.26 1854.35 2.78 1829.44 1.40 12483.68 1839.04 1.93 1804.26 0.00 24718.90
mai0605 208 22 33 1760.82 1851.03 5.12 1833.69 4.14 10917.44 1779.48 1.06 1760.82 0.00 20268.88
mai0705 210 23 35 1964.68 2077.48 5.74 2046.29 4.15 10119.45 1997.39 1.66 1964.68 0.00 18350.90
mai1805 273 30 45 2570.25 2677.39 4.17 2629.02 2.29 11725.66 2601.40 1.21 2570.25 0.00 22719.08
mai2105 140 16 24 1457.36 1494.56 2.55 1476.78 1.33 5745.56 1470.55 0.91 1457.36 0.00 10813.82
nov0411 239 25 38 2155.53 2225.80 3.26 2186.96 1.46 11984.40 2171.58 0.74 2155.53 0.00 23501.62
nov0911 247 24 36 2207.46 2303.18 4.34 2269.98 2.83 15720.66 2248.11 1.84 2207.46 0.00 29666.94
nov1211 192 21 32 1711.99 1805.97 5.49 1784.38 4.23 9152.52 1749.12 2.17 1711.99 0.00 16999.46
nov1611 219 21 32 2097.98 2236.66 6.61 2212.37 5.45 15687.24 2158.05 2.86 2097.98 0.00 30054.52

Avg. 1831.34 1902.45 3.77 1875.06 2.29 10538.56 1858.58 1.47 1831.34 0.00 19993.53

Avg. = average
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