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(E-mail: {kristoffer.lundahl, lars.nielsen}@liu.se)

(Received: June 23, 2014)

There is currently a strongly growing interest in obtaining optimal control solutions for ve-
hicle maneuvers, both in order to understand optimal vehicle behavior and, perhaps more
importantly, to devise improved safety systems, either by direct deployment of the solutions
or by including mimicked driving techniques of professional drivers. However, it is nontrivial
to find the right combination of models, optimization criteria, and optimization tools to get
useful results for the above purposes. Here, a platform for investigation of these aspects is
developed based on a state-of-the-art optimization tool together with adoption of existing
vehicle chassis and tire models. A minimum-time optimization criterion is chosen to the pur-
pose of gaining insight in at-the-limit maneuvers, with the overall aim of finding improved
fundamental principles for future active safety systems. The proposed method to trajectory
generation is evaluated in time-critical maneuvers using vehicle models established in litera-
ture. We determine the optimal control solutions for three maneuvers, using tire and chassis
models of different complexity. The results are extensively analyzed and discussed. Our main
conclusion is that the tire model has a fundamental influence on the resulting control in-
puts. Also, for some combinations of chassis and tire models, inherently different behavior
is obtained. However, certain variables important in vehicle safety-systems, such as the yaw
moment and the body-slip angle, are similar for several of the considered model configurations
in aggressive maneuvering situations.

Keywords: optimal maneuvers; time-optimal trajectory generation; road vehicles; chassis
and tire modeling.

1. Introduction

Optimization of vehicle trajectories can be motivated from different perspectives.
One objective is to develop improved active safety systems for standard customer
cars. The Electronic Stability Control (ESC) systems, see [1] and [2], of today
are still behind the maneuvering performance achievable by professional rally-car
drivers in critical situations, but the vision for improvement is there [3]. A recent
survey on optimal control in automotive applications [4] points out:
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Most often, the optimal control itself will be interesting mainly insofar as it enables
the discovery of the best possible system performance. Occasionally, the optimal
control will provide a basis for the design and operation of practical systems.

Further, the survey points out that finding the right balance between models,
correct formulations, and optimization methods is the fundamental problem to be
solved. Moreover, the survey states that the development today is hampered by
long simulation and optimization times. However, we see that with recent increase
in computing power and advances in numerical methods for nonlinear optimization,
the simulation and optimization times achievable today enable offline investigation
of multiple model categories as well as vehicle parameters. The possibilities for
online trajectory generation are still not there, mainly because of the inherent
nonconvexity of the optimal control problem.
It is a common observation that the criterion of time-optimality in aggressive ve-

hicle maneuvers, combined with input and state constraints, often result in control
signals utilizing the achievable limits of the input and state regions. It is therefore
crucial how, for example, the tires are modeled outside their normal range of op-
eration. In addition, chassis dynamics such as roll and pitch motion are important
to give a correct representation of load transfer and vehicle stability.
The interaction between tire and road is complex, and different tires and roads

have different characteristics [5]. Even when only considering the longitudinal stiff-
ness, that is, the initial slope of the longitudinal force-slip curve, the experimental
values differ considerably between tires, and the variability can typically be 20–
100%, see [6]. Further, in addition to the differences in stiffness there are also
deviations between the characteristic shape of the curve at the maximum force,
where the peak can be more or less accentuated. This is illustrated for Pacejka’s
Magic Formula and the Highway Safety Research Institute (HSRI) models in [6].
The complete tire model capturing both longitudinal and lateral forces can thus
be expected to have large variability in shape and parameters, and parameter ir-
regularity for different tires. Moreover, the characteristics of the tire forces depend
on the road surface [7].

1.1. Objectives

The objective of this paper is to utilize recent advances in optimization tools to
develop a platform for study of optimal vehicle-maneuvering problems. The pur-
pose is to demonstrate the usefulness of the platform, and to obtain insightful
solutions where one specific interest is in future on-board systems for control and
safety. Regarding methodology, this means that the control-oriented goal is to find
a formulation that gives insight into improved safety systems that benefit from
the recent developments in sensor and computing power technology in vehicles;
for example, future driver-assistance systems performing closer to what the most
experienced drivers can do. To that end we study the time-optimal maneuvers in
three different scenarios; a 90◦-turn, a hairpin turn (see Figure 1), and a double
lane-change maneuver.
As already noted, it is stated in [4] that modeling is a crucial part. Different

versions of the well known single-track (ST) and double-track (DT) chassis models
have been used in several safety systems and optimal vehicle maneuver studies,
see [8–13] for examples with ST and [14, 15] for examples with DT. An ST model
sufficiently captures planar dynamics and has the advantage of lower computational
complexity because of its reduced number of states. Consequently, it has greater
promise for onboard systems. On the other hand, a DT model captures motion
in space. In general, however, it requires more computation time when solving
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Figure 1. An example of a hairpin turn. Photo courtesy of RallySportLive.

the corresponding optimization problem. It is thus a natural objective to study a
spectrum of chassis models and compare both the solutions and the computational
burden. With the perspective of future control systems, it is natural to include the
control signals, being the drive or brake torques on the wheels. This means that
we include wheel dynamics, which is an extension of what many previous studies
have done, see, for example, [14–17]. Finally, there is the aspect of modeling of
the tire-road interaction. Such models are reproductions of the situation under
which they were measured or may be an average over different conditions, and
they may exhibit significant differences. Also here, aiming at onboard solutions,
it is an objective to investigate a spectrum of tire–road models from simple to
more descriptive (but more computationally demanding). One especially important
aspect is worth mentioning already here; model behavior and requirements are quite
different between simulation and optimization. Even though many models have
been used in simulation for many years, and shown good agreement with reality,
time-optimal optimization problems tend to result in control inputs corresponding
to aggressive maneuvering. The optimal control inputs push the models to, and
even beyond, their limits, leading to nonphysical behavior. Another issue is that
tire–road models often depend on parameter fit and as such may have properties
that can be managed in simulation tools, but may result in convergence to local
minima and numerical instability in the optimization, if not properly handled.
All these modeling aspects are important. Thus, to demonstrate the value of a
platform for study of optimal vehicle-maneuvering problems, it must be verified
that the platform provides sensible solutions for a spectrum of models with different
characteristics. We have used our platform with several model combinations, and
in this paper we present six different combinations of chassis and tire models, all of
which are common in literature, and discuss and analyze the results in detail. The
chosen model configurations are the ones deemed most interesting for the analysis
and understanding of the balance between accuracy and computational demand
for future automotive safety systems.

1.2. Background

Optimal control problems for vehicles in time-critical situations have been studied
previously, see [8, 12, 18, 19] for different examples concerning T-bone collisions and
cornering. The influence of the road surface and the car transmission layout was
investigated in [20] using a ST chassis model. Control laws for vehicle emergency-
maneuvers were developed in [11] based on an analytical optimal-control approach.
However, certain assumptions on the vehicle dynamics were imposed, and roll and
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pitch dynamics for the chassis were neglected. Optimal lane-change maneuvers were
theoretically investigated in [21]. In particular, the minimum distance at which an
approaching obstacle can be avoided was determined, given an initial speed and
the optimal feasible maneuver. The time-optimal race-car line was investigated in
[22, 23], and in [4] a survey on existing vehicle dynamics applications of optimal
control theory was presented. In contrast to the classical optimal control approach
to vehicle maneuver optimization, an approximate linearization approach leading
to a sequence of convex optimization problems (one problem for each point in a
discrete grid along the spatial path of the vehicle) was proposed in [13]. Methods
for constraint-based trajectory planning for optimal maneuvers were developed in
[24, 25]. In [10], the stability and agility of aggressive pendulum-turn maneuvers,
performed by professional race-car drivers, were investigated. Further, [14, 15] dis-
cussed optimal control of over-actuated vehicles, where similar optimization tools
as those employed in this paper were utilized. A method for optimal control al-
location in yaw stabilization of automotive vehicles was proposed in [16], and an
expansion of the work comprising a two-level strategy for active steering and adap-
tive control allocation was presented in [26]. Further, an optimal yaw-control law
for road vehicles was discussed in [9].
The authors have previously presented a method for determining optimal ma-

neuvers and a subsequent comparison using different methods for tire modeling
in [27], and a comparison of optimal maneuvers with different chassis models was
treated in [28]. Moreover, we investigated the influence of the road surface on the
optimal maneuver in [29]. Further, in [30] we reported that simplified vehicle mod-
els, such as the ST model, identified from experimental data managed to replicate
the behavior of real vehicles. However, this was based on less aggressive driving
situations, and not using optimization as a criterion for determining the control
inputs.

1.3. Relation to Previous Work and Outline

A preliminary version of parts of the research presented here has been presented as
conference contributions [27, 28]. In this paper, several extensions are presented. In
particular, regarding methodology, more combinations of chassis and tires models
of various complexity are investigated, and a more efficient and robust initialization
procedure to the time-optimal optimization problem is proposed. In addition, an
extensive comparison of the obtained results and a more in-depth analysis for the
different maneuvers are provided.
The rest of this paper is outlined as follows: The problem formulation and spe-

cific aim of the paper are discussed in Section 2. Vehicle and tire modeling and the
specific models investigated here are presented in Section 3, followed by the formu-
lation and solution method for the studied time-optimal maneuvering problem in
Section 4. Optimization results and a subsequent analysis of the obtained results
are provided in Section 5. The proposed method to trajectory optimization and the
significance of the obtained results are discussed in Section 6, where conclusions
also are drawn.

2. Problem Formulation

The goal of the research presented in this paper is twofold. The first goal is control-
oriented and consists of finding the time-optimal vehicle trajectory when maneu-
vering through a time-critical situation, with the vehicle being subject to various
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constraints, which are motivated by physical limitations of the driver and the ve-
hicle and the road geometry.
The second goal is model oriented and aims at investigating whether different

chassis and tire models yield fundamentally different solutions, not only in the
cost function in the optimization but also in the internal vehicle behavior. Of
particular interest is to analyze the results from a safety-system perspective; that
is, what driving behavior and model characteristics can be extracted from the
results. Hence, a part of the research is devoted to investigating how the models
differ. We consider differential-algebraic equation (DAE) models of the form

ẋ(t) = G(x(t), y(t), u(t)),

0 = h(x(t), y(t), u(t)),

where G(x(t), y(t), u(t)) and h(x(t), y(t), u(t)) are twice continuously differentiable
nonlinear functions of the vehicle differential variables x, algebraic variables y, and
control inputs u, where the time-dependency of the variables will be implicit in
the rest of the paper. The employed vehicle models differ in both chassis and tire
aspects. We assume that the tires stay in contact with the ground at all times.
This is usually not a severe restriction for the average passenger vehicle under
normal operating conditions. However, considering high-performance vehicle con-
figurations in tight cornering, this modeling aspect would need further elaboration.
The complete formulation of the optimal control problem is given in Section 4, and
results in a general framework well suited for the studies performed.

3. Modeling

The vehicle dynamics modeling presented in this section incorporates the chassis
motion modeling (having a varying number of degrees of freedom) and the tire
force modeling. Further, we discuss calibration of the tire models and present a
subsequent investigation of the qualitative behavior of the studied tire models.

3.1. Chassis Models

We use three chassis models of different complexity. The most complex model is a
DT model with roll (φ) and pitch (θ) dynamics and both longitudinal and lateral
load transfer1. This chassis model is illustrated in Figure 2. The model has five
degrees of freedom, namely two translational and three rotational. The chassis
rotational motions in the roll, pitch, and yaw directions are characterized by the
vehicle chassis inertias Ixx, Iyy, and Izz, respectively. The derivation of the double-
track model is omitted because of space limitations; for the details we refer to
[31, 32]. We will, however, state the equations for the complete model in what
follows.

3.1.1. DT Model

The suspension system is modeled as a rotational spring-damper system. Conse-
quently, the moment τφ produced by the suspension system in the roll direction is

1Motivated by a passenger vehicle perspective in the analysis, we neglect aerodynamic modeling in the
chassis dynamics. It can, however, easily be introduced in the proposed modeling framework if rally or
racing applications are to be investigated.
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given by

τφ = (Kφ,f +Kφ,r)φ+ (Dφ,f +Dφ,r)φ̇, (1)

and correspondingly for the moment τθ in the pitch direction according to

τθ = Kθθ +Dθθ̇, (2)

where K and D are parameters. Throughout the paper we use the indices f, r
and 1, 2, 3, 4 for denoting the respective wheel pair and wheel, respectively. The
dynamic equations for the longitudinal load transfer are given by

(Fz,1 + Fz,2)lf − (Fz,3 + Fz,4)lr = Kθθ +Dθθ̇,

4
∑

i=1

Fz,i = mg (3)

where Fz,i, i ∈ {1, 2, 3, 4}, denote the time-dependent normal forces, m is the
vehicle mass, lf , lr are defined in Figure 2, and g is the constant of gravity. The
lateral load transfer is determined by the relations

−w(Fz,1 − Fz,2) = Kφ,fφ+Dφ,f φ̇, (4)

−w(Fz,3 − Fz,4) = Kφ,rφ+Dφ,rφ̇, (5)

where w is defined in Figure 2.
The translational dynamic equations, which are straightforward to derive using

a Newton-Euler approach, are given by

v̇x − vyψ̇ = h
(

sin (θ) cos (φ)(ψ̇2 + φ̇2 + θ̇2)− sin (φ)ψ̈ − 2 cos (φ)φ̇ψ̇

− cos (θ) cos (φ)θ̈ + 2 cos (θ) sin (φ)θ̇φ̇+ sin (θ) sin (φ)φ̈
)

+
FX

m

v̇y + vxψ̇ = h
(

− sin (θ) cos (φ)ψ̈ − sin (φ)ψ̇2 − 2 cos (θ) cos (φ)θ̇ψ̇

+ sin (θ) sin (φ)φ̇ψ̇ − sin (φ)φ̇2 + cos (φ)φ̈
)

+
FY

m
,

where vx, vy are the longitudinal and lateral velocities at the mass center, ψ̇ is the
yaw rate, and h is the distance from the roll center to the mass center. Moreover,

FX = Fx,1 cos (δ)− Fy,1 sin (δ) + Fx,2 cos (δ)− Fy,2 sin (δ) + Fx,3 + Fx,4, (6)

FY = Fx,1 sin (δ) + Fy,1 cos (δ) + Fx,2 sin (δ) + Fy,2 cos (δ) + Fy,3 + Fy,4, (7)

where δ is the steer angle, Fx,i is the longitudinal force for wheel i, and similarly
for the lateral direction. The rotational dynamic equation for ψ is given by

ψ̈(Ixx sin (θ)
2 + cos (θ)2(Iyy sin (φ)

2 + Izz cos (φ)
2)) =MZ − h

(

FX sin (φ)

+ FY sin (θ) cos (φ)
)

, (8)
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where

MZ = lf

(

Fx,1 sin (δ) + Fx,2 sin (δ) + Fy,1 cos (δ) + Fy,2 cos (δ)
)

+ wf

(

− Fx,1 cos (δ) + Fx,2 cos (δ) + Fy,1 sin (δ)− Fy,2 sin (δ)
)

− lr(Fy,3 + Fy,4)− wr(Fx,3 + Fx,4). (9)

Note that because of the deflection of the center of mass, the external forces in the
x- and y-directions give rise to additional external torques τz, in this case

τz = −h(FX sin (φ) + FY sin (θ) cos (φ)).

The pitch dynamics are written as

θ̈(Iyy cos (φ)
2 + Izz sin (φ)

2) = −Kθθ −Dθθ̇

+ h
(

mg sin (θ) cos (φ)− FX cos (θ) cos (φ)
)

+ ψ̇
(

ψ̇ sin (θ) cos (θ)
(

∆Ixy

+ cos (φ)2∆Iyz
)

− φ̇(cos (θ)2Ixx + sin (φ)2 sin (θ)2Iyy

+ sin (θ)2 cos (φ)2Izz)− θ̇
(

sin (θ) sin (φ) cos (φ)∆Iyz
)

)

, (10)

where ∆Ixy = Ixx − Iyy and ∆Iyz = Iyy − Izz. Using Kφ = Kφ,f + Kφ,r and
Dφ = Dφ,f +Dφ,r, the third equation of angular motion equals

φ̈(Ixx cos (θ)
2 + Iyy sin (θ)

2 sin (φ)2 + Izz sin (θ)
2 cos (φ)2) = −Kφφ−Dφφ̇

+ h(FY cos (φ) cos (θ) +mg sin (φ))

+ ψ̇∆Iyz

(

ψ̇ sin (φ) cos (φ) cos (θ) + φ̇ sin (θ) sin (φ) cos (φ)
)

+ ψ̇θ̇(cos (φ)2Iyy + sin (φ)2Izz). (11)

3.1.2. ST-pitch Model

The second model is a single-track model, where we have added pitch dynamics
(ST-pitch). The dynamics incorporate the same modeling of the suspension system
in the pitch direction as for the DT model. The dynamic equations for this model
are conceptually found from DT by lumping the left and right wheel on each axle
together and setting the roll angle to zero. This results in the following equations
of motion in the translational directions

v̇x − vyψ̇ = h(sin(θ)(ψ̇2 + θ̇2)− cos(θ)θ̈) +
FX

m
,

v̇y + vxψ̇ = −h(sin(θ)ψ̈ + 2 cos(θ)θ̇ψ̇) +
FY

m
,

and the following in the rotational directions

(Izz + Ixx sin(θ)
2)ψ̈ =MZ − h sin(θ)FY ,

θ̈Iyy +Dθθ̇ +Kθθ −mgh sin(θ) = −h cos(θ)FX + ψ̇2 sin(θ) cos(θ)∆Ixz,
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Figure 2. The double-track model, with roll and pitch dynamics. Note that the geometric lateral slip angle
is shown in the figure.

δ

lf lr

x

y

vf
vr

Fx,r

Fx,f Fy,r
Fy,f

ψαf αr

Figure 3. The single-track model. Note that the geometric lateral slip angle is shown in the figure.

where ∆Ixz = Ixx − Izz and FX , FY , and MZ are the lumped total forces, as
opposed to (6), (7), and (9). The load transfer equations in the pitch direction
are given by (3), where the wheel forces on each axle are lumped together for the
ST-pitch chassis model.

3.1.3. ST Model

The third model is a single-track model (ST), illustrated in Figure 3. This model
lumps together the left and right wheel on each axle, and roll and pitch dynamics
are neglected. Thus, the model has two translational and one rotational degrees of
freedom. The model dynamics are straightforward to derive [33] and are given by

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)) =

FX

m
, (12)

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)) =

FY

m
, (13)

Izzψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ) =MZ , (14)

where FX , FY , andMZ are the global forces. The nominal normal force Fz0 resting
on the respective wheel in steady state is given by

Fz0,f = mg
lr
l
, Fz0,r = mg

lf
l
, (15)

where the wheel base is defined as l = lf + lr.
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3.2. Wheel and Tire Modeling

The slip angles αi and slip ratios κi are defined as in [5]:

α̇i
σ

vx,i
+ αi = − arctan

(

vy,i
vx,i

)

, (16)

κi =
Rwωi − vx,i

vx,i
, i ∈ {f, r} or {1, 2, 3, 4}, (17)

where σ is the relaxation length, Rw is the wheel radius, ωi is the wheel angular
velocity for wheel i, and vx,i and vy,i are the longitudinal and lateral wheel velocities
for wheel i with respect to an inertial system, expressed in the coordinate system
of the wheel. The wheel dynamics1, necessary for slip-ratio computation, are given
by

Ti − Iwω̇i − Fx,iRw = 0 , i ∈ {f, r} or {1, 2, 3, 4}. (18)

Here, Ti is the driving/braking torque and Iw is the wheel inertia.
When developing a platform for investigation of optimal maneuvers, it is of in-

terest to handle and compare different tire characteristics, and thus to cope with
different tire models. The nominal tire forces Fx0 and Fy0—that is, the forces under
pure slip conditions—are computed with the Magic Formula model [5], given by

Fx0,i = µx,iFz,i sin(Cx,i arctan(Bx,iκi − Ex,i(Bx,iκi − arctanBx,iκi))), (19)

Fy0,i = µy,iFz,i sin(Cy,i arctan(By,iαi − Ey,i(By,iαi − arctanBy,iαi))), (20)

for each wheel i ∈ {f, r} or {1, 2, 3, 4}. In (19)–(20), µx and µy are the friction
coefficients and B, C, and E are model parameters.
Under combined slip conditions—that is, both κ and α are nonzero—the longitu-

dinal and lateral tire forces will depend on both slip quantities. How this coupling is
described can have immense effect on the vehicle dynamics. In an optimal maneu-
ver, the computed control inputs will result in the best combination of longitudinal
and lateral force, and these forces are, of course, coupled via the physics of the tire.
Even though detailed experiments, like the ones in [6] for longitudinal stiffness, are
lacking for the complete longitudinal-lateral tire interaction, there is a vast plethora
of characteristics, see [1], [5], [34], and [35]. We have chosen two different tire model
categories for our study, which are described next.

3.2.1. Combined Forces based on the Friction Ellipse

A straightforward model of combined forces is based on the friction ellipse, and
is described by the elliptical constraint

Fy,i = Fy0,i

√

1−

(

Fx0,i

µx,iFz,i

)2

, i ∈ {f, r} or {1, 2, 3, 4}, (21)

where Fx0 is used as an input variable, see for example [36]. However, we have opted
for using the driving/braking torques as input, see (18), since this is a quantity

1In the wheel dynamic modeling, we assume that the vehicle has an open differential, motivated by a
passenger-vehicle perspective in the study. However, we have verified that the proposed optimization frame-
work can handle other differential settings, such as locking differential on the rear axle and limited-slip
differential, as well.
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that can be controlled in a physical setup of a vehicle. The main limitation with the
friction ellipse model is that the longitudinal force does not explicitly depend on
the lateral slip, which is not realistic. With longitudinal slip present, it is possible to
use a related, more involved model, which is also based on the friction ellipse [34].
However, we use (21) because it represents the simplest combined-force model that
is used in the vehicle optimal-control literature [14, 15]. This model will hereafter
be denoted the friction ellipse (FE) model.

3.2.2. Representing Combined Slip with Weighting Functions

Another more comprehensive approach to tire modeling, which is inspired by
the Magic Formula and explicitly accounting for the effect on the tire force by the
longitudinal and lateral slip, is to scale the nominal forces (19)–(20) with weighting
functions Gxα,i and Gyκ,i, which depend on α and κ [5]. The relations in the
longitudinal direction are

Hxα,i = Bx1,i cos(arctan(Bx2,iκi)), (22)

Gxα,i = cos(Cxα,i arctan(Hxα,iαi)), (23)

Fx,i = Fx0,iGxα,i, i ∈ {f, r} or {1, 2, 3, 4}, (24)

and the corresponding relations in the lateral direction are given by

Hyκ,i = By1,i cos(arctan(By2,iαi)), (25)

Gyκ,i = cos(Cyκ,i arctan(Hyκ,iκi)), (26)

Fy,i = Fy0,iGyκ,i, i ∈ {f, r} or {1, 2, 3, 4}, (27)

where B and C are model parameters. Throughout the paper, (22)–(27) will be
denoted the weighting functions (WF) model.

3.3. Calibrating Tire Models for Comparison

When comparing an optimal maneuver based on two different tire models, it is
not obvious how to calibrate the models with respect to the specific tire to get
comparable solutions to the optimal control problem. As an example, Figure 4
shows the resulting tire forces for two tire models; the first is parametrized using FE
and the second is parametrized using WF. To equalize these models in comparative
studies, one way would be to have the same average resultant force, whereas another
way would be to equalize the longitudinal stiffness. For the particular tire models
considered in this study, the same parameters have been used in the relations for the
nominal longitudinal and lateral forces in (19)–(20), that is, for pure slip conditions
the two tire models agree. In the calibration procedure, we neglect that parts of
the tire model parameters depend on the time-varying normal force; instead the
parameters are determined from the normal forces present when the vehicle is in
steady state.

3.3.1. Qualitative Behavior of Tire Models

We use the force–slip tire characteristic surfaces as a basis for analysis, as in-
troduced in [27] and hereafter referred to as Force-Slip (FS)-diagrams. This 3D
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Figure 4. Resultant tire force Fres for the front wheel with a friction ellipse model (left) and a weight-
ing functions model (right), with experimental parameters from [5] according to Table 3. The force is
normalized with the steady-state load.

surface is defined as the resulting force

Fres,i =

√

(Fx,i)2 + (Fy,i)2

Fz,i

, i ∈ {f, r} or {1, 2, 3, 4}, (28)

as function of the longitudinal slip κ and slip angle α. The resultant is normalized
with the normal force in order to enable comparison of models with and without
dynamic load transfer. The model based on the weighting functions is parametrized
according to parameters found from experiments in [5], representing a tire behavior
when driving on dry asphalt. The friction ellipse model also uses the parameters
in [5] for the nominal tire forces. Figure 4 shows how the resulting tire force for
the front wheel varies over slip angle and slip ratio for the friction ellipse and the
weighting functions models with the parameters presented in Table 3. Studying
Figure 4 gives a basis for discussion of the behavior of the tire models in an optimal
maneuver; for example, the models give different force characteristics for combined
slip, where the most prominent difference is that FE predicts a significantly larger
force for combined slip of high values than WF does. Further, the characteristic
peaks in Fres obviously influence the behavior of the tire force model significantly.
Another fundamental difference between the models is seen in Figure 5, where the

lateral force is plotted against the longitudinal force for FE and WF. Differences
between the two approaches are clear. In particular, the longitudinal force increases
monotonically with decreasing lateral force for FE, which is not the case for WF.
Typically, experimental results exhibit similar behavior as WF.

4. Optimal Control Problem

Based on the chassis and tire dynamics described in Section 3, the time-optimal
solutions for different maneuvering situations are to be determined. These trajec-
tories are computed as the solution to an optimization problem and considering
the physical setup of the problem, it is clear that a solution exists given that the
initial velocity of the vehicle is chosen appropriately. The resulting optimization
problems are more challenging than thought at first sight, since the time-optimality
implies that the tire-friction models operate on the boundary of their validity. Also,
solving dynamic optimization problems numerically where the time horizon is free
is in general more demanding than solving a problem with fixed time horizon,
because it adds additional degrees of freedom. Further, we have found that nu-
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Figure 5. Lateral force plotted versus longitudinal force (normalized) for the friction ellipse (FE) and
weighting functions (WF) models, respectively, for α = 7.6◦, κ ∈ [0, 1]. The models predict different be-
havior for large values of the longitudinal force; in particular, the longitudinal force increases monotonically
with decreasing lateral force for FE. Experimental results tend to support the behavior of WF.

merical issues easily arise and that the optimization does not converge without
proper initialization of the model trajectories prior to the optimization. To this
purpose, an initialization procedure based on driver models has been developed as
part of the optimization platform, see Section 4.3. Moreover, scaling of the opti-
mization variables to the same nominal interval (based on a priori assumptions on
their maximum values) is essential in order to avoid ill-conditioned matrices in the
optimization procedure.

4.1. Formulation of the Optimal Control Problem

The chassis motion models presented are formulated as differential-algebraic equa-
tion systems according to ẋ = G(x, y, u), as described in Section 2. The wheel
driving and braking torques T =

(

Tf Tr
)

, as well as the steer angle δ of the front
wheels are considered as inputs. For simplicity we assume that the front wheels
have the same steer angle in the double-track models. Moreover, considering that
the analysis in this paper has a focus on optimal maneuvers for passenger vehicles in
safety-critical situations, it is justified to assume that the double-track models have
one wheel-torque input for each axle. The inputs are equally distributed between
the wheels at the respective axle—that is, T1 = T2 = Tf/2 and T3 = T4 = Tr/2.
This is equivalent to separate front and rear braking systems (where, for example,
anti-lock braking systems are disregarded to allow for solutions with large slip),
and an open differential. Further, the tire-force model is written as the equation
system h(x, y, u) = 0. The optimization problem is formulated over the time hori-
zon t ∈ [0, tf ] and the objective of the optimization is to minimize the final time
tf of the maneuver. Accordingly, the dynamic optimization problem to be solved



June 23, 2014 13:52 Vehicle System Dynamics journal˙vsd

Vehicle System Dynamics 13

is stated as follows:

minimize tf

subject to Ti,min ≤ Ti ≤ Ti,max, i ∈ {f, r} or {1, 2, 3, 4}

|Ṫi| ≤ Ṫi,max, i ∈ {f, r}

|δ| ≤ δmax, |δ̇| ≤ δ̇max

x(0) = x0, x(tf ) = xtf ,

f(Xp, Yp) ≤ 0

ẋ = G(x, y, u), h(x, y, u) = 0

(29)

where x0 are the initial conditions for the differential variables, xtf are the desired
values for the differential variables at the final time t = tf , and (Xp, Yp) is the
position of the center-of-gravity of the vehicle. In practice, the conditions at t =
tf are only applied to a subset of the model state variables. Further, f(Xp, Yp)
is a mathematical description of the road constraint for the center-of-gravity of
the vehicle for the respective maneuver. These constraints in the geometric two-
dimensional XY -plane are formulated as super-ellipses with different radii and
degrees.

4.2. Implementation and Solution

The chassis and tire dynamics were implemented using the modeling language Mod-
elica [37]. Utilizing Optimica [38], which is an extension of Modelica for high-level
description of optimization problems based on Modelica models, the implementa-
tion of the vehicle and tire dynamics described in Section 3 and the optimal control
problem (29) was straightforward.
Because of the complex nature of the nonlinear and nonconvex optimization

problem (29), analytical solutions were intractable. Instead, we utilized numerical
methods based on simultaneous collocation [39] of the continuous-time problem
(29). Simultaneous collocation means that the continuous-time differential, alge-
braic, and control variables are discretized using an equidistant grid of the time
horizon [0, tf ] with Ne elements. In each element [ti−1, ti], i = 1, . . . , Ne, the opti-
mization variables are approximated using polynomials p of the format

p(t) =

Np
∑

j=1

pi,jLj

(

t− ti−1

hp

)

, t ∈ [ti−1, ti], (30)

where pi,j is the interpolation coefficient, Lj is the interpolation polynomial, and hp
is the element length. Moreover, Np collocation points are chosen in each element;
in our implementation these were chosen as the corresponding Radau points. In
the particular scheme employed, the differential variables were described using
Lagrange polynomials of order Nc, whereas the algebraic and control variables
are described using Lagrange polynomials of order Nc − 1. In addition, continuity
of the differential variables were enforced at the element boundaries with explicit
constraints in the optimization. The collocation procedure results in a discrete-time
nonlinear program (NLP), where the interpolation coefficients of the polynomials
are the optimization variables. For further details on the collocation procedure, see
[40]. The resulting NLP is solved using Ipopt [41], which is a numerical solver based
on a primal-dual interior-point method opted for large and sparse optimization
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problems. The collocation procedure and solution of the optimization problem were
performed using the open-source software platform JModelica.org [42, 43]. For the
optimization problems considered in this paper, Ne = 150 discretization elements
were used and each element contained Nc = 3 collocation points. The selection of
discretization parameters were based on an iterative procedure. The Jacobian and
the Hessian related to the problem were required in the Newton iterations in the
optimization procedure. Considering the complexity of the employed chassis and
tire models, finite-difference approximations of these quantities in quasi-Newton
methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [44]
are not numerically stable, especially not for the DT model. Instead, calculation of
the required derivatives with numerical precision (that is, in the order of 10−16) was
performed using automatic differentiation [45]; this procedure reduced convergence
times several orders of magnitudes and increased numerical stability as compared
with the approach using approximate derivatives.

4.3. Initialization Procedure

Robust convergence to a solution of the NLP in Ipopt relies on proper initialization.
We have chosen to use simulation of a driver model in combination with the vehicle
model to obtain initial trajectories for the model variables in the optimization. The
driver model is designed such that the vehicle tracks the middle of the road while
following a predefined velocity profile. The driver model, operating the steer angle
δ and the rear-wheel torque Tr, is based on a lane-keeping controller described in
[35]:

δ = δss − k1e− k2ė− k3ξ − k4ξ̇, (31)

Tr = Tr,ff − k5(v − vnom) (32)

where δss is the steady-state steer angle, e is the lateral deviation from the desired
path, ξ is the angular deviation from the desired heading direction, Tr,ff is the
feedforward term for the rear torque input, vnom is the desired velocity profile, and
{ki}

5
i=1 are driver-model parameters. The controller parameters k1–k4 are chosen

such that the eigenvalues of the closed-loop system are placed in the same manner
as suggested in [35]. The desired velocity vnom is tracked by controlling the rear
wheel torques with the feedforward part Tr,ff , computed from v̇nom, and a term
proportional to the speed-profile error.
The authors’ experience is that the convergence time is drastically reduced when

compared with the approach we utilized in [27], which was based on an iterative
optimization procedure with a sequence of smaller subproblems. Using the pro-
posed initialization scheme and a standard PC with an Intel Core i7 CPU in an
implementation using only one of the cores, the solution times and number of it-
erations reported in Table 1 were obtained for the hairpin maneuver, which is the
most challenging maneuver considered. Obviously, the number of iterations and
computation times are dependent on the complexity of the model configuration
and the maneuver; noticeable is that the DT chassis model requires approximately
one order of magnitude longer solution time than the ST chassis model.

5. Results

In this section we present the results achieved by solving the optimal control prob-
lem (29) for different vehicle-model configurations in the different maneuver situ-
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Table 1. Solution times and number of iterations required for solving the time-optimal maneuver problem in the

hairpin turn for the considered model configurations.

Model Solution Time [s] No. of Iterations

ST FE 8.0 111
ST WF 12.3 101
ST-pitch FE 16.9 110
ST-pitch WF 7.8 78
DT FE 137.8 340
DT WF 144.2 287

Table 2. Vehicle model parameters used in (1)–(18) for the results presented in this study.

Notation Value Unit

lf 1.3 m
lr 1.5 m
w 0.8 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

σ 0.3 m
g 9.82 ms−2

h 0.5 m
Kφ,f ,Kφ,r 89 000 Nm(rad)−1

Dφ,f , Dφ,r 8 000 Nms(rad)−1

Kθ 363 540 Nm(rad)−1

Dθ 30 960 Nms(rad)−1

ations. For each investigated maneuver, the following chassis and tire model con-
figurations were evaluated:

• ST with FE for tire modeling; that is, the single-track model without pitch and
roll dynamics, and the friction ellipse for tire modeling.

• ST with WF for tire modeling; that is, the single-track model without pitch and
roll dynamics, and the weighting functions for tire modeling.

• ST-pitch with FE for tire modeling; that is, the single-track model with pitch
dynamics, and the friction ellipse for tire modeling.

• ST-pitch with WF for tire modeling; that is, the single-track model with pitch
dynamics, and the weighting functions for tire modeling.

• DT with FE for tire modeling; that is, the double-track model with pitch and
roll dynamics, and the friction ellipse for tire modeling.

• DT with WF for tire modeling; that is, the double-track model with pitch and
roll dynamics, and the weighting functions for tire modeling.

The numerical values for the vehicle-model parameters used in this study are
provided in Table 2. The corresponding parameters for the tire-force models are
found in Table 3.
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Table 3. Model parameters in (19)–(27) used in this study (originating from [5]). The models represent the tire

forces on dry asphalt with friction ellipse (FE) and weighting functions (WF), respectively. For DT, the same

parameters are used for both the left and the right wheels.

FE Front Rear

µx 1.20 1.20
Bx 11.7 11.1
Cx 1.69 1.69
Ex 0.377 0.362
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey −1.21 −1.11

WF Front Rear

µx 1.20 1.20
Bx 11.7 11.1
Cx 1.69 1.69
Ex 0.377 0.362
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey −1.21 −1.11
Bx1 12.4 12.4
Bx2 −10.8 −10.8
Cxα 1.09 1.09
By1 6.46 6.46
By2 4.20 4.20
Cyκ 1.08 1.08

5.1. Maneuvers

Three time-critical maneuvers were chosen for evaluation of the proposed approach
to trajectory generation. The motivation for choosing multiple maneuvers is firstly
to verify that the developed platform can handle different situations and vehicle
behavior, and secondly to enable comparison of the resulting solution for the con-
sidered model configurations. The first maneuver is a 90◦-turn, which is important
in, for example, evaluation of ESC systems in lane-keeping scenarios. The second
maneuver is a hairpin turn, which is selected because of its extremity and that
it tests several aspects of the tire and chassis modeling. The third maneuver is a
double lane-change maneuver, where the dimensions of the track was chosen con-
gruent to the ISO standard 3888-2 [46]. This maneuver is, in particular, common
for testing the possibilities for collision avoidance if obstacles are approaching the
road, but is also important for evaluation of the roll stability of a vehicle.

5.2. Optimization Prerequisites

For the evaluations we set the maximum allowed wheel angle δmax and wheel-angle
change rate δ̇max to 30 deg and 60 deg/s, respectively, which are reasonable param-
eters, both seen from physical and driver limitations. For all considered maneuvers,
the start (Xp,0, Yp,0) and final vehicle position (Xp,tf , Yp,tf ) were set to be in the
middle of the road. The initial velocities were v0 = 70 km/h in the 90◦-turn ma-
neuver, v0 = 25 km/h in the hairpin-turn maneuver, and v0 = 80 km/h in the
double lane-change maneuver. Further, the lower and upper constraints on the
torque inputs were chosen as

Ti,min = −µx,iRwmg, i ∈ {f, r} or {1, 2, 3, 4}, (33)

Tr,max = µx,rRwFz0,r, (34)

Tf,max = 0, (35)

which implies a rear-wheel driven vehicle. The constraints on the derivative of the
torque inputs were chosen as Ṫi,max = 2.5µx,iRwmg, i ∈ {f, r}. Note that the fric-
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tion coefficients and the other tire-model parameters on the left and right wheels
on the respective axle are assumed to be equal in the DT models. The choice of
torque limitations originates from that the maximum braking torques that can be
applied on the wheels are significantly larger than the corresponding acceleration
torques. Further, the driving torque limit was set to prevent excessive wheel spin,
corresponding to large slip ratios. This is motivated since the employed empirical
tire models are based on tire-force measurements that for experimental reasons are
only possible to obtain for a limited area in the α-κ plane. The reasoning behind
having constraints on the derivatives of the input torques is that the driver can-
not change the acceleration or deceleration instantly, and in addition the engine
or motor time constant limits the change rate of the torque in a physical vehi-
cle. Note, however, that the choice of limitations in this paper is less restrictive
than the typical values measured for a combustion engine. Moreover, the wheel
velocities were limited to be nonnegative, since solutions with wheel backspin were
not desired. Similarly, to aid the solver the longitudinal forces were constrained to
|Fx| ≤ µxFz and correspondingly for the lateral forces. Note that both the force
and wheel-velocity constraints are mathematically redundant.
The analysis of the achieved results presented in this section is focused on the

90◦-turn and the hairpin-turn maneuvers. The results from the double lane-change
maneuver are commented on and compared to the results obtained for the two
other maneuvers in the discussion in Section 6.

5.3. Optimal Trajectories in 90◦-turn Maneuver

In what follows we present an in-depth analysis of the resulting time-optimal ma-
neuvers for the 90◦-turn. First, the computed time-optimal trajectories are ex-
plained, followed by four sections discussing different aspects of the maneuver; the
global vehicle paths, the vehicle model variables, the global tire forces, and how
the available tire forces are used for the particular maneuvers.
The vehicle start position was set to (Xp,0, Yp,0) = (37.5, 0) m, which is in the

lower right corner in Figure 6, and the vehicle was aligned with the road direction,
ψ0 = π/2. The target vehicle position was set to (Xp,tf , Yp,tf ) = (0, 37.5) m, where
the vehicle heading should be in the road direction, ψtf = π. Figure 7 displays the
computed trajectories for the time-optimal maneuvers for the different chassis and
tire model configurations in the 90◦-turn. In the figure, v is the norm of the vehicle
velocity vector, given by

v =
√

v2x + v2y ,

and β is the body-slip angle defined as

β = arctan

(

vy
vx

)

.

Figure 8 shows the global forces FX and FY . In addition, the yaw moment MZ

generated from the tire forces, that is, the moment about an axis orthogonal to
the road, is visualized. These quantities are displayed as function of the driven
distance s to enable comparison of the results for the different model configurations.
Figures 9 and 10 show the Force-Slip (FS)-diagrams for ST with WF and DT
with FE, respectively. The combination of longitudinal and lateral slip in the time-
optimal solution is plotted on the surface; this gives an effective presentation of the
solution. Moreover, Table 4 provides the execution times tf for the maneuver with
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Table 4. Time for executing the maneuver with each model configuration in the 90◦-turn.

Model Maneuver Execution Time

ST FE 4.28 s
ST WF 4.28 s
ST-pitch FE 4.12 s
ST-pitch WF 4.21 s
DT FE 4.30 s
DT WF 4.35 s
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Figure 6. Time-optimal geometric trajectories in the 90◦-turn obtained for the respective model configu-
ration. The colored bars represent the vehicle heading every half second.

the respective model configuration. The execution times vary approximately 5% at
most, which occurs between the ST-pitch model with FE tire model and DT with
WF tire model. It is noticeable that ST-pitch and DT exhibit larger discrepancies
in execution times for the respective tire model than ST. This is most certainly
a result of the load transfer incorporated in the former models, which results in
significant variations in the normal load on the wheels during the maneuver. No
significant trend in the execution times is observed with regard to chassis model.
However, the friction ellipse seems to result in shorter execution times for ST-pitch
and DT. This is because the resulting force for the friction ellipse is always larger
than that for the weighting functions when combined slip is present, see Figure 4.
In this maneuver combined slip is developed; hence, the friction ellipse results in
larger forces and thus increased acceleration and deceleration.

5.3.1. Geometric Trajectories

The geometric trajectories shown in Figure 6 are similar from a qualitative per-
spective. The largest discrepancies of the geometric trajectories occur between ST-
pitch with FE and ST-pitch with WF during the exit phase, and are approximately
15% of the road width. It is interesting to note that the two ST-pitch configurations
result in different strategies when exiting the turn; ST-pitch with WF results in
the most narrow curve-taking, whereas ST-pitch with FE results in the most wide.
However, irrespective of the tire model, the differences between the chassis models
ST and DT are minor throughout the maneuver. Moreover, the geometric paths
are virtually indistinguishable for the FE model configurations (even though the
slip behavior is significantly different) but exhibit more variation for the WF tire
models. It is plausible that this is a result of the difference in the tire force predicted
by the respective model for combined slip; for the FE model, approximately the
same tire force is obtained for different slip combinations. This is not the case for
WF, where the tire force rapidly decreases for increasing slip quantities, and hence
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the load transfer imposes requirements on the optimal path in the curve taking.

5.3.2. Trajectories of the Model Variables

The first observation when investigating the optimal trajectories for the model
variables in Figure 7 closer is that the solution obtained for ST-pitch with FE has
a completely different behavior than the solutions obtained for the other model
configurations. In particular, the slip behavior is much more excessive with this
model configuration, which can be observed in the plots for β (peaking at a signif-
icant angle of 44◦) and αr. The observed slip behavior is also consistent with the
steering angle δ that is computed, where the constraints on the angle are active
for a short period around t = 2 s. A plausible explanation for this is that the
longitudinal load transfer in combination with the characteristics of FE (compare
FE and WF in Figure 4) leads to that the largest forces are attained when the
vehicle both accelerates and slides. It could also be argued that the longitudinal
force is used in the curve for centripetal acceleration, since the friction coefficient
in the longitudinal direction is larger than in the lateral direction. For DT, how-
ever, heavy centripetal acceleration implies lateral load transfer, resulting in less
available tire force for the inner wheels, thus, limiting the driving/braking effort if
wheel spin/lock should be avoided. Disregarding the solution for ST-pitch with FE
and considering all the remaining model configurations, the solutions are similar
for several variables, being φ, θ, ψ̇, and β.
Investigating the optimal vehicle trajectories further from a qualitative perspec-

tive, Figure 7 shows that the different models result in characteristics that are
similar in several aspects. Prior to turning towards the corner, all solutions exhibit
a slight rightward maneuvering while accelerating. This is followed by a braking
phase, where both the front and the rear wheels are used. Initially in the braking
phase, a significant braking torque is applied, which is gradually reducing as the
vehicle approaches the turn, see Tf and Tr in Figure 7. Larger lateral forces are
generated in the turn. Half-way through the turn, at t ≈ 2 s, all solutions generate
an increasing driving torque, which accelerates the vehicle out of the turn. In the
final stage when exiting the turn, all solutions utilize maximum driving torque.
It can be observed that the steer angle varies considerably between the models.

At t ≈ 0.7 s, a smaller δ is obtained for the ST-pitch and DT models with WF for
tire modeling, than for the remaining model configurations. For the ST-pitch and
DT models with WF, the longitudinal load transfer is utilized to achieve a strategy
with more emphasis on braking when entering the turn, with the lateral force being
slightly smaller. Hence, a lower δ is natural. Shortly after, approximately at t = 0.8–
1.2 s, the steer angle increases sharply in the solutions for the ST-pitch and DT
models with WF for tire modeling. The effect is clearly visible for DT in the front
slip angle in Figure 7. This behavior is not observed for the corresponding models
with FE for tire modeling. Given the resulting forces developed at the front wheels
at this time there exist two different strategies to achieve the observed behavior:
Either by utilizing front wheel braking together with a moderate steering angle, or
by only applying a large steer angle and achieve the longitudinal contribution from
Fy,f sin(δ) solely. The latter seems to be what is utilized for ST-pitch and DT with
WF.

5.3.3. Tire Forces

The forces that are developed by the tires, displayed in Figure 8, mirror the be-
havior observed in the internal model variables and geometric trajectory plots; the
ST-pitch model with FE exhibits largest discrepancies. Considering the remaining
configurations, FY andMZ are similar from a qualitative perspective. The solutions
exhibit quantitative differences in the magnitude of MZ during the initial and exit
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Figure 9. Resultant normalized tire forces for ST with WF tire modeling in the 90◦-turn.

phases of the maneuver. This observation is also in agreement with the tire force
plots in Figure 7. There are larger numerical discrepancies in FX , at least during
shorter periods of the maneuver.
The most prominent differences between the solutions appear, not unexpectedly,

for the control inputs and variables closely coupled to the longitudinal dynamics of
the vehicle, such as Tf , Tr, and v in Figure 7, and FX in Figure 8. Comparing the
ST models with the DT chassis models, the double-track models reduce front-wheel
braking slightly earlier, see Tf in Figure 7. This is probably a consequence of Tf
being equally distributed between the front wheels for the double-track models.
Thus, when braking while cornering, the inner wheels will have less load and thus
risk to lock up for large braking torques. Similarly, during the exit phase where
lateral load-transfer still is present, a too large driving torque will spin out the inner
rear-wheel. Therefore, a smaller driving torque is applied in the solution for DT
compared with the optimal solutions for the ST-pitch chassis models in particular.

5.3.4. Force-Slip Diagrams

The Force-Slip (FS)-diagrams displayed in Figures 9 and 10 for the ST chas-
sis model with WF and for the DT chassis models with FE, respectively, provide
further information on the maneuver execution. These plots display slightly differ-
ent slip characteristics for the considered model configurations. For ST, the solver
chooses a control strategy such that pure slip is favored, especially for the front
wheel. The DT model, having dynamically varying normal forces on the wheels,
naturally exhibits different slip trajectories for the left and right wheels. From the
FS-diagrams it is also clear that the slip on the rear wheels is more pronounced as
a result of the vehicle being rear-wheel driven.

5.4. Optimal Trajectories in Hairpin Maneuver

In this section, the time-optimal maneuvers in the hairpin turn are presented. The
analysis of the results for the hairpin maneuver is structured in the same manner as
for the 90◦-turn. The start position in the hairpin turn was (Xp,0, Yp,0) = (−5, 0) m
for all models, and the initial and final heading angles were aligned with the road
direction. Figures 11–12 show the vehicle path and the most relevant model vari-
ables for all six model configurations in the hairpin maneuver. The global forces
and yaw moment are displayed in Figure 13, whereas the FS-diagrams for the DT
chassis model with WF and FE are presented in Figures 14–15, respectively. Table 5
displays the maneuver execution times achieved with the different model config-
urations. The objective function tf deviates approximately 0.4 s when comparing
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Figure 10. Resultant normalized tire forces for DT with FE tire modeling in the 90◦-turn (blue – left
wheel, red – right wheel).

Table 5. Time for executing the maneuver with each model configuration in the hairpin turn.

Model Maneuver Execution Time

ST FE 8.47 s
ST WF 8.49 s
ST-pitch FE 8.19 s
ST-pitch WF 8.32 s
DT FE 8.48 s
DT WF 8.61 s

all six model configurations, corresponding to a 5% difference at most. The models
with roll and/or pitch dynamics show the largest differences for the respective tire
model, which is caused by that these additional dynamics lead to large wheel load
variations during the maneuver. Similarly as for the 90◦-turn, the models using FE
for tire modeling have shortest execution times. This is because FE leads to larger
resulting forces than WF for combined slip, as seen in Figure 4. With load transfer,
this difference is even more pronounced. The execution times for ST-pitch is shorter
than for the other models. The reason is that ST-pitch, as does DT, benefits from
the longitudinal load transfer when accelerating. However, ST-pitch does not take
roll dynamics into account, whereas a high cornering velocity will result in lateral
load transfer caused by the roll dynamics in DT. This leads to reduced loads on
the inner wheels for the double-track models, which is the same phenomenon as
observed in the 90◦-turn. Hence, it follows that the execution times will be shorter
for ST-pitch than for both ST and DT.

5.4.1. Geometric Trajectories

From Figure 11 we see that the geometric paths are qualitatively pairwise equal.
For example, the paths for the ST models are rather symmetric in shape. The paths
for the ST-pitch and DT models are asymmetric, with the ST-pitch models taking
a wide exit out of the turn, and opposite for the DT models. The results seem to
indicate that the qualitative behavior is more dependent on the chassis model than
the tire model. However, considering the similarity of the obtained paths for the FE
tire model and the differences in the paths for the WF models (in direct analogy
with the results obtained in the 90◦-turn), it is clear that the modeling of the tire
forces for large combined slip values are important for the optimal geometric path.
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Figure 11. Time-optimal geometric trajectories obtained for the hairpin turn, with the respective model
configuration. The colored bars represent the vehicle heading every second.

5.4.2. Trajectories of the Model Variables

The trajectories in Figure 12 show that all models have similarities in terms of
internal variables: The vehicle starts with giving full driving torque while turning
to allow for wider curve taking. When entering the curve the vehicle starts to
brake with all wheels, which it does approximately until reaching the half-way
point. Furthermore, all models give rise to vehicle slip. The longitudinal forces and
thus also the velocities are also similar in size and shape. However, there are also
fundamental differences between the models. Inspecting the body-slip angle, we see
that the models with FE have significantly larger slip for the same chassis models,
where, for example, β for ST-pitch peaks at approximately 60◦. As mentioned
previously, the reason for that FE gives larger slip is that the resulting force for
FE is higher than that of WF for combined slip. These differences are coupled
to the respective steer angles; δ for ST-pitch with FE is at its upper limit for
approximately 1 s. For DT, and to some extent ST-pitch, with WF, there is an
abrupt change in δ when reaching the leftmost part of the maneuver, at around 2 s.
As discussed before, WF results in smaller forces than FE for combined slip. These
forces become even smaller for the wheels on the rear axle (especially the rear inner
wheel for DT) with longitudinal and/or lateral load transfer, since there will be
normal-load variations when cornering and/or braking. Thus the total decelerating
force will be smaller. One way to suppress this is to achieve αf , αr that are closer
to zero, which can be achieved by the mentioned abrupt change in δ. Neither DT
nor ST-pitch with FE exhibit this behavior, and it is interesting to note that the
overall behavior of DT with FE is similar to the ST models in many variables.
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Figure 12. Time-optimal solutions obtained for the hairpin turn, with the respective model configuration.
For DT, the total forces and torques on each axle are shown. In addition, the lateral slip angles are
visualized as the mean for the respective axle. Same colors as in Figure 11.

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

Driven distance, s [m]Driven distance, s [m]Driven distance, s [m]

F
X

[k
N
]

F
Y

[k
N
]

M
Z

[k
N
m
]

Forces and Yaw Moment

Figure 13. Longitudinal force FX , lateral force FY , and yaw moment MZ , developed by the tires in the
hairpin turn, illustrated as functions of the driven distance s. Same colors as in Figure 11.



June 23, 2014 13:52 Vehicle System Dynamics journal˙vsd

Vehicle System Dynamics 25

−0.5

0

0.5

−50

0

50

0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

−50

0

50

0

0.2

0.4

0.6

0.8

1

1.2

Front Rear

F
re
s,
f
[-
]

F
re
s,
r
[-
]

κ [-]κ [-] α [deg]α [deg]

Figure 14. Resultant tire forces for DT with WF tire modeling in the hairpin maneuver (blue – left wheel,
red – right wheel).

5.4.3. Tire Forces

Figure 13 shows the sum of the longitudinal and lateral tire-forces resolved in the
road-surface plane as functions of the driven distance. In addition, the yaw moment
MZ generated from the tire forces is visualized. The qualitative behavior in the
longitudinal forces exhibits similarities for all models, except for ST-pitch with
FE. The behavior of the lateral forces is also rather similar, even though numerical
differences occur. A significant difference is the peak in the lateral force that occurs
for DT with WF approximately between 25 < s < 35 m. This discrepancy is a result
of the change in δ discussed earlier. There are qualitative discrepancies between
the models in MZ , where ST-pitch with WF, DT with WF, and ST-pitch with FE
are significantly different in behavior during the turn part of the maneuver. Note
that also here the overall behavior for DT with FE is alike to ST in all three plots,
whereas DT with WF is fundamentally different in behavior during the critical
part of the maneuver (that is, when in the turn).

5.4.4. Force-Slip Diagrams

Figures 14 and 15 show the FS-diagrams for DT with WF and FE, respectively.
It is clear that larger longitudinal slip values are obtained with WF, whereas higher
lateral slip is attained with FE. This observation is related to that for WF large slip
values are required in order to obtain small lateral forces but for FE longitudinal slip
values of 0.1–0.2 are sufficient for this purpose. In addition, since the longitudinal
force does not depend on the lateral slip in the adopted FE model, in contrast to the
WF model, the observed behavior is expected. With FE, changes in the resulting
force seem to have a tendency of moving in orthogonal directions; when altering κ,
the lateral slip α hardly changes, and vice versa. However, this is partly a result
of that the wheel-torque constraints have been reached (especially for negative slip
ratios), and not solely attributes of the FE tire model.

6. Discussion and Conclusions

The time-optimal trajectories in three different time-critical maneuvers were de-
termined for several vehicle-model configurations. Two of them, the 90◦-turn and
the hairpin turn, were investigated in detail in this paper. The double lane-change
maneuver provided results that lead to similar conclusions as those for the two
reported maneuvers, and this is an important verification that the developed plat-
form can handle a variety of situations relevant for vehicle safety systems. It should
also be noted that we have used the same methodology for investigation of the in-
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Figure 15. Resultant tire forces for DT with FE tire modeling in the hairpin maneuver (blue – left wheel,
red – right wheel). In contrast to Figure 14, the FE tire model results in smaller longitudinal slip but
larger lateral slip. That is, the desired forces are achieved by sliding rather than spinning up or locking
the wheels.

fluence on the road surface on the optimal maneuver, see [29]. Thus, we believe
that the platform is an effective tool for investigation of optimal vehicle maneuvers
and subsequent trajectory generation. Moreover, as, for example, Table 1 shows,
it gives valuable insight into the balance between model detail and computational
complexity, which is important for development toward online solutions for optimal
vehicle safety systems.
The obtained results provide a solid basis for discussion of vehicle-model be-

havior in time-critical situations. Several interesting properties were found: The
differences in behavior for MZ between the investigated models is interesting be-
cause this variable is often used as a high-level input in safety systems, such as
in yaw-rate controllers and rollover-prevention systems [16, 17, 26, 47]. Thus, it
seems that the choice of models can potentially lead to fundamentally different
control strategies, where, for example, whether to use WF instead of FE with the
DT chassis model seems crucial. The characteristics of the two tire models are
fundamentally different. The WF model results in much smaller forces for com-
bined slip compared with when only one of the slip quantities is nonzero. For the
FE model, however, the largest forces are attained for combined slip. It is hard to
verify which of the models that are most suitable to use for trajectory generation
in extreme maneuvering. The WF model has been experimentally verified for nor-
mal driving conditions on specific road surfaces. However, for large combined slip,
we find it hard to explain why the resulting force should be significantly smaller
than for pure longitudinal or lateral slip of similar magnitude. Similarly, it is not
reasonable that the largest forces should be attained for combined slip, which the
FE model predicts as a result of that the longitudinal force is not affected by the
lateral slip. Whether to use ST or DT has impact on the employed control strategy.
The intuitively obvious choice would be to use DT, because it is a more advanced
model. However, the optimal solutions that are obtained indicate that the models
with load transfer are highly dependent on the choice of tire model, where the
different characteristics for combined slip has large impact on the solutions. Thus,
it is possible that certain combinations of chassis and tire models are inappropriate
and lead to nonphysical behavior, as surveyed in [4] and discussed in Section 1.
Maneuvering techniques employed by expert drivers in narrow turns, similar

to the hairpin turn, on dry asphalt generally exhibit minor body slip even though
individual variations occur. This is, for example, illustrated with measurement data
for a rear-wheel driven vehicle in [12], a front-wheel driven vehicle in [20], and for an
all-wheel driven vehicle in [10]. If assuming that the driving techniques with smaller
body slip are close to time-optimal, it can be argued that the results obtained
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with ST-pitch FE, resulting in significant body slip, are not in agreement with
reality. Based on this observation, and on the comment regarding inappropriate
combinations in the previous paragraph, the ST-pitch models are not considered
in the following discussion about the physical consequences in practice.
Considering that the computed time-optimal maneuvers result in at-the-limit

behavior of the vehicle, we believe that the observations made in this paper have
important implications for future safety systems. The solution behavior is similar in
several key aspects for both maneuvers, as observed in Figures 7 and 12; for exam-
ple, variables traditionally used for detecting loss of maneuvering stability, such as
the yaw rate, the slip angle, and the roll angle, only show minor discrepancies. The
input torques differ significantly during parts of the maneuver. In the 90◦-turn,
however, the overall lateral forces and yaw moments generated by the tires (see
Figure 8) for the considered models have similar characteristics from a qualitative
perspective, but with numerical differences in between for certain model configu-
rations. The discrepancies do not have much impact on the other model variables.
Moreover, model parameters such as the friction coefficients, vehicle mass, and tire
parameters are uncertain. Hence, safety bounds on supervisory variables have to
be set conservatively, for example resulting in early braking in order to surely avoid
impact, and the model deviations occurring for low-order models will be suppressed
in an online implementation with feedback. The observations are important, be-
cause they imply that variables traditionally considered as high-level inputs in
safety systems, such asMZ , may be generated by optimization using models of low
complexity (such as the single-track model). These high-level inputs can then be
utilized as inputs to a low-level optimizer, which benefit more from complex road
interaction models for distributing the desired torque to the respective wheel. This
fact, together with the increased amount of sensor data and computational power
available in modern road vehicles, opens up for the use of simplistic models when
designing the online optimization-based safety systems of tomorrow.
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