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1. Introduction 

 

Models play a central role in contemporary science. Scientists construct models of 

atoms, elementary particles, polymers, populations, genetic trees, economies, rational 

decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s 

climate – there is hardly a domain of inquiry without models. Models are essential for 

the acquisition and organisation of scientific knowledge. We often study a model to 

discover features of the thing it stands for. How does this work? The answer is that a 

model can instruct us about the nature of its subject matter if it represents the selected 

part or aspect of the world that we investigate. So if we want to understand how 

models allow us to learn about the world, we have to come to understand how they 

represent.  

 

The problem of representation has generated a sizable literature, which has been 

growing fast in particular over the last decade. The aim of this chapter is to review 

this body of work and assess the strengths and weaknesses of the different proposals. 

This enterprise faces an immediate difficulty: even a cursory look at the literature on 

scientific representation quickly reveals that there is no such thing as ‘the’ problem of 

scientific representation. In fact, we find a cluster of interrelated problems. In Section 
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2 we try to untangle this web and get clear on what the problems are and on how they 

relate to one another (for a historical introduction to the issue see Boniolo (2007)). 

The result of this effort is a list with five problems and five conditions of adequacy, 

which provides the analytical lens through which we look at the different accounts. In 

Section 3 we discuss Griceanism and stipulative fiat. In Section 4 we look at the time-

honoured similarity approach, and in Section 5 we examine its modern-day cousin, 

the structuralist approach. In Section 6 we turn to inferentialism, a more recent family 

of conceptions. In Section 7 we discuss the fiction view of models, and in Section 8 

we consider the conception of representation-as.  

 

Before delving into the discussion, a number of caveats are in order. The first is that 

our discussion in no way presupposes that models are the sole unit of scientific 

representation, or that all scientific representation is model-based. Various types of 

images have their place in science, and so do graphs, diagrams, and drawings (Perini 

(2005; 2005; 2010) and Elkins (1999) provide discussions of visual representation in 

the sciences). In some contexts scientists use what Warmbrōd (1992) calls ‘natural 

forms of representation’ and what Peirce (1932) would have classified as indices: tree 

rings, fingerprints, disease symptoms. These are related to thermometer readings and 

litmus paper indications, which are commonly classified as measurements. 

Measurements also provide representations of processes in nature, sometimes together 

with the subsequent condensation of measurement results in the form of charts, 

curves, tables and the like (Tal (2015) provides a discussion of measurement). And, 

last but not least, many would hold that theories represent too. At this point the vexing 

problem of the nature of theories and the relation between theories and models rears is 

head again. We refer the reader to Portides’ contribution to this volume (forthcoming) 

for a discussion of this issue. Whether these other forms of scientific representation 

have features in common with how models represent is an interesting question, but 

this is a problem for another day. Our aim here is a more modest one: to understand 

how models represent. To make the scope of our investigation explicit we call the 

kind of representation we are interested in ‘model-representation’.  

 

The second point to emphasise is that our discussion is not premised on the claim that 

all models are representational; nor does it assume that representation is the only (or 

even primary) function of models. It has been emphasised variously that models 
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perform a number of functions other than representation. To mention but few: 

Knuuttila (2005; 2011) points out that the epistemic value of models is not limited to 

their representational function and develops an account that views models as 

epistemic artifacts which allow us to gather knowledge in diverse ways; Morgan and 

Morrison (1999) emphasise the role models play in the mediation between theories 

and the world; Hartmann (1995) discusses models as tools for theory construction; 

Peschard (2011) investigates the way in which models may be used to construct other 

models and generate new target systems; and Bokulich (2009) and Kennedy (2012) 

present non-representational accounts of model explanation (Woody (2004) and Reiss 

(2012) provide general discussions of the relation between representation and 

explanation). Not only do we not see projects like these as being in conflict with a 

view that sees some models as representational; we think that the approaches are in 

fact complementary.  

 

Finally, there is a popular myth according to which a representation is a mirror image, 

a copy, or an imitation of the thing it represents. On this view representation is ipso 

facto realistic representation. This is a mistake. Representations can be realistic, but 

they need not. And representations certainly need not be copies of the real thing. This, 

we take it, is the moral of the satire about the cartographers who produce maps as 

large as the country itself only to see them abandoned. The story has been told by 

Lewis Carroll in Sylvie and Bruno and Jorge Luis Borges in On Exactitude in Science. 

Throughout this review we encounter positions that make room for non-realistic 

representation and hence testify to the fact that representation is a much broader 

notion than mirroring.  

 

There is, however, a sense in which we presuppose a minimal form of realism. 

Throughout the discussion we assume that target systems exist independently of 

human observers, and that they are how they are irrespective of what anybody thinks 

about them. That is, we assume that the targets of representation exist independently 

of the representation. This is a presupposition not everybody would share. 

Constructivists (and other kinds of metaphysical antirealists) assume that there is no 

phenomenon independent of its representation: representations constitute the 

phenomena they represent (this view is expounded for instance by Lynch and 

Wooglar (1990); Giere (1994) offers a critical discussion). It goes without saying that 
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an assessment of the constructivist programme is beyond the scope of this review. It is 

worth observing, though, that many of the discussions to follow are by no means 

pointless from a constructivist perspective. What in the realist idiom is conceptualised 

as the representation of an object in the world by a model would, from the 

constructivist perspective, turn into the study of the relation between a model and 

another representation, or an object constituted by another representation. This is 

because even from a constructivist perspective, models and their targets are not 

identical, and the fact that targets are representationally constituted would not 

obliterate the differences between a target representation and scientific model.  

 

2. Problems Concerning Model-Representation 

 

In this section we say what questions a philosophical account of model-representation 

has to answer and reflect on what conditions such an answer has to satisfy. As one 

would expect, different authors have framed the problem in different ways. 

Nevertheless, recent discussions about model-representation have tended to cluster 

around a relatively well-circumscribed set of issues. The aim of this section is to make 

these issues explicit and formulate five problems that an account of model-

representation has to answer. These problems will help us structuring the discussion 

in later sections and put views and positions into perspective. In the course of doing 

so we also articulate five conditions of adequacy that every account of model-

representation has to satisfy.  

 

Models are representations of a selected part or aspect of the world. This is the 

model’s target system. The first and most fundamental question about a model 

therefore is: in virtue of what is a model a representation of something else? Attention 

has been drawn to this issue by Frigg (2002, p. 17; 2006, p. 50), Morrison (2008, p. 

70), and Suárez (2003, p. 230). To appreciate the thrust of this question it is 

instructive to briefly ponder the same problem in the context of pictorial 

representation. When seeing, say, Soutine’s The Groom or the Bellboy we 

immediately realise that it depicts a man in a red dress. Why is this? Per se the 

painting is a plane surface covered with pigments. How does an arrangement of 

pigments on a surface represent something outside the picture frame? Likewise, 
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models, before being representations of atoms, populations, or economies, are 

equations, structures, fictional scenarios, or mannerly physical objects. The problem 

is: what turns equations and structures, or fictional scenarios and physical objects into 

representations of something beyond themselves? It has become customary to phrase 

this problem in terms of necessary and sufficient conditions and throughout this 

review we shall follow suit (some may balk at this, but it’s worth flagging that the 

standard arguments against such an analysis, e.g. those surveyed in Laurence and 

Margolis’s (1999), loose much of their bite when attention is restricted to core cases 

as we do here). The question then is: What fills the blank in ‘M is a model-

representation of T iff ___’, where ‘M’ stands for ‘model’ and ‘T’ for ‘target system’?  

 

To spare ourselves difficulties further down the line, this formulation needs to be 

adjusted in light of a crucial condition of adequacy that any account of model-

representation has to meet. The condition is that models represent in a way that allows 

us to form hypotheses about their target systems. We can generate claims about a 

target system by investigating a model that represents it. Many investigations are 

carried out on models rather than on reality itself, and this is done with the aim of 

discoving features of the things models stands for. Every acceptable theory of 

scientific representation has to account for how reasoning conducted on models can 

yield claims about their target systems. Let us call this the Surrogative Reasoning 

Condition.  

 

The term ‘surrogative reasoning’ was introduced by Swoyer (1991, p. 449), and there 

seems to be widespread agreement on this point (although Callender and Cohen 

(2006), whose views are discussed in Section 3, provide a noteworthy exception). To 

mention just a few writers on the subject: Bailer-Jones (2003, p. 59) emphasises that 

models ‘tell us something about certain features of the world’ (original emphasis). 

Boliskna (2013) and Contessa (2007) both call models ‘epistemic representations’; 

Frigg (2003, p. 104; 2006, p. 51) sees the potential for learning as an essential 

explanandum for any theory of representation; Liu (2013, p. 93) emphasises that the 

main role for models in science and technology is epistemic; Morgan and Morrison 

regard models as ‘investigative tools’ (1999, p 11); Suárez (2003, p. 229; 2004, p. 

772) submits that models licence specific inferences about their targets; and Weisberg 

(2013, p. 150) observes that the ‘model-world relation is the relationship in virtue of 
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which studying a model can tell us something about the nature of a target system’. 

This distinguishes models from lexicographical representations such as words. 

Studying the internal constitution of a model can provide information about the target. 

Not so with words. The properties of a word (consisting of so and so many letters and 

syllables, occupying this or that position in a dictionary, etc.) do not matter to its 

functioning as a word; and neither do the physical properties of the ink used to print 

words on a piece of paper. We can replace one word by another at will (which is what 

happens in translations from one language to another), and we can print words with 

other methods than ink on paper. This is possible because the properties of a word as 

an object do not matter to its semantic function.  

 

This gives rise to a problem for the schema ‘M is a model-representation of T iff ___’. 

The problem is that any account of representation that fills the blank in a way that 

satisfies the Surrogative Reasoning Condition will almost invariably end up covering 

other kinds of representations too. Geographical maps, graphs, diagrams, charts, 

drawings, pictures, and photographs often provide epistemic access to features of the 

items they represent, and hence are likely to fall under an account of representation 

that explains this sort of reasoning. This is a problem for an analysis of model-

representation in terms of necessary and sufficient conditions because if something 

that is not prima facie a model (for instance a map or a photograph) satisfies the 

conditions of an account of model-representation, then one either has to conclude that 

the account fails because it does not provide necessary conditions, or that first 

impressions are wrong and other representations (such as maps or photographs) are in 

fact model-representations. 

 

Neither of these options is appealing. To avoid this problem we follow a suggestion of 

Contessa’s (2007) and broaden the scope of the investigation. Rather than analysing 

the relatively narrow category of model-representation, we analyse the broader 

category of epistemic representation. This category comprises model-representations, 

but it also includes other representations that allow for surrogative reasoning. The task 

then becomes to fill the blank in ‘M is an epistemic representation of T iff ___’. For 

brevity we use ‘R(M, T)’ as a stand in for ‘M is an epistemic representation of T’, and 

so the biconditional becomes ‘R(M, T) iff ___’. We call the general problem of 

figuring out in virtue of what something is an epistemic representation of something 
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else the Epistemic Representation Problem (ER-Problem, for short), and the above 

biconditional the ER-Scheme. So one can say that the ER-Problem is to fill the blank 

in the ER-Scheme. Frigg (2006, p. 50) calls this the ‘enigma of representation’ and in 

Suárez’s (2003, p. 230) terminology this amounts to identifying the ‘constituents’ of a 

representation (although he questions whether both necessary and sufficient 

conditions can be given; see Section 6 for further discussion on how his views fit into 

the ER-framework). 

 

Analysing the larger category of epistemic representation and placing model-

representations in that category can be seen as giving rise to a demarcation problem 

for scientific representations: how do scientific model-representations differ from 

other kinds of epistemic representations? We refer to this question as the 

Representational Demarcation Problem. Callender and Cohen (2006, p. 69) formulate 

this problem, but then voice scepticism about our ability to solve it (ibid., p. 83). The 

representational demarcation problem has received little, if any, attention in the recent 

literature on scientific representation, which would suggest that other authors either 

share Callender and Cohen’s scepticism, or regard it as a non-issue to begin with. The 

latter seems to be implicit in approaches which discuss scientific representation 

alongside pictorial representation such as Elgin’s (2010), French’s (2003), Frigg’s 

(2006), Suárez’s (2004), and van Fraassen’s (2008). But a dismissal of the problem is 

in no way neutral stance. It amounts to no less than the admission that model-

representations are not fundamentally different from other epistemic representations, 

or that we are unable to pin down what the distinguishing features are. Such a stance 

should be made explicit and, ideally, justified.  

 

Two qualifications concerning the ER-Scheme need to be added. The first concerns 

its flexibility. Some might worry that posing the problem in this way prejudges what 

answers can be given. The worry comes in a number of variants. A first variant is that 

the scheme presupposes that representation is an intrinsic relation between M and T 

(i.e. a relation that only depends on intrinsic properties of M and T and on how they 

relate to one another rather than on how they relate to other objects) or even that it is 

naturalisable (a notion further discussed in Section 4). This is not so. In fact, R might 

depend on any number of factors other than M and T themselves, and on ones that do 

not qualify as natural ones. To make this explicit we write the ER-Scheme in the form 
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‘R(M, T) iff C(M, T, x1, …, xn)’, where n is a natural number and C is an (n+2)-ary 

relation that grounds representation. The  can be anything that is deemed relevant 

to epistemic representation, for instance a user’s intentions, standards of accuracy, 

and specific purposes. We call C the grounding relation of an epistemic 

representation.  

 

Before adding a second qualification, let us introduce the next problem in connection 

with model-representation. Even if we restrict our attention to scientific epistemic 

representations (if they are found to be relevantly different to non-scientific epistemic 

representations as per the demarcation problem above), not all representations are of 

the same kind.  In the case of visual representations this is so obvious that it hardly 

needs mention: an Egyptian mural, a two-point perspective ink drawing, a pointillist 

oil painting, an architectural plan, and a road map represent their respective targets in 

different ways. This pluralism is not limited to visual representations. Model-

representations do not all seem to be of the same kind either. Woody (2000) argues 

that chemistry as a discipline has its own ways to represent molecules. But differences 

in style can also appear in models from the same discipline. Weizsäcker’s liquid drop 

model represents the nucleus of an atom in a manner that seems to be different from 

the one of the shell model. A scale model of the wing of a plane represents the wing 

in a way that is different from how a mathematical model of its cross section does. Or 

Phillips and Newlyn’s famous hydraulic machine and Hicks’ mathematical models 

both represent a Keynesian economy but they seem to do so in different ways. This 

gives rise to the question: what styles are there and how can they be characterised? 

This is the Problem of Style (Frigg 2006, p. 50). There is no expectation that a 

complete list of styles be provided in response. Indeed, it is unlikely that such a list 

can ever be drawn up, and new styles will be invented as science progresses. For this 

reason a response to the problem of style will always be open-ended, providing a 

taxonomy of what is currently available while leaving room for later additions.  

 

With this in mind we can now turn to the second qualification concerning the ER-

Scheme. The worry is this: the scheme seems to assume that representation is a 

monolithic concept and thereby make it impossible to distinguish between different 

kinds of representation. The impression is engendered by the fact the scheme asks us 

x
i
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to fill a blank, and blank is filled only once. But if there are different kinds of 

representations, we should be able to fill the blank in different ways on different 

occasions because a theory of representation should not force upon us the view that 

the different styles are all variations of one overarching concept of representation. 

 

The ER-Scheme is more flexible than it appears at first sight. There are at least three 

ways in which different styles of representations can be accommodated. For the sake 

of illustration, and to add some palpability to an abstract discussion, let us assume that 

we have identified two styles: analogue representation and idealised representation. 

The result of an analysis of these relations is the identification of their respective 

grounding relations. Let CA(M, T,…) and CI(M, T,…) be these relations. The first way 

of accommodating them in the ER-Scheme is to fill the blank with the disjunction of 

the two: ‘R(M, T) iff CA(M, T,…) or CI(M, T,…)’. In plain English: M represents T if 

and only if M is an analogue representation of T or M is an idealised representation of 

T. This move is possible because, first appearances notwithstanding, nothing hangs on 

the grounding relation being homogenous. The relation can be as complicated as we 

like and there is no prohibition against disjunctions. In the above case we have C = 

[CA or CI]. Furthermore, the grounding relation could even be an open disjunction. 

This would help accommodating the above observation that a list of styles is 

potentially open-ended. In that case there would be a grounding relation for each style 

and the scheme could be written as ‘R(M, T) iff C1(M, T…) or C2(M, T …) or C3(M, T 

…) or …’, where the Ci are the grounding relations for different styles. This is not a 

new scheme; it’s the old scheme where C = [C1 or C2 or C3 or …] is spelled out.  

 

Alternatively one could formulate a different scheme for every kind of representation. 

This would amount to changing the scheme slightly in that one does not analyse 

epistemic representation per se. Instead one would analyse different kinds of 

epistemic representations. Consider the above example again. Let R1(M, T) stand for 

‘M is an analogue epistemic representation of T’ and R2(M, T) for ‘M is an idealised 

epistemic representation of T’. The response to the ER-Problem then consists in 

presenting the two biconditionals ‘R1(M, T) iff CA’ and ‘R2(M, T) iff CI’. This 

generalises straightforwardly to the case of any number of styles, and the open-

endedness of the list of styles can be reflected in the fact that an open-ended list of 
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conditionals of the form ‘Ri(M, T) iff Ci’ can be given, where the index ranges over 

styles.  

 

In contrast with the second option, which pulls in the direction of more diversity, the 

third aims for more unity. The crucial observation here is that the grounding relation 

can in principle be an abstract relation that can be concretised in different ways, or a 

determinable that can have different determinates. On the third view, then, the 

concept of representation is like the concept of force (which is abstract in that in a 

concrete situation force is gravity or electromagnetic attraction or some other specific 

force), or like colour (where a coloured object must be blue or green or …). This view 

would leave ‘R(M, T) iff C(M, T, x1, …, xn)’ unchanged and take it as understood that 

C is an abstract relation.  

 

At this point we do not adjudicate between these options. Each has its own pros and 

cons, and which one is the most convenient to work with depends on one’s other 

philosophical commitments. What matters is that the ER-scheme does have the 

flexibility to accommodate different representational styles, and that it can in fact 

accommodate them in at least three different ways.  

 

The next problem in line for theory of model-representation is to specify standards of 

accuracy. Some representations are accurate; others aren’t. The Schrödinger model is 

an accurate representation of the hydrogen atom; the Thomson model isn’t. On what 

grounds do we make such judgments? In Morrison’s words: ‘how do we identify 

what constitutes a accurate representation?’ (2008, p. 70). We call this the Problem 

of Standards of Accuracy. Answering this question might make reference to the 

purposes of the model and model user, and thus it is important to note that by 

‘accuracy’ we mean something that can come in degrees and may be context 

dependant. Providing a response to the problem of accuracy is a crucial aspect of an 

account of epistemic representation. 

 

This problem goes hand in hand with a second condition of adequacy: the Possibility 

of Misrepresentation. Asking what makes a representation an accurate representation 

already presupposes that inaccurate representations are representations too. And this 
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is how it should be. If M does not accurately portray T, then it is a misrepresentation 

but not a non-representation. It is therefore a general constraint on a theory of 

epistemic representation that it has to make misrepresentation possible. This can be 

motivated by a brief glance at the history of science, but is plausibly also part of the 

concept of representation, and as such is found in discussions of other kinds of 

representation (Stitch and Warfield (1994, pp. 6-7), for instance, suggest that a theory 

of mental representation should be able to account for misrepresentation, as do 

Sterelny and Griffiths (1999, p. 104) in their discussion of genetic representation). A 

corollary of this requirement is that representation is a wider concept than accurate 

representation and that representation cannot be analysed in terms of accurate 

representation.  

 

A related condition concerns models that misrepresent in the sense that they lack 

target systems. Models of ether, phlogiston, four-sex populations, and so on, are all 

deemed scientific models, but ether, phlogiston, and four-sex populations don’t exist. 

Such models lack (actual) target systems, and one hopes that an account of epistemic 

representation would allow us to understand how these models work. We call this the 

problem of targetless models (or models without targets). 

 

The fourth condition of adequacy for an account of model-representation is that it 

must account for the directionality of representation. Models are about their targets, 

but (at least in general) targets are not about their models. So there is an essential 

directionality to representations, and an account of model-representation has to 

identify the root of this directionality. We call this the Requirement of Directionality. 

 

Many scientific models are highly mathematized, and their mathematical aspects are 

crucial to their cognitive as well as their representational function. This forces us to 

reconsider a time-honoured philosophical puzzle: the applicability of mathematics in 

the empirical sciences. Even though the problem can be traced back at least to Plato’s 

Timaeus, its canonical modern expression is due to Wigner, who famously remarked 

that ‘the enormous usefulness of mathematics in the natural sciences is something 

bordering on the mysterious and that there is no explanation for it’ (1960, p. 2). One 

need not go as far as seeing the applicability of mathematics as an inexplicable 

miracle, but the question remains: how does mathematics hook onto the world?  
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The recent discussion of this problem has taken place in a body of literature that grew 

out of the philosophy of mathematics (see Shapiro (1997, Chapter 8) for a review). 

But, with the exception of Bueno and Colyvan’s (2011), there has been little contact 

with the literature on scientific modelling. This is a regrettable state of affairs. The 

question how a mathematized model represents its target implies the question how 

mathematics applies to a physical system. So rather than separating the question of 

model-representation from the problem of the applicability of mathematics and 

dealing with them in separate discussions, they should be seen as the two sides of the 

same coin and be dealt with in tandem. For this reason, our fifth and final condition of 

adequacy is that an account of representation has to explain how mathematics is 

applied to the physical world. We call this the Applicability of Mathematics 

Condition.  

 

In answering the above questions one invariably runs up against a further problem, 

the Problem of Ontology: what kinds of objects are models? Are they structures in the 

sense of set theory, fictional entities, descriptions, equations or yet something else? Or 

are there no models at all? While some authors develop an ontology of models, others 

reject an understanding of models as ‘things’ and push a programme that can be 

summed up in the slogan ‘modelling without models’ (Levy 2015). There is also no 

presupposition that all models be of the same kind. Some models are material objects, 

some are things that one holds in one’s head rather than one’s hands (to use Hacking’s 

phrase (1983, p. 216)). For the most part, the focus in debates about representation 

has been on non-material models, and we will follow this convention. It is worth 

emphasising, however, that also the seemingly straightforward material models raise 

interesting philosophical questions: Rosenblueth and Wiener (1945) discuss the 

criteria for choosing an object as a model; Ankeny and Leonelli (2011) discuss issues 

that arise when using organisms as models; and the contributors to (Klein 2001) 

discuss representation in the laboratory.  

 

A theory of representation can recognise different kinds of models, or indeed no 

models at all. The requirement only asks us to be clear on our commitments and 

provide a list with things, if any, that we recognise as models and give an account of 
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what they are in case these entities raise questions (what exactly do we mean by 

something that one holds in one’s head rather than one’s hands?).  

 

In sum, an account of model-representation has to do the following: 

(1) Provide an answer to the Epistemic Representation Problem (filling the blank 

in ER-Scheme: ‘M is an epistemic representation of T iff ___’). 

(2) Take a stand on the Representational Demarcation Problem (the question of 

how scientific epistemic representations differ from other kinds of epistemic 

representations). 

(3) Respond to the Problem of Style (what styles are there and how can they be 

characterised?). 

(4) Formulate Standards of Accuracy (how do we identify what constitutes a 

accurate representation?). 

(5) Address the Problem of Ontology (what kinds of objects are models?). 

 

Any satisfactory answer to these five issues will have to meet the following five 

conditions of adequacy: 

 

(1) Surrogative Reasoning Condition (models represent their targets in a way that 

allows us to generate hypotheses about them). 

(2) Possibility of Misrepresentation (if M does not accurately represent T, then it 

is a misrepresentation but not a non-representation). 

(3) Targetless Models (what are we to make of scientific representations that lack 

targets?). 

(4) Requirement of Directionality (models are about their targets, but targets are 

not about their models). 

(5) Applicability of Mathematics Condition (how does the mathematical apparatus 

used in M latch onto the physical world). 

 

To frame the problem in this way is not to say that these are separate and unrelated 

issues, which can be dealt with one after the other in roughly the same way in which 

we first buy a ticket, walk to the platform and then take a train. This division is 

analytical, not factual. It serves to structure the discussion and to assess proposals; it 
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does not imply that an answer to one of these questions can be dissociated from what 

stance we take on the other issues. 

 

3. General Griceanism and Stipulative Fiat 

 

Callender and Cohen (Callender and Cohen 2006) submit that the entire debate over 

scientific representation has started on the wrong foot. They claim that scientific 

representation is not different from ‘artistic, linguistic, and culinary representation’ 

and in fact ‘there is no special problem about scientific representation’ (ibid. p. 67). 

Underlying this claim is a position Callender and Cohen call ‘General Griceanism’ 

(GG). The core of GG is the reductive claim that most representations we encounter 

are ‘derivative from the representational status of a privileged core of representations’ 

(ibid., p. 70). GG then comes with a practical prescription about how to proceed with 

the analysis of a representation: ‘the General Gricean view consists of two stages. 

First, it explains the representational powers of derivative representations in terms of 

those of fundamental representations; second, it offers some other story to explain 

representation for the fundamental bearers of content.’ (ibid., p. 73) Of these stages 

only the second requires serious philosophical work, and this work is done in the 

philosophy of mind because the fundamental form of representation is mental 

representation.  

 

Scientific representation is a derivative kind of representation (ibid., p. 71,75) and 

hence falls under the first stage of the above recipe. It is reduced to mental 

representation by an act of stipulation:  

 

‘Can the salt shaker on the dinner table represent Madagascar? Of course it can, so long as you 

stipulate that the former represents the latter. […] Can your left hand represent the Platonic form 

of beauty? Of course, so long as you stipulate that the former represents the latter. […] On the 

story we are telling, then, virtually anything can be stipulated to be a representational vehicle for 

the representation of virtually anything […]; the representational powers of mental states are so 

wide-ranging that they can bring about other representational relations between arbitrary relata 

by dint of mere stipulation. The upshot is that, once one has paid the admittedly hefty one-time 

fee of supplying a metaphysics of representation for mental states, further instances of 

representation become extremely cheap.’ (ibid., pp. 73-74) 
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So explaining any form of representation other than mental representation is a 

triviality – all it takes is an act of ‘stipulative fiat’ (ibid., p. 75). This supplies their 

answer to the ER-problem: 

 

Stipulative Fiat: A scientific model M represents a target system T iff a model user 

stipulates that M represents T.   

 

On this view, scientific representations are cheap to come by. The question therefore 

arises why scientists spend a lot of time constructing and studying complex models if 

they might just as well take a salt shaker and turn it into a representation of, say, a 

Bose-Einstein condensate by an act of fiat. Callender and Cohen admit that there are 

useful and not so useful representations, and that salt shakers belong the latter group. 

However, they insist that this has nothing to do with representation: ‘the questions 

about the utility of these representational vehicles are questions about the pragmatics 

of things that are representational vehicles, not questions about their representational 

status per se.’ (ibid., p. 75) So, in sum, scientific representation ‘is constituted in 

terms of a stipulation, together with an underlying theory of representation for mental 

states, isomorphism, similarity, and inference generation are all idle wheels’ (ibid., p. 

78). 

 

The first question we are faced with when assessing this account is the relation 

between GG and Stipulative Fiat. Callender and Cohen do not comment on this issue, 

but that they mention both in the same breath would suggest that they regard them as 

one and the same doctrine, or at least as the two sides of the same coin. This is not so. 

Stipulative Fiat is just one way of fleshing out GG, which only requires that there be 

some explanation of how derivative representations relate to fundamental 

representations; GG does not require that this explanation be of a particular kind, 

much less that it consist in nothing but an act of stipulation (Toon 2010, pp. 77-78; 

2012, p. 244). Even if GG is correct, it doesn’t follow that Stipulative Fiat is a 

satisfactory answer to the ER-problem. Model-representation can, in principle, be 

‘reduced’ to fundamental representation in many different ways (some of which we 

will encounter later in this chapter). Conversely, the failure of Stipulate Fiat does not 

entail that we must reject GG: one can uphold the idea that an appeal to the intentions 
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of model users is a crucial element in an account of scientific representation even if 

one dismisses Stipulative Fiat.   

 

Let us now examine Stipulative Fiat. Callender and Cohen emphasise that anything 

can be a representation of anything else (ibid., p. 73). This is correct. Things that 

function as models don’t belong to a distinctive ontological category, and it would be 

a mistake to think that that some objects are, intrinsically, representations and other 

are not. This point has been made by others too (including Frigg (2010, p. 99), Giere 

(2010, p. 269), Suárez (2004, p. 773), Swoyer (1991, p. 452), and Teller (2001, p. 

397)) and, as we shall see, it is a cornerstone of several alternative accounts of 

representation.  

  

But just because anything can, in principle, be a representation of anything else, it 

doesn’t follow that a mere act of stipulation suffices to turn M into a representation of 

T. Furthermore, it doesn’t follow that an object elevated to the status of a 

representation by an act of fiat represents its target in a way that can appropriately be 

characterised as an instance of epistemic representation. We discuss both concerns in 

reverse order.  

 

Stipulative Fiat fails to meet the Surrogative Reasoning Condition: it fails to provide 

an account of how claims about Madagascar could be extracted from reasoning about 

the salt shaker. Even if we admit that Stipulative Fiat establishes that models denote 

their targets (and as we will see soon, there is a question about this), denotation is not 

sufficient for epistemic representation. Both the word ‘Napoleon’ and Jacques-Louis 

David’s portrait of Napoleon serve to denote the French general. But this does not 

imply that they represent him in the same way, as noted by Toon (2010, pp. 78-79). 

Bueno and French (2011, pp. 871-874) gesture in the same direction when they point 

to Peirce’s distinction between icon, index and symbol and dismiss Callender and 

Cohen’s views on grounds that they cannot explain the obvious differences between 

different kinds of representations.  

 

Supporters of Stipulative Fiat could try to mitigate the force of this objection in two 

ways. First, they could appeal to additional facts about the object, as well as its 

relation to other items, in order to account for surrogative reasoning. For instance, the 
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salt shaker being to the right of the pepper mill might allow us to infer that 

Madagascar is to the east of Mozambique. Moves of this sort, however, invoke (at 

least tacitly) a specifiable relation between features of the model and features of the 

target (similarity, isomorphism, or otherwise), and an invocation of this kind goes 

beyond mere stipulation. Second, the last quotation from Callender and Cohen 

suggests that they might want to relegate surrogative reasoning into the realm of 

pragmatics and deny that it is part of the relation properly called epistemic 

representation. This, however, in effect amounts to a removal of the Surrogative 

Reasoning Condition from the desiderata of an account of scientific representation, 

and we have argued in Section 2 that surrogative reasoning is one of the hallmarks of 

scientific representation. And even if it were ‘pragmatics’, we still would want an 

account of how it works.  

 

Let us now turn to our first point, that a mere act of stipulation is insufficient to turn 

M into a representation of T.  We take our cue from a parallel discussion in the 

philosophy of language, where it has been pointed out that it is not clear that 

stipulation is sufficient to establish a denotational relationship (which is weaker than 

epistemic representation). A position similar to Stipulative Fiat faces what is known 

as the Humpty Dumpty problem, named in reference to Lewis Carroll’s discussion of 

Humpty using the word ‘glory’ to mean ‘a nice knockdown argument’ (MacKay 

1968) cf. (Donnellan 1968) (it’s worth noting that this debate concerns meaning, 

rather than denotation, but it’s plausible that it can be reconstructed in terms of the 

latter). If stipulation is all that matters, then as long as Humpty simply stipulates that 

‘glory’ means ‘a nice knockdown argument’, then it does so. And this doesn’t seem to 

be the case. Even if the utterance ‘glory’ could mean ‘a nice knockdown argument’ – 

if, for example, Humpty was speaking a different language – in the case in question it 

doesn’t, irrespective of Humpty’s stipulation. In the contemporary philosophy of 

language the discussion of this problem focuses more on the denotation of 

demonstratives rather than proper names, and work in that field focuses on propping 

up existing accounts so as to ensure that a speaker’s intentions successfully establish 

the denotation of demonstratives uttered by the speaker (Michaelson 2013). Whatever 

the success of these endeavours, their mere existence shows that successfully 

establishing denotation requires moving beyond a bare appeal to stipulation, or brute 

intention. But if a brute appeal to intentions fails in the case of demonstratives – the 
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sorts of terms that such an account would most readily be applicable to – then we find 

it difficult to see how Stipulative Fiat will establish a representational relationship 

between models and their targets. Moreover, this whole discussion supposed that an 

intention-based account of denotation is the correct one. This is controversial – see 

Reimer and Michaelson’s (2014) for an overview of discussions of denotation in the 

philosophy of language. If this is not the correct way to think about denotation, then 

Stipulative Fiat will fail to get off the ground at all.  

 

It now pays that we have separated GG from Stipulative Fiat. Even though Stipulative 

Fiat does not provide an adequate answer to the ER-problem, one can still uphold GG. 

As Callender and Cohen note, all that it requires is that there is a privileged class of 

representations (they take them to be mental states but are open to the suggestion that 

they might be something else (ibid., p. 82)), and that other types of representations 

owe their representational capacities to their relationship with the primitive ones. So 

philosophers need an account of how members of this privileged class of 

representations represent, and how derivative representations, which includes 

scientific models, relate to this class.  

 

This is a plausible position, and when stated like this, many recent contributors to the 

debate on scientific representation can be seen as falling under the umbrella of GG. 

As we will see below, the more developed versions of the similarity (Section 4) and 

isomorphism (Section 5) accounts of scientific representation make explicit reference 

to the intentions and purposes of model users, even if their earlier iterations did not. 

And so do the accounts discussed in the latter sections, where the intentions of model 

users (in a more complicated manner than that suggested by Stipulative Fiat) are 

invoked to establish epistemic representation.  

 

4. The Similarity Conception 

 

Moving on from the Gricean account we now turn to the similarity conception of 

scientific representation (in aesthetics the term ‘resemblance’ is used more commonly 

than ‘similarity’, but there does not seem to be a substantive difference between the 

notions, and we use the terms as synonyms throughout). Similarity and representation 
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initially appear to be two closely related concepts, and invoking the former to ground 

the latter has a philosophical lineage stretching back at least as far as Plato’s The 

Republic.  

 

In its most basic guise the similarity conception of scientific representation asserts 

that scientific models represent their targets in virtue of being similar to them. This 

conception has universal aspirations in that it is taken to account for epistemic 

representation across a broad range of different domains. Paintings, statues, and 

drawings are said to represent by being similar to their subjects, (see Abell’s (2009) 

and Lopes’s (2004) for relatively current discussions of similarity in the context of 

visual representation). And recently Giere, one of the view’s leading contemporary 

proponents, proclaimed that it covers scientific models alongside ‘words, equations, 

diagrams, graphs, photographs, and, increasingly, computer-generated images’ (Giere 

2004, p. 243) (see also Giere’s (1996, p. 272), and for further discussion Toon’s 

(2012, pp. 249-250)). So the similarity view repudiates the demarcation problem and 

submits that the same mechanism, namely similarity, underpins different kinds of 

representation in a broad variety of contexts. (Sometimes the similarity view is 

introduced by categorising models as icons in Peirce’s sense, and, as Kralemann and 

Lattmann point out, icons represent ‘on the basis of a similarity relation between 

themselves and their objects’ (Kralemann and Lattmann 2013, p. 3398).) 

 

The view also offers an elegant account of surrogative reasoning. Similarities between 

model and target can be exploited to carry over insights gained in the model to the 

target. If the similarity between M and T is based on shared properties, then a property 

found in M would also have to be present in T; and if the similarity holds between 

properties themselves, then T would have to instantiate properties similar to M 

(however, it is worth noting that this kind of knowledge transfer can cause difficulties 

in some contexts, Frigg et al. (2014) discuss these difficulties in the context of non-

linear dynamic modeling).  

 

However, appeal to similarity in the context of representation leaves open whether 

similarity is offered as an answer to the ER-Problem, the Problem of Style, or whether 

it is meant to set Standards of Accuracy. Proponents of the similarity account 

typically have offered little guidance on this issue. So we examine each option in turn 
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and ask whether similarity offers a viable answer. We then turn to the question of how 

the similarity view deals with the Problem of Ontology. 

 

4.1 Similarity and ER-Problem 

 

Understood as response to the ER-Problem, a similarity view of representation 

amounts to the following:  

 

Similarity 1: A scientific model M represents a target T iff M and T are similar. 

 

A well-known objection to this account is that similarity has the wrong logical 

properties. Goodman (1976, p. 4-5) submits that similarity is symmetric and reflexive 

yet representation isn’t. If object A is similar to object B, then B is similar to A. But if 

A represents B, then B need not (and in fact in most cases does not) represent A: the 

Newtonian model represents the solar system, but the solar system does not represent 

the Newtonian model. And everything is similar to itself, but most things do not 

represent themselves. So this account does not meet our third condition of adequacy 

for an account of scientific representation insofar as it does not provide a direction to 

representation. (Similar problems also arise in connection with other logical 

properties, e.g. transitivity; see Frigg’s (2003, p. 31) and Suárez’s (2003, pp. 232-

233)).  

 

Yaghmaie (2012) argues that this conclusion – along with the third condition itself – 

is wrong: epistemic representation is symmetric and reflexive (he discusses this in the 

context of the isomorphism view of representation, which we turn to in the next 

section, but the point applies here as well). His examples are drawn from 

mathematical physics, and he presents a detailed case study of a symmetric 

representation relation between quantum field theory and statistical mechanics. His 

case raises interesting questions, but even if one grants that Yaghmaie has identified a 

case where representation is reflexive and symmetrical it does not follow that 

representation in general is. The photograph in Jane’s passport represents Jane; but 

Jane does not represent her passport photograph; and the same holds true for myriads 

of other representations. Goodman is correct in pointing out that typically 
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representation is not symmetrical and reflexive: a target T does not represent model M 

just because M represents T. 

 

A reply diametrically opposed to Yaghmaie’s emerges from the writings of Tversky 

and Weisberg. They accept that representation is not symmetric, but dispute that 

similarity fails on this count. Using a gradual notion of similarity (i.e. one that allows 

for statements like ‘A is similar to B to degree d’), Tversky found that subjects in 

empirical studies judged that North Korea was more similar to China than China was 

to North Korea (Tversky and Gati 1978); similarly Poznic (2015, Sec. 4.2) points out 

with reference to the characters in a Polanski movie that the similarity relation 

between a baby and the father need not be symmetric.  

 

So allowing degrees into ones notion of similarity makes room for an asymmetry 

(although degrees by themselves are not sufficient for asymmetry; metric-based 

notions are still symmetric). This raises the question of how to analyse similarity. We 

discuss this thorny issue in some detail in the next subsection. For now we concede 

the point and grant that similarity need not always be symmetrical. However, this 

does not solve Goodman’s problem with reflexivity (as we will see on Weisberg’s 

notion of similarity everything is maximally similar to itself); nor does it, as will see 

now, solve other problems of the similarity account.  

 

However the issue of logical properties is resolved, there is another serious problem: 

similarity is too inclusive a concept to account for representation. In many cases 

neither one of a pair of similar objects represents the other. Two copies of the same 

book are similar but neither represents the other. Similarity between two items is not 

enough to establish the requisite relationship of representation; there are many cases 

of similarity where no representation is involved. And this won’t go away even if 

similarity turns out to be non-symmetric. That North Korea is similar to China (to 

some degree) does not imply that North Korea represents China, and that China is not 

similar to North Korea to the same degree does not alter this conclusion.  

 

This point has been brought home in now-classical thought experiment due to Putnam 

(Putnam 1981, pp. 1-3) (but see also Black’s (1973, p. 104)). An ant is crawling on a 

patch of sand and leaves a trace that happens to resemble Winston Churchill. Has the 
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ant produced a picture of Churchill? Putnam’s answer is that it didn’t because the ant 

has never seen Churchill and had no intention to produce an image of him. Although 

someone else might see the trace as a depiction of Churchill, the trace itself does not 

represent Churchill. This, Putnam concludes, shows that ‘[s]imilarity […] to the 

features of Winston Churchill is not sufficient to make something represent or refer to 

Churchill.’ (ibid., p. 1). And what is true of the trace and Churchill is true of every 

other pair of similar items: similarity on its own does not establish representation.  

 

There is also a more general issue concerning similarity: it is too easy to come by. 

Without constraints on what counts as similar, any two things can be considered 

similar to any degree (Aronson et al. 1995, p. 21). This, however, has the unfortunate 

consequence that anything represents anything else because any two objects are 

similar in some respect. Similarity is just too inclusive to account for representation. 

An obvious response to this problem is to delineate a set of relevant respects and 

degrees to which M and T have to be similar. This suggestion has been made 

explicitly by Giere (1988, p. 81) who suggests that models come equipped with what 

he calls ‘theoretical hypotheses’, statements asserting that model and target are 

similar in relevant respects and to certain degrees. This idea can be moulded into the 

following definition:  

 

Similarity 2: A scientific model M represents a target T iff M and T are similar in 

relevant respects and to the relevant degrees.  

 

On this definition one is free to choose one’s respects and degrees so that unwanted 

similarities drop out of the picture. While this solves the last problem, it leaves the 

others untouched: similarity in relevant respects and to the relevant degrees is 

reflexive (and symmetrical, depending on one’s notion of similarity); and presumably 

the ant’s trace in the sand is still similar to Churchill in the relevant respects and 

degrees but without representing Churchill. Moreover, Similarity 2 introduces three 

new problems.  

 

First, a misrepresentation is one that portrays its target as having properties that are 

not similar in the relevant respects and to the relevant degrees to the true properties of 

the target. But then, on Similarity 2, M is not a representation at all. Ducheyne (2008) 
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embraces this conclusion when he offers a variant of a similarity account which 

explicitly takes the success of the hypothesized similarity between a model and its 

target to be a necessary condition on the model representing the target. In Section 2 

we argued that the possibility of misrepresentation is condition of adequacy for any 

acceptable account of representation and so we submit that misrepresentation should 

not be conflated with non-representation (cf. Frigg 2002, p. 16; Suárez 2003, p. 235).  

 

Second, similarity in relevant respects and to the relevant degrees does not guarantee 

that M represents the right target. As Suárez points out (2003, p. 233-4), even a 

regimented similarity can obtain with no corresponding representation. If John dresses 

up as Pope Innocent X (and he does so perfectly), then he resembles Velázquez’s 

portrait of the pope (at least in as far as the pope himself resembled the portrait). In 

cases like these, which Suárez calls ‘mistargeting’, a model represents one target 

rather than another, despite the fact that both targets are relevantly similar to the 

model. Like in the case of Putnam’s ant, the root cause of the problem is that the 

similarity is accidental. In the case of the ant, the accident occurs at the 

representation-end of the relation, whereas in the case of John’s dressing up the 

accidental similarity occurs at the target-end. Both cases demonstrate that Similarity 2 

cannot rule out accidental representation. 

 

Third, there may simply be nothing to be similar to because some representations 

represent no actual object (Goodman 1976, p. 26). Some paintings represent elves and 

dragons, and some models represent phlogiston and the ether. None of these exist. As 

Toon points out, this is a problem in particular for the similarity view (Toon 2012, pp. 

246-247): models without objects cannot represent what they seem to represent 

because in order for two things to be similar to each other both have to exist. If there 

is no ether, then an ether model cannot be similar to the ether.  

 

It would seem that at least the second problem could be solved by adding the 

requirement that M denote T (as considered, but not endorsed, by Goodman (1976, pp. 

5-6)). Amending the previous definition accordingly yields:  

 

Similarity 3: A scientific model M represents a target T iff M and T are similar in 

relevant respects and to the relevant degrees and M denotes T. 
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This account would also solve the problem with reflexivity (and symmetry), because 

denotation is directional in way similarity is not. Unfortunately Similarity 3 still 

suffers from the first and the third problems. It would still lead to the conflation of 

misrepresentations with nonrepresentations because the first conjunct (similar in the 

relevant respects) would still be false. And a non-existent system cannot be denoted 

and so we have to conclude that models of, say, the ether and phlogiston represent 

nothing. This seems an unfortunate consequence because there is a clear sense in 

which models without targets are about something. Maxwell’s writings on the ether 

provide a detailed and intelligible account of a number of properties of the ether, and 

these properties are highlighted in the model. If ether existed then Similarity 3 could 

explain why these were important by appealing to them as being relevant for the 

similarity between an ether model and its target. But since ether does not, no such 

explanation is offered.   

 

A different version of the similarity view sets aside the moves made in Similarity 3 

and tries to improve on Similarity 2. The crucial move is to take the very act of 

asserting a specific similarity between a model and a target as constitutive of the 

scientific representation.  

 

Similarity 4: A scientific model M represents a target system T if and only if a 

theoretical hypotheses H asserts that M and T are similar in certain respects and to 

certain degrees. 

 

This comes close to the view Giere advocated in Explaining Science (Giere 1988, p. 

81) (something like this is also found in Cartwright (1999, pp. 192-193; cf. 1999, pp. 

261-262) who appeals to a ‘loose notion of resemblance’; her account of modelling is 

discussed in more detail in subsection 7.3). This version of the similarity view avoids 

problems with misrepresentation because, being hypotheses, there is no expectation 

that the assertions made in H are true. If they are, then the representation is accurate 

(or the representation is accurate to the extent that they hold). If they are not, then the 

representation is a misrepresentation. It resolves the problem of mistargeting because 

hypotheses identify targets before asserting similarities with M (that is, the task of 
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picking the right target is now placed in the court of the hypothesis and is no longer 

expected to be determined by the similarity relation). Finally it also resolves the issue 

with directionality because H can be understood as introducing a directionality that is 

not present in the similarity relation. However, it fails to resolve the problem with 

representation without a target. If there is no ether, no hypotheses can be asserted 

about it.  

 

Let us set the issue of non-existent targets aside for the moment and have a closer 

look at the notion of representation proposed in Similarity 4. A crucial point remains 

understated in Similarity 4. Hypotheses don’t assert themselves; hypotheses are put 

forward by those who work with representations, in the case of models, scientists. So 

the crucial ingredient – users – is left implicit in Similarity 4.  

 

In a string of recent publications Giere made explicit the fact that ‘scientists are 

intentional agents with goals and purposes’  (Giere 2004, p. 743) and proposed to 

build this insight explicitly into an account of epistemic representation. This involves 

adopting an agent-based notion of representation that focuses on ‘the activity of 

representing’ (ibid., p. 743). Analysing epistemic representation in these terms 

amounts to analysing schemes like ‘S uses X to represent W for purposes P’ (ibid., p. 

743), or in more detail: ‘Agents (1) intend; (2) to use model, M; (3) to represent a part 

of the world W; (4) for purposes, P. So agents specify which similarities are intended 

and for what purpose’ (2010, p. 274). This conception of representation had already 

been proposed half century earlier by Apostel when he urged the following analysis of 

model-representation: ‘Let then R(S, P, M, T) indicate the main variables of the 

modelling relationship. The subject S takes, in view of the purpose P, the entity M as 

a model for the prototype T’ (Apostel 1961, p. 4). Including the intentions of model 

agents in the definition of scientific representation is now widely accepted, as we 

discuss in more detail in Section 5 (although Rusanen and Lappi disagree with this, 

and claim that ‘the semantics of models as scientific representations should be based 

on the mind-independent model-world relation’ (2012, p. 317)). 

 

Giere’s proposal, in our own terminology comes down to: 
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Similarity 5: A scientific model M represents a target system T iff there is an agent A 

who uses M to represent a target system T by proposing a theoretical hypothesis H 

specifying a similarity (in certain respects and to certain degrees) between M and T 

for purpose P.  

 

This definition inherits from Similarity 4 the resolutions of the problems of 

directionality, misrepresentation, and mistargeting; and for the sake of argument we 

assume that the problem with non-existent targets can be resolved in one way or 

other. 

 

A crucial thing to note about Similarity 5 is that, by invoking an active role for the 

purposes and actions of scientists in constituting epistemic representation, it marks a 

significant change in emphasis for similarity-based accounts. Suárez (2003, pp. 226-

227), drawing on van Fraassen’s (2002) and Putnam’s (2002), defines ‘naturalistic’ 

accounts of representation as ones where ‘whether or not representation obtains 

depends on facts about the world and does not in any way answer to the personal 

purposes, views or interests of enquirers’. By building the purposes of model users 

directly into an answer to the ER-problem, Similarity 5 is explicitly not a naturalistic 

account (in contrast, for example, to Similarity 1). As noted in Section 2, we do not 

demand a naturalistic account of model-representation (and as we will see later, many 

of the more developed answers to the ER-problem are also not naturalistic accounts). 

 

Does this suggest that Similarity 5 is successful similarity-based solution to the ER-

Problem? Unfortunately not. A closer look at Similarity 5 reveals that the role of 

similarity has shifted. As far as offering a solution to the ER-Problem is concerned, 

all the heavy lifting in Similarity 5 is done by the appeal to agents and similarity has 

in fact become an idle wheel. Giere implicitly admits this when he writes: 

 

‘How do scientists use models to represent aspects of the world? What is it about models that 

makes it possible to use them in this way? One way, perhaps the most important way, but 

probably not the only way, is by exploiting similarities between a model and that aspect of the 

world it is being used to represent. Note that I am not saying that the model itself represents an 

aspect of the world because it is similar to that aspect. There is no such representational 

relationship. [footnote omitted] Anything is similar to anything else in countless respects, but 

not anything represents anything else. It is not the model that is doing the representing; it is the 
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scientist using the model who is doing the representing.’ (2004, p. 747, emphasis added) 

 

But if similarity is not the only way in which a model can be used as a representation, 

and if it is the use by a scientist that turns a model into a representation (rather than 

any mind-independent relationship the model bears to the target), then similarity has 

become otiose in a reply to the ER-problem. A scientist could invoke any relation 

between M and T and M would still represent T. Being similar in the relevant respects 

to the relevant degrees now plays the role either of a representational style, or of a 

normative criterion for accurate representation, rather than of a grounding of 

representation. We assess in the next section whether similarity offers a cogent reply 

to the issues of style and accuracy.  

 

A further problem is that there seems to be a hidden circularity in the analysis. As 

Toon (2012, pp. 251-252) points out, having a scientist form a theoretical hypothesis 

about the similarity relation between two objects A and B and exploit this similarity 

for a certain purpose P is not sufficient for representation. A and B could be two cars 

in a showroom and an engineer inspects car A and then use her knowledge about 

similarities to make assertions about B (for instance if both cars are of the same brand 

she can infer something about B’s quality of manufacturing). This, Toon submits, is 

not a case of representation: neither car is representational. Yet, if we delete the 

expression ‘to represent’ on the right hand side of the biconditional in Similarity 5, the 

resulting condition provides an accurate description of what happens in the 

showroom. So the only difference between the non-representational activity of 

comparing cars and representing B by A is that in one case A is ‘used to represent’ and 

in the other it’s only ‘used’. So representation is explained in terms of ‘to represent’, 

which is circular. So Similarity 5 does not provide non-trivial conditions for 

something to be used as a representation. 

 

One way around the problem would be to replace ‘to represent’ by ‘to denote’. This, 

however, would bring the account close to Similarity 3, and it would suffer from the 

same problems.  

 

Mäki (2011) suggested an extension of Similarity 5, which he explicitly brands as ‘a 

(more or less explicit) version’ of Giere’s. Mäki adds two conditions to Giere’s: the 
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agent uses the model to address an audience E and adds a commentary C (ibid., p. 

57). The role of the commentary is to specify the nature of the similarity. This is 

needed because ‘representation does not require that all parts of the model resemble 

the target in all or just any arbitrary respects, or that the issue of resemblance 

legitimately arises in regard to all parts. The relevant model parts and the relevant 

respects and degrees of resemblance must be delimited.’ (ibid., p. 57). What these 

relevant respects and degrees of resemblance are depends on the purposes of the 

scientific representation in question. These are not determined ‘in the model’ as it 

were, but are pragmatic elements. From this it transpires that in effect C plays the 

same role as that played by theoretical hypotheses in Giere’s account. Certain aspects 

of M are chosen as those relevant to the representational relationship between M and 

T. 

 

The addition of an audience, however, is problematic. While models are often shared 

publicly, this does not seem to be a necessary condition for the representational use of 

a model. There is nothing that precludes a lone scientist from coining a model M and 

using it representationally. That some models are easier to grasp, and therefore serve 

as more effective tools to drive home a point in certain public settings, is an 

undisputable fact, but one that has no bearing on a model’s status as a representation. 

The pragmatics of communication and the semantics of modelling are separate issues. 

 

The conclusion we draw from this discussion is that similarity does not offer a viable 

answer to the ER-Problem.  

 

4.2 Accuracy and Style 

 

Accounting for the possibility of misrepresentation resulted in a shift of the division 

of labour for the more developed similarity based accounts. Rather than being the 

relation that grounds representation, similarity should be considered as setting a 

standard of accuracy or as providing an answer to the question of style (or both). The 

former is motivated by the observation that a proposed similarity between M and T 

could be wrong, and hence if the model user’s proposal does in fact hold (and M and 

T are in fact similar in the specified way) then M is an accurate representation of T. 

The latter transpires from the simple observation that a judgment of accuracy in fact 
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presupposes a choice of respects in which M and T are claimed to be similar. Simply 

proposing that they are similar in some unspecified respect is vacuous. But 

delineating relevant properties could potentially provide an answer to the problem of 

style. For example, if M and T are proposed to be similar with respect to their causal 

structure, then we might have a style of causal modelling; if M and T are proposed to 

be similar with respect to structural properties, then we might have a style of 

structural modelling; and so on and so forth. So the idea is that if M representing T 

involves the claim that M and T are similar in a certain respect, the respect chosen 

specifies the style of the representation; and if M and T are in fact similar in that 

respect (and to the specified degree), then M accurately represents T within that style.  

 

In this section we investigate both options. But before delving into the details, let us 

briefly step back and reflect on possible constraints on viable answers. Taking his cue 

from Lopes’ (2004) discussion of pictures, Downes (2009, pp. 421-422) proposes two 

constraints on allowable notions of similarity. The first, which he calls the 

independence challenge, requires that a user must be able to specify the relevant 

representation-grounding similarity before engaging a comparison between M and T. 

Similarities that are recognisable only with hindsight are an unsound foundation of a 

representation. We agree with this requirement, which in fact is also a consequence of 

the Surrogative Reasoning Condition: a model can generate novel hypotheses only if 

(at least some of the) similarity claims are not known only ex post facto.  

 

Downes’ second constraint, the diversity constraint, is the requirement that the 

relevant notion of similarity has to be identical in all kinds of representation and 

across all representational styles. So all models must bear the same similarity relations 

to their targets. Whatever its merits in the case of pictorial representation, this 

observation does not hold water in the case of scientific representation. Both Giere 

and Teller have insisted – rightly, in our view – that there need not be a substantive 

sense of similarity uniting all representations (see also Callender and Cohen(2006, p. 

77) for a discussion). A proponent of the similarity view is free to propose different 

kinds of similarity for different representations and is under no obligation to also 

show that they are special cases of some overarching conception of similarity. 
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We now turn to the issue of style. A first step in the direction of an understanding of 

styles is the explicit analysis of the notion of similarity. Unfortunately the 

philosophical literature contains surprisingly little explicit discussion about what it 

means for something to be similar to something else. In many cases similarity is taken 

to be primitive, possible worlds semantics being a prime example. The problem is 

then compounded by the fact that the focus is on comparative overall similarity 

instead rather than on similarity in respect and degrees; for a critical discussion see 

(Morreau 2010). Where the issue is discussed explicitly, the standard way of cashing 

out what it means for an object to be similar to another object is to require that they 

co-instantiate properties. This is the idea that Quine (1969, pp. 117-118) and 

Goodman (1972, p. 443) had in mind in their influential critiques of the notion. They 

note that if all that is required for two things to be similar is that they co-instantiate 

some property, then everything is similar to everything else, since any pair of objects 

have at least one property in common.  

  

The issue of similarity seems to have attracted more attention in psychology. In fact, 

the psychological literature provides formal accounts to capture it directly in more 

fully worked out accounts. The two most prominent suggestions are the geometric and 

contrast accounts (see (Decock and Douven 2011) for an up to date discussion). The 

former, associated with Shepard (1980), assigns objects a place in a multidimensional 

space based on values assigned to their properties. This space is then equipped with a 

metric and the degree of similarity between two objects is a function of the distance 

between the points representing the two objects in that space.  

 

This account is based on the strong assumptions that values can be assigned to all 

features relevant to similarity judgments, which is deemed unrealistic. This problem is 

supposed to be overcome in Tversky’s contrast account (1977). This account defines 

a gradated notion of similarity based on a weighted comparison of properties. 

Weisberg (2012; 2013, Ch. 8) has recently introduced this account into the philosophy 

of science where it serves as the starting point for his so-called weighted feature 

matching account of model world-relations. This account is our primary interest here. 
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The account introduces a set  of relevant properties. Let then  be the set of 

properties from  that are instantiated by the model M; likewise  is the set of 

properties from  instantiated by the target system. Furthermore let  be a ranking 

function assigning a real number to every subset of . The simplest version of a 

ranking function is one that assigns to each set the number of properties in the set, but 

rankings can be more complex, for instance by giving important properties more 

weight. The level of similarity between M and T is then given by the following 

equation (Weisberg 2012, p. 788) (the notation is slightly amended): 

 

( , ) ( ) ( ) ( )M T M T T MS M T f f fθ α β= Δ ∩Δ − Δ −Δ − Δ −Δ , 

 

where  and   are weights, which can in principle take any value. This equation 

provides a ‘similarity score that can be used in comparative judgments of similarity’ 

(ibid., p. 788). The score is determined by weighing the properties the model and 

target have in common against those they do not. (Thus we note that this account 

could be seen as a quantitative version of Hesse’s (1963) theory of analogy in which 

properties that M and T share are the positive analogy and ones they don’t share are 

the negative analogy). In the above formulation the similarity score  can in principle 

vary between any two values (depending on the choice of the ranking function and the 

value of the weights). One can then use standard mathematical techniques to 

renormalize  so that it takes values in the unit interval  (these technical moves 

need not occupy us here and we refer the reader to Weisberg 2013, Chapter 8, for 

details). 

 

The obvious question at this point is how the various blanks in the account can be 

filled. First in line is the specification of a property set .  Weisberg is explicit that 

there are no general rules to rely on and that ‘the elements of  come from a 

combination of context, conceptualization of the target, and theoretical goals of the 

scientist’ (Weisberg 2013, p. 149). Likewise, the ranking function as well as the 

values of weighting parameters depend on the goals of the investigation, the context, 

and the theoretical framework in which the scientists operate. Weisberg further 

divides the elements of  into attributes and mechanisms. The former are the ‘the 

properties and patterns of a system’ while the latter are the ‘underlying mechanism[s] 
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that generates these properties’ (Weisberg 2013, p. 145). This distinction is helpful in 

the application to concrete cases, but for the purpose of our conceptual discussion it 

can be set aside.  

 

Irrespective of these choices, the similarity score  has a number of interesting 

features. First, it is asymmetrical for α ≠ β , which makes room for the possibility of 

M being similar to T to a different degree than T is similar to M. So S provides the 

asymmetrical notion of similarity mentioned in subsection 4.1. Second,  has a 

property called maximality: everything is maximally similar to itself and every other 

non-identical object is equally or less similar. Formally: ( , ) ( , )S A A S A B≥  for all 

objects  and as long as A B≠  (ibid., p. 154).  

 

What does this account contribute to a response to the question of style? The answer, 

we think, is that it has heuristic value but does not provide substantive account. In 

fact, stylistic questions stand outside the proposed framework. The framework can be 

useful in bringing questions into focus, but eventually the substantive stylistic 

questions concern inclusion criteria for  (what properties do we focus on?), the 

weight given by  to properties (what is the relative importance of properties?) and 

the value of the parameters (how significant are disagreements between the properties 

of M and T?). These questions have to be answered outside the account. The account 

is a framework in which questions can be asked but which does not itself provide 

answers, and hence no classification of representational styles emerges from it.  

 

Some will say that this is old news. Goodman denounced similarity as ‘a pretender, an 

impostor, a quack’ (Goodman 1972, p. 437) not least because he thought that it 

merely put a label to something unknown without analysing it. And even some 

proponents of the similarity view have insisted that no general characterisation of 

similarity was possible. Thus Teller submits that ‘[t]here can be no general account of 

similarity, but there is also no need for a general account because the details of any 

case will provide the information which will establish just what should count as 

relevant similarity in that case.’ (2001,  p. 402) This amounts to nothing less than the 

admission that no analysis of similarity (or even different kinds of similarity) is 

possible and that we have to deal with each case in its own right.  

S

S
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Assume now, for the sake of argument, that the stylistic issues have been resolved and 

full specifications of relevant properties and their relative weights are available. It 

would then seem plausible to say that  provides a degree of accuracy. This 

reading is supported by the fact that Weisberg paraphrases the role of  as 

providing ‘standards of fidelity’ (Weisberg 2013, p. 147). Indeed, in response to 

Parker’s (2015), Weisberg claims that his weighted feature matching account is 

supposed to answer the ER-problem and provide standards of accuracy.   

 

As we have seen above,  is maximal if M is a perfect replica of T	   (with 

respect to the properties in Δ), and the fewer properties M and T share, the less 

accurate the representation becomes. This lack of accuracy is then reflected in a lower 

similarity score. This is plausible and Weisberg’s account is indeed a step forward in 

the direction of quantifying accuracy.  

 

Weisberg’s account is an elaborate version of the co-instantiation account of 

similarity. It improves significantly on simple versions, but it cannot overcome that 

account’s basic limitations. Niiniluoto distinguishes between two different kinds of 

similarities (Niiniluoto 1988, pp. 272-274): partial identity and likeness (which also 

feature in Hesse’s discussion of analogies, see, for instance (1963, pp. 66-67)). 

Assume M instantiates the relevant properties  and T instantiates the relevant 

properties . If these properties are identical, i.e. if  for all , 

then M and T are similar in the sense of being partially identical. Partial identity 

contrasts with what Niiniluoto calls likeness. M and T are similar in the sense of 

likeness if the properties are not identical but similar themselves: is similar to  

for all . So in likeness the similarity is located at the level of the properties 

themselves. For example, a red post box and a red London bus are similar with 

respect to their colour, even if they do not instantiate the exact same shade of red. As 

Parker (2015’, p. 273) notes, Weisberg’s account (like all co-instantiation accounts) 

deals well with partial identity, but has no systematic place for likeness. To deal with 

likeness Weisberg would in effect have to reduce likeness to partial identity by 

introducing ‘imprecise’ properties which encompass the and the . Parker (ibid.) 

suggest that this can be done by introducing intervals in the feature set, for instance of 
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the form ‘the value of feature X lies in the interval [x − ε , x + ε ] ’ where ε  is 

parameter specifying the precision of overlap. To illustrate she uses Weisberg’s 

example of the San Francisco Bay model and claims that in order to account for the 

similarity between the model and the actual Bay with respect to their Froude number 

Weisberg has to claim something like: ‘The Bay model and the real Bay share the 

property of having a Froude number that is within 0.1 of the real Bay’s number. It is 

more natural to say that the Bay model and the real Bay have similar Froude 

numbers—similar in the sense that their values differ by at most 0.1.’ (Parker 2015, p. 

273) 

 

In his response Weisberg accepts this and argues that he is trying to provide a 

reductive account of similarity that bottoms out in properties shared and those not 

shared (2015, p. 302). But such interval-valued properties have to be part of Δ  in 

order for the formal account to capture them. This means that another important 

decision regarding whether or not M and T are similar occurs outside of the formal 

account itself. The inclusion criteria on what goes into Δ  now not only has to 

delineate relevant properties, but, at least for the quantitative ones, also has to provide 

an interval defining when they qualify as similar. Furthermore, it remains unclear how 

to account for M and T to be alike with respect to their qualitative properties. The 

similarity between genuinely qualitative properties cannot be accounted for in terms 

of numerical intervals. This is a particularly pressing problem for Weisberg, because 

he takes the ability to compare models and their targets with respect to their 

qualitative properties as a central desideratum for any account of similarity between 

the two (Weisberg 2013, p. 136). 

 

 

4.3 Problems of Ontology 

 

Another problem facing similarity based approaches concerns their treatment of the 

ontology of models. If models are supposed to be similar to their targets in the ways 

specified by theoretical hypotheses or commentaries, then they must be the kind of 

things that can be so similar.  

 



	   35 

Some models are homely physical objects. The Army Corps of Engineers’ model of 

the San Francisco Bay is a water basin and equipped with pumps to simulate the 

action of tidal flows (Weisberg 2013); ball and stick models of molecules are made of 

metal or wood (Toon 2011); the Phillips-Newlyn model of an economy is system of 

pipes and reservoirs (Morgan and Knuuttila 2012); and model organisms in biology 

are animals like worms and mice (Ankeny and Leonelli 2011). For models of this 

kind similarity is straightforward (at least in principle) because they are of the same 

ontological kind as their respective targets: they are material objects.  

 

But many interesting scientific models are not like this. Two perfect spheres with a 

homogeneous mass distribution which interact only with each other (the Newtonian 

model of the sun-earth system) or a single-species population isolated from its 

environment and reproducing at fixed rate at equidistant time steps (the logistic 

growth model of a population) are what Hacking aptly describes as ‘something you 

hold in your head rather than your hands’ (1983, p. 216). Following Thomson-Jones 

(2012) we call such models non-concrete models. The question then is what kind of 

objects non-concrete models are. Giere submits that they are abstract objects: ‘Models 

in advanced sciences such as physics and biology should be abstract objects 

constructed in conformity with appropriate general principles and specific 

conditions.’ ((Giere 2004, p. 747) cf. (Giere 1988, p. 81; 2010, p. 270)). 

 

The appeal to abstract entities brings a number of difficulties with it. The first is that 

the class of abstract objects is rather large. Numbers and other objects of pure 

mathematics, classes, propositions, concepts, the letter ‘A’, and Dante’s Inferno are 

abstract objects (Rosen 2014), and Hale (1988, pp. 86-87) lists no less than 12 

different possible characterisations of abstract objects. At the very least this list shows 

that there is great variety in abstract objects and classifying models as abstract object 

adds little specificity to an account of what models are. Giere could counter that he 

limits attention to those abstract objects that possess ‘all and only the characteristics 

specified in the principles’ (Giere 2004, p. 745), where principles are general rules 

like Newton’s laws of motion. He further specifies that he takes ‘abstract entities to be 

human constructions’ and that ‘abstract models are definitely not to be identified with 

linguistic entities such as words or equations’ (ibid., p. 747). While this narrows down 
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the choices somehow, it still leaves many options and ultimately the ontological status 

of models in a similarity account remains unclear.  

 

Giere fails to expand on this ontological issue for a reason: he dismisses the problem 

as one that philosophers of science can set aside without loss. He voices scepticism 

about the view that philosophers of science ‘need a deeper understanding of 

imaginative processes and of the objects produced by these process’ (Giere 2009, 

p.250) or that ‘we need say much more […] to get on with the job of investigating the 

functions of models in science’ (ibid.).  

 

We remain unconvinced about this scepticism, not least because there is an obvious 

yet fundamental issue with abstract objects. No matter how the above issues are 

resolved (and irrespective of whether they are resolved at all), at the minimum it is 

clear that models are ‘abstract’ in the sense that they have no spatiotemporal location. 

Teller (2001, p. 399) and Thomson-Jones (2010) supply arguments suggesting that 

this alone causes serious problems for the similarity account. The similarity account 

demands that models can instantiate properties and relations, since this is a necessary 

condition on them being similar to their targets. In particular, it requires that models 

can instantiate the properties and relations mentioned in theoretical hypotheses or 

commentaries. But such properties and relations are typically physical. And if models 

have no spatial-temporal location, then they do not instantiate any such properties or 

relations. Thomson-Jones’ example of the idealized pendulum model makes this 

clear. If the idealized pendulum is abstract then it is difficult to see how to make sense 

of the idea that it has a length, or a mass, or an oscillation period of any particular 

time.  

 

An alternative suggestion due to Teller (2001) is that we should instead say that 

whilst  ‘concrete objects HAVE properties […] properties are PARTS of models’ 

(ibid. p. 399, original capitalisation). It is not entirely clear what Teller means by this, 

but our guess is that he would regard models as bundles of properties. Target systems, 

as concrete objects, are the sorts of things that can instantiate properties delineated by 

theoretical hypotheses. Models, since they are abstract, cannot. But rather than being 

objects instantiating properties, a model can be seen as a bundle of properties. A 

collection of properties is an abstract entity that is the sort of thing that can contain 
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the properties specified by theoretical hypotheses as parts. The similarity relation 

between models and their targets shifts from the co-instantiation of properties, to the 

idea that targets instantiate (relevant) properties that are parts of the model. With 

respect to what it means for a model to be a bundle of properties Teller claims that the 

‘[d]etails will vary with ones account of instantiation, of properties and other abstract 

objects, and of the way properties enter into models’ (ibid).  

 

But as Thompson-Jones (2010, pp. 294-295) notes, it is not obvious that this 

suggestion is an improvement on Giere’s abstract objects. A bundle view incurs 

certain metaphysical commitments, chiefly the existence of properties and their 

abstractness, and a bundle view of objects, concrete or abstract, faces a number of 

serious problems (Armstrong 1989). One might speculate that addressing these issues 

would push Teller either towards the kind of more robust account of abstract objects 

that he endeavoured to avoid, or towards a fictionalist understanding of models.  

 

The latter option has been discussed by Giere, who points out that a natural response 

to Teller’s and Thomson-Jones’ problem is to regard models as akin to imaginary or 

fictional systems of the sort presented in novels and films. It seems true to say that 

Sherlock is a smoker, despite the fact that Sherlock an imaginary detective, and 

smoking is a physical property. At times, Giere seems sympathetic to this view. He 

says ‘it is widely assumed that a work of fiction is a creation of human imagination … 

the same is true of scientific models. So, ontologically, scientific models and works of 

fiction are on a par. They are both imaginary constructs.’ (2009, p. 249), and he 

observes that ‘novels are commonly regarded as works of imagination. That, 

ontologically, is how we should think of abstract scientific models. They are creations 

of scientists’ imaginations. They have no ontological status beyond that.’ (2010, p. 

278) However, these seem to be occasional slips and he recently positioned himself as 

an outspoken opponent of any approach to models that likens them to literary fiction. 

We discuss these approaches as well as Giere’s criticisms of them in Section 7. 

 

In sum, the similarity view is yet to be equipped with a satisfactory account of the 

ontology of models.  
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5. The Structuralist Conception 

 

The structuralist conception of model-representation originated in the so-called 

semantic view of theories that came to prominence in the second half of the 20
th

 

century (Suppes (2002), van Fraassen (1980), and Da Costa and French (2003) 

provide classical statements of the view; Byerly (1969), Chakravartty (2001), Klein 

(2013) and Portides (2005; 2010) provide critical discussions). The semantic view 

was originally proposed as an account of theory structure rather than model-

representation. The driving idea behind the position is that scientific theories are best 

thought of as collections of models. This invites the questions: what are these models, 

and how do they represent their target systems? Defenders of the semantic view of 

theories take models to be structures, which represent their target systems in virtue of 

there being some kind of mapping (isomorphism, partial isomorphism, 

homomorphism, …) between the two. (It is worth noting that Giere, whose account of 

scientific representation we discussed in the previous section, is also associated with 

the semantic view, despite not subscribing to either of these positions.) 

 

This conception has two prima facie advantages. The first advantage is that it offers a 

straightforward answer to the ER-Problem, and one that accounts for surrogative 

reasoning: the mappings between the model and the target allow scientists to convert 

truths found in the model into claims about the target system. The second advantage 

concerns the applicability of mathematics. There is time-honoured position in the 

philosophy of mathematics which sees mathematics as the study of structures; see, for 

instance, Resnik’s (1997) and Shapiro’s (2000). It is a natural move for the scientific 

structuralist to adopt this point of view, which, without further ado, provides a neat 

explanation of how mathematics is used in scientific modelling.  

 

5.1 Structures and the Problem of Ontology 

 

Almost anything from a concert hall to a kinship system can be referred to as a 

‘structure’. So the first task for a structuralist account of representation is to articulate 

what notion of structure it employs. A number of different notions of structure have 

been discussed in the literature (for a review see Thomson-Jones’ (2011)), but by far 
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the most common and widely used is the notion of structure one finds in set theory 

and mathematical logic. A structure S in that sense (sometimes ‘mathematical 

structure’ or ‘set-theoretic structure’) is a composite entity consisting of the 

following: a non-empty set U of objects called the domain (or universe) of the 

structure and a non-empty indexed set R of relations on U. With the exception of the 

caveat below regarding interpretation functions, this definition of structure is widely 

used in mathematics and logic; see for instance Machover’s (1996, p. 149), Hodges’ 

(1997, p. 2), and Rickart’s (1995, p. 17)). It is convenient to write these as 

  
S =<U , R > , where ‘ ,< > ’ denotes an ordered tuple. Sometimes operations are also 

included in the definition of a structure. While convenient in some applications, 

operations are redundant because operations reduce to relations (see Boolos and 

Jeffrey’s (Boolos and Jeffrey 1989, pp. 98-99)).  

 

It is important to be clear on what we mean by ‘object’ and ‘relation’ in this context.  

As Russell (1919/1993, p. 60) points out, in defining the domain of a structure it is 

irrelevant what the objects are. All that matters from a structuralist point of view is 

that there are so and so many of them. Whether the object is a desk or a planet is 

irrelevant. All we need are dummies or placeholders whose only property is 

‘objecthood’. Similarly, when defining relations one disregards completely what the 

relation is ‘in itself’. Whether we talk about ‘being the mother of’ or ‘standing to the 

left of’ is of no concern in the context of a structure; all that matters is between which 

objects it holds. For this reason, a relation is specified purely extensionally: as a class 

of ordered n-tuples. The relation literally is nothing over and above this class. So a 

structure consists of dummy-objects between which purely extensionally defined 

relations hold. 

 

Let us illustrate this with an example. Consider the structure with the domain 

{ , , }U a b c=  and the following two relations: 
1 { }r a=  and 

  
r

2
={< a,b >,    < b,c >,

  < a,c >}. Hence R  consists of 
1
r  and 

2
r , and the structure itself is ,S U R=< > . This 

is a structure with a three-object domain endowed with a monadic property and a 

transitive relation. Whether the objects are books or iron rods is of no relevance to the 

structure; they could be literally anything one can think of. Likewise  
1
r  could be 
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literally any monadic property (being green, being waterproof, etc) and 
2
r  could be 

any (irreflexive) transitive relation (larger than, hotter than, more expensive than, 

etc.).  

 

It is worth pointing out that this use of ‘structure’ differs from the use one sometimes 

finds in logic, where linguistic elements are considered part of the model as well. 

Specifically, over and above ,S U R=< > , a structure is also taken to include a 

language (sometimes called a ‘signature’) L, and an interpretation function (see, for 

example, (Enderton 1972/2001, pp. 80-81; Hodges 1997, Ch.1)). But in the context of 

the accounts discussed in this section, a structure is the ordered pair ,S U R=< >  as 

introduced above and so we disregard this alternative use of ‘structure’.  

 

The first basic posit of the structuralist theory of representation is that models are 

structures in the above sense (the second is that models represent their targets by 

being suitably morphic to them; we discuss morphisms in the next subsection). 

Suppes has articulated this stance clearly when he declared that ‘the meaning of the 

concept of model is the same in mathematics and the empirical sciences’ (1960, p. 

12). Likewise, van Fraassen posits that a ‘scientific theory gives us a family of models 

to represent the phenomena’, that ‘[t]hese models are mathematical entities, so all 

they have is structure [...]’ (1997, pp. 528-529) and that therefore ‘[s]cience is [...] 

interpreted as saying that the entities stand in relations which are transitive, reflexive, 

etc. but as giving no further clue as to what those relations are’ (1997, p. 516). 

Redhead submits that ‘it is this abstract structure associated with physical reality that 

science aims, and to some extent succeeds, to uncover [...]’ (2001, p. 75). Finally, 

French and Ladyman affirm that ‘the specific material of the models is irrelevant; 

rather it is the structural representation [...] which is important’ (1999, p. 109). Further 

explicit statements of this view are offered by: Da Costa and French (1990, p. 249), 

Suppes, (1962/1969, p. 24; 1970, Ch.2) and van Fraassen (1980,  pp. 43,64; 1991, p. 

483; 1995, p. 6; 1997, p. 516, 522). 

 

These structuralist accounts have typically been proposed in the framework of the so-

called semantic view of theories. There are differences between them, and 

formulations vary from author to author. However, as Da Costa and French (2000) 
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point out, all these accounts share a commitment to analysing models as structures. So 

we are presented with a clear answer to the Problem of Ontology: models are 

structures. The remaining issue is what structures themselves are. Are they Platonic 

entities, equivalence classes, modal constructs, or yet something else? This is a hotly 

debated issue in the philosophy of logic and mathematics; for different positions see 

for instance Dummett’s (1991, 295ff.), Hellman’s (1989; 1996), Redhead’s (2001), 

Resnik’s (1997), and Shapiro’s (2000). But philosophers of science need not resolve 

this issue and can pass off the burden of explanation to philosophers of mathematics. 

This is what usually happens, and hence we don’t pursue this matter further.  

 

An extension of the standard conception of structure is the so-called partial structures 

approach (see, for instance, Da Costa and French’s (2003) and Bueno, French, and 

Ladyman’s (2002)). Above we defined relations by specifying between which tuples 

it holds. This naturally allows a sorting of all tuples into two classes: ones that belong 

to the relation and ones that don’t. The leading idea of partial structures is to 

introduce a third option: for some tuples it is indeterminate whether or not they 

belong to the relation. Such a relation is a partial relation. A structure with a set R 

containing partial relations is a partial structure (formal definitions can be found in 

references given above). Partial structures make room for a process of scientific 

investigation where one begins not knowing whether a tuple falls under the relation 

and then learns whether or not it does. 

 

Proponents of that approach are more guarded as regards the ontology of models. 

Bueno and French emphasise that ‘advocates of the semantic account need not be 

committed to the ontological claim that models are structures’ (2011, p. 890 original 

emphasis). This claim is motivated by the idea that the task for philosophers of 

science is to represent scientific theories and models, rather than to reason about them 

directly. French (2010) makes it explicit that according to his account of the semantic 

view of theories, a scientific theory is represented as a class of models, but should not 

be identified with that class. Moreover, a class of models is just one way of 

representing a theory; we can also use an intrinsic characterisation and represent the 

same theory as a set of sentences in order to account for how they can be objects of 

our epistemic attitudes (French and Saatsi 2006).  
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He therefore adopts a quietist position with respect to what a theory or a model is, 

declining to answer the question (2010; cf. French and Vickers 2011). There are thus 

two important notions of representation at play: representation of targets by models, 

which is the job of scientists, and representation of theories and models by structures, 

which is the job of philosophers of science. The question for this approach then 

becomes whether or not the structuralist representation of models and epistemic 

representation – as partial structures and morphisms that hold between them – is an 

accurate or useful one. And the concerns raised below remain when translated into 

this context as well.   

 

There is an additional question regarding the correct formal framework for thinking 

about models in the structuralist position. Landry (2007) argues that in certain 

contexts group, rather than set, theory should be used when talking about structures 

and morphisms between them, and Halvorson (2012; forthcoming) argues that 

theories should be identified with categories rather than classes or sets. Although 

these discussions highlight important questions regarding the nature of scientific 

theories, the question of how individual models represent remains unchanged. 

Halvorson still takes individual models to be set-theoretic structures. And Landry’s 

paper is not an attempt to reframe the representational relationship between models 

and their targets (see (Brading and Landry 2006) for her scepticism regarding how 

structuralism deals with this question). Thus, for reasons of simplicity we will focus 

on the structuralist view that identifies models with set-theoretic structures throughout 

the rest of this section.   

 

5.2 Structuralism and the ER-Problem 

 

The most basic structuralist conception of scientific representation asserts that 

scientific models, understood as structures, represent their target systems in virtue of 

being isomorphic to them. Two structures ,
a a a
S U R=< >  and ,

b b b
S U R=< >  are 

isomorphic iff there is a mapping : a bf U U→  such that (i) f is one-to-one (bijective) 

and (ii) f preserves the system of relations in the following sense: the members 

1
,...,

n
a a  of 

a
U  satisfy the relation 

a
r  of 

a
R  iff the corresponding members 

1 1( ),..., ( )n nb f a b f a= =  of 
b
U  satisfy the relation 

b
r  of 

b
R , where 

b
r

 
is the relation 
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corresponding to 
a
r

 
(for difficulties in how to cash out this notion of correspondence 

without reference to an interpretation function see Halvorson’s (2012) and Glymour’s 

(2013)).  

 

Assume now that the target system T exhibits the structure ,
T T T
S U R=< >  and the 

model is the structure ,
M M M
S U R=< > . Then the model represents the target iff it is 

isomorphic to the target: 

 

Structuralism 1: A scientific model M represents its target T iff 
M
S  is isomorphic to 

T
S . 

 

This view is articulated explicitly by Ubbink, who posits that ‘a model represents an 

object or matter of fact in virtue of this structure; so an object is a model […] of 

matters of fact if, and only if, their structures are isomorphic’ (1960, p. 302). Views 

similar to Ubbink’s seem operable in many versions of the semantic view. In fairness 

to proponents of the semantic view it ought to be pointed out, though, that for a long 

time representation was not the focus of attention in the view and the attribution of 

(something like) Structuralism 1 to the semantic view is an extrapolation. 

Representation became a much-debated topic in the first decade of the 21
st
 century, 

and many proponents of the semantic view then either moved away from 

Structuralism 1, or pointed out that they never held such a view. We turn to more 

advanced positions shortly, but to understand what motivates such positions it is 

helpful to understand why Structuralism 1 fails.  

 

An immediate question concerns the target end structure 
T
S . At least prima facie 

target systems aren’t structures; they are physical objects like planets, molecules, 

bacteria, tectonic plates, and populations of organisms. An early recognition that the 

relation between targets and structures is not straightforward can be found in Byerly, 

who emphasizes that structures are abstracted from objects (1969, p.135 138). The 

relation between structures and physical targets is indeed a serious question and we 

will return to it in subsection 5.4. In this subsection we grant the structuralist the 

assumption that target systems are  (or at least have) structures.  
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The first and most obvious problem is the same as with the similarity view: 

isomorphism is symmetrical, reflexive, and transitive, but epistemic representation 

isn’t. This problem could be addressed by replacing isomorphism with an alternative 

mapping. Bartels (2006), Lloyd (1984), and Mundy (1986) suggest homomorphism; 

van Fraassen (1980; 1997; 2008) and Redhead isomorphic embeddings (2001); 

advocates of the partial structures approach prefer partial isomophisms (1997; 1999; 

1990; 2003; 2000; 1999); and Swoyer (1991) introduces what he calls /Δ Ψ −

morphisms. We refer to these collectively as ‘morphisms’.   

 

This solves some, but not all problems. While many of these mappings are 

asymmetrical, they are all still reflexive, and at least some of them are also transitive. 

But even if these formal issues could be resolved in one way or another, a view based 

on structural mappings would still face other serious problems. For ease of 

presentation we discuss these problems in the context of the isomorphism view; 

mutatis mutandis other formal mappings suffer from the same difficulties. (For 

detailed discussions of homomorphism and partial isomorphism see Suárez’s (2003, 

pp. 239-241) and Pero and Suárez’s (2016); Mundy (1986) discusses general 

constraints one may want to impose on morphisms.) 

 

Like similarity, isomorphism is too inclusive: not all things that are isomorphic 

represent each other. In the case of similarity this case was brought home by Putnam’s 

thought experiment with the ant crawling on the beach; in the case of isomorphism a 

look at the history of science will do the job. Many mathematical structures have been 

discovered and discussed long before they have been used in science. Non-Euclidean 

geometries were studied by mathematicians long before Einstein used them in the 

context of spacetime theories, and Hilbert spaces were studied by mathematicians 

prior to their use in quantum theory. If representation was nothing over and above 

isomorphism, then we would have to conclude that Riemann discovered general 

relativity or that that Hilbert invented quantum mechanics. This is obviously wrong. 

Isomorphism on its own does not establish representation (Frigg 2002, p. 10).  
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Isomorphism is more restrictive than similarity: not everything is isomorphic to 

everything else. But isomorphism is still too abundant to correctly identify the 

extension of a representation (i.e. the class of systems it represents), which gives raise 

to a version of the mistargeting problem. The root of the difficulties is that the same 

structures can be instantiated in different target systems. The 1/r
2
 law of Newtonian 

gravity is also the ‘mathematical skeleton’ of Coulomb’s law of electrostatic 

attraction and the weakening of sound or light as a function of the distance to the 

source. The mathematical structure of the pendulum is also the structure of an electric 

circuit with condenser and solenoid (a detailed discussion of this case is provided by 

Kroes (1989)). Linear equations are ubiquitous in physics, economics and 

psychology. Certain geometrical structures are instantiated by many different 

systems; just think about how many spherical things we find in the world. This shows 

that the same structure can be exhibited by more than one target system. Borrowing a 

term from the philosophy of mind, one can say that structures are multiply realisable. 

If representation is explicated solely in terms of isomorphism, then we have to 

conclude that, say, a model of a pendulum also represents an electric circuit. But this 

seems wrong. Hence isomorphism is too inclusive to correctly identify a 

representation’s extension.  

 

One might try to dismiss this point as an artefact of a misidentification of the target. 

Van Fraassen (1980, p. 66), mentions a similar problem under the heading of 

‘unintended realisations’ and then expresses confidence that it will ‘disappear when 

we look at larger observable parts of the world’. Even if there are multiply realisable 

structures to begin with, they vanish as science progresses and considers more 

complex systems because these systems are unlikely to have the same structure. Once 

we focus on a sufficiently large part of the world, no two phenomena will have the 

same structure. There is a problem with this counter, however. To appeal to future 

science to explain how models work today seems unconvincing. It is a matter of fact 

that we currently have models that represent electric circuits and sound waves, and 

we do not have to await future science providing us with more detailed accounts of a 

phenomenon to make our models represent what they actually already do represent.  

 

As we have seen in the last section, a misrepresentation is one that portrays its target 

as having features it doesn’t have. In the case of an isomorophism account of 
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representation this presumably means that the model portrays the target as having 

structural properties that it doesn’t have. However, isomorphism demands identity of 

structure: the structural properties of the model and the target must correspond to one 

another exactly. A misrepresentation won’t be isomorphic to the target. By the lights 

of Structuralism 1 it is therefore is not a representation at all. Like simple similarity 

accounts, Structuralism 1 conflates misrepresentation with non-representation.  

 

Muller (2011, p. 112) suggests that this problem can be overcome in a two-stage 

process: one first identifies a sub-model of the model, which in fact is isomorphic to 

at least a part of the target. This ‘reduced’ isomorphism establishes representation. 

One then constructs a ‘tailor-made morphism on a case by case basis’ (ibid., p. 112) 

to account for accurate representation. Muller is explicit that this suggestion 

presupposes that there is ‘at least one resemblance’ (ibid., p. 112) between model and 

target because ‘otherwise one would never be called a representation of the other’ 

(ibid., p. 112). While this may work in some cases, it is not a general solution. It is not 

clear whether all misrepresentations have isomorphic sub-models. Models that are 

gross distortions of their targets (such as the liquid drop model of the nucleus or the 

logistic model of a population) may well not have such sub-models. More generally, 

as Muller admits, his solution ‘precludes total misrepresentation’ (ibid., p. 112). So in 

effect it just limits the view that representation coincides with correct representation 

to a sub-model. However, this is too restrictive a view of representation. Total 

misrepresentations may be useless, but they are representations nevertheless.  

 

Another response refers to the partial structures approach and emphasises that partial 

structures are in fact constructed to accommodate a mismatch between model and 

target and are therefore not open to this objection (Bueno and French 2011, p. 888). It 

is true that the partial structures framework has a degree of flexibility that the 

standard view does not. However, we doubt that this flexibility stretches far enough. 

While the partial structure approach deals successfully with incomplete 

representations, it does not seem to deal well with distortive representations (we come 

back to this point in the next subsection). So the partial structures approach, while 

enjoying an advantage over the standard approach, is nevertheless not yet home and 

dry.  
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Like the similarity account, Structuralism 1 has a problem with non-existent targets 

because no model can be isomorphic to something that doesn’t exist. If there is no 

ether, a model can’t be isomorphic to it. Hence models without target cannot represent 

what they seem to represent.  

 

Most of these problems can be resolved by making moves similar to the ones that lead 

to Similarity 5: introduce agents and hypothetical reasoning into the account of 

representation. Going through the motions one finds: 

 

Structuralism 2: A scientific model M represents a target system T iff there is an agent 

A who uses M to represent a target system T by proposing a theoretical hypothesis H 

specifying an isomorphism between 
M
S  and 

T
S . 

 

Something similar to this was suggested by Adams (1959, p. 259) who appeals to the 

idea that physical systems are the intended models of a theory in order to differentiate 

them from purely mathematical models of a theory. This suggestion is also in line 

with van Fraassen’s recent pronouncements on representation. He offers the following 

as the ‘Hauptstatz’ of a theory of representation: ‘There is no representation except in 

the sense that some things are used, made, or taken, to represent things as thus and 

so’ (2008, p. 23, original emphasis). Likewise, Bueno submits that ‘representation is 

an intentional act relating two objects’ (2010, p. 94, original emphasis), and Bueno 

and French point out that using one thing to represent another thing is not only a 

function of (partial) isomorphism but also depends on ‘pragmatic’ factors ‘having to 

do with the use to which we put the relevant models’ (2011, p. 885). This, of course, 

gives up on the idea of an account which reduces representation to intrinsic features 

of models and their targets. At least one extra element, the model user, also features in 

whatever relation is supposed to constitute the representational relationship between 

M and T. In a world with no agents, there would be no scientific representation.  

 

This seems to be the right move. Like Similarity 5, Structuralism 2 accounts for the 

directionality of representation and has no problem with misrepresentation. But, again 

as in the case of Similarity 5, this is Pyrrhic victory as the role of isomorphism has 

shifted. The crucial ingredient is the agent’s intention and isomorphism has in fact 
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become either a representational style or normative criterion for accurate 

representation. Let us now assess how well isomorphism fares as a response to these 

problems.  

 

5.3 Accuracy, Style and Demarcation 

 

The problem of style is to identify representational styles and characterise them. 

Isomorphism offers an obvious response to this challenge: one can represent a system 

by coming up with a model that is structurally isomorphic to it. We call this the 

isomorphism-style. This style also offers a clear-cut condition of accuracy: the 

representation is accurate if the hypothesised isomorphism holds; it is inaccurate if it 

doesn’t. 

 

This is neat answer. The question is what status it has vis-à-vis the problem of style. 

Is the isomorphism-style merely one style among many other styles which are yet to 

be identified, or is it in some sense privileged? The former is uncontentious. 

However, the emphasis many structuralists place on isomorphism suggests that they 

do not regard isomorphism as merely one way among others to represent something. 

What they seem to have in mind is the stronger claim that a representation must be of 

that sort, or that the isomorphism-style is the only acceptable style.  

 

This claim seems to conflict with scientific practice. Many representations are 

inaccurate in some way. As we have seen above, partial structures are well equipped 

to deal with incomplete representations. However, not all inaccuracies are due to 

something being left out. Some models distort, deform and twist properties of the 

target in ways that seem to undercut isomorphism. Some models in statistical 

mechanics have an infinite number of particles and the Newtonian model of the solar 

system represents the sun as perfect sphere where it in reality is fiery ball with no 

well-defined surface at all. It is at best unclear how isomorphism, partial or otherwise, 

can account for these kinds of idealisations. From an isomorphism perspective all one 

can say about such idealisations is that they are failed isomorphism representations 

(or isomorphism misrepresentations). This is rather uninformative. One might try to 

characterise these idealisations by looking at how they fail to be isomorphic to their 

targets, but we doubt that this is going very far. Understanding how distortive 
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idealisations work requires a positive characterisation of them, and we cannot see how 

such a characterisation could be given within the isomorphism framework. So one has 

to recognise styles of representation other than isomorphism. 

 

This raises that question whether other mappings such as homomorphisms, or 

embeddings would fit the bill. They would, we think, make valuable additions to the 

list of styles, but they would not fill all gaps. Like isomorophism, these mappings are 

not designed to accommodate distortive idealisations, and hence a list of styles that 

includes them still remains incomplete.  

 

Structuralism’s stand on the demarcation problem is by and large an open question. 

Unlike similarity, which has been widely discussed across different domains, 

isomorphism is tied closely to the formal framework of set theory, and it has been 

discussed only sparingly outside the context of the mathematized sciences. An 

exception is French, who discusses isomorphism accounts in the context of pictorial 

representation (2003). He discusses in detail Budd’s (1993) account of pictorial 

representation and points out that it is based on the notion of a structural isomorphism 

between the structure of the surface of the painting and the structure of the relevant 

visual field. Therefore representation is the perceived isomorphism of structure 

(French 2003, pp. 1475-1476) (this point is reaffirmed by Bueno and French (2011, 

pp. 864-865); see Downes’s(2009, pp. 423-425) for a critical discussion). In a similar 

vein, Bueno claims that the partial structures approach offers a framework in which 

different representations – among them ‘outputs of various instruments, micrographs, 

templates, diagrams, and a variety of other items’ (2010, p. 94) – can be 

accommodated. This would suggest that an isomorphism account of representation at 

least has a claim to being a universal account covering representations across different 

domains.  

 

This approach faces a number of questions. First, neither a visual field nor a painting 

is a structure, and the notion of there being an isomorphism in the set theoretic sense 

between the two at the very least needs unpacking. The theory is committed to the 

claim that paintings and visual fields have structures, but, as we will see in the next 

subsection, this claim faces serious issues. Second, Budd’s theory is only one among 

many theories of pictorial representation, and most alternatives do not invoke 
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isomorphism. So there is question whether a universal claim can be built on Budd’s 

theory. In fact, there is even a question about isomorphism’s universality within 

scientific representation. Non-mathematised sciences work with models that aren’t 

structures. Godfrey-Smith (2006), for instance, argues that models in many parts of 

biology are imagined concrete objects. There is a question whether isomorphism can 

explain how models of that kind represent.  

 

This points to a larger issue. The structuralist view is a rational reconstruction of 

scientific modelling, and as such it has some distance from the actual practice. Some 

philosophers have worried that this distance is too large and that the view is too far 

removed from the actual practice of science to be able to capture what matters to the 

practice of modelling (this is the thrust of many contributions to (Morgan and 

Morrison 1999); see also (Cartwright 1999)). Although some models used by 

scientists may be best thought of as set theoretic structures, there are many where this 

seems to contradict how scientists actually talk about, and reason with, their models. 

Obvious examples include physical models like the San Francisco Bay model 

(Weisberg 2013), but also systems such as the idealized pendulum or imaginary 

populations of interbreeding animals. Such models have the strange property of being 

concrete-if-real and scientists talk about them as if they were real systems, despite the 

fact that they are obviously not. Thomson-Jones (2010) dubs this ‘face value 

practice’, and there is a question whether structuralism can account for that practice. 

 

5.4 The structure of target systems 

 

Target systems are physical objects: atoms, planets, populations of rabbits, economic 

agents, etc. Isomorphism is a relation that holds between two structures and claiming 

that a set theoretic structure is isomorphic to a piece of the physical world is prima 

facie a category mistake. By definition, all of the mappings suggested – isomorphism, 

partial isomorphism, homomorphism, or isomorphic embedding – only hold between 

two structures. If we are to make sense of the claim that the model is isomorphic to its 

target we have to assume that the target somehow exhibits a certain structure 

  
S

T
=<U

T
, R

T
> . But what does it mean for a target system – a part of the physical 

world – to possess a structure, and where in the target system is the structure located?  
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The two prominent suggestions in the literature are that data-models are the target end 

structures represented by models, and that structures are, in some sense, instantiated 

in target systems. The latter option comes in three versions. The first version is that a 

structure is ascribed to a system; the second version is that systems instantiate 

structural universals; and the third version claims that target systems simply are 

structures. We consider all suggestions in turn.  

 

What are data models? Data are what we gather in experiments. When observing the 

motion of the moon, for instance, we choose a coordinate system and observe the 

position of the moon in this coordinate system at consecutive instants of time. We 

then write down these observations. The data thus gathered are called the raw data. 

The raw data then undergo a process of cleansing, rectification and regimentation: we 

throw away data points that are obviously faulty, take into consideration what the 

measurement errors are, take averages, and usually idealise the data, for instance by 

replacing discrete data points by a continuous function. Often, although not always, 

the result is a smooth curve through the data points that satisfies certain theoretical 

desiderata (Harris (2003) and van Fraassen (2008, pp. 166-68) elaborate on this 

process). These resulting data models can be treated as set theoretic structures. In 

many cases the data points are numeric and the data model is a smooth curve through 

these points. Such a curve is a relation over  R
n

 (for some n), or subsets thereof, and 

hence it is structure in the requisite sense.  

 

Suppes (1962/1969) was the first to suggested that data models are the targets of 

scientific models: models don’t represent parts of the world; they represent data 

structures. This approach has then been adopted by van Fraassen, when he declares 

that ‘[t]he whole point of having theoretical models is that they should fit the 

phenomena, that is, fit the models of data’ (1981, p. 667). He has defended this 

position numerous times over the years (1980, p. 64; 1985, p. 271; 1989, p. 229; 

1997, p. 524; 2002, p. 164) including in his most recent book on representation (2008, 

p. 246, 252). So models don’t represent planets, atoms or populations; they represent 

data that are gathered when performing measurements on planets, atoms or 

populations.  
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This revisionary point of view has met with stiff resistance. Muller articulates the 

unease about this position as follows: ‘the best one could say is that a data structure D 

seems to act as simulacrum of the concrete actual being B […] But this is not good 

enough. We don’t want simulacra. We want the real thing. Come on.’ (2011, p. 98). 

Muller’s point is that science aims (or at least has to aim) to represent real systems in 

the world and not data structures. Van Fraassen calls this the ‘loss of reality objection’ 

(2008, p. 258) and accepts that the structuralist must ensure that models represent 

target systems, rather than finishing the story at the level of data. In his (2008) he 

addresses this issue in detail and offers a solution. We discuss his solution below, but 

before doing so we want to articulate the objection in more detail. To this end we 

briefly revisit the discussion about phenomena and data which took place in the 1980s 

and 1990s.  

 

Bogen and Woodward (1988), Woodward (1989), and more recently (and in a 

somewhat different guise) Teller (2001), introduced the distinction between 

phenomena and data and argue that models represent phenomena, not data. The 

difference is best introduced with an example: the discovery of weak neutral currents 

(Bogen and Woodward 1988, pp. 315-318). What the model at stake consists of is 

particles: neutrinos, nucleons, and the Z
0 

particle, along with the reactions that take 

place between them. (The model we are talking about here is not the so-called 

standard model of elementary particles as a whole. Rather, what we have in mind is 

one specific model about the interaction of certain particles of the kind one would 

find in a theoretical paper on this experiment.) Nothing of that, however, shows in the 

relevant data. CERN (Conseil Européen pour la Recherche Nucléaire) in Geneva 

produced 290,000 bubble chamber photographs of which roughly 100 were 

considered to provide evidence for the existence of neutral currents. The notable point 

in this story is that there is no part of the model (provided by quantum field theory) 

that could be claimed to be isomorphic to these photographs. Weak neutral currents 

are the phenomenon under investigation; the photographs taken at CERN are the raw 

data, and any summary one might construct of the content of these photographs would 

be a data model. But it’s weak neutral currents that occur in the model; not any sort of 

data we gather in an experiment.  
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This is not to say that these data have nothing to do with the model. The model posits 

a certain number of particles and informs us about the way in which they interact both 

with each other and with their environment. Using this knowledge we can place them 

in a certain experimental context. The data we then gather in an experiment are the 

product of the elements of the model and of the way in which they operate in that 

context. Characteristically this context is one which we are able to control and about 

which we have reliable knowledge (e.g. knowledge about detectors, accelerators, 

photographic plates and so on). Using this and the model we can derive predictions 

about what the outcomes of an experiment will be. But, and this is the salient point, 

these predictions involve the entire experimental set-up and not only the model and 

there is nothing in the model itself with which one could compare the data. Hence, 

data are highly contextual and there is a big gap between observable outcomes of 

experiments and anything one might call a substructure of a model of neutral currents. 

 

To underwrite this claim Bogen and Woodward notice that parallel to the research at 

CERN, the NAL (National Accelerator Laboratory) in Chicago also performed an 

experiment to detect weak neutral currents, but the data obtained in that experiment 

were quite different. They consisted of records of patterns of discharge in electronic 

particle detectors. Though the experiments at CERN and at NAL were totally 

different and as a consequence the data gathered had nothing in common, they were 

meant to provide evidence for the same theoretical model. But the model, to reiterate 

the point, does not contain any of these contextual factors. It posits certain particles 

and their interaction with other particles, not how detectors work or what readings 

they show. That is, the model is not idiosyncratic to a special experimental context in 

the way the data are and therefore it is not surprising that they do not contain a 

substructure that is isomorphic to the data. For this reason, models represent 

phenomena, not data.  

 

It is difficult to give a general characterisation of phenomena because they do not 

belong to one of the traditional ontological categories (Bogen and Woodward 1988, p. 

321). In fact, phenomena fall into many different established categories, including 

particular objects, features, events, processes, states, states of affairs, or they defy 

classification in these terms altogether. This, however, does not detract from the 

usefulness of the concept of a phenomenon because specifying one particular 
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ontological category to which all phenomena belong is inessential to the purpose of 

this section. What matters to the problem at hand is the distinctive role they play in 

connection with representation.  

 

What then is the significance of data, if they are not the kind of things that models 

represent? The answer to this question is that data perform an evidential function. 

That is, data play the role of evidence for the presence of certain phenomena. The fact 

that we find a certain pattern in a bubble chamber photograph is evidence for the 

existence of neutral currents. Thus construed, we do not denigrate the importance of 

data in science, but we do not have to require that data have to be embeddable into the 

model at stake.  

 

Those who want to establish data models as targets can reply to this in three ways. 

The first reply is an appeal to radical empiricism. By postulating phenomena over and 

above data we leave the firm ground of observable things and started engaging in 

trans-empirical speculation. But science has to restrict its claims to observables and 

remain silent (or at least agnostic) about the rest. Therefore, so the objection goes, 

phenomena are chimeras that cannot be part of any serious account of science. It is, 

however, doubtful that this helps the data model theorist. Firstly, note that it even 

rules out representing ‘observable phenomena’. To borrow van Fraassen’s example, 

on this story, a population model of deer reproduction would represent data, rather 

than deer (2008, pp. 254-260). Traditionally, empiricists would readily accept that 

deer, and the rates at which they reproduce, are observable phenomena. Denying that 

they are represented, by replacing them with data models, seems to be an implausible 

move. Secondly, irrespective of whether one understands phenomena realistically 

(Bogen and Woodward 1988) or antirealistically (McAllister 1997), it is phenomena 

that models portray and not data. To deny the reality of phenomena just won’t make a 

theoretical model represent data. Whether we regard neutral currents as real or not, it 

is neutral currents that are portrayed in a field-theoretical model, not bubble chamber 

photographs. Of course, one can suspend belief about the reality of these currents, but 

that is a different matter.   

 

The second reply is to invoke a chain of representational relationships. Brading and 

Landry (2006) point out that the connection between a model and the world can be 
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broken down in two parts: the connection between a model and a data model, and the 

connection between a data model and the world (2006, p. 575). So the structuralist 

could claim that scientific models represent data models in virtue of an isomorphism 

between the two and additionally claim that data models in turn represent phenomena. 

But the key questions that need to be addressed here are (a) what establishes the 

representational relationship between data models and phenomena, and (b) why if a 

scientific model represented some data model, which in turn represented some 

phenomenon, would that establish a representational relationship between the model 

and the phenomenon itself. With respect to the first question, Brading and Landry 

argue that it cannot be captured within the structuralist framework (2006, p. 575). The 

question has just been pushed back: rather than asking how a scientific model qua 

mathematical structure represents a phenomenon, we now ask how a data model qua 

mathematical structure represents a phenomenon. With respect to the second question, 

although representation is not intransitive, it is not transitive (Frigg 2002, pp. 11-12). 

So more needs to be said regarding how a scientific model representing a data model, 

which in turn represents the phenomenon from which data are gathered, establishes a 

representational relationship between the first and last element in the representational 

chain.  

 

The third reply is due to van Fraassen (2008). His ‘Wittgensteinian’ solution is to 

diffuse the loss of reality objection. Once we pay sufficient attention to the pragmatic 

features of the contexts in which scientific and data models are used, van Fraassen 

claims, there actually is no difference between representing data and representing a 

target (or a phenomenon in Bogen and Woodward’s sense): ‘in a context in which a 

given [data] model is someone's representation of a phenomenon, there is for that 

person no difference between the question whether a theory [theoretical model] fits 

that representation and the question whether that theory fits the phenomenon.’ (2008, 

p. 259) Van Frasseen’s argument for this claim is long and difficult and we cannot 

fully investigate it here; we restrict attention to one crucial ingredient and refer the 

reader to Nguyen’s (2016) for a detailed discussion of the argument.  

 

Moore’s paradox is that we cannot assert sentences of the form ‘p and I don’t believe 

that p’, where p is an arbitrary proposition. For instance, someone cannot assert that 

Napoleon was defeated in the battle of Waterloo and assert, at the same time, that she 
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doesn’t believe that Napoleon was defeated in the battle of Waterloo. Van Fraassen’s 

treatment of Moore’s paradox is that speakers cannot assert such sentences because 

the pragmatic commitments incurred by asserting the first conjunct include that the 

speaker believe that p. This commitment is then contradicted by the assertion of the 

second conjunct. So instances of Moore’s paradox are pragmatic contradictions. Van 

Fraassen then draws an analogy between this paradox and the scientific 

representation. He submits that a user simply cannot, on pain of pragmatic 

contradiction, assert that a data model of a target system be embeddable within a 

theoretical model without thereby accepting that the theoretical model represents the 

target.  

 

However, Nguyen (2016) argues that in the case of using a data model as a 

representation of a phenomenon, no such pragmatic commitment is incurred, and 

therefore no such contradiction follows when accompanied by doubt that the 

theoretical model also represents the phenomenon. To see why this is the case, 

consider a more mundane example of representation: a caricaturist can represent 

Margaret Thatcher as draconian without thereby committing himself to the belief that 

Margaret Thatcher really is draconian. Pragmatically speaking, acts of representation 

are weaker than acts of assertion: they do not incur the doxastic commitments 

required for van Fraassen’s analogy to go through. So it seems van Fraassen doesn’t 

succeed in dispelling the loss of reality objection. How target systems enter the 

picture in the structuralist account of scientific representation remains therefore a 

question that structuralists who invoke data models as providing the target end 

structures must address. Without such an account the structuralist account of 

representation remains at the level of data, a position that seems implausible, and 

contrary to actual scientific practice. 

 

We now turn to the second response: that a structure is instantiated in the system. As 

mentioned above, this response comes in three versions. The first is metaphysically 

more parsimonious and builds on the systems’ constituents. Although target systems 

are not structures, they are composed of parts that instantiate physical properties and 

relations. The parts can be used to define the domain of individuals, and by 

considering the physical properties and relations purely extensionally, we arrive at a 

class of extensional relations defined over that domain (see for instance Suppes’ 
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discussion of the solar system (2002, p. 22)). This supplies the required notion of 

structure. We might then say that physical systems instantiate a certain structure, and 

it is this structure that models are isomorphic to.  

 

As an example consider the methane molecule. The molecule consists of a carbon 

atom and four hydrogen atoms grouped around it, forming a tetrahedron. Between 

each hydrogen atom and the carbon atom there is a covalent bond. One can then 

regard the atoms as objects and the bonds are relations. Denoting the carbon atom by 

a, and the four hydrogen atoms by b, c, d, and e, we obtain a structure S with the 

domain { , , , , }U a b c d e=  and the relation   r ={< a,b >,   < b,a >,   < a,c >,   < c,a >,

  < a,d >,   < d ,a >,   < a,e >,   < e,a >} , which can be interpreted as ‘being connected by a 

covalent bond’.  

 

The main problem facing this approach is the underdetermination of target-end 

structure. Underdetermination threatens in two distinct ways. Firstly, in order to 

identify the structure determined by a target system, a domain of objects is required. 

What counts as an object in a given target system is a substantial question (Frigg 

2006). One could just as well choose bonds as objects and consider the relation 

‘sharing a node with another bond’. Denoting the bonds by ', ', 'a b c and 'd , we obtain 

a structure 'S  with the domain   U ' ={a ',b ',c ',d '}  and the relation   r ={< a ',b ' >,

  < b ',a ' >,   < a ',c ' >,   < c ',a ' >,   < a ',d ' >,   < d ',a ' >,    < b ',c ' >,    < c ',b ' >,    < b ',d ' >,

  < d ',b ' >,   < c ',d ' >,   < d ',c ' >} .  Obviously S  and 'S  are not isomorphic. So which 

structure is picked out depends on how the system is described. Depending on which 

parts one regards as individuals and what relation one chooses, very different 

structures can emerge. And it takes little ingenuity to come up with further 

descriptions of the methane molecule, which lead to yet other structures. 

 

There is nothing special about the methane molecule, and any target system can be 

presented under alternative descriptions, which ground different structures. So the 

lesson learned generalises: there is no such thing as the structure of a target system. 

Systems only have a structure under a particular description, and there are many non-

equivalent descriptions. This renders talk about a model being isomorphic to target 

system simpliciter meaningless. Structural claims do not ‘stand on their own’ in that 
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their truth rests on the truth of a more concrete description of the target system. As a 

consequence, descriptions are an integral part of an analysis of scientific 

representation.  

 

In passing we note that Frigg (2006, pp. 55-56) also provides another argument that 

pulls into the same direction: structural claims are abstract and are true only relative 

to a more concrete non-structural description. For a critical discussion of this 

argument see Frisch’s (2015, pp. 289-294) and Portides’ (forthcoming). 

 

How much of a problem this is depends on how austere one’s conception of models 

is. The semantic view of theories was in many ways the result of an anti-linguistic 

turn in the philosophy of science. Many proponents of the view aimed to exorcise 

language from an analysis of theories, and they emphasised that the model-world 

relationship ought to be understood as a purely structural relation. Van Fraassen, for 

instance, submits that ‘no concept which is essentially language dependent has any 

philosophical importance at all’ (1980, p. 56) and observes that ‘[t]he semantic view 

of theories makes language largely irrelevant’ (1989, p. 222). And other proponents of 

the view, while less vocal about the irrelevance of language, have not assigned 

language a systematic place in their analysis of theories.  

 

For someone of that provenance the above argument is bad news. However, a more 

attenuated position could integrate descriptions in the package of modelling, but this 

would involve abandoning the idea that representation can be cashed out solely in 

structural terms. Bueno and French have recently endorsed such a position. They 

accept the point that different descriptions lead to different structures and explain that 

such descriptions would involve ‘at the very least some minimal mathematics and 

certain physical assumptions’ (Bueno and French 2011, p. 887). Likewise, ‘Munich’ 

structuralists explicitly acknowledge the need for a concrete description of the target-

system (Balzer et al. 1987, pp. 37-38), and they consider these ‘informal descriptions’ 

to be ‘internal’ to the theory. This is a plausible move, but those endorsing this 

solution have to concede that there is more to epistemic representation than structures 

and morphisms.  
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The second way in which structural indeterminacy can surface is via Newman’s 

theorem. The theorem essentially says that any system instantiates any structure, the 

only constraint being cardinality (a practically identical conclusion is reached in 

Putnam’s so called model-theoretic argument; see Demopoulos’ (2003) for a 

discussion). Hence, any structure of cardinality C is isomorphic to a target of 

cardinality C because the target instantiates any structure of cardinality C (see 

Ketland’s (2004) and Frigg and Votsis’ (Frigg and Votsis 2011) for discussions). This 

problem is not unsolvable, but all solutions require that among all structures formally 

instantiated by a target system one is singled out as being the true or natural structure 

of the system. How to do this in the structuralist tradition remains unclear (Ainsworth 

(2009) provides as useful summary of the different solutions). 

 

Newman’s theorem is both stronger and weaker than the argument from multiple 

descriptions. It’s stronger in that it provides more alternative structures than multiple 

descriptions. It’s weaker in that many of the structures it provides are ‘unphysical’ 

because they are purely set theoretical combinations of elements. By contrast, 

descriptions pick out structures that a system can reasonably been seen as possessing.  

 

The second version of the second response emerges from the literature on the 

applicability of mathematics. Structural Platonists like Resnik (1997) and Shapiro 

(1983; 1997; 2000) take structures to be ‘ante rem’ universals. On this view, 

structures exist independently of physical systems, yet they can be instantiated in 

physical systems. On this view systems instantiate structures and models are 

isomorphic to these instantiated structures.  

 

This view raises all kind of metaphysical issues about the ontology of structures and 

the instantiation relation. Let us set aside these issues and assume that they can be 

resolved in one way or another. This would still leave us with serious epistemic and 

semantic questions. How do we know a certain structure is instantiated in a system 

and how do we refer to it? Objects do not come with labels on their sleeves specifying 

which structures they instantiate, and proponents of structural universals face a 

serious problem in providing an account of how we access the structures instantiated 

by target systems. Even if – as a brute metaphysical fact – target systems only 

instantiate a small number of structures, and therefore there is a substantial question 
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regarding whether or not scientific models represent them, this does not help us 

understand how we could ever come to know whether or not the isomorphism holds. 

It seems that individuating a domain of objects and identifying relations between 

them is the only way for us to access a structure. But then we are back to the first 

version of the response, and we are again faced with all the problems that it raises. 

 

The third version of the second response is more radical. One might take target 

systems themselves to be structures. If this is the case then there is no problem with 

the idea that they can be isomorphic to a scientific model. One might expect ontic 

structural realists to take this position. If the world fundamentally is a structure, then 

there is nothing mysterious about the notion of an isomorphism between a model and 

the world. Surprisingly, some ontic structuralists have been hesitant to adopt such a 

view (see French and Ladyman (1999, p. 113) and French (2014, p. 195)). Others, 

however, seem to endorse it. Tegmark (2008), for instance, offers an explicit defence 

of the idea that the world simply is a mathematical structure. He defines a seemingly 

moderate form of realism – what he calls the ‘external reality hypothesis (ERH)’ – as 

the claim that ‘there exists an external physical reality completely independent of us 

humans’ (ibid., p. 102) and argues that this entails that the world is a mathematical 

structure (his ‘mathematical universe hypothesis’) (ibid., p. 102). His argument for 

this is based on the idea that a so called ‘theory-of-everything’ must be expressible in 

a form that is devoid of human-centric ‘baggage’ (by the ERH), and the only theories 

that are devoid of such baggage are mathematical, which, strictly speaking, describe 

mathematical structures. Thus, since a complete theory of everything describes an 

external reality independent of humans, and since it describes a mathematical 

structure, the external reality itself is a mathematical structure.  

 

This approach stands or falls on the strengths of its premise that a complete theory of 

everything will be formulated purely mathematically, without any ‘human baggage’, 

which in turn relies on a strict reductionist account of scientific knowledge (ibid., pp. 

103-104). Discussing this in any detail goes beyond our current purposes. But it is 

worth noting that Tegmark’s discussion is focused on the claim that fundamentally the 

world is a mathematical structure. Even if this were the case, it seems irrelevant for 

many of our current scientific models, whose targets aren’t at this level. When 

modelling an aeroplane wing we don’t refer to the fundamental super-string structure 
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of the bits of matter that make up the wing, and we don’t construct wing models that 

are isomorphic to such fundamental structures. So Tegmark’s account offers no 

answer to the question about where structures are to be found at the level of non-

fundamental target systems.  

 

6. The Inferential Conception 

 

In this section we discuss accounts of scientific representation that analyse 

representation in terms of the inferential role of scientific models. On the previous 

accounts discussed, a model’s inferential capacity dropped out of whatever it was that 

was supposed to answer the ER-problem: proposed morphisms or similarity relations 

between models and their targets for example. The accounts discussed in this section 

build the notion of surrogative reasoning directly into the conditions on epistemic 

representation.  

 

6.1 Deflationary Inferentialism 

 

Suárez argues that we should adopt a ‘deflationary or minimalist attitude and strategy’ 

(2004, p. 770) when addressing the problem of epistemic representation. We will 

discuss deflationism in some detail below, but in order to formulate and discuss 

Suárez’s theory of representation we need at least a preliminary idea of what is meant 

by a deflationary attitude. In fact two different notions of deflationism are in 

operation in his account. The first is ‘abandoning the aim of a substantive theory to 

seek universal necessary and sufficient conditions that are met in each and every 

concrete real instance of scientific representation … necessary conditions will 

certainly be good enough.’ (ibid,. p. 771) We call the view that a theory of 

representation should provide only necessary conditions n-deflationism (‘n’ for 

‘necessary’). The second notion is that we should seek ‘no deeper features to 

representation other than its surface features’ (ibid., p. 771) or ‘platitudes’ (Suárez 

and Solé 2006, p. 40), and that we should deny that an analysis of a concept ‘is the 

kind of analysis that will shed explanatory light on our use of the concept’ (Suárez 

2015, p. 39). We call this position s-deflationism (‘s’ for ‘surface feature’). As far as 
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we can tell, Suárez intends his account of representation to be deflationary in both 

senses.  

 

Suárez dubs the account that satisfies these criteria ‘inferentialism’ (2004, p. 773): 

 

Inferentialism 1: A scientific model M represents a target T only if (i) the 

representational force of M points towards T, and (ii) M allows competent and 

informed agents to draw specific inferences regarding T. 

 

Notice that this condition is not an instantiation of the ER-Scheme: in keeping with n-

deflationism it features a material conditional rather than a biconditional and hence 

provides necessary (but not sufficient) conditions for M to represent T. We now 

discuss each condition in turn, trying to explicate in what way they satisfy s-

deflationism.  

 

The first condition is designed to make sure that M and T indeed enter into a 

representational relationship, and Suárez stresses that representational force is 

‘necessary for any kind of representation’ (ibid,. p. 776). But explaining 

representation in terms of representational force seems to shed little light on the 

matter as long as no analysis of representational force is offered. Suarez addresses this 

point by submitting that the first condition can be ‘satisfied by mere stipulation of a 

target for any source’ (ibid,. p. 771). This might look like denotation as in Section 3. 

But Suárez stresses that this is not what he intends for two reasons.  Firstly, he takes 

denotation to be a substantive relation between a model and its target, and the 

introduction of such a relation would violate the requirement of s-deflationism 

(Suárez 2015, p. 41). Secondly, M can denote T only if T exists. Thus including 

denotation as a necessary condition on scientific representation ‘would rule out 

fictional representation, that is, representation of nonexisting entities’ (Suárez 2004, 

p. 772), and ‘any adequate account of scientific representation must accommodate 

representations with fictional or imaginary targets’ (Suárez 2015, p. 44). 

 

The second issue is one that besets other accounts of representation too, in particular 

similarity and isomorphism accounts. The first reason, however, goes right to the 

heart of Suárez’s account: it makes good on the s-deflationary condition that nothing 
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other than surface features can be included in an account of representation. At a 

surface level one cannot explicate ‘representational force’ at all and any attempt to 

specify what representational force consists in is a violation of s-deflationism. 

 

The second necessary condition, that models allow competent and informed agents to 

draw specific inferences about their targets, is in fact just the Surrogative Reasoning 

Condition we introduced in Section 2, now taken as a necessary condition on 

epistemic representation. The sorts of inferences that models allow are not 

constrained. Suárez points out that the condition ‘does not require that [M] allow 

deductive reasoning and inference; any type of reasoning inductive, analogical, 

abductive – is in principle allowed’ (Suárez 2004, p. 773). (The insistence on 

inference makes Suárez’s account an instance of what Chakravartty (2010) calls a 

‘functional conception’ of representation.) 

 

A problem for this approach is that we are left with no account of how these 

inferential rules are generated: what is it about models that allows them to licence 

inferences about their targets, or what leads them to licence some inferences and not 

others? Contessa makes this point most stridently when he argues that: 

 

‘On the inferential conception, the user’s ability to perform inferences from a vehicle [model] 

to a target seems to be a brute fact, which has no deeper explanation. This makes the 

connection between epistemic representation and valid surrogative reasoning needlessly 

obscure and the performance of valid surrogative inferences an activity as mysterious and 

unfathomable as soothsaying or divination’ (Contessa 2007, p. 61) 

This seems correct, but Suárez can dismiss this complaint by appeal to s-deflationism. 

Since inferential capacity is supposed to be a surface level feature of scientific 

representation, we are not supposed to ask for any elucidation about what makes an 

agent competent and well informed and how inferences are drawn.  

 

For these reasons Suárez’s account is deflationary both in the sense of n-deflationism 

and of s-deflationism. His position provides us with a concept of epistemic 

representation that is cashed out in terms of an inexplicable notion of representational 

force and of an inexplicable capacity to ground inferences. This is very little indeed. It 

is the adoption of a deflationary attitude that allows him to block any attempt to 
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further unpack these conditions and so the crucial question is: why should one adopt 

deflationism?  

 

We turn to this question shortly. Before doing so we want to briefly outline how the 

above account fares with respect to the other problems introduced in Section 2. The 

account provides a neat explanation of the possibility of misrepresentation: ‘Part (ii) 

of this conception accounts for inaccuracy since it demands that we correctly draw 

inferences from the source about the target, but it does not demand that the 

conclusions of these inferences be all true, nor that all truths about the target may be 

inferred’ (Suárez 2004, p. 776). Models represent their targets only if they license 

inferences about them. They represent them accurately to the extent that the 

conclusions of these inferences are true.  

 

With respect to the representational demarcation problem, Suárez illustrates his 

account with a large range of representations, including diagrams, equations, 

scientific models, and non-scientific representations such as artistic portraits. He 

explicitly states that ‘if the inferential conception is right, scientific representation is 

in several respects very close to iconic modes of representation like painting’ (Suárez 

2004, p. 777) and he mentions the example of Velázquez’s portrait of Innocent X  

(ibid.) It is clear that the conditions of Inferentialism 1 are met by non-scientific as 

well as scientific epistemic representations. So, at least without sufficient conditions, 

there is no clear way of demarcating between the different kinds of epistemic 

representation. 

 

Given the wide variety of types of representation that this account applies to, it’s 

unsurprising that Suarez has little to say about the ontological problem. The only 

constraint that Inferentialism 1 places on the ontology of models is that ‘[i]t requires 

[M] to have the internal structure that allows informed agents to correctly draw 

inferences about [T]’ (Suárez 2004, p. 774). And relatedly, since the account is 

supposed to apply to a wide variety of entities, including equations and mathematical 

structures, the account implies that mathematics is successfully applied in the 

sciences, but in keeping with the spirit of deflationism no explanation is offered about 

how this is possible.  
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Suárez does not directly address the problem of style, but a minimalist answer 

emerges from what he says about representation. On the one hand he explicitly 

acknowledges that many different kinds of inferences are allowed by the second 

condition in Inferentialism 1. In the passage quoted above he mentions inductive, 

analogical and abductive inferences. This could be interpreted as the beginning of 

classification of representational styles. On the other hand, Suárez remains silent 

about what these kinds are and about how they can be analysed. This is unsurprising 

because spelling out what these inferences are, and what features of the model ground 

them, would amount to giving a substantial account, which is something Suárez wants 

to avoid.  

 

Let us now return to the question about the motivation for deflationism. As we have 

seen, a commitment to deflationism about the concept is central to Suárez’s approach 

to scientific representation. But deflationism comes in different guises, which Suárez 

illustrates by analogy with deflationism with respect to truth. Suárez (2015) 

distinguishes between the ‘redundancy’ theory (associated with Frank Ramsey and 

also referred to as the ‘no theory’ view), ‘abstract minimalism’ (associated with 

Crispin Wright) and the ‘use theory’ (associated with Paul Horwich). What all three 

are claimed to have in common is that they accept the disquotational schema – i.e. 

instances of the form: ‘P’ is true iff P. Moreover they ‘either do not provide an 

analysis in terms of necessary and sufficient conditions, or if they do provide such 

conditions, they claim them to have no explanatory purchase’ (ibid., p. 37).  

 

He claims that the redundancy theory of truth is characterised by the idea that ‘the 

terms ‘truth’ and ‘falsity’ do not admit a theoretical elucidation or analysis. But that, 

since they can be eliminated in principle – if not in practice – by disquotation, they do 

not in fact require such an analysis’ (ibid., p. 39). So, as Suarez characterises the 

position, the redundancy theory denies that any necessary and sufficient conditions 

for application of the truth predicate case be given. He argues that: ‘the generalization 

of this ‘no-theory theory’ for any given putative concept X is the thought that X 

neither possesses nor requires necessary and sufficient conditions because it is not in 

fact a ‘genuine’, explanatory or substantive concept’ (ibid). This motivates n-

deflationism. (Although one might ask why such a position would allow even 

necessary conditions. Suárez doesn’t discuss this.) 
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This approach faces a number of challenges. First, the argument is based on the 

premise that if deflationism is good for truth it must be good for representation. This 

premise is assumed tacitly. There is, however, a question whether the analogy 

between truth and representation is sufficiently robust to justify subjecting them to the 

same theoretical treatment. Surprisingly, Suárez offers little by way of explicit 

argument in favour of any sort of deflationary account of epistemic representation. In 

fact, the natural analogue of the linguistic notion of truth is accurate epistemic 

representation, rather than epistemic representation itself, which may be more 

appropriately compared with linguistic meaning. Second, the argument insinuates that 

deflationism is the correct analysis of truth. This, however, is far from an established 

fact. Different positions are available in the debate and whether deflationism (or any 

specific version of it) is superior to other proposals remains a matter of controversy 

(see, for instance, Künne’s (2003)). But as long as it’s not clear that deflationism 

about truth is a superior position, it’s hard to see how one can muster support for 

deflationism about representation by appealing to deflationism about truth.  

 

Moreover, a position that allows only necessary conditions on epistemic 

representation faces a serious problem. While such an account allows us to rule out 

certain scenarios as instances of epistemic representation (for example a proper name 

doesn’t allow for a competent and well informed language user to draw any specific 

inferences about its bearer and Callender and Cohen’s salt-shaker doesn’t allow a user 

to draw any specific inferences about Madagascar), the lack of sufficient conditions 

doesn’t allow us to rule in any scenario as an instance of epistemic representation. So 

on the basis of Inferentialism 1 we are never in position to assert that a particular 

model actually is a representation, which is an unsatisfactory situation.  

 

The other two deflationary positions in the debate over truth are abstract minimalism 

and the use theory. Suárez characterises the use theory as being based on the idea that 

‘truth is nominally a property, although not a substantive or explanatory one, which is 

essentially defined by the platitudes of its use of the predicate in practice (2015, p. 

40). Abstract minimalism is presented as the view that while truth is ‘legitimately a 

property, which is abstractly characterized by the platitudes, it is a property that 

cannot explain anything, in particular it fails to explain the norms that govern its very 
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use in practice’ (ibid., p. 40). Both positions imply that necessary and sufficient 

conditions for truth can be given (ibid.). But on either account, such conditions only 

capture non-explanatory surface features. This motivates s-deflationism.  

 

Since s-deflationism explicitly allows for necessary and sufficient conditions, 

Inferentialism 1 can be extended to an instance of the ER-scheme, providing 

necessary and sufficient conditions (which also seems to be in line with Suárez and 

Solé (2006, p. 41) who provide a formulation of inferentialism with a biconditional): 

 

Inferentialism 2: A scientific model M represents a target T iff (i) the representational 

force of M points towards T, and (ii) M allows competent and informed agents to 

draw specific inferences regarding T. 

 

If one takes conditions (i) and (ii) to refer to ‘features of activates within a normative 

practise, [that] do not stand for relations between sources and targets’ (Suárez 2015, 

p. 46), then we arrive at a ‘use-based’ account of epistemic representation. In order to 

understand a particular instance of a model M representing a target T we have to 

understand how scientists go about establishing that M’s representational force points 

towards T, and the inferential rules, and particular inferences from M to T, they use 

and make.   

 

Plausibly, such a focus on practice amounts to looking at the inferential rules 

employed in each instance, or type of instance, of epistemic representation. This, 

however, raises a question about the status of any such analysis vis-à-vis the general 

theory of representation as given in Inferentialism 2. There seem to be two options. 

The first is to affirm Inferentialism 2’s status as an exhaustive theory of 

representation. This, however, would imply that any analysis of the workings of a 

particular model would fall outside the scope of a theory of representation because 

any attempt to address Contessa’s objection would push the investigation outside the 

territory delineated by s-deflationism. Such an approach seems to be overly purist. 

The second option is to understand Inferentialism 2 as providing abstract conditions 

that require concretization in each instance of epistemic representation (abstraction 

can here be understood, for instance, in Cartwright’s (1999) sense). Studying the 

concrete realisations of the abstract conditions is then an integral part of the theory. 
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This approach seems plausible, but it renders deflationism obsolete. Thus understood, 

the view becomes indistinguishable from a theory that accepts the Surrogative 

Reasoning Condition and the Requirement of Directionality as conditions of adequacy 

and analyses them in pluralist spirit, that is, under the assumption that these 

conditions can have different concrete realisers in different contexts. But this 

programme can be carried out without ever mentioning deflationism.  

 

One might reply that the first option unfairly stacks the deck against inferentialism 

and point out that different inferential practices can be studied within the inferentialist 

framework. One way of making good on this idea would be to submit that the 

inferences from models to their targets should be taken as conceptually basic, denying 

that they need to be explained; in particular, denying that they need to be grounded by 

any (possibly varying) relation(s) that might hold between models and their targets. 

Such an approach is inspired by Brandom’s inferentialism in the philosophy of 

language where the central idea is to reverse the order of explanation from 

representational notions – like truth and reference – to inferential notions – such as 

the validity of argument (1994; 2000). Instead, we are urged to begin from the 

inferential role of sentences (or propositions, or concepts, and so on) – that is the role 

that they play in providing reasons for other sentences (or propositions etc.), and 

having such reasons provided for them – and from this reconstruct their 

representational aspects.  

 

Such an approach is developed by de Donato Rodríguez and Zamora Bonilla (2009) 

and seems like a fruitful route for future research, but for want of space we will not 

discuss it in detail here. There is no evidence that Suarez would endorse such an 

approach. And, more worrying for Inferentialism 2, it is not clear whether such an 

approach would satisfy s-deflationism. Each investigation into the inferential rules 

utilised in each instance, or type of instance of epistemic representation will likely be 

a substantial (possibly sociological or anthropological) project. Thus the s-

deflationary credentials of the approach – at least if they are taken to require that 

nothing substantial can be said about scientific representation in each instance, as well 

as in general – are called into question.  
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Finally, if the conditions in Inferentialism 2 are taken to be abstract platitudes then we 

arrive at an abstract minimalism. Although Inferentialism 2 defines the concept of 

epistemic representation, the definition does not suffice to explain the use of any 

particular instance of epistemic representation for: ‘on the abstract minimalism here 

considered, to apply this notion to any given concrete case of representation requires 

that some additional relation obtains between [M] and [T], or a property of [M] or [T], 

or some other application condition’ (Suárez 2015, p. 48; cf. Suárez and Solé 2006). 

Hence, according to this approach representational force and inferential capacity are 

taken to be abstract platitudes that suffice to define the concept of scientific 

representation. However, because of their level of generality, they fail to explain any 

particular instance of it. To do this requires reference to additional features that vary 

from case to case. These other conditions can be ‘isomorphism or similarity’ and they 

‘would need to obtain in each concrete case of representation’ (Suárez 2015, p. 45) 

(cf. (Suárez 2004, p. 776), (Suárez 2004, p. 773) and (Suárez and Solé 2006, p. 43)). 

These extra conditions are called the means of representation, the relations that 

scientists exploit in order to draw inferences about targets from their models, and are 

to be distinguished from conditions (i) and (ii), the constituents of representation, that 

define the concept (Suárez 2003, p. 230; 2010, pp. 93-94; 2015, p. 46; Suárez and 

Solé 2006, p. 43). We are told that the means cannot be reduced to the constituents 

but that ‘all representational means (such as isomorphism and similarity) are concrete 

instantiations, or realisations, of one of the basic platitudes that constitute 

representation’ (Suárez and Solé 2006, p. 43) and that ‘there can be no application of 

representation without the simultaneous instantiation of a particular set of properties 

of [M] and [T], and their relation’ (Suárez and Solé 2006, p. 44). 

 

Such an approach amounts to using conditions (i) and (ii) to answer the ER-problem, 

but again with the caveat that they are abstract conditions that require concretisation 

in each instance of epistemic representation. In this sense it is immune to Contessa’s 

objection about the ‘mysterious’ capacity that models have to licence about their 

targets. They do so in virtue of more concrete relations that hold between models and 

their targets, albeit relations that vary from case to case. The key question facing this 

account is to fill in the details about what sort of relations concretise the abstract 

conditions. But we are now facing a similar problem as the above. Even if s-

deflationism applies to epistemic representation in general, an investigation into each 
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specific instance of will involve uncovering substantial relations that hold between 

models and their targets, which again conflicts with Suárez‘s adherence to deflationist 

approach.   

 

6.2 Inflating Inferentialism: Interpretation 

 

In response to difficulties like the above Contessa claims that ‘it is not clear why we 

should adopt a deflationary attitude from the start’ (2007, p. 50) and provides a 

‘interpretational account’ of scientific representation that is still, at least to some 

extent, inspired by Suárez’s account, but without being deflationary. Contessa claims: 

 

‘[t]he main difference between the interpretational conception […] and Suárez’s 

inferential conception is that the interpretational account is a substantial account — 

interpretation is not just a “symptom” of representation; it is what makes something 

an epistemic representation of a something else.’ (ibid., p. 48)  

 

To explain in virtue of what the inferences can be drawn, Contessa introduces the 

notion of an interpretation of a model, in terms of its target system as a necessary and 

sufficient condition on epistemic representation: 

 

Interpretation: ‘A scientific model M is an epistemic representation of a certain target 

T (for a certain user) if and only if the user adopts an interpretation of M in terms of 

T.’ (Contessa 2007, p. 57; see also Contessa 2011, pp. 126-127) 

 

Contessa offers a detailed formal characterisation of an interpretation, which we 

cannot repeat here for want of space (see (Contessa 2007, pp. 57-62) for details). The 

leading idea is that the model user first identifies a set of relevant objects in the 

model, and a set of properties and relations these objects instantiate, along with a set 

of relevant objects in the target and a set of properties and relations these objects 

instantiate. The user then (a) takes M to denote T; (b) takes every identified object in 

the model to denote exactly one object in the target (and every relevant object in the 

target has to be so denoted and as a result there is a one-to-one correspondence 

between relevant objects in the model and relevant objects in the target); (c) takes 

every property and relation in the model to denote a property or relation of the same 
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arity in the target (and, again, and every property and relation in the target has to be so 

denoted and as a result there will be one-to-one correspondence between relevant 

properties and relations in the model and target). A formal rendering of these 

conditions is what Contessa calls an ‘analytic interpretation’ (he also includes an 

additional condition pertaining to functions in the model and target, which we 

suppress for brevity). The relationship between interpretations and the surrogative 

reasoning mentioned above is that it is in virtue of the user adopting an analytic 

interpretation that a model licences inferences about its target.  

 

At first sight Contessa’s interpretation may appear to be equivalent to setting up an 

isomorphism between model and target. This impression is correct in as far as an 

interpretation requires that there be a one-to-one correspondence between relevant 

elements and relations in the model and the target. However, unlike the isomorphism 

view, Contessa’s interpretations are not committed to models being structures, and 

relations can be interpreted full fledged relations rather than purely extensionally 

specified sets of tuples.  

 

Interpretation is a non-deflationary account of scientific representation: most (if not 

all) instances of scientific representation involve a model user adopting an analytic 

interpretation towards a target. The capacity for surrogative reasoning is then seen as 

a symptom of the more fundamental notion of a model user adopting an interpretation 

of a model in terms of its target. For this reason the adoption of an analytical 

interpretation is a substantial sufficient condition on establishing the representational 

relationship. Contessa focuses on the sufficiency of analytic interpretations rather than 

their necessity and adds that he does ‘not mean to imply that all interpretation of 

vehicles [models] in terms of the target are necessarily analytic. Epistemic 

representations whose standard interpretations are not analytic are at least 

conceivable’ (Contessa 2007, p. 58). Even with this in mind, it is clear that he intends 

that there be some interpretation is a necessary condition on epistemic representation.  

 

Let’s now turn to how Interpretation fares with respect to our questions for an account 

of epistemic representation as set out in section 2. Modulo the caveat about non-

analytical interpretations, Interpretation provides necessary and sufficient conditions 

on epistemic representation and hence answers the ER-Problem. Furthermore, it does 
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so in a way that explains the directionality of representation: interpreting a model in 

terms of a target does not entail interpreting a target in terms of a model. 

 

Contessa does not comment on the applicability of mathematics but since his account 

shares with the structuralist account an emphasis on relations and one-to-one model-

target correspondence, Contessa can appeal to the same account of the applicability of 

mathematics as structuralist.  

 

With respect to the demarcation problem, Contessa is explicit that ‘[p]ortraits, 

photographs, maps, graphs, and a large number of other representational devices’ 

perform inferential functions (Contessa 2007, p. 54). Since nothing in the notion of an 

interpretation seems restricted to scientific models, it is plausible to regard 

Interpretation as a universal theory of epistemic representation (a conclusion that is 

also supported by the fact that Contessa (ibid.) uses the example of the London 

underground map to motivate his account; see also (Contessa 2011)). As such, 

Interpretation seems to deny the existence of a substantial distinction between 

scientific and non-scientific epistemic representations (at least in terms of their 

representational properties). It remains unclear how Interpretation addresses the 

problem of style. As we have seen earlier, in particular visual representations fall into 

different categories. It is a question for future research how these can be classified 

within the interpretational framework.  

 

With respect to the question of ontology, Interpretation itself places few constraints 

on what scientific models are, ontologically speaking. All it requires is that they 

consist of objects, properties, relations, and functions. For this reason our discussion 

in subsection 4.3 above rears its head again here. As before, how to apply 

Interpretation to physical models can be understood relatively easily. But how to 

apply it to non-physical models is less straightforward. Contessa (2010) distinguishes 

between mathematical models and fictional models, where fictional models are taken 

to be fictional objects. We briefly return to his ontological views in Section 7.  

 

In order to deal with the possibly of misrepresentation, Contessa notes that ‘a user 

does not need to believe that every object in the model denotes some object in the 

system in order to interpret the model in terms of the system’ (2007, p. 59). He 
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illustrates this claim with an example of contemporary scientists using the Aristotelian 

model of the cosmos to represent the universe, pointing out that ‘in order to interpret 

the model in terms of the universe, we do not need to assume that the sphere of fixed 

stars itself […] denotes anything in the universe’ (ibid.).  

 

From this example it is clear that the relevant sets of objects, properties and functions 

isolated in the construction of the analytic interpretation do not need to exhaust the 

objects, properties, relations, and functions of either the model or the target. The 

model user can identify a relevant proper subset in each instance. This allows 

Interpretation to capture the common practise of abstraction in scientific models: a 

model need only represent some features of its target, and moreover, the model may 

have the sort of ‘surplus’ features are not taken to represent anything in the target, i.e. 

that not all of a model’s features need to play a direct representational role. 

 

This suggestion bears some resemblance to partial structures, and it suffers from the 

same problem too. In particular distortive idealisations are a source of problems for 

Interpretation, as several commentators have observed (cf. Shech’s (2014) and 

Bolinska’s (2013)). Contessa is aware of this problem and illustrates it with the 

example of a massless string. His response to the problem is to appeal to a user’s 

corrective abilities: ‘Since models often misrepresent some aspect of the system or 

other, it is usually up to the user’s competence, judgment, and background knowledge 

to use the model successfully in spite of the fact that the model misrepresents certain 

aspects of the system.’ (Contessa 2007, p. 60) This is undoubtedly true, but it is 

unclear how such a view relates, or even derives from, Interpretation. An appeal to 

the competence of users seems to be an ad hoc move that has no systematic grounding 

in the idea of an interpretation, and it is an open question how the notion of an 

interpretation could be amended to give distortive idealisations a systematic place.  

 

Ducheyne (2012) provides a variant of Interpretation that one might think could be 

used to accommodate these distortive idealisations. The details of the account, which 

we won’t state precisely here for want of space, can be found in (Ducheyne 2012, pp. 

83-86). The central idea is that each relevant relation specified in the interpretation, 

holds precisely in the model, and corresponds to the same relation that holds only 

approximately (with respect to a given purpose) in the target. For example, the low 
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mass of an actual pendulum’s string approximates the masslessness of the string in the 

model. The one-to-one correspondence between (relevant) objects and relations in the 

model and target is retained, but the notion of a user taking relations in the model to 

denote relations in the target, is replaced with the idea that the relations in the target 

are approximations of the ones they correspond to. Ducheyne calls this the Pragmatic 

Limiting Case account of scientific representation (the pragmatic element comes from 

the fact that the level of approximation required is determined by the purpose of the 

model user).  

 

However, if this account is to succeed in explaining how distortive idealisations are 

scientific representations, then more needs to be said about how a target relation can 

‘approximate’ a model relation. Ducheyne implicitly relies on the fact that relations 

are such that ‘we can determine the extent to which [they hold] empirically’ (2012, p. 

83, emphasis added). This suggests that he has quantifiable relations in mind, and that 

what it means for a relation r in the target to approximate a relation r’ in the model is 

a matter of comparing numerical values, where a model user’s purpose determines 

how close they must be if the former is to count as an approximation of the latter. But 

whether this exhausts the ways in which relations can be approximations remains 

unclear. Hendry (1998), Laymon (1990), Liu (1999), Norton (2012), and Ramsey 

(2006), among others, offer discussions of different kinds of idealisations and 

approximations, and Ducheyne would have to make it plausible that all these can be 

accommodated in his account.  

 

More importantly, Ducheyne’s account has problems dealing with misrepresentations. 

Although it is designed to capture models that misrepresent by being approximations, 

of their targets, it remains unclear how it deals with models that are outright mistaken. 

For example, it seems a stretch to say that Thomson’s model of the atom (now 

derogatively referred to as the ‘plum pudding model’) is an approximation of what the 

quantum mechanical shell model tells us about atoms, and it seems unlikely that there 

is a useful sense in which the relations that hold between electrons in Thomson’s 

model ‘approximate’ those that hold in reality. But this does not mean that it is not a 

scientific representation of the atom; it’s just an incorrect one. It does not seem to be 

the case that all cases of scientific misrepresentation are instances where the model is 

an approximation of the target (or even conversely, it is not clear whether all instances 
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of approximation need to be considered cases of ‘misrepresentation’ in the sense that 

they licence falsehoods about their targets).  

 

6.3 The DDI Account 

 

Our final account is Hughes’ Denotation, Demonstration, and Interpretation (DDI) 

account of scientific representation (1997; 2010, Ch. 5). This account has inspired 

both the inferential (see Suárez’s (2004, p. 770) and (2015)) and the interpretational 

account (see Contessa’s (2011, p. 126)) discussed in this section. 

 

Quoting directly from Goodman (1976, p. 5), Hughes takes a model of a physical 

system to ‘be a symbol for it, stand for it, refer to it’ (Hughes 1997, p. 330). 

Presumably the idea is that a model denotes its target it the same way that a proper 

name denotes its bearer, or, stretching the notion of denotation slightly, a predicate 

denote elements in its extension. (Hughes (1997, p. 330) notes that there is an 

additional complication when the model has multiple targets but this is not specific to 

the DDI account and is discussed in more detail in Section 8.) This is the first ‘D’ in 

‘DDI’. What makes models epistemic representations and thereby distinguishes them 

from proper names, are the demonstration and interpretation conditions.  

 

The demonstration condition, the second ‘D’ in ‘DDI’, relies on a model being a 

‘secondary subject that has, so to speak, a life of its own. In other words, [a] 

representation has an internal dynamic whose effects we can examine’ (1997, p. 331) 

(that models have an ‘internal dynamic’ is all that Hughes has to say about the 

problem of ontology). The two examples offered by Hughes are both models of what 

happens when light is passed through two nearby slits. One model is mathematical 

where the internal dynamics are ‘supplied by the deductive, resources of the 

mathematics they employ’ (ibid.), the other is a physical ripple chamber where they 

are supplied by ‘the natural processes involved in the propagation of water waves’ 

(ibid., p. 332).  

 

Such demonstrations, on either mathematical models or physical models are still 

primarily about the models themselves. The final aspect of Hughes’ account – the ‘I’ 

in ‘DDI’ – is interpretation of what has been demonstrated in the model in terms of 
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the target system. This yields the predictions of the model (ibid., p. 333). 

Unfortunately Hughes has little to say about what it means to interpret a result of a 

demonstration on a model in terms of its target system, and so one has to retreat to an 

intuitive (and unanalysed) notion of carrying over results from models to targets.  

 

Now Hughes is explicit that he is not attempting to answer the ER-problem, and that 

he does not even offer denotation, demonstration and interpretation as individually 

necessary and jointly sufficient conditions for scientific representation. He prefers the 

more ‘modest suggestion that, if we examine a theoretical model with these three 

activities in mind, we shall achieve some insight into the kind of representation that it 

provides’ (ibid., p. 339). 

 

We are not sure how to interpret Hughes’ position in light of this. On one reading, he 

can be seen as describing how we use models. As such, DDI functions as a diachronic 

account of what a model user does when using a model in an attempt to learn about a 

target system. We first stipulate that the model stands for the target, then prove what 

we want to know, and finally ‘transfer’ the results obtained in the model back to the 

target. Details aside, this picture seems by and large correct. The problem with the 

DDI account is that it does not explain why and how this is possible. Under what 

conditions is it true that the model denotes the target? What kinds of things are 

models that they allow for demonstrations? How does interpretation work; that is, 

how can results obtained in the model be transferred to the target? These are questions 

an account of epistemic representation has to address, but which are left unanswered 

by the DDI account thus interpreted. Accordingly, DDI provides an answer to a 

question distinct from the ER-problem. Although a valuable answer to the question of 

how models are used, it does not help us to much here, since it presupposes the very 

representational relationship we are interested in between models and their targets. 

 

An alternative reading of Hughes’ account emerges when we consider the 

developments of the structuralist and similarity conceptions discussed previously, and 

the discussion of deflationism in subsection 6.1: perhaps the very act of using a 

model, with all the user intentions and practices that brings with it, constitutes the 

epistemic representation relationship itself. And as such, perhaps the DDI conditions 

could be taken as an answer to the ER-problem: 
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DDI-ER: A scientific model M represents a target T iff M denotes T, an agent (or 

collection of thereof) S exploits the internal dynamic of M to make demonstrations D, 

which in turn are interpreted by the agent (or collection of thereof) to be about T.  

 

This account comes very close to Interpretation as discussed in the previous 

subsection. And as such it serves to answer the questions we set out in Section 2 

above in the same way. But in this instance, the notion of what it means to ‘exploit an 

internal dynamic’ and ‘interpret the results’ of this to be about T need further 

explication. If ‘interpretation’ is cashed out in the same way as Contessa’ analytic 

interpretation, then the account will be vulnerable to the same issues as those 

discussed previously. In another place Hughes endorses Giere’s semantic view of 

theories, which he characterises as connecting models to the target with a theoretical 

hypothesis (Hughes 1998, p. 121). This suggests that an interpretation is a theoretical 

hypothesis in this sense. If so, then Hughes’s account collapses into a version of 

Giere’s. 

 

Given that Hughes describes his account as ‘designedly skeletal [and in need] to be 

supplemented on a case-by-case basis’ (Hughes 1997, p. 335), one option available is 

to take the demonstration and interpretation conditions to be abstract (in the sense of 

abstract minimalism discussed above), which require filling in each instance, or type 

of instance, of epistemic representation. As Hughes notes, his examples of the internal 

dynamics of mathematical and physical models are radically different with the 

demonstrations of the former utilizing mathematics, and the latter, physical properties 

such as the propagation of water waves. Similar remarks apply to the interpretation of 

these demonstrations, as well as to denotation. But as with Suárez’s account, the 

definition sheds little light on the problem at hand as long as no concrete realisations 

of the abstract conditions are discussed. Despite Hughes’ claims to the contrary, such 

an account could prove a viable answer the ER-problem, and it seems to capture much 

of what is valuable about both the abstract minimalist version of Inferentialism 2 as 

well as Interpretation discussed above.  

 

7. The Fiction view of Models 
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In this section we discuss a number of recent attempts to analyse scientific modelling 

by drawing an analogy with literary fiction. We begin by introducing the leading 

ideas and differentiating between different strands of argument. We then examine a 

number of accounts that analyse epistemic representation against the backdrop of 

literary fiction. We finally discuss criticisms of the fiction view.  

 

7.1 Models and Fiction 

 

Scientific discourse is rife with passages that appear to be descriptions of systems in a 

particular discipline, and the pages of textbooks and journals are filled with 

discussions of the properties and the behaviour of those systems. Students of 

mechanics investigate at length the dynamical properties of a system consisting of 

two or three spinning spheres with homogenous mass distributions gravitationally 

interacting only with each other. Population biologists study the evolution of one 

species that reproduces at a constant rate in an unchanging environment. And when 

studying the exchange of goods, economists consider a situation in which there are 

only two goods, two perfectly rational agents, no restrictions on available 

information, no transaction costs, no money, and dealings are done immediately. 

Their surface structure notwithstanding, no one would mistake descriptions of such 

systems as descriptions of an actual system: we know very well that there are no such 

systems (of course some models are actual systems – a scale model of a car in a wind 

tunnel for example – but in this section we focus on models that are not of this kind). 

Scientists sometimes express this fact by saying that they talk about ‘model-land’ 

(see, for instance, (Smith 2007, p. 135)).  

 

Thomson-Jones (2010, p. 284) refers to such a description as a ‘description of a 

missing system’. These descriptions are embedded in what he calls the ‘face value 

practice’ (ibid. p. 285): the practice of talking and thinking about these systems as if 

they were real. We observe that the amplitude of an ideal pendulum remains constant 

over time in much the same way in which we say that the moon’s mass is 

approximately 7.34×10
22

kg. Yet the former statement is about a point mass suspended 

from a massless string – and there is no such thing in the world.   

 



	   79 

The face value practice raises a number of questions. What account should be given 

of these descriptions and what sort of objects, if any, do they describe? How should 

we analyse the face value practice? Are we putting forward truth-evaluable claims 

when putting forward descriptions of missing systems? An answer to these questions 

emerges from the following passage by Peter Godfrey-Smith: 

 

‘[…] I take at face value the fact that modelers often take themselves to be describing imaginary 

biological populations, imaginary neural networks, or imaginary economies. […] Although 

these imagined entities are puzzling, I suggest that at least much of the time they might be 

treated as similar to something that we are all familiar with, the imagined objects of literary 

fiction. Here I have in mind entities like Sherlock Holmes’ London, and Tolkein’s Middle 

Earth. […] the model systems of science often work similarly to these familiar fictions.’ (2006, 

p. 735) 

 

This is the core of the fiction view of models: models are akin to places and 

characters in literary fiction. When modelling the solar system as consisting of ten 

perfectly spherical spinning tops physicists describe (and take themselves to describe) 

an imaginary physical system; when considering an ecosystem with only one species 

biologists describe an imaginary population; and when investigating an economy 

without money and transaction costs economists describe an imaginary economy. 

These imaginary scenarios are tellingly like the places and characters in works of 

fiction like Madame Bovary and Sherlock Holmes.  

 

Although hardly at the centre of attention, the parallels between certain aspects of 

science and literary fiction have not gone unnoticed. Maxwell discussed in great detail 

the motion of a ‘purely imaginary fluid’ in order to understand the electromagnetic 

field (Niven 1965, pp. 159-160). The parallel between science and fiction occupied 

centre stage in Vaihinger’s (1911/1924) philosophy of the ‘as if’. More recently, the 

parallel has also been drawn specifically between models and fiction. Cartwright 

observes that ‘a model is a work of fiction’ (1983, p. 153) and later suggests an 

analysis of models as fables (1999, Ch. 2). McCloskey (1990)	   emphasises the 

importance of narratives and stories in economics. Fine notes that modelling natural 

phenomena in every area of science involves fictions in Vaihinger’s sense (Fine 1993, 

p. 16), and Sklar highlights that describing systems ‘as if’ they were systems of some 

other kind is a royal route to success (2000, p. 71). Elgin (1996, Ch. 6) argues that 
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science shares important epistemic practices with artistic fiction. Hartmann (1999) 

and Morgan (2001) emphasise that stories and narratives play an important role in 

models, and Morgan (2004) stresses the importance of imagination in model building. 

Sugden (2000) points out that economic models describe ‘counterfactual worlds’ 

constructed by the modeller. Frigg (2003) and (2010) suggests that models are 

imaginary objects, and Grüne-Yanoff and Schweinzer (2008) emphasise the 

importance of stories in the application of game theory. Toon (2010) and (2012) has 

formulated an account of representation based on a theory of literary fiction.  

Contessa (2010) provides a fictional ontology of models and Levy (2012), (2015) 

discusses models as fictions.  

 

But simply likening modelling to fiction does not solve philosophical problems. 

Fictional discourse and fictional entities face well-known philosophical questions, and 

hence explaining models in terms of fictional characters seems to amount to little 

more than to explain obscurum per obscurius. The challenge for proponents of the 

fiction view is to show that drawing an analogy between models and fiction has 

heuristic value.  

 

A first step towards making the analogy productive is to get clear on what the 

problem is that the appeal to fiction is supposed to solve. This issue divides 

proponents of the fiction view into two groups. Authors belonging to the first camp 

see the analogy with fiction as providing an answer to the Problem of Ontology. 

Models, on that view, are ontologically on par with literary fiction while there is no 

productive parallel between models and fiction as far as the ER-Problem (or indeed 

any other problem of representation) is concerned. Authors belonging to the second 

group hold the opposite view. They see the analogy with fiction first and foremost as 

providing an answer to the ER-Problem (although, as we have seen, this may place 

restrictions on the ontology of models). Scientific representation, on this view, has to 

be understood along the lines of how literary fiction relates to reality. Positions on 

ontology vary. Some authors in this group also adopt a fiction view of ontology; some 

remain agnostic about the analogy’s contribution to the matters of ontology; and some 

reject the Problem of Ontology altogether.  
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This being a review of models and representation, we refer the reader to Gelfert’s 

contribution to this book for an in-depth discussion of the ontology of models (Gelfert 

forthcoming), and focus on the fiction view’s contribution to semantics. Let us just 

note that those who see fiction as providing an ontology of models are spoilt for 

choice. In principle every option available in the extensive literature on fiction is a 

candidate for an ontology of models; for reviews of these options see Friend’s (Friend 

2007) and Salis’ (Salis). Different authors have made different choices, with 

proposals being offered by Contessa (2010), Ducheyne (2008), Frigg (2010), 

Godfrey-Smith (2009), Levy (2015), and Sugden (2009). Cat (2012), Liu (2012; 

2015), Pincock (2012, Ch. 12), Thomson-Jones (2010) and Toon (2012) offer critical 

discussions of some of these approaches.  

  

Even if these ontological problems were settled in a satisfactory manner, we would 

not be home and dry yet. Vorms (2011; 2012) argues that what’s more important than 

the entity itself is the format in which the entity is presented. A fiction view that 

predominantly focuses on understanding the fictional entities themselves (and, once 

this task is out of the way, their relation to the real-world targets), misses an important 

aspect, namely how agents draw inferences from models. This, Vorms submits, 

crucially depends on the format under which they are presented to scientists, and 

different formats allow scientists to draw different inferences. This ties in with 

Knuuttila’s insistence that we ought to pay more attention to the ‘medium of 

representation’ when studying models (2005; 2011).  

 

One last point stands in need of clarification: the meaning of the term ‘fiction’. 

Setting aside subtleties that are irrelevant to the current discussion, the different uses 

of ‘fiction’ fall into two groups: fiction as falsity and fiction as imagination (Frigg 

2010`). Even though not mutually exclusive, the senses should be kept separate. The 

first use of ‘fiction’ characterises something as deviating from reality. We brand 

Peter’s account of events a fiction if he does not report truthfully how things have 

happened. In the second use, ‘fiction’ refers to a kind of literature, literary fiction. 

Rife prejudice notwithstanding, the defining feature of literary fiction is not falsity. 

Neither is everything that is said in, say, a novel untrue (novels like War and Peace 

contain correct historical information); nor does every text containing false reports 

qualify as fiction (a wrong news report or a faulty documentary do not by that token 
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turn into fiction – they remain what they are, namely wrong factual statements). What 

makes a text fictional is the attitude that the reader is expected to adopt towards it. 

When reading a novel we are not meant to take the sentences we read as reports of 

fact; rather we are supposed to imagine the events described.  

 

It is obvious from what has been said so far that the fiction view of models invokes 

the second sense of ‘fiction’. Authors in this tradition do not primarily intend to brand 

models as false; they aim to emphasise that models are presented as something to 

ponder. This is not to say the first sense of fiction is irrelevant in science. 

Traditionally fictions in that sense have been used as calculational devices for 

generating predictions, and recently Bokulich (2009) emphasised the explanatory 

function of fictions. The first sense of fiction is also at work in philosophy where 

antirealist positions are described as fictionalism. For instance, someone is a 

fictionalist about numbers if she thinks that numbers don’t exist (see Kalderon (2005) 

for a discussion of several fictionalisms of this kind). Scientific anti-realists are 

fictionalists about many aspects of scientific theories, and hence Fine characterises 

fictionalism as an ‘antirealist position in the debate over scientific realism’ (Fine 

1998) cf. (Fine; 2009), a position echoed in Winsberg (2009) and Suárez (2009). 

Morrison (2009) and Purves (2013) and offer critical discussions of this approach, 

which the latter calls fiction as ‘truth conducive falsehood’ (ibid., p. 236); Woods 

(2014) offers a critical assessment of fictionalism in general. Although there are 

interesting discussions to be had about the role that this kind of fictions play in the 

philosophy of science, it is not our interest here.  

 

7.2 Direct Representation  

 

In this subsection and the next we discuss proposals that have used the analogy 

between models and fiction to elucidate representation.  

  

Most theories of representation we have encountered so far posit that there are model 

systems and construe epistemic representation as a relation between two entities, the 

model system and the target system. Toon calls this the indirect view of 

representation (2012, p. 43); Levy, speaking specifically about the fiction view of 

models, refers to it as the whole-cloth fiction view (2012, p. 741). Indeed, Weisberg 
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views this indirectness as the defining feature of modelling (2007). This view faces 

the problem of ontology because it has to say what kind of things model systems are. 

This view contrasts with what Toon (, p. 43) and Levy (2015, p. 790) call a direct 

view of representation (Levy (2012, p. 741) earlier also referred to it as the worldly 

fiction view). This view does not recognise model systems and aims instead to explain 

epistemic representation as a form of direct description. Model descriptions (like the 

description of an ideal pendulum) provide an ‘imaginative description of real things’ 

(Levy 2012, p. 741) such as actual pendula, and there is no such thing as a model 

system of which the pendulum description is literally true (Toon 2012, pp. 43-44). In 

what follows we use Toon’s terminology and refer to this approach as ‘direct 

representation’.  

 

Toon and Levy both reject the indirect approach because of metaphysical worries 

about fictional entities, and they both argue that the direct view has the considerable 

advantage that it does not have to deal with the vexed problem of the ontology of 

model systems and their comparison with real things at all. Levy (2015, p. 790) sees 

his approach as ‘largely complimentary to Toon’s’. So we first discuss Toon’s 

approach and then turn to Levy’s.  

 

Toon (2010; 2010; 2012) takes as his point of departure Walton’s (1990) theory of 

representation in the arts. At the heart of this theory is the notion of a game of make-

believe. The simplest examples of these games are children’s plays (ibid., p. 11). In 

one such play we imagine that stumps are bears and if we spot a stump we imagine 

that we spot a bear. In Walton’s terminology the stumps are props, and the rule that 

we imagine a bear when we see a stump is a principle of generation. Together a prop 

and a principle of generation prescribe what is to be imagined. If a proposition is so 

prescribed to be imagined, then the proposition is fictional in the relevant game. The 

term ‘fictional’ has nothing to do with falsity; on the contrary, it indicates that the 

proposition is ‘true in the game’. The set of propositions actually imagined by 

someone need not coincide with the set of all fictional propositions in game. It could 

be the case that there is a stump somewhere that no one has seen and hence no one 

imagines that it’s a bear. Yet the proposition that the unseen stump is a bear is 

fictional in the game.  
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Walton considers a vast variety of different props. In the current context two kinds of 

props are particularly important. The first are objects like statues. Consider a statue 

showing Napoleon on horseback (Toon 2012, p. 37). The statue is the prop, and the 

games of make-believe for it are governed by certain principles of generation that 

apply to statues of this kind. So when seeing the statue we are mandated to imagine, 

for instance, that Napoleon has a certain physiognomy and certain facial expressions. 

We are not mandated to imagine that Napoleon was made of bronze, or that he hasn’t 

moved for more than 100 years.   

 

The second important kind of props are works of literary fiction. In this case the text 

is the prop, which together with principles of generation appropriate for literary 

fictions of a certain kind, generates fictional truths by prescribing readers to imagine 

certain things. For instance, when reading The War of the Worlds (ibid., p. 39) we are 

prescribed to imagine that the dome of St Paul’s Cathedral has been attacked by aliens 

and now has a gaping hole on its western side.  

 

In Walton’s theory something is a representation if it has the social function of 

serving as a prop in a game of make believe, and something is an object of a 

representation if the representation prescribes us to imagine something about the 

object (ibid., p. 35, 39). In the above examples the statue and the written text are the 

props, and Napoleon and St Paul’s Cathedral, respectively, are the objects of the 

representations.  

 

The crucial move now is to say that models are props in games of make believe. 

Specifically, material models – such as an architectural model of the Forth Road 

Bridge – are like the statue of Napoleon (ibid., p. 37): the model is the prop and the 

Bridge is the object of the representation.  The same observation applies to theoretical 

models, such as a mechanical model of a bob bouncing on a spring. The model 

portrays the bob as a point mass and the spring as perfectly elastic. The model 

description represents the real ball and spring system in the same way in which a 

literary text represents its objects (ibid., pp. 39-40): the model description prescribes 

imaginings about the real system – we are supposed to imagine the real spring as 

perfectly elastic and the bob as a point mass. 
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We now see why Toon’s account is a direct view of modelling. Theoretical model 

descriptions represent actual concrete objects: the Forth Road Bridge and the bob on a 

spring. There is no intermediary entity of which model descriptions are literally true 

and which are doing the representing. Models prescribe imaginings about a real world 

target, and that is what representation consists in.  

 

This is an elegant account of representation, but it is not without problems. The first 

issue is that it does not offer an answer to the ER-Problem. Imagining that the target 

has a certain feature does not tell us how the imagined feature relates to the properties 

the target actually has, and so there is no mechanism to transfer model results to the 

target. Imagining the pendulum bob to be a point mass tells us nothing about which, if 

any, claims about point masses are also true of the real bob. Toon mentions this 

problem briefly. His response is that  

 

‘principles of generation often link properties of models to properties of the system they 

represent in rather direct way. If the model has a certain property then we are to imagine that 

system does too. If the model is accurate, then the model and the system will be similar in this 

respect. […] [But] not all principles of generation are so straightforward. […] In some cases 

similarity seems to play no role at all.’ (ibid., pp. 68-69) 

 

In as far as the transfer mechanism is similarity, the view moves close to the 

similarity view, which brings with it both some of the benefits and the problems we 

have discussed in Section 4. The cases in which similarity plays no role are left 

unresolved and it remains unclear how surrogative reasoning with such models is 

supposed to happen. 

 

The next issue is that not all models have a target system, which is a serious problem 

for a view that analyses representation in terms of imagining something about a 

target. Toon is well aware of this issue and calls them models without objects (ibid., p. 

76). Some of these are models of discredited entities like the ether and phlogiston, 

which were initially thought to have a target but then turned out not to have one (ibid., 

p. 76). But not all models without objects are errors: architectural plans of buildings 

that are never built or models of experiments that are never carried out fall into the 

same category (ibid., p. 76). 
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Toon addresses this problem by drawing another analogy with fiction. He points out 

that not all novels are like The War of the Worlds, which has an object. Passages from 

Dracula, for instance, ‘do not represent any actual, concrete object but are instead 

about fictional characters’ (ibid., p. 54). Models without a target are like passages 

from Dracula. So the solution to the problem is to separate the two cases neatly. 

When a model has target then it represents that target by prescribing imaginings about 

the target; if a model has no target it prescribes imaginings about a fictional character 

(ibid., p. 54). 

 

Toon immediately admits that models without targets ‘give rise to all the usual 

problems with fictional characters’ (ibid., p. 54). However, he seems to think that this 

is a problem we can live with because the more important case is the one where 

models do have a target, and his account offers a neat solution there. He offers the 

following summative statement of his account (ibid., p. 62):  

 

Direct Representation: A scientific model M represents a target system T iff M 

functions as prop in game of make-believe. 

 

This definition takes it to be understood that the imaginings prescribed are about the 

target T if there is a target, and about a fictional character if there isn’t because there 

need not be any object that the model prescribes imaginings about’ (ibid., p. 81).  

 

This bifurcation of imaginative activities raises questions. The first is whether the 

bifurcation squares with the face value practice. Toon’s presentation would suggest 

that the imaginative practices involved in models with targets are very different from 

the ones involved in models without them. Moreover, they require a different analysis 

because imagining something about an existing object is different from imagining 

something about a fictional entity. This, however, does not seem to sit well with 

scientific practice. In some cases we are mistaken: we think that the target exists but 

then find out that it doesn’t (as in the case of phlogiston). But does that make a 

difference to the imaginative engagement with a phlogiston model of combustion? 

Even today we can understand and use such models in much the same way as its 

original protagonists did, and knowing that there is no target seems to make little, if 
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any, difference to our imaginative engagement with the model. Of course the presence 

or absence of a target matters to many other issues, most notably surrogative 

reasoning (there is nothing to reason about if there is no target!), but it seems to have 

little importance for how we imaginatively engage with the scenario presented to us in 

a model.  

 

In other cases it is simply left open whether there is target when the model is 

developed. In elementary particle physics, for instance, a scenario is often proposed 

simply as a suggestion worth considering and only later, when all the details are 

worked out, the question is asked whether this scenario bears an interesting relation to 

what happens in nature, and if so what the relation is. So, again, the question of 

whether there is or isn’t a target seems to have little, if any, influence on the 

imaginative engagement of physicists with scenarios in the research process. This 

does not preclude different philosophical analyzes being given of modeling with and 

without a target, but any such analysis will have to make clear the commonalities 

between the two.  

 

Let us now turn to a few other aspects of Direct Representation. The view 

successfully solves the problem of asymmetry. Even if it uses similarity in response to 

the ER-Problem, the imaginative process is clearly directed towards the target. An 

appeal to imagination also solves the problem of misrepresentation because there is 

no expectation that or imaginations are correct when interpreted as statements about 

the target. Given its roots in a theory of representation in art, it’s natural to renounce 

any attempts to demarcate scientific representation from other kinds of representation 

(ibid., p. 62). The Problem of Ontology is dispelled for representations with an object, 

but it remains unresolved for representations without one. However, Direct 

Representation offers at best a partial answer to the ER-Problem, and nothing is said 

about either the Problem of Style and or Standards of Accuracy. Similarly, Toon 

remains silent about the applicability of mathematics.  

 

Levy also rejects an indirect view primarily because of the unwieldiness of its 

ontology and endorses a direct view of representation (2012, pp. 744-747; 2015, pp. 

780-790). Like Toon, he develops his version of the direct view by appeal to Walton’s 

notion of prop oriented make believe. When, for instance, we’re asked where in Italy 
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the town of Crotone lies, we can be told that it’s in the arch of the Italian boot. In 

doing so we are asked to imagine something about the shape of Italy and this 

imagination is used to convey geographical information. Levy then submits that ‘we 

treat models as games of prop oriented make-believe’ (2012, p. 791). Hence 

modelling consists in imagining something directly about the target.  

 

Levy pays careful attention to the ER-Problem. In his (2012, p. 744) he proposed that 

the problem be conceptualised in analogy with metaphors, but immediately added that 

this was only a beginning which requires substantial elaboration. In his (2015, pp. 

792-796) he takes a different route and appeals to Yablo’s (2014) theory of partial 

truth. The core idea of this view is that a statement is partially true ‘if it is true when 

evaluated only relative to a subset of the circumstances that make up its subject matter 

– the subset corresponding to the relevant content-part’ (Levy 2015, p. 792). Levy 

submits that this will also work for a number of cases of modelling, but immediately 

adds that there are other sorts of cases that don’t fit the mould (ibid., p. 794). Such 

cases often are ones in which distortive idealisations are crucial and cannot be set 

aside. These require a different treatment and it’s an open question what this 

treatment would be.  

 

Levy offers a radical solution to the problem of models without targets: there aren’t 

any! He first broadens the notion of a target system, allowing for models that are only 

loosely connected to targets (ibid., pp. 796-797). To this end he appeals to Godfrey-

Smith’s notion of ‘hub-and-spoke’ cases: families of models where only some have a 

target (which makes them the hub models) and the others are connected to them via 

conceptual links (spokes) but don’t have specific target. Levy points out that such 

cases should be understood as having a generalised target. If something that looks 

like a model doesn’t meet the requirement of having even a generalised target, then 

it’s not a model at all. Levy mentions structures like the game of life and observes that 

they are ‘bits of mathematics’ rather than models (ibid., p. 797). This eliminates the 

need for fictional characters in the case of targetless models.  

 

This is a heroic act of liberation, but questions about it remain. The direct view 

renders fictional entities otiose by positing that a model is nothing but an act of 

imagining something about a concrete actual thing. But generalised targets are not 
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concrete actual things, and often not even classes of such things. There is a serious 

question whether one can still reap the (alleged) benefits of a view that analyses 

modelling as imaginings about concrete things, if the things about which we imagine 

something are no longer concrete. Population growth or complex behaviour are not 

concrete things like rabbits and stumps, and this would seems to pull the rug from 

underneath a direct approach to representation. Likewise, the claim that models 

without target are ‘just mathematics’ stands in need of further elucidation. Looking 

back at Toon’s examples of such models, a view that considers them just mathematics 

does not come out looking very natural.  

 

7.3 Parables and Fables 

 

Cartwright (2010) focuses on highly idealised models such as Schelling’s model of 

social segregation (1978) and Pissarides’ model of the labour market (1992). The 

problem with these models is that the objects and situations we find in such models 

are not at all like the things in the world that we are interested in. Cities aren’t 

organised as checkerboards and people don’t move according to simple algorithmic 

rules (as they do in Schelling’s model), and there are no labourers who are solely 

interested in leisure and income (as is the case in Pissarides’ model). Yet we are 

supposed to learn something about the real world from these models. The question is 

how. 

 

Cartwright submits that an answer to this question emerges from a comparison of 

models with narratives, in particular fables and parables. An example of a fable is the 

following: ‘A marten eats the grouse; A fox throttles the marten; the tooth of the wolf, 

the fox. Moral: the weaker are always prey to the stronger.’ (ibid., p. 20) The 

characters in the fable are highly idiosyncratic, and typically we aren’t interested in 

them per se - we don’t read fables to learn about foxes and martens. What we are 

interested in is the fable’s general and more abstract conclusion, in the above example 

that the weaker are always prey to the stronger. In the case of the fable the moral is 

typically built in the story and explicitly stated (ibid.).  

 

Cartwright then invites us to consider the parable of the labourers in the vineyard told 

in the Gospel of Matthew (ibid.). A man goes to the market to hire day labourers. He 
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hires the first group early in the morning, and then returns several times during the 

day to hire more labourers, and he hires the last group shortly before dusk. Some 

worked all day, while some hardly started when the day ended. Yet he pays the same 

amount to all of them. Like in a fable, when engaging with a parable the reader takes 

no intrinsic interest in the actors and instead tries to extract a more general moral. But 

unlike in fables, in parables no moral appears as part of the parable itself (ibid., p. 29). 

Hence parables need interpretation, and alternative interpretations are possible. The 

above fable is often interpreted as being about the entry to God’s kingdom, but, as 

Cartwright observes, it can just as well be interpreted as making the market-based 

capitalist point that you get what you contract for, and should not appeal to higher 

forms of justice (ibid., p. 21).  

 

These are features models share with fables and parables: ‘like the characters in the 

fable, the objects in the model are highly special and do not in general resemble the 

ones we want to learn about’ (ibid., p. 20) and the ‘lesson of the model is, properly, 

more abstract than what is seen to happen in the model’ (ibid., p. 28). This leaves the 

question whether models are fables or parables. Some models are like fables in that 

they have the conclusion explicitly stated in them. But most models are like parables 

(ibid. p. 29): their lesson is not written in the models themselves (ibid., p. 21), and 

worse: ‘a variety of morals can be attributed to the models’ (ibid., p. 21). A model, 

just like a parable, is interpreted against a rich background of theory and observation, 

and the conclusion we draw depends to a large extent on the background (ibid., p. 30).  

 

So far the focus was on deriving a conclusion about the model itself. Cartwright is 

clear that one more step is needed: ‘in many cases we want to use the results of these 

models to inform our conclusions about a range of actually occurring (so-called 

target) situations’ (ibid., p. 22 original emphasis). In fact, making this transfer of 

model results to the real world is the ER-Problem. Unfortunately she does not offer 

much by way of explaining this step and merely observes that ‘a description of what 

happens in the model that does not fit the target gets recast as one that can’ (ibid., p. 

20). This gestures in the right direction, but more would have to be said about how 

exactly a model description is recast to allow for transfer of model results to target 

systems. In earlier work Cartwright observed that what underlies the relationship 

between models and their targets is a ‘loose notion of resemblance’ (Cartwright 1999, 
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pp. 192-193) cf. (Cartwright 1999, pp. 261-262). This could be read as suggesting that 

she would endorse some kind or similarity view of representation. Such a view, 

however, is independent of an appeal to fables and parables. 

 

In passing we would like to mention that the same kind of models is also discussed in 

Sugden’s (2000; 2009). However, his interest is in induction rather than 

representation, and if reframed in representational terms then his account becomes a 

similarity account like Giere’s. See Grüne-Yanoff’s (2009) and Knuuttila’s (2009) for 

a discussion. 

 

7.4 Against Fiction 

 

The criticisms we have encountered above were intrinsic criticisms of particular 

versions of the fiction view, and as such they presuppose a constructive engagement 

with the view’s point of departure. Some critics think that any such engagement is 

misplaced because the view got started on the wrong foot entirely. There are five 

different lines of attack. The first criticism is driven by philosophical worries about 

fiction. Fictions, so the argument goes, are intrinsically dubious and are beset with so 

many serious problems that one should steer away from them whenever possible. So 

it could be claimed that assigning them a central role in science is a manifestation of 

philosophical masochism. This, however, overstates the problems with fictions. Sure 

enough, there is controversy about fictions. But the problems pertaining to fictions 

aren’t more devastating than those surrounding other items on the philosophical 

curriculum, and these problems surely don’t render fictions off limits.  

 

The second criticism, offered for example by Giere (2009, p. 257), is that the fiction 

view – involuntarily – plays into the hands of irrationalists. Creationists and other 

science sceptics will find great comfort, if not powerful rhetorical ammunition, in the 

fact that philosophers of science say that scientists produce fiction. This, so the 

argument goes, will be seen as a justification of the view that religious dogma is on 

par with, or even superior to, scientific knowledge. Hence the fiction view of models 

undermines the authority of science and fosters the cause of those who wish to replace 

science with religious or other unscientific worldviews.  

 



	   92 

Needless to say, we share Giere’s concerns about creationism. In order not to 

misidentify the problem it is important to point out that Giere’s claim is not that the 

view itself – or its proponents – support creationism; his worry is that the view is a 

dangerous tool when it falls into the wrong hands. What follows from this, however, 

is not that the fiction view itself should be abandoned; but rather that some care is 

needed when dealing with the press office. As long as the fiction view of models is 

discussed in informed circles, and, when popularised, is presented carefully and with 

the necessary qualifications, it is no more dangerous than other ideas, which, when 

taken out of context, can be put to uses that would (probably) send shivers down the 

spines of their progenitors (think, for instance, of the use of Darwinism to justify 

eugenics).  

 

The third objection, also due to Giere, has it that the fiction view misidentifies the 

aims of models. Giere agrees that from an ontological point of view scientific models 

and works of fictions are on par, but emphasises that ‘[i]t is their differing function in 

practice that makes it inappropriate to regard scientific models as works of fiction’ 

(Giere 2009, p. 249). Giere identifies three functional differences (Giere 2009, pp. 

249-252). First, while fictions are the product of a single author’s individual 

endeavours, scientific models are the result of a public effort because scientists 

discuss their creations with their colleagues and subject them to public scrutiny. 

Second, there is a clear distinction between fiction and non-fiction books, and even 

when a book classified as non-fiction is found to contain false claims, it is not 

reclassified as fiction. Third, unlike works of fiction, whose prime purpose is to 

entertain (although some works can also give insight into certain aspects of human 

life), scientific models are representations of certain aspects of the world.  

 

These observations, although correct in themselves, have no force against the fiction 

view of models. First, whether a fiction is the product of an individual or a collective 

effort has no impact on its status as a fiction; a collectively produced fiction is just a 

different kind of fiction. Even if War and Piece (to take Giere’s example) had been 

written in a collective effort by all established Russian writers of Tolstoy’s time, it 

would still be a fiction. Vice versa, even if Newton had never discussed his model of 

the solar system with anybody before publishing it, it would still be science. The 

history of production is immaterial to the fictional status of a work. Second, as we 
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have seen in subsection 7.1, falsity is not a defining feature of fiction. We agree with 

Giere that there is a clear distinction between texts of fiction and non-fiction, but we 

deny that this distinction is defined by truth or falsity; it is the attitude that we are 

supposed to adopt towards the text’s content that makes the difference. Once this is 

realised, the problem fades away. Third, many proponents of the fiction view (those 

belonging to the first group mentioned in subsection 7.1) are clear that problems of 

ontology should be kept separate from function and agree that it is one of the prime 

function of models to represent. This point has been stressed by Godfrey-Smith 

(2009, pp. 108-111) and it is explicit in other views such as Frigg’s (2010).  

 

The fourth objection is due to Magnani, who dismisses the fiction view for 

misconstruing the role of models in the process of scientific discovery. The 

fundamental role played by models, he emphasises, ‘is the one we find in the core 

conceptual discovery processes, and that these kinds of models cannot be indicated as 

fictional at all, because they are constitutive of new scientific frameworks and new 

empirical domains.’ (2012, p. 3) This criticism seems to be based on an understanding 

of fiction as falsity because falsities can’t play a constitutive role in the constitution of 

new empirical domains. We re-iterate that the fiction view is not committed to the 

‘fiction as falsity’ account and hence is not open to this objection.  

 

The fifth objection is that fictions are superfluous and hence should not be regarded as 

forming part of (let alone being) scientific models because we can give a systematic 

account of how scientific models work without invoking fictions. This point has been 

made in different ways by Pincock (2012, Ch. 12) and Weisberg (2013, Ch. 4) (for a 

discussion of Weisberg’s arguments see Odenbaugh (2015)). We cannot do justice to 

the details of their sophisticated arguments here, and will concern ourselves only with 

their main conclusion. They argue that scientific models are mathematical objects and 

that they relate to the world due to the fact that there is a relationship between the 

mathematical properties of the model and the properties found in the target system (in 

Weisberg’s version similarity relations to a parametrised version of the target). In 

other words, models are mathematical structures and they represent due to there being 

certain mathematical relations between these structures and a mathematical rendering 

of the target system. (Weisberg includes fictions as convenient ‘folk ontology’ that 

may serve as a crutch when thinking about the model, but takes them to be ultimately 
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dispensable when it comes to explaining how models relate to the world). This, 

however, brings us back to a structuralist theory of representation, and this theory, as 

we have seen in Section 5, is far from unproblematic. So it is at best an open question 

whether getting rid of fiction provides an obvious advantage.  

 

8. Representation-As 

 

In this section we discuss approaches that depart from Goodman’s notion of 

‘representation-as’ (Goodman 1976). In his account of aesthetic representation the 

idea is that a work of art does not just denote its subject, but moreover it represents it 

as being thus or so. Elgin (2010) further developed this account and, crucially, 

suggested that it also applies to scientific representations. This is a vital insight and it 

provides the entry point to what we think of as the most promising account of 

epistemic representation.  

 

In this section we present Goodman and Elgin’s notion of ‘representation as’, and 

outline how it is a complex type of reference involving a mixture of denotation and 

what they call ‘exemplification’. We introduce the term of art ‘representation-as’ to 

indicate that we are talking about the specific concept that emerges from Goodman’s 

and Elgin’s writings. We then discuss how the account needs to be developed in the 

context of scientific representation. And finally we present our own answer to the ER-

Problem, and demonstrate how it answers the questions laid out in Section 2.  

 

8.1 Exemplification and Representation-As 

 

Many instances of epistemic representation are instances of representation-as. 

Caricatures are paradigmatic examples: Churchill is represented as a bulldog, 

Thatcher is represented as a boxer, and the Olympic Stadium is represented as a UFO. 

Using these caricatures we can attempt to learn about their targets: attempt to learn 

about a politician’s personality or a building’s appearance. The notion applies beyond 

caricatures. Holbein’s Portrait of Henry VIII represents Henry as imposing and 

powerful and Stoddart’s statue of David Hume represents him as thoughtful and wise. 

The leading idea is that scientific representation works in much the same way. A 
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model of the solar system represents the sun as perfect sphere; the logistic model of 

growth represents the population as reproducing at fixed intervals of time; and so on. 

In each instance, models can be used to attempt to learn about their targets by 

determining what the former represent the latter as being. So representation-as relates, 

in a way to be made more specific below, to the Surrogative Reasoning Condition 

discussed in Section 2.  

 

The locution of representation-as functions in the following way: an object X (e.g. a 

picture, statue, or model) represents a subject Y (e.g. a person or target system) as 

being thus or so (Z). The question then is what establishes this sort of representational 

relationship. The answer requires presenting some of the tools Goodman and Elgin 

use to develop their account of representation-as.  

 

One of the central posits of Goodman’s account is that denotation is ‘the core of 

representation’ (Goodman 1976, p. 5). Stoddart’s statue of David Hume denotes 

Hume and a model of the solar system denotes the solar system. In that sense the 

statue and the model are representations of their respective targets. To distinguish 

representation of something from other notions of representation we introduce the 

technical term ‘representation-of’. Denotation is what establishes representation-of. 

(For a number of qualifications and caveats about denotation see our (forthcoming, 

Sec. 2)).  

 

Not all representations are a representation-of. A picture showing a unicorn is not a 

representation-of a unicorn because things that don’t exist can’t be denoted. Yet there 

is a clear sense in which such a picture is a representation. Goodman and Elgin’s 

solution to this is to distinguish between being a representation-of something and 

being a something-representation (Elgin 2010, pp. 1-2; Goodman 1976, pp. 21-26). 

What makes a picture a something-representation (despite the fact it may fail to 

denote anything) is that it is the sort of symbol that denotes. Elgin argues: 

 

‘A picture that portrays a griffin, a map that maps the route to Mordor […] are all 

representations, although they do not represent anything. To be a representation, a 

symbol need not itself denote, but it needs to be the sort of symbol that denotes. 

Griffin pictures are representations then because they are animal pictures, and some 
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animal pictures denote animals. Middle Earth maps are representations because they 

are maps and some maps denote real locations. […] So whether a symbol is a 

representation is a question of what kind of symbol it is.’ (Elgin 2010, pp. 1-2, 

emphasis added) 

 

These representations can be classified into genres, in a way that does not depend on 

what they are representations-of (since some may fail to denote), but instead on what 

they portray. In the case of pictures, this is fairly intuitive (how this is to be developed 

in the case of scientific models is discussed below). If a picture portrays a man, it is a 

man-representation, if it portrays a griffin it is a griffin-representation and so on. In 

general, a picture X is Z-representation if it portrays Z. The crucial point is that this 

does not presuppose that X be a representation-of Z; indeed X can be Z-representation 

without denoting anything. A picture must denote a man to be a representation-of a 

man. But it need not denote anything to be a man-representation.  

 

The next notion we need to introduce is exemplification. An item exemplifies a 

property if it at once instantiates the property and refers to it:  

 

‘Exemplification is possession plus reference. To have without symbolising is merely 

to possess, while to symbolise without having is to refer in some other way than by 

exemplifying’ (Goodman 1976, p. 53).  

 

Exemplification is a mode of reference that holds between items and properties. In the 

current context properties are to be understood in the widest possible sense. An item 

can exemplify one-place properties, multi-place properties (i.e. relations), higher 

order properties, structural properties, etc. Paradigmatic examples of exemplification 

are samples. A chip of paint on a manufacturer’s sample card both instantiates a 

certain colour, and at the same time refers to that colour (Elgin 1983, p. 71).   

 

But although exemplification requires instantiation, not every property instantiated by 

an object is exemplified by it. The chip of paint does not, for example, exemplify its 

shape or its location on the card. In order to exemplify a property, an object must both 

instantiate the property and the property itself must be made epistemically salient. 
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How saliency is established will be determined on a case-by-case basis, and we say 

more about this below. 

 

We can now turn to the conditions under which X represents Y as Z. A first stab would 

be to say that X represents Y as Z if X is a Z-representation and denotes Y. This 

however, is not yet good enough. It is important that properties of Z are ‘transferred’ 

to Y. Elgin makes this explicit: 

 

‘[X] does not merely denote [Y] and happen to be a [Z]-representation. Rather in being a [Z]-

representation, [X] exemplifies certain properties and imputes those properties or related ones 

to [Y]. […] The properties exemplified in the [Z]-representation thus serve as a bridge that 

connects [X] to [Y].’(2010, p. 10, emphasis added) 

 

This gives a name to the crucial step: imputation. This step can be analysed in terms 

of stipulation by a user of a representation. When someone uses X as a representation-

as, she has to stipulate that certain properties that are exemplified in X be imputed to 

Y. We emphasise that imputation does not imply truth: Y may or may not have the 

properties imputed to it by X. So the representation can be seen as generating a claim 

about Y that can be true or false; it should not be understood as producing truisms.  

 

Applied to scientific models, the account of epistemic representation that emerges 

from Goodman and Elgin’s discussion of representation can then be summarised as 

follows: 

 

Representation-As: A scientific model M represents a target system T iff (i) M denotes 

T, (ii) M is a Z-representation exemplifying properties P1, ...,Pn, and (iii) P1, ...,Pn , or 

related properties, are imputed to T.  

 

It should be added that the first condition can easily be extended to include part-part 

denotation. In a family portrait the entire portrait denotes the family; at the same time 

a part of the portrait can denote the mother and another part the father. This is obvious 

and unproblematic.  
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We think that this account is on the right track, but all three conditions need to be 

further developed to furnish a full-fledged account of epistemic representation (at 

least as applied to scientific models. The developments needed are of different kinds, 

though. The first condition needs more specificity. How is denotation characterised? 

What different ways of establishing denotation are there? And how is denotation 

established in particular cases? These are but some of the questions that a complete 

account of epistemic representation will have answer. In many cases epistemic 

representation seems to borrow denotation from linguistic descriptions in which they 

are embellished and denotation is in effect borrowed from language. So the 

philosopher of science can turn to the philosophy of language to get a deeper 

understanding of denotation. This is an interesting project, but it is not one we can 

pursue here.  

 

In contrast with denotation the other two conditions need to be reformulated because 

an account moulded on visual representations is only an imperfect match for scientific 

representations. This is the task for the next section.  

 

8.2 From Pictures to Models: The DEKI Account   

 

According to Goodman and Elgin, for a picture to be a Z-representation it has to be 

the kind of symbol that denotes. On the face of it, there is a mismatch between 

pictures and scientific models in this regard. The Schelling model represents social 

segregation with a checkerboard; billiard balls are used to represent molecules; the 

Phillips-Newlyn model uses a system of pipes and reservoirs to represent the flow of 

money through an economy; and the worm Caenorhabditis elegans is used as a model 

of other organisms. But neither checkerboards, billiard balls, pipes, or worms seem to 

belong to classes of objects that typically denote. The same observation applies to 

scientific fictions (frictionless planes, utility maximising agents, and so on) and the 

mathematical objects used in science. In fact, matrices, curvilinear geometries, Hilbert 

spaces etc. were all studied as mathematical objects before they became important in 

the empirical sciences.  

 

Rather than relying on the idea that scientific models belong to classes of objects that 

typically denote we propose directly introducing an agent and ground representation 
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in this agent’s actions. Specific checkerboards, systems of pipes, frictionless places 

and mathematical structures, are epistemic representations because they are used by 

an agent to represent a system. When an agent uses an object as a representation, we 

call it a ‘base’.  

 

What allows us to classify bases into Z-representations is also less clear in the case of 

scientific representation. We approach this issue in two steps. The first is to recognise 

the importance of the intrinsic constitution of the base. Pictures are typically 

canvasses covered with paint. They are classified as Z-representations because under 

appropriate circumstances the canvass is recognised as portraying a Z. Much can be 

said about the canvass’ material constitution (the thickness or chemical constitution of 

the paint, etc.), but these are generally of little interest to understanding what the 

picture portrays. By contrast, the properties of a scientific model – qua material object 

– do matter. How water flows through the pipes in the Phillips-Newlyn model is 

crucial to how it represents the movement of money in an economy. That the 

Caenorhabditis elegans is a biological organism is of vital importance for how it is 

used representationally. In fact, models are frequently classified according to what 

their material base is. We talk about a pipe model of the economy or worm model of 

cell division because their bases are pipes and worms.  Here we introduce a term of 

art to recognise that scientific models are generally categorised according to their 

material constitution. An O-object specifies the kind of object something is, qua 

physical object.   

 

O-objects become representations when they are used as such. But how are they 

classified as Z-representations? How does the Phillips-Newyln machine become an 

economy-representation, or how does a collection of billiard balls become a gas-

representation? (Again, recall that this is not because they denote economies or 

gases). We suggest, and this is the second step, that this requires an act of 

interpretation (notice that we do not use ‘interpretation’ in the same sense as 

Contessa). In the case of pictures, the nature of this interpretation has been the centre 

of attention for a good while: how one sees a canvass covered with paint as showing a 

cathedral is regarded by many as one of the important problems of aesthetics. Schier 

(1986, p. 1) dubbed it the ‘enigma of depiction’, and an entire body of literature is 

been concerned with it (Kulvicki (2006) provides a useful review). In the case of 
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scientific models we don’t think a simple and universal account of how models are 

interpreted as Z-representations can be given. Interpreting an O-object as a Z-

representation requires attributing properties of Zs to the object. How this is done will 

depend on disciplinary traditions, research interests, background theory and much 

more. In fact, ‘interpretation’ is a blank to be filled, and it will be filled differently in 

different cases. 

 

Some examples should help elucidate what we mean by this. In the case of scale 

models the interpretation is ‘close’ to the O-object in that it interprets the object in its 

‘own’ terms. The small car is interpreted as a car-representation and the small ship is 

interpreted as a ship-representation. Likewise, in the case of the Army Corps’ model 

of the San Francisco Bay (Weisberg 2013), parts of the model bay are interpreted in 

terms of the real bay. In cases like these, the same predicates that apply to the base 

(qua O-object) are applied to the object in order to make it into a Z-representation 

(here O=Z). But this is not always the case. For example, the Phillips-Newlyn 

machine is a system of pipes and reservoirs, but it becomes an economy-

representation only when the quantity and flow of water throughout the system are 

interpreted as the quantity and flow of money throughout an economy. The system is 

interpreted in terms of predicates that do not apply to the object (qua O-object), but 

turn it into a Z-representation (here O and Z come apart). In sum, an O-object that has 

been chosen as the base of a representation becomes a Z-representation if O is 

interpreted in terms of Z.  

 

Next in line is exemplification. Much can be said about exemplification in general, 

but the points by and large carry over from the general discussion to the case of 

models without much ado. There is one difference, though, in cases like the Phillips-

Newlyn machine. Recall that exemplification was defined as the instantiation of a 

property P by an object in such a way that the object thereby refers to P. How can the 

Phillips-Newlyn machine exemplify economic properties when it does not, strictly 

speaking, instantiate them? The crucial point is that nothing in the current account 

depends on instantiation being literal instantiation. On this point we are in agreement 

with Goodman and Elgin, whose account relies on non-literal instantiation. The 

portrait of Henry cannot, strictly speaking, instantiate the property of being male, 
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even if it represents him as such. Goodman and Elgin call this metaphorical 

instantiation (Elgin 1983, p. 81; Goodman 1976, pp. 50-51). 

 

What matters is that properties are epistemically accessible and salient, and this can 

be achieved with what we call instantiation-under-an-interpretation I, I-instantiation 

for short. An economic interpretation of the Phillips-Newlyn machine interprets 

amounts of water as amounts of money. It does so by introducing a clearly 

circumscribed rule of proportionality: x litres of water correspond to y millions of the 

model-economy’s currency. This rule is applied without exception when the machine 

is interpreted as an economy-representation. So we say that under the economic 

interpretation Ie the machine ‘Ie-instantiates’ money properties. With the notion of I-

instantiation at hand, exemplification poses no problem.  

 

The final issue to clear is the imputation of the model’s exemplified properties to the 

target system. In particular, which properties are so imputed? Elgin describes this as 

the imputation of the properties exemplified by M ‘or related ones’. The observation 

that the properties exemplified by a scientific model and the properties imputed to its 

target system need not be identical is correct. In fact, few, if any, models in science 

portray their targets as exhibiting exactly the same features as the model itself. The 

problem with invoking ‘related’ properties is not its correctness, but its lack of 

specificity. Any property can be related to any other property in some way or other, 

and as long as no specific relation is specified it remains unclear which properties are 

imputed onto the system.  

 

In the context of science, the relation between the properties exemplified and the ones 

ascribed to the system is sometimes described as one of simplification (Elgin 1996, p. 

184), idealisation (Elgin 1996, p. 184) and approximation (Elgin 2010, p. 11). This 

could suggest that ‘related ones’ means ‘idealised’, at least in the context of science 

(we are not attributing this claim to Elgin; we are merely considering the option), 

perhaps similar to the way in which Ducheyne’s account discussed above took target 

properties to be approximations of model properties. But shifting from ‘related’ to 

‘idealised’ or ‘approximated’ (or any of their cognates) makes things worse, not 

better. For one, ‘idealisation’ can mean very different things in different contexts and 

hence describing the relation between two properties as ‘idealisation’ adds little 
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specificity (see Jones’ (2005) for a discussion of different kinds of idealisation). For 

another, while the relationship between some representation-target properties may be 

characterised in terms of idealisation, many cannot. A map of the world exemplifies a 

distance of 29cm between the two points labelled ‘Paris’ and ‘New York’; the 

distance between the two cities is 5800km; but 29cm is not an idealisation of 5800km. 

A scale model of a ship being towed through water is not an idealization of an actual 

ship, at least not in any obvious way. Or in standard representations of Mandelbrod 

sets the colour of a point indicates the speed of divergence of an iterative function for 

certain parameter value associated with that point, but colour is not an idealisation of 

divergence speed. 

 

For this reason it is preferable, in our view, to build a specification of the relationship 

between model properties and target properties directly into an account of epistemic 

representation. Let P1, …, Pn be the properties exemplified by M, and let Q1, …, Qm 

be the ‘related’ properties that M imputes to Y (where n and m are positive natural 

numbers which can but need not be equal). Then the representation M must come with 

a key K that specifies how exactly P1, …, Pn are converted into Q1, …, Qm (Frigg 

2010). Borrowing notation from algebra (somewhat loosely) we can write K({P1, …, 

Pn}) = {Q1, …, Qm}. K can, but need not be, the identity function; any rule that 

associates a unique set Q1, …, Qm with P1, …, Pn is admissible. The relevant clause in 

the definition of representation-as then becomes: M exemplifies P1, …, Pn and the 

representation imputes properties Q1, …, Qm to T where the two sets of properties are 

connected to each other by a key K.  

 

The above examples help illustrate what we have in mind. Let us begin with the 

example of the map. (In fact the idea of a key is motivated by a study of maps; for a 

discussion of maps see Galton’s (2001) and Sismondo and Chrisman’s (2001).) P is a 

measured distance on the map between the point labelled ‘New York’ and the point 

labelled ‘Paris’; Q is the distance between New York and Paris in the world; and K is 

the scale of the map (in the above case, 1:20,000,000). So the key allows us to 

translate a property of the map (the 29cm distance) into a property of the world (that 

New York and Paris are 5800km apart). But the key involved in the scale model of 

the ship is more complicated. One of the Ps in this instance is the resistance the model 

ship faces when moved through the water in a tank. But this doesn’t translate into the 
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resistance faced by the actual ship in the same way in which distances in a map 

translate into distances in reality. In fact, the relation between the resistance of the 

model and the resistance of the real ship stand in a complicated non-linear 

relationship because smaller models encounter disproportionate effects due to the 

viscosity of the fluid. The exact form of the key is often highly non-trivial and 

emerges as the result of a thoroughgoing study of the situation; see Sterrett’s (2006) 

for a discussion of fluid mechanics. In the representation of the Madelbrod set in 

(Argyris et al. 1994, p. 660) a key is used that translates colour into divergence speed 

(ibid., p. 695). The square shown is a segment of the complex plane and each point 

represents a complex number. This number is used as parameter value for an iterative 

function. If the function converges for number c, then the point in the plane 

representing c is coloured black. If the function diverges, then a shading from yellow 

over green to blue is used to indicate the speed of divergence, where yellow is slow, 

green is in the middle and blue is fast. 

 

Neither of these keys is obvious or trivial. Determining how to move from properties 

exemplified by models to properties of their target systems can be a significant task, 

and should not go unrecognized in an account of scientific representation. In general 

K is a blank to be filled, and it depends on a number of factors: the scientific 

discipline, the context, the aims and purposes for which M is used, the theoretical 

backdrop against which M operates, etc. Building K into the definition of 

representation-as does not prejudge the nature of K, much less single out a particular 

key as the correct one. The requirement merely is that there must be some key for M 

to qualify as a representation-as.  

 

With these modifications in place we can now formulate our own account of 

representation (Frigg and Nguyen (forthcoming)). Consider an agent who chooses an 

O-object as the base of representation and turns it into Z-representation by adopting 

an interpretation I. Let M refer to the package of the O-object together with the 

interpretation I that turns it into a Z-representation. Then: 

 

DEKI: A scientific model M represents a target T iff  (i) M denotes T (and, possibly, 

parts of M denote parts of T); (ii) M is a Z-representation exemplifying properties P1, 

..., Pn; (iii) M comes with a key, K, specifying how P1, …, Pn are translated into a set 
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of features Q1, …, Qm: K({P1, …, Pn}) = {Q1, …, Qm}; and (iv) The model imputes at 

least one of the properties Q1, …, Qm onto T. 

 

We call this the DEKI account of representation to highlight its key features: 

denotation, exemplification, keying-up and imputation.  

 

Before highlighting some issues with this account, let us clarify how the account 

answers the questions we laid out in Section 2. Firstly, as an answer to the ER-

Problem, DEKI provides an abstract framework in which to think about epistemic 

representation. In general, what concretises each of the conditions needs to be 

investigated on a case-by-case basis. But far from being a defect, this degree of 

abstractness is an advantage. ‘Epistemic representation’, and even the narrower 

‘model-representation’, are umbrella terms covering a vast array of different activities 

in different fields, and a view that sees representations in fields as diverse as 

elementary particle physics, evolutionary biology, hydrology and rational choice 

theory work in exactly the same way is either mistaken or too coarse to make 

important features visible. DEKI occupies the right middle ground: it is general 

enough to cover a large array of cases and yet it highlights what all instances of 

scientific representation have in common. At the same time the account offers an 

elegant solution to the problem of models without targets: a model that apparently 

represents Z while there is no Z is a Z-representation but not representation of a Z. 

 

It should be clear how we can use models to perform surrogative reasoning about 

their targets according to DEKI. The account requires that we investigate the 

properties that are exhibited by the model. These are then translated into a set of 

properties that are imputed onto the target. This act of imputation supplies a 

hypothesis about the target system: does it, or does it not, have those properties? This 

hypothesis does not have to be true, and as such DEKI allows for the possibility of 

misrepresentation in a straightforward manner.  

 

DEKI’s abstract character also allows us to talk about different styles of 

representation. Style, on the DEKI account, is not a monolithic concept; instead it has 

several dimensions. Firstly, different O-objects can be chosen. In this way we may 

speak, say, of the checkerboard style and of the cellular automaton style. In each case 
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a specific kind of object has been chosen for various modelling purposes. Secondly, 

the notion of an interpretation allows us to talk about how closely connected the 

properties of the model are to those that the object I-instantiates. Thirdly, different 

types of keys could be used to characterise different styles. In some instances the key 

might be the identity key, which would amount to a style of modelling that aims to 

construct replicas of target systems; in other cases the key incorporates different kinds 

of idealisations or abstractions, which gives rise to idealisation and abstraction keys. 

But different keys may be associated with entirely different representational styles. 

 

Similarly, DEKI suggests that there is no significant difference between scientific 

representations and other kinds of epistemic representation, at least at the general 

level. However, this is not to say that the two cannot be demarcated whatsoever. The 

sorts of interpretations under which pictures portray Zs seem to be different to the 

sorts of interpretations that are adopted in the scientific framework. Whether or not 

this can be cashed of more specifically is an interesting question that we cannot 

investigate here.  

 

Many details in DEKI still need to be spelled out. But the most significant difficulty, 

perhaps, arises in connection with the Problem of Ontology. It is not by accident that 

we have illustrated the account with a physical model, the Phillips-Newlyn machine. 

Exemplification requires instantiation, which is easily understood for material models, 

but is highly problematic in the context of nonconcrete models. One option is to view 

models as fictional entities as discussed in Section 7. But whether, and if so how, 

fictional entities instantiate properties is controversially discussed and more 

philosophical work is needed to make sense of such a notion. It is therefore an open 

question how this account works for nonconcrete models; for a discussion and a 

proposal see Frigg and Nguyen (2016). 

 

Finally, the account provides us with resources with which to think about the 

applicability of mathematics. Like the problem of style, various options are available. 

Firstly, mathematical structures themselves can be taken to be O-objects and feature 

as bases of representation. They can be interpreted on their own terms and therefore 

exemplify strictly mathematical properties. If one were of a structuralist bent, then the 

appropriate mathematical properties could be ‘structural’ which could then be 
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imputed onto the target system (although notice that this approach faces a similar 

problem to the question of target-end structure discussed in subsection 5.4). 

Alternatively, the key could provide a translation of these mathematical properties 

into ones more readily applicable to physical systems. A third alternative would be to 

take scientific models to be fictional objects, and then adopt an interpretation towards 

them under which they exemplify mathematical properties. Again, these could be 

imputed directly onto the target system, or translated into an alternative set of 

properties. Finally, these fictional models could themselves exemplify physical 

properties, but in doing so exemplify structural ones as well. Whenever a physical 

property is exemplified, this provides an extensional relation defined over the objects 

that instantiate it. The pros and cons of each of these approaches demands further 

research, but for the purposes of this chapter we simply note that DEKI puts all of 

these options on the table. Using the framework of O-objects, interpretations, 

exemplification, keys, and imputation provides a novel way in which to think about 

the applicability of mathematics.  

 

9. Envoi 

 

We reviewed theories of epistemic representation. That each approach faces a number 

of challenges and that there is no consensus on the matter will not have come as a 

surprise to anybody. We hope, however, that we managed to map the lay of the land 

and to uncover the fault lines, and thereby aid future discussions.  
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