
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Models and solutions for emergency logistics

Yi, Wei

2007

Yi, W. (2007). Models and solutions for emergency logistics. Doctoral thesis, Nanyang
Technological University, Singapore.

https://hdl.handle.net/10356/5493

https://doi.org/10.32657/10356/5493

Nanyang Technological University

Downloaded on 24 Aug 2022 19:51:13 SGT



 
 
 

Models and Solutions for Emergency Logistics 
 
 
 
 
 
 
 
 
 

Yi Wei 
 
 
 
 
 
 
 
 
 
 
 
 

School of Mechanical & Aerospace Engineering 
 
 

A thesis submitted to Nanyang Technological University 
in fulfillment of the requirement for the degree of 

Doctor of Philosophy 
 
 

2007 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



ABSTRACT 

Emergency logistics planning is increasingly becoming a crucial issue due to the 

increase in the occurrence of natural disasters and other crisis situations.  An adequate 

level of mitigation measures and a coordinated post-disaster relief logistics 

management may help to reduce the loss of both human lives and economic damage. 

Logistics planning in emergencies involves dispatching commodities to affected areas 

and evacuation of wounded people to emergency units. The number of vehicles 

involved may be very large during on-going relief operations. Furthermore, time plays 

a critical role in the logistic plan, and it directly affects the survival rate in affected 

areas. This makes the task of logistics planning more complex than conventional 

distribution problems. As a result, a modeling approach that enables massive dynamic 

routing of people and commodities is required. In this study, a dynamic network flow 

model is developed and a solution framework is presented exploiting the currently 

efficient simplex implementation, together with a two-stage algorithm to disaggregate 

the flow variables and generate routes information. The efficiency of the proposed 

model is verified through comparison with conventional vehicle based formulation. 

Moreover, the dynamic application of the model is illustrated on real world scenarios. 

A constructive heuristic with parallel vehicle exploration is first proposed in an 

attempt to produce a fast solution. Then based on a different search principle, a meta-

heuristic of ant colony optimization (ACO) is developed to improve the solution 

quality. The ACO approach exploits the hybrid characteristics of the problem and 

decomposes the original model into sub-components. It first builds stochastic vehicle 

paths under the guidance of heuristic information while in the second phase a 

successive maximum flow (SMF) algorithm is developed for the commodities 
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dispatch to different types of vehicle flows. Pheromone trails are updated according to 

the dispatch result by SMF. Thus, the two sub-problems are coordinated through trails 

leading to the continuous improvement of solution quality. The performances of both 

algorithms are tested on a number of randomly generated networks. The constructive 

heuristic achieves quick solutions compared to the direct model solution while the 

ACO algorithm results in better solution quality within shorter runtimes for larger 

instances. Analyzing the overall solution quality and run time consumption, one can 

say that ACO algorithm suits the real emergency situation where there is continuous 

uncertainty and information dynamism. 

Logistics coordination after disaster requires selecting the sites that will provide 

maximum coverage of medical need in the affected areas. An important issue that 

arises in such emergencies is that hospital capability has to be re-distributed to 

achieve maximal service level. This necessitates finding optimal locations for the 

temporary emergency units and optimal medical personnel allocation equilibrium 

among them. The extended model takes this facility planning issue into consideration 

and the ACO meta-heuristic is also developed to include the location routing problem. 
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1 Introduction 

The last decade has seen a marked increase in the occurrence of natural disasters 

along with exposure to greater levels of loss of life, property and material damage. To 

elucidate a few examples: In China, the 1998 floods took 4,150 lives and made 18.39 

million homeless, with direct economic damage over US$ 26 billion. The most 

destructive earthquake that took place in Turkey in 1999 caused a total number of 

17,727 deaths, 43,959 injuries and damaged 214,000 residential units, affecting more 

than 2 million people. Over 200,000 people died and more than 1.5 million people lost 

their homes in the 2004 tsunami disaster in the Indian Ocean, and the losses are 

estimated to total more than US$ 7 billion. Furthermore, frequent bombings and other 

acts of terrorism aggravated concerns about the securities in many countries and 

regions. According to the report by the United Nations Office for the Coordination of 

Humanitarian Affairs, there is increasing human vulnerability in crisis situations - 

both in natural disasters (200 million affected in 2003) and in complex emergencies 

(45 million in need of life-saving assistance in 2003). In all these emergency 

situations, the adequate preparedness and good logistics management may help to 

reduce the loss on both human lives and economic damage. 

1.1 Problem Description 

The basic underlying logistical planning for disaster relief management involves 

dispatching commodities to distribution centers in affected areas and evacuation of 

1 
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wounded people to emergency service facilities. Evacuation activities take place 

during the initial response phase whereas logistics support operations tend to continue 

for a longer time for sustaining the basic needs of survivors who remain in the 

affected area. The timely availability of commodities such as food, shelter and 

medicine and effective transportation of the wounded affect the survival rate in 

affected areas. In disaster relief operations, various organizations often face 

significant problems of transporting large amounts of many different commodities 

including food, clothing, medicine, machinery, and people between different supply 

centers (emergency units) and different destinations in the disaster areas. Often, there 

may be many different modes of transportation available for the purpose of shipping 

the supplies and people. All of these modes of transportation may not be suitable for 

every commodity or people. Some commodities may change the type of mode while 

in transport from origin to destination.  

Emergency logistics support and vehicle dispatch have features that are different from 

established dispatch settings. The goal is to minimize delay in the provision of 

prioritized commodities to survivors and health care services to injured people, where 

different types of vehicles are utilized to serve transportation needs. Some 

discriminating factors are highlighted as follows: 

a) Supply availability is limited in the initial disaster response phases: the exact 

impact of the phenomenon is not known and it takes time to explore affected 

regions, communicate the impacts of the disaster and coordinate international 

and national help. Furthermore, there is always transportation delay from major 

support centers due to infrastructure failures.  

2 
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b) Supply nodes may represent warehouses, but most often, if they are located in 

affected areas, they are mere tent shelters where food and other materials are 

distributed to survivors who are maintained at those locations. If located in 

unaffected zones, then they may represent district collection centers, shelters and 

hospitals. Thus, the number of supply nodes is large and distributed among 

demand nodes. This situation is different from commercial situations where 3-5 

depots serve more than 100 customers.  

c) The following vehicle routing and availability conditions prevail. During the 

first response and throughout the ongoing relief operations, a vehicle is not 

required to return immediately to a supply node (depot) once its current 

assignment is completed. It can wait for the next instruction at its last destination 

or may move towards a depot at the end of the shift if drivers are required to 

change shifts. The depot where the vehicle ends need not be the one from which 

its itinerary starts. Due to the latter reason and the fact that supply nodes are 

numerous and dispersed among demand nodes, the standard tour definition may 

be replaced by an itinerary that starts at the beginning of the shift and continues 

with any order of visits until its completion.  

d) It is not logical to assume that vehicle capacity is sufficient to carry a 

“customer’s” demand; hence, the same node has to be visited multiple times. 

This implies split delivery.  

e) A commodity demand node may in the same time supply wounded people 

while commodity supply nodes may also be medical facilities. In demand nodes, 

commodities are delivered and wounded people are picked up and transported to 

hospitals (most hospitals lie at supply nodes). In supply nodes, supplies are 

3 
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picked up and at times when hospitals exist at supply nodes, wounded people are 

delivered. Hence, simultaneous split pickup-delivery with mixed order service 

defines the service strategy. Furthermore, it is not necessary that the vehicle 

picking up some goods from a supply node should be the one to deliver them to 

their last destination. These may be dropped at an intermediary location and then 

picked up by another vehicle that takes them to their last destination. Hence, the 

cooperation among vehicles is possible.  

f) The evacuation problem definition is also different from classical building 

evacuation problems. In this study, evacuation planning focuses on the rescue of 

wounded people where it can also be naturally extended to all affected 

population. Hence, the evacuation routing choice depends not only on 

transportation capacity constraints, but also on available medical services at the 

destinations.  

g) Time plays a crucial role in managing the response to a particular emergency. 

The logistics plan involves a time horizon consisting of a given number of time 

periods and it deals with time-variant demand and supply. At the beginning of 

any planning time horizon, given a snapshot of current and future 

requirements/supplies, and vehicle availability, the plan generates multi-period 

vehicle routes/schedules along with their commodity load-unload assignments. 

Then it is updated at regular time intervals incorporating new information on 

demand, supplies and vehicle availability, and, accounting for the status of the 

logistics system resulting from the plan implemented previously. Since the plan 

has a time-dependent structure, re-planning is facilitated and is carried out 

repeatedly during ongoing disaster relief operations. Thus, the system is designed 

4 
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to respond to time-dependent logistic needs in an adaptive manner, so that after 

the emergency call is announced, it responds quickly to new demand, supply and 

vehicle availability. 

1.2 Research Motivation 

Although the literature in logistics management is extensive, the particular problem 

on the emergency operations planning has received little attention: Ardekani and 

Hobeika (1988) studied the logistics problems in the 1985 Mexico City earthquake 

and identified the major problems in the relief operations management. A complicated 

mathematical formulation was presented in Haghani and Oh (1996) for commodity 

logistics problem in emergency; Özdamar et al. (2004) proposed a more compact 

model with a Lagrangian relaxation based iterative algorithm for small test instances. 

On the other hand, there has been considerable literature modeling evacuation of 

buildings or larger areas over the last two decades, as will be discussed in literature 

review chapter; however, a straightforward application of these approaches is 

infeasible here due to the different problem definition as depicted in previous section. 

Moreover, to our best knowledge, there is no research dealing with these two aspects 

in an integrated manner which is the subject of this study, though such plan can 

significantly enhance the system-wide operational efficiency.  

Based on the aspects discussed above, the problem is a general dynamic routing 

problem that can handle various practical complexities. It integrates features of many 

conventional discrete optimization problems, such as vehicle routing problems, 

integer multi-commodity flow problems, and so on, while it does not possess those 

strict constraints on the solution definition; on the other hand, issues such as wounded 

evacuation and availability of emergency services must be integrated into the 

5 
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consideration for operational efficiency. Moreover, the existence of multiple 

commodities, transportation modes, and large demand adds complexities to the 

problem and the solution would not be easy. Therefore, the study on effective 

modeling and the solution methodologies is of crucial importance in emergency 

logistics management. 

1.3 Research Objective and Scope  

This study aims at developing decision models and solution methodologies that can be 

potentially used by emergency response managers in planning for disaster relief 

operations. In particular, there are three objectives, as follows. 

1) Effective formulations for the problem; 

An integrated formulation should be identified to coordinate vehicles scheduling, 

rescue operations and commodities transportation. For practical purposes, the model 

must be able to produce detailed plan at operational level, while being sufficiently 

tractable and leading to efficient solution algorithms. Alternative models from related 

problems shall also be evaluated to verify the efficiency of proposed formulation. 

2) Solution algorithms in the framework of both exact algorithms and heuristics; 

While significant progress may be made in the formulation, specially designed 

solution methods will prove extremely valuable. Based on the currently powerful 

optimization packages, exact solution methodology can be established for the solution 

to the problem. On the other hand, due to the inherent hardness in routing problems, 

heuristic method should be designed for the treatment of large-scale problems. 

3) Model extensions: facility planning; 

6 
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An important extension to be addressed in this thesis is the emergency medical centers 

location problem, which enables the selection of the best locations among the possible 

proposed ones for temporary medical care units achieving an equilibrium among 

service capacities of medical units in order to minimize transportation delay for 

patients with different priorities and localities. The solution method proposed for the 

original emergency logistics model will also be developed to solve the location-

routing extension. 

1.4 Organization of the Thesis 

This thesis discusses various issues concerning the emergency logistics problem 

(ELP) and is organized as follows. In the present chapter ELP is introduced and some 

of its features are listed which rarely appear in the conventional routing problems, 

followed by the research motivation and objectives. Then, the relevant logistics 

models and algorithms in literature are investigated in Chapter 2 to give an overview 

of progress made within the area and the available techniques for this study. In 

Chapter 3, two formulations for ELP are proposed and the superior formulation is 

verified through the performance comparison. Based on that, a practical integrated 

model is presented in Chapter 4 for coordinating logistics support and evacuation 

operations in emergencies. The dynamic application of the model is illustrated by a 

concrete earthquake scenario, together with a brief discussion on uncertainty issues. 

To deal with the computational hardness resulting from the routing problem, two 

heuristics are designed in Chapter 5 for the treatment of large-scale problems. The 

methods are tested on a set of randomly generated instances and comparisons are 

conducted with those of the optimization package. Then, the model is extended to 

address the facility location problem in Chapter 6, and the solution framework based 

7 
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on the proposed ACO algorithm is presented. Finally, the main conclusions and major 

contributions of this research are summarized and possible future extensions are 

discussed. 

8 
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2 Literature Review 

In this chapter, the existing literature related to emergency logistics problem will be 

investigated. Generally, the literature covers a wide range of different applications and 

methodological approaches. According to the relevancy to the problem and its 

importance in transportation and logistics research, this chapter is restricted to the 

following sub-fields: vehicle routing problem (VRP) in both static and dynamic 

versions, multi-commodity network flow problem, and dynamic network. A number 

of different papers using exact and heuristic solution approaches to these problems are 

also discussed as they are estimated to be of specific importance to this thesis. 

2.1 Models and Algorithms for VRP 

VRP was first introduced by Dantzig and Ramser (1959) in 1950s. A few years later, 

Clarke and Wright (1964) proposed a greedy heuristic that improved on the Dantzig-

Ramser approach. Following these two seminal papers, many models and exact and 

heuristic algorithms were proposed for the optimal and approximate solution of 

different versions of the VRP. 

2.1.1 Formulations for VRP  

In the literature, there are three different basic modeling approaches proposed for the 

VRP. The most frequently used is known as vehicle flow formulation, which uses 

binary variables associated with all arcs. Commodity flow models were first 

9 
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introduced by Garvin et al. (1957) for the oil delivery problem and later extended by 

Gavish and Graves (1982) to variants of TSP and VRP. In addition to variables used 

by the vehicle flow formulations, these formulations require a new set of continuous 

variables, associated with amounts of commodity that flow over each arc. The last 

modeling approach is the set-partitioning problem, which was originally proposed by 

Balinski and Quandt (1964) and uses an exponential number of binary variables, each 

associated with a different feasible circuit of network.  

Based on these formulations, there are several variants of the basic version of the VRP 

considered in the literature. The restrictive assumptions of the VRP are often relaxed 

to accommodate more realistic settings, among which the VRP with pickup and 

delivery (VRPPD) and VRP with split delivery (VRPSD) are most relevant to the 

ELP. In VRPPD, vehicles are not only required to deliver goods to customers but also 

to pick some re-cycled goods up at customer locations. Simultaneous pickups and 

deliveries are common in the emergency logistics setting, where some goods are 

delivered to affected areas from depots and injured people are picked up and 

transported back to medical centers. The standard definition of VRPPD necessitates 

that the customer is only visited once. Min (1989) solved the problem with clustering 

followed by TSP solutions after which infeasibilities are penalized and TSPs are 

resolved. Gendreau et al. (1999a) solved the TSP first and then ordered the pickups 

and deliveries in the TSP. Nagy and Salhi (2005) established a weakly feasible 

solution first (one that checks only total load delivered or picked up, but does not 

check vehicle capacity in-between nodes on the tour), and then removed infeasibilities 

by a combination of moves and an iterative procedure that reduces infeasibilities in a 

controlled manner. Multi-depot extension was also introduced to this problem by the 

authors. 

10 
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A closely variation of simultaneous pickup-delivery problem is the mixed pickup-

delivery problem (Golden et al. 1985, Kontoravdis and Bard 1995, Salhi and Nagy 

1999). Similar to simultaneous pickup-delivery problem, maintaining the feasibility of 

vehicle capacity is difficult in this problem since the capacity availability fluctuates 

on the tour. The solution approach developed in Nagy and Salhi (2005) for 

simultaneous pickup-delivery problem was applied to this problem as well. Ropke and 

Pisinger (2004) transformed all backhaul problems into a given generic form and 

propose a unified heuristic based on insertion and removal moves, and Large 

Neighborhood Search with probabilistic move acceptance scheme.   

A special case of the simultaneous pickup-delivery problem is the problem where 

customers are either delivery (linehaul) or collection (backhaul) nodes and linehaul 

customers have to be first in a tour (Deif and Bodin 1984, Yano et al. 1987, 

Goetschalckx and Jacobs-Blecha 1989, Toth and Vigo 1997, Osman and Wassan 

2002). Proposed solution approaches include saving methods, set covering, VRP plus 

insertion, clustering and routing, and tabu search. A survey of the various models and 

techniques utilized on this problem can be found in Savelsbergh and Sol (1995). More 

recently, Lu and Dessouky (2004) proposed a branch and cut based algorithm for the 

multiple vehicle version of this problem. Bent and Henteryck (2006) proposed a 

simulated annealing approach for assigning customers to vehicles first and then 

construct feasible tours by Large Neighbourhood Search with the goals of minimizing 

number of routes and total travel cost.  

Finally, dial-a-ride problems involve taking up on-line requests for picking up and 

delivering customers at their desired locations by maintaining capacity feasibility of a 

vehicle that is en route on cyclic trips. A survey on such dynamic routing problems 

11 
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are found in Gendreau and Potvin (1998) and there are a large variety of solution 

techniques proposed, including insertion heuristics (Madsen et al. 1995, Diana and 

Dessouky 2004), local search (Healy and Moll 1995), clustering (Ioachim et al. 1995), 

simulated annealing (Hart 1996), branch and price (Savelsbergh and Sol 1998), and 

tabu search (Gendreau et al. 1999b, Cordeau and Laporte 2003). Besides these VRP 

variants, a dynamic VRP may include time-dependent travel times (Malandrak and 

Daskin, 1992). This formulation assumes that each link has a fixed travel time and 

includes an index that identifies the time interval the vehicle enters the link. The last 

line of research on dynamic VRP comes from a stochastic definition (Psaraftis, 1988; 

Larsen, 2000), which is outside of the scope of this study. 

Similar to the standard assumption of unlimited supply quantities, the usual 

assumptions made in the problems discussed above are that vehicle capacity is 

sufficient to meet individual customer demand/supply quantities, and that vehicle 

availability is abundant. These assumptions are difficult to satisfy in emergencies 

where immediate response is required from as many as vehicles as possible. Hence, 

split delivery and the limitation on the number of vehicles and supplied quantities are 

valid in the ELP.  

In split delivery a customer may be visited more than once if demand exceeds the load 

capacity of available vehicles. VRP with split delivery was first introduced by Dror 

and Trudeau (1989), where they showed that split deliveries could result in significant 

savings in terms of total distance and the number of vehicles. Dror et al. (1994) 

described an integer programming formulation of the problem and developed an exact 

constraint relaxation branch and bound algorithm for the VRPSD. Frizzell and Giffin 

(1995) extended the split delivery routing problem to the situation with time windows, 
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and three heuristics were implemented considering multiple time windows and grid 

network distances. Mullaseril et al. (1997) studied several heuristics for the split-

delivery capacitated rural postman problem with time windows. Belenguer et al. 

(2000) studied the polyhedron and develop a lower bound for the problem from a new 

class of valid inequalities. Recently, Ho and Haugland (2004) proposed a tabu search 

based heuristic for the problem with time windows where the split delivery options 

are not imposed but decided by a pool of solutions maintained in the solution process. 

2.1.2 Heuristic Solutions for the VRP 

Due to the importance of combinatorial optimization (CO) problems for the scientific 

as well as the industrial world, many algorithms have been developed to tackle them. 

These algorithms can be classified as either exact or approximate algorithms. Exact 

algorithms are guaranteed to find an optimal solution for every finite size instance of a 

CO problem in bounded time. Yet, for CO problems that are NP-hard, no such 

polynomial time algorithm exists. The VRP has been shown by Lenstra and Kan 

(1981) to be NP-hard, moreover, the largest VRP instances that can be consistently 

solved by the most effective exact algorithms proposed so far contain about 50 nodes, 

whereas larger instances may be solved to optimality only in particular cases (Toth 

and Vigo, 2002). Due to the limited success of exact methods, the use of approximate 

methods to solve VRP has received more and more attention in the last 30 years.  

Several families of approximate methods have been proposed for the VRP. They can 

be classified into two classes: basic approximate methods and metaheuristics. Among 

the basic approximate methods the researchers usually distinguish between 

constructive methods and local search methods. Constructive algorithms are typically 

the fastest approximate methods. They generate solutions from scratch by adding 
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components to an initially empty partial solution until a solution is complete. Local 

search algorithms perform a relatively limited exploration of the search space. They 

start from some initial solution and iteratively try to find a better solution in an 

appropriately defined neighborhood of the current solution. Generally, these methods 

can produce better quality solutions within modest computing times. Moreover, as 

they are extendable to constraints encountered in real-life applications, they are still 

widely used in commercial packages. Extensive surveys on these classical heuristics 

are given in Golden and Assad (1988), Fisher (1995) and Toth and Vigo (2002). 

In the last twenty years, a new kind of approximate algorithm has emerged, which 

tries to combine basic heuristic methods in higher level frameworks aiming at 

efficiently and effectively exploring a search space. These methods are commonly 

called meta-heuristics (Glover, 1986) and mainly include Ant Colony Optimization 

(ACO), Genetic Algorithms (GA), Simulated Annealing (SA), and Tabu Search (TS). 

Blum and Roli (2003) gave a survey of these meta-heuristics from a conceptual point 

of view, with emphasis on the analysis of their similarities and differences. SA and TS 

can be seen as intelligent extensions of local search algorithms. The idea of this kind 

of meta-heuristic is to escape from local minima and proceed in the exploration of the 

search space to find other hopefully better local minima. A different philosophy exists 

in population-based algorithms like ACO and GA. They incorporate a learning 

component in the sense that they implicitly or explicitly learn correlations between 

decision variables to identify high quality areas in the search space. Hence, this kind 

of meta-heuristic essentially performs a biased sampling of the search space. 

In meta-heuristics, the emphasis is on performing a deep exploration of the most 

promising regions of the solution space. The quality of solutions is much higher than 
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those obtained by classical heuristics, but the price is increased computing time 

(Renaud et al., 1996). Moreover, the procedures usually are context dependent and 

require finely tuned parameters, which may make their extension to other situations 

difficult. Taillard et al. (2001) reviewed many meta-heuristic applications for different 

CO problems and proposed a unified view of adaptive memory programming to 

present these meta-heuristics due to some of their similarities on the way of exploiting 

memory during the search process. 

Among the meta-heuristics that have been applied to the VRP, TS now emerges as the 

most effective one. Some early TS applications did not yield impressive results, but 

subsequent implementations were much more successful. These include Osman 

(1993), Taillard (1993), Gendreau (1994) and Rego (1996), among which Taillard 

(1993) has obtained the best known results to benchmark instances. In addition, 

Taillard (1993) introduced a decomposition method for the main problem, which is 

well suited for parallel implementation. Osman (1993) showed that applying SA does 

not yield competitive results against the best TS implementations. The GA 

applications on the basic VRP appeared in Baker and Ayechew (2003) and Prins 

(2004). The results show that GA is competitive with TS and SA in terms of solution 

time and quality. Furthermore, the latter implementation is the best algorithm for the 

large-scale instances generated by Golden et al. (1998). ACO algorithms have also 

produced quite encouraging results, which will be discussed as follows. 

ACO was introduced by M. Dorigo as a novel nature-inspired meta-heuristic and first 

used on the traveling salesman problem (Dorigo, 1996). Then the rank-based version 

of the ant system was applied to VRP by Bullnheimer et al. (1999) with good results. 

These authors used various standard heuristics to improve the quality of VRP 
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solutions and modified the construction of the tabu list considering constraints on the 

maximum total tour length of a vehicle and on its capacity. A more recent ACO 

application on the VRP is that of Bell and McMullen (2004). ACO was also applied to 

a VRP version more close to actual logistic practice, VRP with time windows 

(VRPTW). Gambardella et al. (1999) proposed a multiple ant colony system for this 

problem. First introduced for multi-objective function minimization problem, the 

method coordinates the activity of different ant colonies, each of them optimizing a 

different objective. These colonies work by using independent pheromone trails but 

they collaborate by exchanging information. The approach has been experimentally 

proved to be more effective than the best known algorithms in the fields such as the 

tabu search of Rochat and Taillard (1995), the large neighbourhood search of Shaw 

(1998) and the genetic algorithm of Potvin and Bengio (1996). 

ACO was also successfully applied to many other problems, such as the quadratic 

assignment problem (Gambardella et al., 1999; Maniezzo, 1999), scheduling problem 

(Merkle, 2000), and so on. More recently, different authors (Kaji, 2001; Tsai, 2002) 

have tackled the TSP with hybrid variants, mainly with tabu search, but in the case of 

large TSP instances, also with genetic evolution and nearest neighbor search, in order 

to improve both efficiency and efficacy. Detailed description of ACO’s theoretical 

results and applications review can be found in recent papers by Dorigo and Blum 

(2005), and Dorigo and Stützle (2002). 

According to the analysis in the previous chapter, one may see that the search space in 

the ELP is more relaxed than commercial routing models and the number of 

alternatives in a local neighborhood increases significantly. Thus, local search based 

methods may not be applied efficiently in this problem. Instead, the population-based 
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meta-heuristics seem more promising due to their highly effective exploration scheme 

of large search spaces. Moreover, as an extension of traditional construction heuristics, 

ACO solution framework is readily available for both the diversification on vehicle 

paths building and the efficiency on commodity dispatch to deal with the complexities 

of the ELP.  

2.2 Multi-commodity Flow Problem 

Network flow problems have been in the focus of interest for many years and they 

represent a very successful area of combinatorial optimization. According to 

Kennington and Helgason (1980), specialized network simplex algorithms can solve 

minimum cost linear programming problems with pure network structure from 50 to 

over 100 times faster than the general linear programming algorithm. Due to the good 

solvability of network model, it has been accepted by researchers that methods based 

on the exploitation of the embedded network structure can solve problems faster than 

otherwise possible with the standard linear programming algorithm, when a very high 

proportion of the rows of the problem form a pure network (Aderohunmu and Aroson, 

1993). A comprehensive survey of classic network flow problems and solution 

methods can be found in Ahuja et al. (1993).  

Multi-commodity networks arise in practice when more than one type of commodity 

must share arc capacities in a network. In some applications, the flow variable in the 

model can be fractional; in other contexts, however, the variables must be integers. 

The latter instances form integer multi-commodity network flow problems that remain 

a challenge and active area of research. Since the linear programming model might 

either be a good approximation of the integer programming model, or the linear 

programming model can be commonly used as a relaxation of the integer 
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programming and embedded within branch-and-bound or some other approaches, the 

literature on linear multi-commodity flow problems is discussed first, the integer 

counterparts next. 

Several categories of methods have been considered for the multi-commodity flow 

problem. Direct approaches solve the problem by exploiting the special block-network 

structure of the constraint matrix. The solver can be either simplex-based or use 

interior point methodology; the other popular approach is based on decomposition, 

i.e., Lagrangian relaxation approach, and column generation scheme. Other solution 

methods proposed for the model include primal-dual heuristics (Barnhart and Sheffi, 

1993), and approximation algorithms (Bienstock, 1999; Goldberg et al., 1998), and so 

on. In addition, due to the progress made in the simplex implementations during 

recent years, the solvability of the linear multi-commodity flow problem has been 

largely improved. A commercial package such as CPLEX 6.5 can solve the instance 

up to nearly 1 million of variables and 60,000 constraints in less than half an hour on 

a midrange workstation (Castro, 2003).  

Simplex-based methods rely on primal partitioning techniques that exploit the special 

structure of the basis (Ahuja et al. 1993). Two codes of this type have been developed 

during the last years: EMNET (McBride, 1998; Mamer and McBride, 2000) and 

PPRN (Castro and Nabona, 1996). The efficiency of pricing strategy in simplex-based 

method was also demonstrated in Mamer and McBride (2000), where a new 

decomposition based pricing procedure results in enhanced performance on both the 

message routing problem and the PDS problems. According to Castro (2003), the 

computational results presented in McBride (1998) in the solution of the PDS (Patient 

Distribution System) problems with EMNET have similar performances with those 
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obtained with CPLEX (using the network optimizer followed by dual simplex, which 

is known as the most efficient combination for most multi-commodity problems), 

which means the highly efficient general linear programming solver might be a good 

replacement for current primal partitioning multi-commodity codes. 

Recent research into interior point methods produced substantial advances for solving 

large multi-commodity flow problems directly. Application of interior point methods 

to multi-commodity flow problems was studied by Kamath et al. (1993). Network 

specializations of interior point methods were also presented by Resende and Veiga 

(1993), Resende and Pardalos (1996). The more recent specialized interior-point 

multi-commodity algorithm of Castro (2000) has shown to be the most efficient 

interior-point approach (Castro, 2003); however, the comparison between interior-

point algorithm and simplex-based solvers shows that one can outperform each other 

for only some particular problems.  

The last line of research on multi-commodity flow problem comes from the 

decomposition approaches, on both linear and integer problems. Early implementation 

of Dantzig-Wolfe decomposition scheme is not efficient (Ahuja et al., 1993), 

however, good computational results on some problem sets were observed recently by 

Chardaire and Lisser (2002) and Larsson and Yuan (2004). Lagrangian decomposition 

methods are more widely applied in literature, which place Lagrangian multipliers (or 

prices) on the bundle constraints and bring them into the objective function so that the 

resulting problem decomposes into a separate minimum cost flow problem for each 

commodity. A traditional Lagrangian heuristic method has been applied to the linear 

multi-commodity flow problem in Holmberg (1996), while the performance does not 

outperform the general purpose solver such as CPLEX. Frangioni and Gallo (1999) 
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proposed a cost decomposition approach to the problem based on dualizing the mutual 

capacity constraints and solving the resulting Lagrangian dual with a dual-ascent 

algorithm. Their algorithm provides excellent results for the Mnetgen instances, 

especially on problems where the number of commodities is relatively large with 

respect to the size of the graph. In a later indirect comparison of the results of 

Frangioni and Gallo (1999) with those of Castro (2003), CPLEX (version 6.5) seems 

to provide similar performances to that of the bundle-method-based algorithm. 

However, according to the computational work in Larsson and Yuan (2004), the two 

specialized price-directive decomposition methods outperformed the general-purpose 

solver CPLEX (version 5.0) and the specialized partitioning code PPRN on several 

problem sets. Thus, the comparison between the simplex-based solvers and 

decomposition methods depends on the implementation and the problem sets. More 

recently, Babonneau et al. (2006) applied the analytic center cutting-plane method to 

solve the Lagrangian dual problem, where an active set strategy was applied and 

resulted in acceleration on the large problem instances in comparison with the 

augmented Lagrangian algorithm proposed in Larsson and Yuan (2004). 

The ability to solve large linear multi-commodity flow problems allows us to consider 

the solution of integer models that have been adopted in a wide variety of important 

large-scale applications, such as fleet management problems (Cheung and Powell, 

1996; Powell and Carvalho, 1997), network design problems (Lamar et al., 1990; 

Holmberge and Yuan, 2000), capacity expansion (Chang and Gavish, 1995), and so 

on. The special structure of these problems makes decomposition an attractive 

solution method. Generally speaking, it was often combined with heuristic and 

embedded in the branch and bound tree. In Holmberg and Hellstrand (1998) an 

efficient solution method based on a Lagrangian heuristic and branch and bound was 
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developed for solving the uncapacitated network design problem formulated in integer 

multi-commodity flow problem. A similar approach was adapted to the capacitated 

version of the same problem (Holmberge and Yuan, 2000). In Gendron and Crainic 

(1994) different relaxation schemes were studied and discussed with heuristics for 

yielding feasible solutions for multi-commodity network design problems. A detailed 

survey of Lagrangian relaxation was given in Guignard (2003).  

Dantzig-Wolfe decomposition and the related column generation is another approach 

for finding the correct prices that exploits the network structure of the subproblems. 

This approach has been receiving more and more attention in literature of multi-

commodity flow and other difficult combinatorial problems (Desrochers et al. 1995; 

Barnhart et al., 1998; Desaulniers et al., 2005). Jones et al. (1993) investigated the 

impact of problem formulation on Dantzig-Wolfe decomposition for the multi-

commodity network flow problem. They showed that the path-based formulations by 

decomposition outperform the equivalent tree-based formulation. Barnhart et al. 

(2000) presented a column-generation model and branch-and-price-and-cut algorithm 

for origin-destination integer multi-commodity flow problems. More recently, 

Holmberg and Yuan (2003) extended the basic multi-commodity flow model to 

include side constraints on communication paths to handle the time-delay or reliability 

requirements on a communication pair in the telecommunication applications, and a 

column generation method showed efficiency on solving the model. 

Besides the readily available simplex-based methods and price-directive 

decomposition methods discussed above, there is another type of approach- resource-

directive decomposition (Kennington and Shalaby, 1977). Compared with the 

previous two methods, resource-directive decomposition method begins by allocating 
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the mutual capacity among the commodities and then use information gained from the 

solution to the resulting single-commodity problems to reallocate the capacity so as to 

improve the overall system cost. According to the computational comparisons (Ali et 

al., 1980) among these three methods, resource-directive decomposition is not quite as 

efficient as the other two. 

2.3 Dynamic Network Flows 

In addition to the flow problems in static networks discussed in the previous section, 

there are problems where time must be taken into consideration, for example, the 

effect that flow values on arcs may change over time, or in some applications flow 

traveling time through each arc plays an essential role. The latter is the case in the 

emergency logistics problem, where the objective is to minimize delay of services. 

The needs for more realistic network models lead to the development of dynamic 

network flow.  

The use of dynamic networks was introduced in 1958 by Ford and Fulkerson to 

dynamic maximum flow problem. Since then, several problems have been analyzed, 

such as the quickest flows, dynamic minimum cost flows and so on. Quickest flow 

problem can be reduced to the maximum flow problem by binary search. Burkard et 

al. (1993) gave strongly polynomial algorithms for this problem based on Newton’s 

method. The generalization of the quickest flow problem with several sources and 

sinks, the quickest transshipment problem, was studied by Hoppe and Tardos (2000) 

and the first polynomial algorithm for this problem was proposed. Previous surveys 

on general dynamic flow problems include those by Aronson (1989), Powell et al. 

(1995). Aronson (1989) covered extensive dynamic applications and mainly 

concentrated on the maximum flow and transshipment problems in discrete time. 
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Powell et al. (1995) focused on dynamic modeling issues, which deals with discrete 

time settings as well as problems where the parameters are stochastic. More recently, 

Kotnyek (2003) gave an annotated overview of dynamic flow problems and solution 

techniques. 

2.3.1 Discrete vs. Continuous Modeling 

The research on dynamic network flow has two main directions with respect to the 

time modeling, namely continuous and discrete time. The continuous approach 

models time continuously and the other models time discretely. Research using the 

first approach has considered networks with time-varying capacities and costs, and 

has focused on proving the existence of optimal solutions while further generalizing 

the model (Fleischer and Tardos, 1998; Hall et.al., 2003). In general, for continuous-

time problems one can often find only theoretical results, whereas there are more 

practical solutions for discrete time model (Kotnyek, 2003). In fact, the usual solution 

approach for a continuous time network problem is to reduce it to discrete time. 

Research of the discrete type typically uses the time-expanded network (Ford and 

Fulkerson, 1962), either explicitly in the algorithms, or implicitly in the proofs, to 

produce theoretically or practically efficient algorithms. As a consequence, optimal 

dynamic flows can be obtained by applying static network flow optimization 

techniques to a time-expanded network. Hence, for the sake of existing static network 

flow optimization techniques, this research focuses on the discrete time model for the 

dynamic emergency logistical planning.  

2.3.2 Evacuation Models 

Dynamic network models have proved to be an effective modeling framework for a 

range of planning problems that arise in logistics. The quickest flow problem with 
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multiple sources and single sink is commonly used to model evacuation problems. 

Evacuation planning is critical for numerous important applications, such as 

emergency operations management and homeland defense preparation. Over the last 

two decades there has been considerable interest in modeling evacuation of buildings. 

The methods of evacuation planning can be divided into two categories, namely 

network flow model approach and traffic assignment-simulation approach. Network 

flow models fall into the category of macroscopic models, which do not consider 

individual differences. The evacuees are treated as groups where only common 

characteristics are taken into account. The earliest research on building evacuation 

using dynamic model was done by Chalmet et al. (1982). In the same issue, Jarvis and 

Ratliff (1982) proved several solution properties of this maximal dynamic network 

flow problem for evacuation. Hamacher and Tufekci (1987) developed additional 

properties of flows for evacuation process. Choi et al. (1988) extended model in 

Chalmet et al. (1982) by considering flow dependent capacities on arcs and presented 

algorithms to handle the problem with side constraints. Hoppe and Tardos (1994) 

gave a polynomial time algorithm for the evacuation problem with a fixed number of 

sources and sinks. Lovas (1998) discussed the importance of different network 

components, as well as population characteristics affecting evacuation performance. 

Simulation approach, in which the individual parameters and the interaction among 

evacuees may be taken into consideration, is out of the scope of this study, the 

interested may refer to the review given in Church and Sexton (2002). 

2.4 Summary 

A brief summary of the literature reviewed in this chapter is given here. This chapter 

reviews the studies in the most closely related areas, where one can see there is no 
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readily available model dealing with all the issues in the ELP settings. The 

conventional static VRP formulation has evolved itself to address various issues in 

practical applications; however, these variations do not seem to be applicable in a 

real-world ELP context, since they are static by nature and cannot address all the 

dynamic issues arising in emergency logistics. Dynamic VRP and network flow based 

models are promising for dealing with the dynamism under consideration while their 

historical applications are restricted only on relatively simple problem settings. 

Hence, the formulation development shall be conducted with careful evaluation and 

comparison, with particular emphasis on computational efficiency. On the other hand, 

heuristic methods usually dominate the exact solution methods for the VRPs as well 

as for many other NP-hard combinatorial optimization problems, because using exact 

methodologies for large scale applications in a dynamic environment would lead to 

very high computation times. The latter poses a new challenge in designing heuristics 

for complex dynamic problems.  
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3 Evaluation and Comparison of ELP Formulations 

Most integer programming problems may be formulated in several ways. But in 

contrast to linear programming, a good formulation is of crucial importance for 

solving the integer programming model. A model is specified by the variables, 

objective function, and constraints. Typically, the variables are chosen from the 

definition of a solution, and once the variables and an objective function have been 

defined, one can speak of an implicit representation of the problem. In general, when 

there is a valid formulation, there are many choices of constraints, but an obvious 

choice may not be a good one when it comes to solving the problem. In this chapter, 

two formulations are presented for the ELP and compared in terms of solvability. 

3.1 Vehicle Routing Based Dynamic Formulation 

As described before, the ELP is closely related to the VRPs. However it represents 

quite a different setting from the VRP in the following respects. In this problem, 

unlike the VRP where supply is assumed to be abundant, supply is available in limited 

quantities and its availability varies over the planning horizon. Predictions for future 

demand of certain commodities are also known and a multi-period planning horizon 

prevails. The objective is also different. The goal is to minimize the delay in the 

arrival of commodities from aid centers. In other words, requirements of aid 

distribution centers should be met at the requested times. Hence, it is necessary to 

define a time-dependent logistics plan and dispatch available vehicles dispersed 
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throughout the logistics network so as to optimize the timing and quantity of 

commodities transported to demand nodes. Due to these reasons, the classical VRP 

formulations cannot be adapted to the logistical problem.  

Another feature in disaster settings is that vehicles may execute mixed delivery trips 

where commodities are picked up and delivered in an arbitrary sequence that 

maximizes service level. There are no restrictions on the number of “customers” 

visited nor do the vehicles belong to given facilities where they have to return. A split 

delivery system is utilized since supplies and demands are far beyond individual 

vehicle capacities.  

Here a new kind of dynamic formulation with a time index T is proposed. It can be 

classified as a partial delivery multi tour VRP with dynamic demand and limited 

supply and an objective of minimizing total delay in deliveries. The notation and the 

mathematical formulation of the problem are given below. For simplicity of the 

comparison, the formulations in this chapter do not include the evacuation problem. 

Sets and Parameters: 

T: Set of time periods in the planning horizon, t (or q) denotes a specific time 

period in T 

A: Set of commodities; a denotes a specific commodity type 

L: Set of vehicle labels; l denotes a specific vehicle  

C: Set of all nodes in the network; o (or p, i, j) denotes a specific node 

CD: Set of demand nodes, CD ⊂ C 

CS: Set of supply nodes and vehicle depots, CS ⊆ C\CD 

Nl: Set of arcs for vehicle l 

topl: Time required to traverse arc (o, p) for vehicle l  
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avolt: Binary number indicating if vehicle l is added to the fleet at node o at time t 

daot: Amount of demanded commodity type a at node o∈CD at time t ; daot=0 for 

o∈C\CD 

supaot : Amount supplied of commodity type a at node o ∈CS at time t; supaot=0 for 

o∈C\CS 

wa: Unit weight of commodity a 

capl: Load capacity of vehicle l 

K: A big number 

Pa: Priority of satisfying demand of commodity type a  

Decision Variables: 

Zaplt: Amount of commodity type a delivered to node p by vehicle l at time t   

Paplt: Amount of commodity type a picked up at node p by vehicle l at time t   

Lalt: Amount of commodity type a carried by vehicle l at time t   

devaot: Amount of unsatisfied demand of commodity type a at node o at time t 

Yoplt: Binary variable indicating if vehicle l is traversing the arc (o, p) at time t.  

Model E (I):   

Minimize Σa∈A Σo∈CD Σt (Pa devaot )      (3-1) 

Subject to 

Σp∈C Yoplt ≤1  (∀ o∈C, t∈T, l∈L)        (3-2) 

Σp∈C Ypolt ≤1 (∀ o∈C, t∈T, l∈L)      (3-3) 

Σ
 t + 1 - tpol

 q=1
Σp∈CYpolq + Σ

 t 

q=1
avolq ≥ Σ

 t 

q=1
Σp∈CYoplq  (∀ o∈C, t∈T, l∈L)  (3-4) 
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Σa∈A Paolt ≤ Σp∈C Yoplt * capl (∀ o∈C, t∈T, l∈L)    (3-5) 

Lalt = Σ
 t

q=1
Σo∈CPaolq - Σ

 t

q=1
Σp∈CZaplq (∀ a∈A, t∈T, l∈L)   (3-6) 

Σ
a∈Awa*Lalt ≤ capl (∀ t∈T, l∈L)      (3-7) 

Zaolt ≤ Σ
 t +1- t

pol
 q= 1 Σp∈CYpolq * K (∀ t∈T, a∈A, o∈C, l∈L)   (3-8) 

devaot = Σ
 t

q=1
daoq - Σ

 t

q=1
Σl∈LZaolq  (∀ a∈A, t∈T, o∈CD)   (3-9) 

devaot=Σ
 t

q=1
supaoq -Σ

 t

q=1
Σl∈LPaolq  (∀ a∈A, t∈T, o∈CS)   (3-10) 

Zaolt, devaot, Lalt, Paolt ≥ 0  (∀ a∈A, t∈T, o∈C, l∈L)  (3-11) 

The problem modeled above is a multi-period planning problem where demands in 

the future time periods are indicated by the parameter daot. In emergency situations 

knowledge on future demand is scarce except for some commodities, but the disaster 

coordination center frequently acknowledges supply that will be available in future 

time periods. So, it is possible to plan ahead and take future supply into account while 

preparing the plans. 

The objective aims at minimizing the weighted sum of unsatisfied demand over all 

commodities. This objective is compatible with the goal mentioned previously and 

commodities are transported, upon request, as soon as possible to demand centers, 

according to their priorities. Constraint sets (3-2) to (3-4) are vehicle flow balance 

constraints on the nodes in each time period. Unlike their counterparts in classical 

VRP formulations, the vehicles can stay and wait at any node in its route. Constraint 

sets (3-5) to (3-8) guarantee that the vehicle’s load and delivery at each node in each 
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time period is consistent with the capacity. Finally, constraint sets (3-9) and (3-10) 

balance material flow on demand nodes and transshipment nodes and explicitly report 

the quantity of unsatisfied demand, devaot, in each time period.  

With the time index included in the formulation, the precedence of the nodes visited 

in a route is naturally determined, and there remains no need for sequencing 

constraints to construct tours. Due to the latter structure and the pick up/delivery 

restrictions, a vehicle goes to any depot automatically to pick up load as the need 

arises and, subtour elimination constraints (an important difficulty in the classical 

VRP formulation) are disposed of. However, due to the requirements of both vehicles 

and time indices, the dimension of the problem may quickly get out of hand as the 

length of the planning horizon is increased or more vehicles become added to the 

fleet.  

In the following sections a different modeling strategy based on the article Özdamar et 

al. (2004) is presented, which eliminates the need for vehicle indices by taking the 

multi-commodity flow perspective where some of the commodities (vehicle types) are 

integral valued. This formulation represents vehicles by general integer variables 

rather than binary variables and obtains an aggregate solution in terms of vehicle 

logistics. Detailed vehicle instructions are obtained using a simple vehicle splitting 

algorithm that converts integer vehicle flows into binary vehicle itineraries and then 

by solving a set of linear equations to assign a loading/unloading schedule to each 

such itinerary. Only the transportation of commodities is taken into consideration so 

that a one-to-one model comparison is made in coherence with the vehicle routing 

based formulation E(I), while the extended model including wounded people 

evacuation and medical service will be given in the next chapter. 
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3.2 Formulation Based on Multi-commodity Flow Problem 

The multi-commodity flow problem arises in a wide variety of important applications, 

and due to the better solvability of network flow problems, many practical 

applications are often modeled in this context. To address the high dimensionality 

found in the ELP and to treat transportation of bulk demand and supply, the 

emergency logistical problem is formulated here as a dynamic, multi-commodity, 

mixed integer network flow problem with side constraints. The mathematical 

formulation E(II) and additional notations are given below. 

Additional Sets and Parameters: 

M: Set of vehicle types; m (or v) denotes a specific type 

topm: Time required to traverse arc (o, p) for vehicle type m 

avomt: Number of vehicles of type m at node o added to the fleet at time t   

capm: Load capacity of vehicle type m 

Koqptm: Binary parameter matrix indicating if node p is reachable at time t from node o 

at time q using vehicle type m: if t-q<topm, then Koqptm =0, else Koqptm =1. 

Additional Decision Variables: 

Zaopmt: Amount of commodity type a traversing arc (o, p) at time t by vehicle type m  

Yopmt: Integer number of vehicles of type m traversing the arc (o, p) at time t. 

Model E (II):  

Minimize Σa∈AΣo∈CD Σt (Pa devaot)              

(3-12) 

Subject to 
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Σ
t

q=1
daoq - Σm∈M

Σ
 t

q=1
Σ p∈C[Kpqotm Zapomq - Zaopmq]=devaot (∀a∈A, o∈CD, t∈T)        (3-13) 

Σ
m∈M

 Σ
 t

q=1
Σ p∈C[- Kpqotm Zapomq + Zaopmq ]≤Σ

 t

q=1
supaoq (∀a∈A, o∈C\CD, t∈T)      (3-14) 

Σ
 t

q=1
 Σ p∈C [Yopmq - Kpqotm Ypomq] ≤ Σ

 t

q=1
 avomq   (∀ o∈C, m∈M, t∈T)         (3-15) 

Yopmt* capm ≥ Σ
a∈A wa * Zaopmt (∀o, p∈C, t∈T, m∈M)          (3-16) 

Yopmt ≤ K * Σ
 |T|

q=t Kotpqm  (∀o∈C, p∈C, m∈M, t∈T)          (3-17) 

Yopmt ≥ 0, Zaopmt ≥ 0, devaot ≥ 0 (∀a∈A, o∈C, p∈C, m∈M, t∈T)         (3-18) 

Both in E(I) and in E(II) a heterogeneous fleet and multiple transportation modes can 

be modeled. In E(I), each vehicle has its own capacity and arc distance that enables a 

superimposed transportation network integrating different modes, such as air, land, 

etc. In E(II) “vehicle types” are defined rather than vehicle labels implying vehicles of 

different capacities and/or transportation modes. Thereby, an integer number of 

vehicles of the same type are aggregated in E(II) and treated as an integer valued 

commodity, removing the requirement of tracking vehicles individually on a route 

basis. Tracking aggregate vehicle flows on a time basis also facilitates multi-period 

representation of demand and supply. Furthermore, the embodied network structure 

enhances problem solvability when compared with model E (I). One may note that 

both formulations are built on the time-expanded network whose size is larger than 

the original network; however, it has been made tractable by the fact that an arc is 

effective in the model only when it is compatible with any vehicle flow.  

The objective in E (II) is the same as in E (I). Constraint set (3-13) balances material 

flow on the demand nodes and explicitly reports the quantity of unsatisfied demand, 
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devaot, in each time period. Especially, at supply nodes, constraints (3-14) enable the 

material flow and keep available supply non-negative.  

The set of constraints (3-15) balances the flow of vehicles over nodes. This set of 

constraints enables vehicles to wait at their last stop rather than returning immediately 

to supply nodes once the delivery is completed. The constraint restricts the number of 

vehicles moving through the network by their cumulative availability over time, 

thereby making it possible to plan ahead with the known current and future vehicle 

availability. Constraint set (3-16) enables commodity flow over arcs as long as there 

is sufficient vehicle flow coupling other commodities. Constraint set (3-17) restricts 

arc traversal to corresponding networks of given vehicle types.  

3.3 A Two-Stage Algorithm for Disaggregating Solution Flow  

In E(II) formulation, vehicles are treated as commodities, and it is not required to 

track vehicles individually on a route basis, which results in a higher efficiency 

especially as the number of vehicles utilized in disasters tends to be quite large. 

However, the aggregated flow solution cannot be directly used in emergency logistics 

planning. To obtain a dispatch plan for vehicles at operational level, a two-stage 

algorithm is proposed to generate vehicle routes and load/unload instructions. In the 

first stage the procedure reads the optimal solution and generates routing schedule for 

each vehicle, and then loaded/unloaded quantities of commodities are calculated by 

solving a system of linear equations established in the second stage.  

3.3.1 Stage 1: Algorithm for Generating Vehicle Routes 

Once Model E(II) is solved and the optimal values Y*opmt are determined, an 

algorithm called Route is implemented to determine the route of each vehicle in the 
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system. According to the multi-depot, split-delivery multiple tour VRP model, a tour 

is defined as consecutive arcs traversed by the vehicle between two pick-up actions 

from a supply node. A complete route of a vehicle is composed of all its consecutive 

tours. However, a route here is assumed to consist of a single tour that starts from any 

supply node at the beginning of the panning horizon and ends at its completion. This 

generalized definition is much more efficient. 

The solution Y*
opmt is defined as the non-empty set of vehicles traversing arc (o, p, m) 

at time t. These values are read from a file sorted in ascending order of t. Route picks 

a starting node o with the minimum time index t and identifies the set Vomt, the union 

of all non-empty departing subsets, where Vomt = ∪p Y*
opmt. Given the o, m, t, a non-

empty subset Y*
opmt corresponding to an arbitrary p is taken and decomposed into a 

set of singular unlabelled vehiclesνl. Here l is an index for counting vehicles in type 

m whose routes have been traced completely. The maximum value that index l can 

take is equal to the total number of vehicles utilized in the optimal solution, κ (κ = 

ΣT
q=1 Σm Σo,p∈C⏐Y*

opmq⏐). However, since each route consists of more than one arc, 

the number of vehicles to be traced is much smaller than κ. Each νl is traced to the 

end of its itinerary till the end of the planning horizon, T. The consecutive arcs over 

which νl travels are recorded on its route, rl. The value of Y*
opmt is decreased 

whenever a new arc (o, p, m) at time t is identified on the itinerary of νl. Once the 

route is completed, another vehicle νl, that is an element of Y*
opmt is selected and its 

route traced, until all elements of Y*
opmt are labeled. This procedure is repeated for all 

other subsets Y*
opmt ⊆Vomt until Vomt is exhausted and then the next non-empty Y*

opmt 

in the sorted list is selected and forms new Vomt. In each iteration, there are fewer 
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vehicles to trace. Route has a worst case polynomial complexity of O(κ⏐C2⏐T).  The 

pseudocode of the algorithm is given below. 

Additional Notation: 

CO: Set of nodes where all departing vehicles have not been traced 

Y*
opmt: Set of vehicles traversing arc (o, p, m) at time t, Y*

opmt ⊆ Vomt 

Vomt: Set of all vehicles of transportation mode m outgoing from node o at time t: 

Vomt = ∪p∈CY
*
opmt  

νl: lth vehicle in Vomt, l=1 to κ, where κ=ΣT 

q=1 
Σ mΣ(o,pm)∈Nm

 ⏐Y*
opmq⏐. κ is an 

upper bound on l. 

r l: Set of arcs traversed by νl. 

Pseudocode for Algorithm Route 

       Read from file: sorted list (in ascending order of t) Y*
opmt; 

Initialize: CO =   C; r l =φ for l=1…κ. Set l=0. 
do  
 { 
   Construct set Vomt  = ∪

p
 Y*

opmt : o∈ CO, Y*
opmt ≠ φ and t is minimum on list; 

   Initialize: count = ⏐Vomt⏐; Head = TempHead = o;   
   While (count>0) do 
    { 
      Select any non-empty subset Y*

opmt ⊆ Vomt: ⏐Y*
opmt⏐≠ 0; 

      l = l+1; 
Select νl∈Y*

opmt and label νl; 
Update: r l  = r l   + {o, p, m}; ⏐Y*

opmt⏐ = ⏐Y*
opmt⏐ – 1; count = count –1; 

Initialize: Tail =  p; t1= t; 
       do 
         { 
              If any non-empty set Y*

Tail,k,m,t1 exists for any arc {Tail, k, m} 
              { 
                 Update: r l  =  r l   + {Tail, k, m}; ⏐Y*

Tail,k,m,t1⏐ = ⏐Y*
Tail,k,m,t1⏐ – 1; 

           Update: Head = Tail; Tail=k; t1= t1 + t′Head,Tail,m; 
              } 
              else t1 = t1+1; 
          }while(t1≤T) /*enddo_t1*/ 
          Head = TempHead; 
     }/*endwhile_count*/ 
    CO = CO – {o}; 
   } while(Vomt ≠φ) ;/*endwhile*/ 
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3.3.2 Stage 2: Generating Vehicle Load/Unload Instructions 

The second stage utilizes the routes of every labeled vehicle to determine the picked 

up and delivered quantities on each route. A matrix RC is defined whose binary 

element R[l, o, t] indicates that a vehicle νl is incident to a node o∈C at time period t. 

The time period is required because a node can be traversed more than once by 

vehicle νl on its route throughout the planning horizon. Another set of parameters are 

the optimal commodity and wounded flows over each arc and each period, obtained 

by solving Model E(II). Next a system of equations (P1) is formulated that are used to 

identify the quantity of commodities loaded and unloaded by each vehicle at every 

node on its route. 

Parameters: 

L: Total set of routes (one route per utilized vehicle) identified in the first stage 

RC: Binary matrix of size [⏐L⏐x⏐C⏐x⏐T⏐]. “RC[l,o,t] = 1” indicates that a 

vehicle νl is incident to node o in time period t 

kl: Number of nodes on route l 

capl: Capacity of vehicle νl 

Z*
aopmt: Optimal amount of commodity type a traversing arc (o,p,m) at time t identified 

by Model E(II). 

Decision Variables: 

LZ
l
aot: Quantity of commodity a picked up at node o in period t by vehicle l 

UZ
l
aot: Quantity of commodity a delivered at node o in period t by vehicle l 

System of Equations and Inequalities (P1): 
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Σ
l
 Σ

 t

q=1
RC[l,o,q] [ UZ

l
aoq - LZ

l
aoq ] = Σ

m
 Σ

 t

q=1 Σ p, o∈C 
Z*

apomq - Σm 
Σ

 t

q=1 Σ o,p∈C 
Z*

aopmq

 (∀ a∈A, o∈C, t∈T )       (3-19) 

Σo∈C Σ
 t

q=1  RC[l,o,q] [LZ
l
aoq - UZ

l
aoq] ≥ 0 (∀ l∈L, a∈A, t=1, …, T-1)  (3-20) 

Σo∈C Σ
 T

q=1 RC[l,o,q] [LZ
l
aoq – UZ

l
aoq] = 0  (∀ l∈L, a∈A)  (3-21) 

Σ
 t

q=1 Σa
 Σo∈C  wa RC[l, o, q] [LZ

l
aoq – UZ

l
aoq] ≤  capl  (∀ l∈L, t∈T) (3-22) 

LZ
l
aot , UZ

l
aot ≥ 0 (∀ l∈L, a∈A, o∈C, t∈T )    (3-23) 

Equations (3-19) state that at every time period the net cumulative number of 

commodities delivered at a node o over all transportation modes m should be equal to 

the net delivered number by all labeled vehicles. Inequalities (3-20) state that the 

cumulative net quantity picked up on the route by each labeled vehicle is non-negative 

for each type of commodity. Equations (3-21) are ending conditions that ensure that 

the quantity picked up by each vehicle is equal to the quantity delivered by the end of 

the planning horizon. Inequalities (3-22) restrict the net cumulative quantity picked up 

by the vehicle capacity, in the order of nodes traversed on the vehicle’s route. Since it 

is generated from model E(II)’s optimal solution, any feasible solution to P1 gives a 

set of optimal instructions. 

Although equations (3-19) are given in a cumulative form by t, it can be divided into a 

set of separate equations by deducting the previous accumulated equation up to t from 

the accumulated equation up to t+1. The resulting equations are as follows: 

Σ
l
[UZ

l
aoq-LZ

l
aoq]=Σ

m
Σ p, o∈CZ*

apomq-Σm
Σ o,p∈C 

Z*
aopmq  (∀ a∈A, o∈C, q∈T ) (3-24) 

37 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Taking the indices a and q as a two-dimension type indication of commodity, and 

considering l denoting the summed flow adjacent to node o, the equations (3-24) are 

exactly the mass balance constraints in the minimum cost network flow problem and 

therefore matrix given by (3-24) is totally unimodular. 

Inequalities (3-20) and equations (3-21) define similar constraints in other 

dimensions. The number of variables is highly limited, as RC is an extremely sparse 

matrix. The number of constraints in the problem is (⏐L⏐+⏐C⏐)⏐A⏐⏐T⏐. Especially, 

in the context of commodity logistics (as in E(II) in this chapter ), system of equations 

and inequalities P1 can be solved in polynomial time, which can be achieved easily in 

readily available linear programming packages. 

3.4 Comparison between Formulations   

The major determinant of an integer model’s efficiency is the number of integer 

variables it defines. Additionally, if the problem has a special structure, it can 

facilitate solution process significantly. Hence, the models proposed in the previous 

sections are compared in two aspects. On the first aspect, E(I) contains |C|2×|L|×|T| 

binary variables, while E(II) involves |C|2×|M|×|T| integer variables that is normally 

far less than the former (vehicle number |L| is greater than vehicle type number |M|). 

Hence, considerable solution advantage may be obtained through the vehicle 

aggregation when large number of vehicles is employed in many practical cases. 

Furthermore, because of the good network structure discussed in Chapter 2, it is 

reasonable to say that model E(II) has better efficiency than E(I). A small 

computational experiment is done to illustrate the impact of input change on problem 

size as well as solution efficiency. The experiment focuses on the observation of how 

the inputs L and M differentiate the two formulations’ solution efficiency. Hence, an 
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identical distance matrix is applied to all the instances, which is taken from a test 

instance proposed for VRP by Eilon et al. (1971). Demand-supply-vehicle parameters 

are given arbitrarily and there exist sufficient supplies available in all instances. All 

instances are generated in GAMS (GAMS Development Corporation, 1998) and 

solved by the MIP solver CPLEX 7.5 (ILOG, 2001) on a PC with 3.2 GHz CPU speed 

and 512 MB RAM. The results are presented in the following table.  

Table 3-1 Illustration on a small set of instances 

Input Size Model 
Size (Mb)

Number of 
Integer 

Variables 

Number of 
Constraints

Computation Time 
(Sec.) 

No 
|A|x|C|×|L|×|M|

×|T| 

Tightness 

E (I) E (II) E (I) E (II) E (I) E (II) E (I) E (II) Two-
Stage

1 (2, 13, 6, 1, 8) 0.867 7 3 8112 1352 12943 3522 11.0 1.3 0.36 
2 (2, 13, 6, 2, 8) 0.774 7 5 8112 2704 12943 6435 10.8 4.5 0.34 
3 (2, 13, 9, 1, 8) 0.674 9 3 12168 1352 19318 3522 47.1 0.23 0.34 
4 (2, 13, 9, 3, 8) 0.674 9 7 12168 4056 19318 9348 74.6 3.7 0.36 
5 (2, 13, 12, 3, 8) 0.867 12 7 16224 4056 25693 9348 125.8 3.8 0.36 
6 (2, 13, 15, 3, 8) 0.758 15 7 20280 4056 32068 9348 227.5 2.0 0.38 

The first two columns give the problem number and size. The third column indicates 

the tightness of vehicle capacity, which is calculated as total load divided by total 

available vehicle capacity. The capacity tightness has been observed as a major 

impact factor on the solvability for VRPs, hence it is noted here. The subsequent 

columns indicate memory requirement, number of integer variables, number of 

constraints and computation time. The last column presents the time taken to 

disaggregate the flow solutions, which is consistently trivial for these small instances. 

The runtimes for both formulations get longer when model sizes increase. However, 

model E(II) is a more compact formulation because the number of vehicles (|L|) is a 

major concern in ELP context, and the difference among the two models’ sizes grows 

quickly |C|2×|T|×(|L|-|M|) on |L|. Hence, the computation times for E(I) increase 

significantly as the number of vehicles (|L|) increases (while the number of vehicle 
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types (|M|) is preserved). Although the number of vehicle types |M| has an influence 

on E(II), its variation is quite limited in ELP practice and therefore should not pose a 

problem. Besides model size, tightness is observed as the second affecting factor to 

both formulations, and in both tight and less tight problems, the difference in 

computation times is consistently large. 

3.5 Summary 

Two kinds of formulations for emergency logistics problem are evaluated and 

compared in this chapter. Aggregate flow model E(II) shows better solvability by 

effective control over model size and the embodied network structure. These two 

advantages together make model E(II) outperform model E(I) substantially. A two-

stage algorithm is proposed to construct the vehicle routes and pickup/delivery 

instructions from the solution of E(II). Furthermore, in the context of commodity 

logistics this algorithm is of overall polynomial complexity. Hence, the whole set of 

modeling methodology simplifies the solution of vehicle routing significantly and it is 

generic and also applicable to commercial situations. 
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4 A Dynamic Logistics Coordination Model for Evacuation 

and Support in Disaster Response Activities 

In the previous chapter, the efficiency of aggregate network flow formulation was 

validated through a comparison with vehicle routing based formulation. This 

modeling strategy is supported by the two-stage algorithm proposed to produce an 

operational logistics plan. This chapter completes the disaster relief model and 

algorithm by integrating the wounded people evacuation problem into the logistics 

planning. The model is illustrated on a real world natural disaster scenario, and its 

dynamic application is demonstrated by a re-planning procedure that is conducted at 

regular time intervals during on-going relief operations. 

4.1 Modeling Evacuation in Emergencies  

In disaster response actions, the survival rate among affected people also depends on 

the effectiveness of search and rescue operations and this requires, in turn, a good 

coordination of search and rescue activities and efficient evacuation of injured people. 

Furthermore, overall health conditions of everyone in the affected area depend on the 

timely availability of commodities such as food, shelter and medicine. 

The model proposed here aims to evacuate wounded people to emergency medical 

units. Furthermore, coordination of the transportation of commodities from major 

supply centers to distribution centers in affected areas is considered in an integrated 
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manner. The model assumes that all emergency medical units have a certain service 

rate in proportion to their emergency handling capacities and that patients are 

discharged from the medical system with this rate. The service rates are modeled as 

demands so that wounded people can be treated as integer valued flow in the multi-

commodity flow model. The efficiency of this kind of formulation has been verified 

in Chapter 3. The goal of this disaster response logistics support and evacuation 

model is different from commercial applications in the sense that rather than 

minimizing fleet size and fleet operation costs (total distance traveled), it is desired to 

transport people and materials to reach their destinations where they can be served or 

delivered in the minimum possible time. Both wounded people and commodities are 

categorized into a priority hierarchy. Different types of vehicles with varying degrees 

of specialized equipment can be utilized to satisfy transportation needs of high 

priority wounded people.  

The proposed framework is designed as a flexible dynamic (multi-period) 

coordination instrument that can adjust to frequent information updates, and vehicle 

re-routing. The planning horizon under consideration is short (days or even hours) due 

to the fact that information flow is continuous after disasters and initial screening 

cannot capture the attrition numbers accurately. Furthermore, continuity of 

commodity logistics is achieved by incorporating anticipated commodity demand for 

the next period. 

Once a solution is obtained and integrated decisions related to routing and load/unload 

quantities are read from the output file, a simple polynomial algorithm converts the 

arc-based vehicle dispatch output into vehicle itineraries with their load/unload 

quantities (keeping track of these quantities is a must in split delivery policies). This 
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network flow model structure facilitates the execution of the re-planning procedure 

that is activated at regular time intervals during ongoing operations. Thus, an efficient 

response system is designed here to meet the requirements of dynamic disaster 

logistics support and provide fast schedule updates when new demand, supply and 

vehicle availability information arrives at the coordination center.  

4.2 Mathematical Formulation 

The mathematical formulation of the problem and the additional notation are given 

below, based on the formulation presented in Chapter 3 and embodying the wounded 

evacuation problem.  

Additional Sets and Parameters: 

T′: Regular time interval for re-planning 

H: Set of different categories of wounded people (heavy, moderate-light); h 

denotes a specific category 

CH: Set of available emergency centers, CH ⊂ C\CD 

dhot: Number of wounded people of category h waiting at node o∈CD at time t; 

dhot=0 for o∈C\CD 

wh: Average weight of a wounded person  

scapho: Initial per period service rate for category h wounded people at hospital  at 

node o∈CH; scapho =0 for o∈C\CH 

Ph: Priority of wounded people of category h  

Additional Decision Variables: 

Xhopmt: Integer number of wounded people of category h traversing arc (o, p) at time t 

using vehicle type m 
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devht: Number of unserved wounded people of category h at time t 

sphot: Number of wounded people of category h who are served at node o∈C at time 

t; sphot=0 for o∈C\CH 

Model P:   

Minimize Σa∈A Σo∈CD Σt Pa devaot + Σh∈HΣt Ph devht         (4-1) 

Subject to 

Yopmt* capm ≥ Σ
a∈A

 wa * Zaopmt + Σ
h∈H

 wh * Xhopmt (∀o∈C, p∈C, m∈M, t∈T) (4-2) 

Σ
m∈MΣ

 t

q=1 Σ p∈C[ - Kpqotm Xhpomq + Xhopmq ] ≤ Σ
t

q=1 dhoq (∀ h∈H, o∈CD, t∈T)   (4-3) 

Σ
 t

q=1 
Σ

m∈M [ Kpqotm Xhpomq - Xhopmq ] ≥  Σ
 t

q=1  
sphoq (∀ h ∈H, o∈C\CD, t∈T)     (4-4) 

Σ
t
q=1 Σo∈C[dhoq - sphoq] = devht (∀h∈H, t∈T)        (4-5) 

sphot ≤  scapho   (∀ h ∈H, o∈C, t∈T)        (4-6) 

Yopmt, Xhopmt, Zaopmt, devaot, devhot ≥ 0 and (3-13), (3-15), (3-17), (3-18);    (4-7) 

The objective aims at minimizing the weighted sum of unsatisfied demand over all 

commodities and the weighted sum of wounded people waiting at affected nodes and 

medical units. Heavily and lightly injured people hold the first and second priorities 

whereas medicine holds the highest priority among all commodities. The remaining 

commodities are given appropriate subjective priorities. Commodities are represented 

in units of people equivalent for convenience. Note that in this multi-period planning 

problem, knowledge on future demand can be predicted based on current demand. 

Additionally, confirmed arrivals represent next period’s supplies, thereby enabling 
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continuity of routing plans over short periods of time. Constraint set (4-2) restricts 

transportation capacity of vehicles. It is possible to restrict the load of some vehicles 

to include only certain types of commodities by setting Xhopmt= 0 or Zaopmt=0. For 

instance, only ambulances and helicopters might be allowed to carry wounded people. 

In this formulation, the service rates in hospitals are modeled as demands for 

wounded people, while the wounded in affected nodes are modeled as supplies. 

Constraints (4-3) and (4-4) balance wounded people flow at all nodes and define those 

that are not served till time period t (waiting in affected area or hospital queue; or on 

the way to hospital). Here, queue size depends on the number of arrivals and the 

service rate or capacity of that unit. It is reduced by those who have already been 

served and sent out of the emergency system. The distribution of wounded people is 

expected to achieve equilibrium and hence, maximizes the utilization of medical 

facilities. Constraints (4-5) define wounded people not served and (4-6) restrict the 

number of wounded served in each period by the service rate of a given medical 

center. The final sets of constraints (4-7) involve commodities flow constraints from 

model E(II) and impose bounds on the variables.  

The aggregation of vehicle capacities saves substantial computational resources, but it 

might lead to a possible error when some of the commodities are integer variables 

(such as, people flow in this formulation). According to the bundle constraint, a unit 

commodity may utilize joint capacities from several vehicles, which is not feasible for 

an integer variable. Hence, a multiple assumption is imposed to eliminate the error in 

solution: the unit weights of all indivisible commodities are in integral multiple 

relationships and the capacities of vehicles are common multiples of the unit weights. 

This assumption imposes no loss of generality, since the unit weights of indivisible 
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commodities may be scaled so that the vehicle capacity can be presented by 

combinations of integral units. 

In this formulation, vehicles are treated as commodities, and again it is not required to 

track vehicles individually on a route basis. Details of dispatch orders for vehicles are 

obtained by executing the two-stage algorithm proposed in Chapter 3 while adding 

equations listed below concerning the wounded flows in the system. 

Additional Parameters: 

X*
hopmt: Optimal number of wounded people of category h traversing arc (o, p, m) at 

time t identified by Model P. 

Additional Decision Variables: 

LX
l
hot: Integer number of wounded people of category h picked up at node o in period 

t by vehicle l. 

UX
l
hot: Integer number of wounded people of category h delivered at node o in period 

t by vehicle l. 

Additional Equations and Inequalities for P1: 

Σ
l
 Σ

 t

q=1
RC[l,o,q][UX

l
hoq -LX

l
hoq ]=Σ

m
Σ

 t

q=1
Σ p, o∈C 

X*
hpomq - Σ

m
Σ

 t

q=1
Σ o,p∈CX*

hopmq (∀ 

h∈H, o∈C, t∈T )        (4-8) 

Σo∈CΣ
 t

q=1 RC[l,o,q] [LX
l
hoq - UX

l
hoq] ≥ 0 (∀ l∈L, h∈H, t=1..T-1) (4-9) 

Σo∈C Σ
 T

q=1 RC[l,o,q] [LX
l
hoq - UX

l
hoq] = 0 (∀ l∈L, h∈H)   (4-10) 
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Σ
 t

q=1 Σh
 Σo∈C wh RC[l, o, q] [LX

l
hoq - UX

l
hoq] + Σ

 t

q=1 Σa
 Σo∈C  wa RC[l, o, q] [LZ

l
aoq – 

UZ
l
aoq] ≤ capl (∀ l∈L, t=1..T)      (4-11) 

LX
l
hot, UX

l
hot, LZ

l
hot , UZ

l
hot ≥ 0; (3-19) to (3-21), (3-23);   (4-12) 

Equations (4-8) state that at every time period the net cumulative number of people 

(category h) delivered at a node o over all transportation modes m should be equal to 

the net delivered number by all labeled vehicles. Inequalities (4-9) state that the 

cumulative net quantity picked up on the route by each labeled vehicle is non-negative 

for each category of wounded people. Equations (4-10) are ending conditions that 

ensure that the quantity picked up by each vehicle is equal to the quantity delivered by 

the end of the planning horizon. Inequalities (4-11) restrict the net cumulative quantity 

picked up on each vehicle’s route in the order of nodes traversed by the cumulative 

vehicle capacity. Constraints (4-12) involve commodities flow equations from chapter 

3 and impose bounds on the variables. Both parts of the equations are of the same 

structure. Although the integer variables regarding people flow exist, a good 

solvability feature of the feasibility verification is still maintained due to the 

successful packages designed for mixed integer programming problems. 

4.3 Re-planning Procedure 

Re-planning is a core issue in dynamic logistics activities. The importance of re-

planning increases in natural disasters because requirements, supplied quantities, 

demand and the fleet sizes change perpetually. An advantage of the proposed 

formulation is that the structure of the solution is convenient to use when a new plan 

has to be generated.  
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A new plan is generated at given time intervals (at every T′ periods, T′ < T) with the 

updated information. In the re-planning approach adopted here, vehicles already 

dispatched in the previous plan may be re-routed after arriving at a node at the earliest 

time period greater than T′ in order to optimize the service level. However, if their 

load consists of wounded people, the load can be transferred to another vehicle with a 

no-wait restriction. Accordingly, the following parameters in Model P are modified 

before re-planning takes place in period T′ (or its multiples).   

If a vehicle is on the way between two nodes and it is expected to arrive at a node o in 

a period t* > T′, then, it becomes available in period t* and parameters avomt is 

adjusted for all t > t*. Based on priorities of demanded commodities, the vehicle 

might unload its contents at node o and leave for a higher priority mission while 

another vehicle picks up its previous load. If a vehicle has already arrived at a node 

and is currently waiting, then its availability is added to the system from period T′ 

onwards. Hence, all vehicle availabilities are updated appropriately. 

Demand and supply quantities are adjusted as follows. Unsatisfied demand left over 

from the previous period, T′-1, is equal to the optimal quantity of unsatisfied demand 

devao,T′-1. This quantity is added to daoT′ as well as additional quantities that came to be 

known during the current and previous re-planning times. Demand predictions for the 

next re-planning period are updated according to observations made during recent 

periods. The same procedure is carried out for adjusting parameters related to 

wounded people. Similarly, supplies left over from the previous plan take on the 

optimal values of the slack variables in period T′-1. Additional past and future 

quantities are also added to the supply parameters.  
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4.4 Illustration on the Earthquake Scenario 

Model P and the two-stage vehicle instruction sheet generation procedure are 

implemented on a scenario that describes a possible Istanbul earthquake (main fault of 

Marmara Sea, Turkey). Other scenario description can also be found on 1995 Japan 

earthquake (Bardet et.al., 1995; Building Research Institute, Ministry of Construction, 

Japan, 1996). Istanbul receives a moderate magnitude earthquake every 50 years and 

very severe earthquakes every 300 years. An earthquake with severe damage risks is 

expected to take place with 65% probability within the next 30 years. The attrition 

numbers and structural damage to Istanbul are provided in a report prepared by a 

consortium of universities, municipalities, government agencies, and USGS and other 

foreign experts (BU Earthquake Engineering Dept., 2002). The structural risk grades 

are categorized as VII (20% of buildings-moderate damage), VIII (20%-60% of 

buildings-severe damage) and IX (20%-60% of buildings very severe damage). Based 

on risk grades and population density of districts, it is conjectured that 35,000-40,000 

buildings will collapse completely (5% of overall buildings in the city), 70000 will be 

severely damaged, and 200,000 will have moderate damage. Possible attrition 

numbers, damaged buildings, number of medical emergencies and similar statistics 

are provided in the report and mapped on Istanbul’s district partition. Figure AI-1 

illustrates districts where aid distribution centers and medical emergency units may be 

situated. Nodes 1-6 represent districts Kucukcekmece, Bakirkoy-Zeytinburnu, Fatih-

Eminonu, Bagcilar-Bahcelievler, Beyoglu and Kadikoy. Nodes 7-15 represent 

districts that have much less risk of damage and attrition. Resources such as 

commodities (in warehouse storage maintained by Natural Disaster Agency for a 

possible emergency) and medical personnel can be supplied from these low risk 

districts immediately. Assume that these districts represent existing hospital 
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emergency units in aggregate. Estimated medical provisions are based on information 

from local municipalities and Turkish Medical Doctors Association’s statistics on 

regular patient at hospital and emergency capacities as well as the number of 

ambulances. Nodes 16-17 represent Bursa and Balikesir that are major cities situated 

across Marmara Sea and are accessible from Istanbul by sea as well as by land. These 

two can provide significant amount of aid to Istanbul. The roads drawn in Figure AI-1 

represent the network of international highway TEM (Trans European Motorway 

(TEM) and its peripherals that are particularly dense in European side of Istanbul. The 

old parallel coastal highway E-5 that is reported to have a high damage risk is not 

considered in this scenario. All the tables and figure can be found in Appendix I. 

Input data used in the scenario are provided in Table AI-1, Table AI-2, and Table 

AI-3. A time bucket of 1 hour is utilized, and the plan has to be revised every re-

planning time. The planning horizon takes the time interval [1, 8] and the re-planning 

happens at the beginning of t=5. Two major commodities, medicine and food are 

considered and their demands and supplies are provided in units of people equivalent 

for convenience. Table AI-1 indicates distribution of commodity demand among 

affected nodes in period t=1 and anticipated distribution at the beginning of re-

planning period t=5. Table AI-2 illustrates supply distribution and vehicle availability. 

Supplies keep on arriving by the hour. Percentages of available vehicles by type are 

provided in Table AI-2. These are helicopters (for wounded people and medicine), 

trucks (for food) and ambulances (for wounded people). There are in total 101 

vehicles, about 20% of which is added to the system in second period. In Table AI-2, 

total transportation capability of different vehicle types is indicated for individual load 

types, but not their combinations. Hence, transportation capacity indicated in the table 

is above the actual one. 
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The wounded are categorized into two levels: light (L) and heavy (H). It is assumed 

that an ambulance can transport either up to 6 L category wounded persons or up to 2 

heavily injured or a combination fitting its weight capacity. A helicopter can transport 

up to 5 H or 15 L categories respectively. Table AI-3 provides distribution of 

wounded people in affected area. The quantities given in all tables for period 5 are 

predicted values. In re-planning phase the actual quantities have been simulated as 

10% above or below predictions. The sum of actual commodity needs and wounded 

people (information received at the end of t=4) are also indicated in these tables. 

Priority weights for heavy, light-moderate wounded, medicine and food are given as 

20, 5, 2 and 1, respectively. 

The model is constructed and coded in GAMS, and re-planning, routing (Route) and 

the system of equations P1 are all coded into GAMS. The MIP solver used is CPLEX 

7.5 on a PC with 3.2 GHz CPU and 512 MB RAM. The computation results are 

summarized in Tables 4.1-4.4, and the shaded cells indicate the values obtained before 

re-planning.  

In Table 4-1, the amounts of wounded who have been served and departed the 

emergency system at each emergency unit in each time period are given. It is 

observed that emergency units (node 11, 13, 14) are underutilized because these 

facilities are far away from affected districts. In fact, another study (Yi and Özdamar, 

2007) concerning location analysis among emergency units shows that the service 

capacity is reduced in these facilities and then transferred to nodes that are closer to 

affected nodes, including those newly established temporary emergency units and 

existing hospitals 7, 8, 10. During the first two hours medical facilities are mostly not 

utilized due to transportation delay. The latter takes place because vehicles are in 
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unaffected districts. Hence, we may consider the first two periods spent for stabilizing 

the system. The queue lengths can be observed in Table 4-2 where positive queue 

sizes are provided for each time period and node. The queue sizes are kept small 

while the facilities are utilized to maximum service rates under transportation and 

wounded supply constraints, which enable the vehicles to be devoted to other tasks for 

the enhancement of the overall efficiency.  

Table 4-1 Number of served people in medical facilities 

7 8 9 10 11 12 13 Time 
H L H L H L H L H L H L H L 

1               
2               
3 15  10 12 10  15 6   20    
4 15  10  10  15    20    
5 15 15 25 25 10 10 27 27 10 10 21 21 15 15 18 18     20 20 35 35     
6 15 15 2 2 10 10  3 10 10   15 15 6 27     20 20 34 10     
7 15 15 24 25 10 10 30 30 10 10 33 35 15 15 30 30     20 20 35 33     
8 15 15  20 10 10 3  10 10 27 1 15 15 12 18 4 4   20 20 22 30 3 1   

 

Table 4-2 Queue lengths of wounded people in medical facilities 

Time Node H queue length L queue length 
3 7 5  
3 9 6  
3 10 5  
5 7   2 2 
5 12   1 1 
7 7  1  2 
7 8   3  

 

The number of unsatisfied commodities at each period and node are presented in 

Table 4-3. Different from the low initial utilization of medical facilities due to 

vehicles delay, the commodities can be transported to affected nodes by the 

immediately available vehicles in the initial hours of the planning horizon. It is also 

observed that the nodes 1, 4, 5, 6 are much better served because they are closer to the 
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surrounding supply nodes and the commodities cannot be delivered to inner nodes 2, 

3 unless the outside demands are satisfied. 

Table 4-3 Unsatisfied commodities in affected nodes in different time periods 

1 2 3 Time 
C1 C2 C1 C2 C1 C2 

1 8000 8000 700 700 9000 9000 
2 6400 6400 700 700 9000 9000 
3 5100 3400 700 700 9000 9000 
4 1900 1900 700 700 9000 9000 
5 1700 1200 1700 1200   900 1000 10100 10000 10100 10000
6 500  500    900 1000 10000 10000 10100 10000
7 500  500    900 1000 10000 10000 10100 10000
8 500  500    900 1000 10000 10000 10100 10000

 
4 5 6 Time 

C1 C2 C1 C2 C1 C2 
1 5000 5000 2000 2000 15000 15000 
2 3400 3400 1200 1200 11600 13300 
3 2100 2100 1100 1100 8400 7400 
4 1100 1100 1100 1100 4200 3200 
5 2900 3100 2900 3100 2300 2100 2300 2100 1350 1150 2000 2000 
6 2900 3100 2900 3100 2300 2100 2300 2100     
7 2900 3100 2900 3100 2300 2100 2300 1900     
8 2900 3100 2900 3100 400  2300 1900     

 

Table 4-4 Number of vehicles utilized in each time period 

Time V1 V2 V3 
1 25 11 34 
2 23 11 45 
3 22 7 44 
4 25 5 44 
5 25 25 5 3 47 47 
6 25 25 1 2 47 47 
7 13 14 1 1 31 36 
8       

 

In Table 4-4, the number of vehicles utilized at every period before and after re-

planning can be observed. Throughout the planning horizon helicopters (V1) and 

ambulances (V3) have a high utilization ratio whereas trucks achieve about 50% 

maximal utilization rate due to supply limitation and the fact that transport capacity of 
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trucks is much larger than transport requirement of available supplies. Utilization 

rates drop to zero in period 8 when the planning horizon reaches end, which however 

will not happen in a real application running on a rolling horizon basis.  

An overall assessment can be made for the plans generated on the scenario. The 

model coordinates logistics support and evacuation activities expediting high priority 

evacuation. Scarce resources are exploited to the full extent. Logistics plans that are 

generated by the model illustrate a flexible and dynamic system responding to 

changes effectively.  Scenario plans also show the efficiency of the proposed system 

in terms of solvability. For this scenario, model P is solved in 3.08 secs. and 2375 

iterations. The MIP that has to be solved for route construction and vehicle sheet 

preparation takes a total of 1.75 secs. and 1226 iterations. The re-planning MIP is 

solved in 0.95 secs. and 1036 iterations and the second one is solved in 1.42 secs. and 

274 iterations.  

4.5 Discussion on Uncertainty in ELP 

From the very beginning of the application of optimization to various real-world 

problems, it was recognized that analysts of natural and technological systems are 

almost always confronted with uncertainty. An inevitable major issue in post disaster 

logistics management is the inherent uncertainty that exists in parameters such as 

commodity demand and number of injured people waiting to be hospitalized. Post-

disaster chaos in logistics adds to existing uncertainties. Additional congestion is 

caused by people in other areas rushing to the region to look for their relatives and 

survivors trying to flee from the affected region. Lack of basic infrastructure functions 

and communication leads to further uncertainty for the disaster coordination center. It 

is also impossible to know the exact number of people in the region at the time of the 
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disaster; for instance, survivors might be lying under rubbles. Although risk 

assessment studies might have been conducted for given types of disasters, risk grades 

for residential damage are usually spelled out in wide intervals. Another important 

source of uncertainty lies in the service rate of hospital emergency units. All of these 

reasons create obstacles against accurate prediction of parameters to be used in the 

model. 

Since the fifties of the last century, optimization under uncertainty has experienced 

rapid development in both theory and algorithms. Approaches to optimization under 

uncertainty can be grouped into two categories: stochastic programming (recourse 

models, robust stochastic programming, and probabilistic programming) and fuzzy 

programming. 

Under the standard two-stage stochastic programming paradigm, the first-stage 

decision variables have to be decided before the random events present themselves 

and then the values of the second-stage (recourse) variables are selected to make 

further decision improvements after the actual information of the uncertain parameters 

is obtained. Hence, the second-stage variables are essentially either corrective 

measures that are assigned penalties against infeasibilities arising due to a particular 

realization of uncertainty or operational-level decisions following a first-stage plan. 

The objective is to minimize the sum of the first-stage costs and the expected recourse 

activity costs. The focus of the probabilistic or chance-constraint approach is to 

restrict the probability of infeasibility to be no greater than a pre-specified threshold. 

Mulvey et al. (1995) proposed robust programming to capture the notion of risk in 

stochastic programming, which modifies the objective function and integrates goal 

programming formulation and scenario based description of problem. Stochastic 
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programming model has been applied to linear, integer, and non-linear problems. An 

extensive discussion of these applications is given in Kall and Wallace (1994), Birge 

and Louveaux (1997) and Sahinidis (2004).  

The above approaches of stochastic programming are through the use of probabilistic 

models that rely on the probability distributions of the uncertain parameters. When the 

probability distribution is not available (for example in disaster relief context, the 

tasks have never been or only rarely performed before), there is not enough 

information for inferring the probabilistic distribution functions. Moreover, the 

solution of these probabilistic models is computationally expensive because of the 

large number of scenarios resulting from a discrete representation of the uncertainty 

(Wets, 1974) or the complicated integration techniques needed when the continuous 

probability distributions is used (Schmidt and Grossmann, 2000). Hence, in such 

situations, people have to resort to an alternative treatment of uncertainty - fuzzy 

programming.  

Fuzzy modeling takes a different approach in dealing with uncertainties. Rather than 

working with expected values, it assigns fuzzy numbers to uncertain parameters that 

are defined on intervals. However, this is still a priori optimization approach, that is, a 

solution is developed according to anticipation which can be revised when exact 

information arrives. Many of the developments in the area of fuzzy mathematical 

programming are based on the seminal paper by Bellman and Zadeh (1970). The field 

has been recently popularized by the work of Zimmermann (1991). In fuzzy 

programming, the membership function is used to represent the degree of satisfaction 

of constraints, the decision-maker’s expectations about the objective function level, 

and the range of uncertainty of coefficients. The applications of fuzzy linear 
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programming have spanned many fields such as transportation (Chanas, 1998; Li and 

Lai, 2000), capacity expansion (Liu and Sahinidis, 1997), vehicle routing (Teodorovic 

and Pavkovic, 1996; Barbarosoglu and Özdamar, 2001) and so on. Verdegay (2003) 

presented a broad overview on real practical applications based on fuzzy sets and 

heuristic algorithms. Recent treatments on fuzzy integer programming include Osman 

et al. (1999), Yu and Li (2001). 

Fuzzy modeling is applicable in an emergency context because historical data on 

disaster damage are inadequate for constructing probability density functions while 

risk maps are readily available to construct realistic membership functions. A fuzzy 

post disaster logistics support model was proposed in Yi and Özdamar (2004) for 

response activities. The aim is to maximize response activity service level by 

coordinating fast relief access to affected areas. The fuzzy model tries to minimize 

risk by maximizing satisfaction of anticipated demand within the limitations of total 

transportation capacity. This results in the well-known minimax type of objective 

function that maximizes the possibility of anticipated demand satisfaction. Similarly, 

membership functions are defined for supply availability and service rates of hospital 

emergency units and try to minimize related risks by minimizing the supply quantities 

and service rates. Thus, the risk of not being able to provide what was promised is 

reduced. 

Furthermore, model parameters are adjusted by the hour according to actual 

occurrences and this narrows down the width of fuzzy parameter intervals. As data 

become more reliable, the robustness of solutions increases. 

As illustrated by the scenario analysis in Yi and Özdamar (2004), the results show that 

the fuzzy approach is able to cope with uncertainty without requiring lengthy 
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simulations that would be inappropriate to use in this context due to lack of adequate 

past data and the need to generate fast solutions in quasi-real time. The dynamic re-

optimization strategy coupled with the fuzzy model enhances the potential of its usage 

in post disaster response operations. 

4.6 Summary 

A practical emergency logistics problem integrating commodity delivery and 

evacuation of wounded people is addressed in this chapter where the service rates of 

emergency units are modeled as demands so that evacuated people can be modeled as 

flows facilitating the solution of the extended problem. The two-stage algorithm is 

also extended and carried out for the interpretation of the model’s outputs. The 

dynamic relief operations are illustrated on an earthquake scenario and the results 

show that the model works well in terms of resource utilization. The uncertainty issue 

in ELP is also briefly discussed. 
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5 Heuristics for Disaster Relief Operations 

In the previous chapters, the exact solution framework was proposed, and medium-

size problems can be solved with the current available packages (Yi and Özdamar, 

2007). However, for larger size problems, it is difficult by the branch and bound 

system to find good solutions quickly, which is a major issue in achieving fast 

response in emergency logistics because re-planning needs to be conducted in a 

timely manner to account for the frequently updated information. Hence, a fast 

solution approach is necessary for the treatment of large scale problems. 

5.1 Analysis of the Solution Complexity  

The formulation of Model P in Chapter 4 is a network flow based model with integer 

commodities (injured people), i.e., a mixed integer multi-commodity network flow 

model where the vehicles themselves are treated as integral commodities that 

accompany other commodities. However, the solution for Model P is more difficult 

than the common integer multi-commodity flow problem due to the inherent routing 

sub-problem in emergency logistics planning, which has higher degrees of freedom as 

compared to conventional models. Capacity feasibility becomes an essential issue 

because it not only does the vehicle capacity fluctuate throughout the tour, but the 

assignment of the multiple type of load to available vehicles as the fleet is composed 

of vehicles with different capacity and type. Limited supply creates a new decision 

making problem: from which supply node should the vehicle pick up appropriate 

59 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



supplies to meet demand at a requesting node. In previous multiple depots literature, 

the task of assigning (clustering) customers to depots is based on distance measures. 

However, in disaster relief operations, one has to make assignment and routing 

decisions simultaneously to match dynamic requests with supplies. Due to the latter 

issues and the fact that split delivery is a necessity, many of the improvement moves 

proposed in previous research become invalid. For instance, in dispatch settings found 

in the literature, when a node is inserted into the route of a vehicle, the corresponding 

load to be transported becomes known (due to the restriction that only one visit is to 

be paid to every demand node) and there is no issue of supply availability limits at 

depots. Consequently, supply-demand balance problem does not exist. However, in 

split delivery, the amount and type of load to be carried and the selection of the 

particular supply and demand node pair to be matched are important decisions to be 

optimized. Hence, the feasible space is much more relaxed and the number of 

alternatives in a local neighborhood search increases, making the problem more 

difficult to solve. In the following sections, two solution methods are proposed for this 

problem, which are developed from basic constructive method to meta-heuristic. 

5.2 A Greedy Constructive Heuristic  

A constructive heuristic, PATH_BUILDER, is first proposed to deal with the 

complexities of the emergency logistics support and dispatch problem. The heuristic 

is based on the k-neighborhood search technique and appends two-stop partial paths 

to vehicles in each iteration. However, the definition of neighborhood is extended to 

suit the complexities mentioned above. The motivation for developing a constructive 

algorithm for the emergency dispatch problem is to obtain fast solutions and facilitate 
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dealing with frequent status updates (new demand, supplies, and vehicle availability) 

that occur during disaster response activities. 

Initially, the algorithm assigns a ready time atol to all vehicles available at node o 

based on the parameter set avomt (l∈m). The ready times (or path decision times) for 

each vehicle are tracked individually and they occur at the end of each recently 

appended partial itinerary (a sequence of nodes that includes a targeted demand and 

supply node pair). In this setting, nodes in the set CD are assumed to be demand 

nodes for commodities and supply nodes for wounded people. On the other hand, the 

nodes in the set CH become demand nodes for wounded people with their given 

service rates, scapho. Nodes in CS are supply nodes for commodities. The sets CH and 

CS intersect on many occasions and CH might be a proper set of CS.  

5.2.1 Neighborhood Generation 

For each ready vehicle l at node o in time t, PATH_BUILDER identifies the k-

neighborhood of nodes Ltol, which creates positive utility for each vehicle l. For 

instance, if l is on a demand node o∈CD where dhot > 0 (wounded people wait to be 

picked up at node o), then it looks for a node p∈CH. The service rate of p∈CH creates 

a demand and hence results in a satisfaction-based positive utility for vehicle l. On the 

other hand, if dhot = 0, it looks for a node in p∈CS with nonzero supplies so that it can 

position itself at a node where positive utility can be created. When l is on a supply 

node o∈CS with positive supplies, then it looks for a demand node p∈CD with daot’ > 

0 for t’ =t+ top. All commodity and wounded demand create positive Ul for the vehicle 

as long it has (or can acquire) corresponding supplies. If there are no supplies 

available at node o∈CS, then it looks for the nearest supply node where available 

supplies exist or a hospital node in CH hoping that it might find wounded people to 
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pick up on the way. On the paths leading to the k-neighbourhood nodes, it is also 

possible to create additional positive utility over supply-demand nodes that lie on the 

path other than the targeted demand-supply couple. Vehicle l exploits all such 

opportunities. 

The total utility of the first stop is always coupled with a succeeding node (second 

stop) selected from among the k-neighborhood of node p. Hence, two neighborhoods 

are explored in a sequence to construct k partial itineraries among which the one with 

maximum utility is finally selected if it beats the best paths of other competing 

vehicles. Following description gives how a path is constructed.  

Suppose vehicle l is at a node o∈CS. Then, the heuristic conducts a local 

neighborhood search where the k-nearest demand nodes with positive utility are 

identified and their utilities are calculated. On the way to such a node p, there might 

be supply nodes or other demand nodes. The heuristic calculates the additional utility 

that can be obtained by picking up and delivering items on pathop. This is achieved by 

carrying supplies from the nearest supply node to the demand node. If there is no 

positive supply on node o, then the supply node with positive commodity supplies or 

wounded people is selected. Further, if it is the latter case, then the vehicle goes to the 

process identifying second stop; otherwise, the partial path is built. Next, a second 

stop, q∈CH, is identified for delivering wounded people picked up from node p if 

they are waiting to be transported to a hospital. Node q is selected such that the utility 

of medical service nodes in the k-neighborhood of p is maximized. If there are no 

wounded people, then the nearest supply node with positive supplies is selected as 

node q. Thus, a two-stop shortest path (partial itinerary) Il is constructed from a 
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sequence of three nodes (o, p, q) where the temporal match among demands and 

supplies on the path is maximized.  

The differential utility of delivering one unit of commodity or one wounded person 

from a node r to a node o is calculated in eq. (5-1) and (5-2), respectively.  

  ( max{ ,at })aro ao ol aUR T Pλ= −     (5-1) 

       (5-2) ( at )hro ol ho hUR T wait P= − −

where atol is the vehicle l arrival time at node o, and λao is the time when positive 

unsatisfied demand exists at node o. In eq. (5-1), by taking the maximum of the latter 

two items, we account for anticipated future commodity demand. In eq. (5-2), waitho 

is the time that any additional wounded person would have to wait in queue at service 

node o. Since there is a queue of patients, queho, at each service node o, waitho is 

calculated as ⎡ queho/ scapho ⎤+, where ⎡a/b⎤+ represents division result rounded up to 

next higher integer.  

Node r should have demand-matching commodity supplies (or wounded people to be 

picked up) so that positive utility can be created by commodity demand (or medical 

facility) at node o. The utility, Ulro, achieved by transporting commodities and/or 

wounded people from node r to node o is calculated by integrating the quantities Zarot 

and Xrot with URaro, and URwro, respectively. This load is limited by available vehicle 

capacity throughout path (r, o), available supplies and demands of matching 

commodity types and/or the number of wounded people at node r. It is assumed that 

vehicle capacity is consumed by loads of descending priority. The total utility for a 

partial itinerary is the sum of all such utilities created over pairs of nodes on the path. 
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5.2.2 Illustration on a Small Example 

 

Figure 5-1 An example illustrating the neighborhood of a vehicle at node 0 

An example for constructing Il in a given neighborhood is illustrated in Figure 5-1 

where supply and hospital nodes are represented with label (supply1, supply2, service 

rate (<=0), wounded queue length), demand nodes (CD) with label (demand1 (<=0), 

demand2 (<=0), number of wounded waiting). Service rate is negative as it is treated 

as a demand rate. The vehicle is at node 0 that has both positive supplies and a 

medical facility. The length of the planning horizon, T, is 24 periods. The priorities, 

Pa, for the first and second commodities are 1/unit and 2/unit respectively, whereas 

the priority, Ph, of transporting 1 wounded person is 4/person. The vehicle has 6 units 

of shared capacity for the two commodities and a separate capacity of 5 wounded 

persons. In Table 5-1, the vehicle’s neighborhood is listed with corresponding utility 

calculations, tentative loads (commodities + wounded persons), and tentative vehicle 
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capacity at each node on the path. For sake of simple presentation, it is assumed that 

anticipated demand does not exist in this sub-network. Commodities 1 and 2 are 

indicated as c1 and c2, wounded persons as h in Table 5-1 and  r, p, q are nodes. 

Table 5-1 Illustration of utility calculations in neighborhood generation 

Source p q Tentative 
Load 

Tentative 
Capacity 

Tentative Adjusted 
Demand/Supply 

  c1 c2 h r c1+ 
c2 

h r c1 c2 que

 
Path Utility {0-p-q} 

0 - 3 1 0 
2 
0 

3 
6 
6 

5
4
5

0 
2 
0 

3 
0 
3 

2 
0 
2 

5 
0 
1 

(24-7).2.3+(24-
14).4.1=142 

7-8-9-
10 

5 4 3 0 
2 
7 
8 
9 
10 

2 
5 
0 
5 
6 
6 

5
4
4
4
2
5

0 
2 
7 
8 
9 
10 

3 
0 
1 
0 
0 
0 

4 
0 
0 
0 
0 
4 

5 
0 
0 
0 
0 
3 

(24-7).2.3+(24-22).4.3+ 
(24-16).1.5+(24-
20).2.1=174 

2 

7-8-
11-12 

5 4 5 0 
2 
7 
8 
11 
12 

2 
5 
0 
5 
6 
6 

5
4
4
4
0
5

0 
2 
7 
8 
11 
12 

3 
0 
1 
0 
-1 
0 

2 
0 
0 
0 
-4 
0 

5 
0 
0 
0 
2 
5 

(24-7).2.3+ 
max{0,(24-25)}.4.5+   
(24-16).1.5+(24-
22).2.1=146 

7 5 0 0 0 
6 
7 
8 
7 

6 
6 
1 
6 
6 

5
5
5
5
5

0 
6 
7 
8 
7 

3 
10 
1 
0 
1 

5 
0 
0 
0 
0 

5 
0 
0 
0 
0 

(24-10).1.5=70 

9-10 5 1 2 0 
6 
7 
8 
9 
10 

5 
5 
0 
5 
6 
6 

5
5
5
5
3
5

0 
6 
7 
8 
9 
10 

3 
10 
1 
0 
0 
0 

4 
0 
0 
0 
0 
4 

0 
0 
0 
0 
0 
2 

(24-10).1.5+(24-16).4.2+ 
(24-14).2.1=154 

6-
7-8 

11-12 5 1 5 0 
6 
7 
8 
11 
12 

5 
5 
0 
5 
6 
6 

5
5
5
5
0
5

0 
6 
7 
8 
11 
12 

3 
10 
1 
0 
-1 
0 

4 
0 
0 
0 
-4 
0 

0 
0 
0 
0 
1 
5 

(24-10).1.5+(24-16).2.1+ 
(24-19).4.5=186 

0 

1 0 2 1 3 0 
1 
0 

3 
6 
6 

5
2
5

0 
1 
0 

1 
0 
1 

4 
0 
4 

5 
0 
3 

(24-11).1.2+(24-11).2.1+ 
(24-22).4.3=76 

 

The vehicle looks for the 3-nearest demand nodes with positive utility, these are: 

nodes 2, 8, and 1 in ascending order of distance. Node 2 is adjacent to node 0 and it 

needs 3 units of commodity 2 and 1 wounded person is waiting. Utility contribution 
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for delivering 3 units of second commodity is (24-7)x2x3=102, assuming that the 

vehicle starting time is zero. The next step is to construct a 3-node neighborhood for 

Node 2 in search of a hospital to carry the wounded person. The nearest hospital is 

node 0 where a waiting time of 2 hours exists. Utility of this itinerary is 102+ (24-14-

max{0, 2-14})x4x1=142. The other two hospitals are at nodes 10 and 12. There would 

not be a large utility for carrying the person from node 2 to Node 10, because the 

vehicle would arrive there after 22 hours, the utility being (24-22)x4x1=8. However, 

on the way, 5 units of first commodity at Node 8 would be supplied by node 7 with 

utility=(24-16)x1x5=40) and 1 unit of second commodity would be brought all the 

way from node 0 to be delivered at node 9 utility=(24-20)x2x1=8, and finally 2 more 

wounded people would be picked up from node 9 to be dropped at node 10, with 

utility of 16. Utility of itinerary (0-2-10) would be 102+40+8+8+16=174. The latter is 

superior as compared with the itinerary 0-2-0. The last option for taking the wounded 

person at node 2 to hospital is to take him/her to node 12. The utility of this path 

would be 102+40+(24-22)x2x1+max{0,24-25}x4x5=146. The last two terms account 

for delivering 1 unit of second commodity from node 0 to node 11, and taking 4 

persons from node 11 to node 12. Note that the rule “demand is met by the nearest 

supply node” is used as first come-first served on the path. Consequently, for the path 

0-2, the best option would be Node 10, that is, the partial itinerary becomes 0-2-7-8-9-

10. The other two demand nodes, 8 and 1, conduct their own exploration and their 

utilities are calculated so as to decide which path the vehicle should take from node 0. 

For the path 0-6-7-8, where Node 8 is the target demand node (first stop), there are no 

wounded people to carry, hence, the nearest supply/hospital nodes are sought (nodes 

7, 10 and 12). The path from node 8 to node 12 has a demand node on the way and 

this creates positive utility for the vehicle as there are more wounded persons to pick 

66 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



up from that node. Finally, node 1 is a dead end node, and the best option is to pick up 

the wounded and return to node 0. Other options emanating from node 1 do not create 

positive utility because the arrival time to any node other than node 0 is larger than T, 

so these options are omitted from Table 5-1. Among all 3 paths in the neighborhood 

of the vehicle, the partial itinerary 0-6-7-8-11-12 is the maximum utility path to be 

appended to its current partial route.  

5.2.3 Parallel Vehicle Exploration  

All Il are generated in parallel for each ready vehicle independently and evaluated as a 

candidate to be appended to each vehicle’s current partial route, Rl. In this approach, 

all vehicles work out their paths independently in free competition for load pick up 

and demand satisfaction. Then, the vehicle l* having the itinerary I′l* with maximum 

utility is selected and its Rl is updated. This completes one iteration of 

PATH_BUILDER. The reason a single vehicle itinerary extension is carried out in 

each iteration, is to avoid sub-optimal solutions as much as possible. If the best Il of l≠ 

l* are appended to their itineraries all at once, one might end up with an inferior 

solution, because, after the assignment of l*, load conditions of other vehicles’ 

maximum utility might be changed and may no longer represent the best Il for the 

corresponding vehicles.  

The iterations continue until either all vehicles are assigned itineraries that last until 

end of the planning horizon, T or, either all supplies or demanded quantities are 

transported. In brief, iterations stop when no positive utility can be generated for any 

vehicle.  
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In dynamic emergency settings, new information can be incorporated by stopping 

each vehicle at the node it arrives right after the schedule disturbance time. The partial 

dispatch schedule is then frozen for each vehicle, with all transported quantity updates 

made accordingly. New information entries are made and a new dispatch plan is 

obtained by constructing partial itineraries from that time period onwards.  

5.2.4 Numerical Results 

The performance of PATH_BUILDER is tested on 28 randomly generated test 

problems constructed on grid networks with integer arc travel times. All nodes in the 

network are connected first by constructing a minimum spanning tree, and then, node 

degrees are increased randomly by pairwise node connection. The number of arcs is 

limited to simulate the sparse road network in practice. The instances are generated as 

follows. Number of nodes range between [20, 80]. About 30% of the nodes are 

allocated to supply and hospital nodes (all hospitals are assumed to be overlapped 

with supply nodes). The networks are generated on a 12x12 grid, where each cell is a 

probabilistically allocated node. The total number of vehicles range between [20, 65], 

and there are three types of vehicles, the first and last types having the ability to carry 

commodities and vehicle type 2 can carry wounded persons. The vehicle type (type 1) 

that can carry both wounded and commodities, provides a joint total capacity. Two 

levels of injury are categorized and there are two kinds of commodities in all 

instances. Demand and supply are given in number of persons. Demand/supply 

quantities as well as the service rate and wounded people are assigned to each 

corresponding node randomly according to a uniform distribution while total supply 

sufficiency is ensured. For each test problem, the number of vehicles lies within a 

given interval. Then, overall vehicle tightness with regard to commodity and people is 
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calculated by the total transportation quantity over the total compatible capacity. A 

value greater than 1.0 implies tight transportation capacity and vice versa. If the 

maximum value of commodity and people tightness is larger than 1.0, the problem is 

classified as capacity tight. Half of the test problems are designed as capacity tight 

(average tightness for capacity tight problems is 2.06) and the remaining half are 

capacity loose (average tightness for loose problems is 0.82).  

Table 5-2 Characteristics of test problems 

Problem No. of 
Nodes

No. of 
Arcs 

No. of 
Vehicles Tightness

1 20 351 20 2.53 
1' 20 364 25 1.54 
2 20 414 21 0.79 
2' 20 373 16 1.23 
3 30 606 20 2.30 
3' 30 555 12 4.13 
4 30 630 25 0.86 
4' 30 536 18 1.17 
5 40 871 26 1.61 
5' 40 895 18 2.73 
6 40 837 40 0.89 
6' 40 853 27 1.39 
7 50 975 32 2.46 
7' 50 968 25 3.30 
8 50 987 36 0.80 
8' 50 1038 43 0.62 
9 60 1134 41 1.97 
9' 60 1354 49 1.51 
10 60 1014 38 0.85 
10' 60 1166 46 0.73 
11 70 1580 46 1.79 
11' 70 1633 40 2.18 
12 70 1598 49 0.79 
12' 70 1828 40 1.00 
13 80 1657 55 1.68 
13' 80 1719 65 1.47 
14 80 1686 65 0.77 
14' 80 1600 55 0.77 

  

Details on problem characteristics are provided in Table 5-2. The second and third 

columns present the nodes number and actual number of arcs which consists of all the 

nodes pairs reachable throughout the whole planning horizon (Kosptm=1, ∀o∈C, p∈C, 
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s∈T, t∈T, m∈M). The actual number of arcs is obtained by running a search 

algorithm that fans out from vehicle depots and identifies all the reachable arcs. To 

get more extensive results, two problems in the same group (for example, problem 1 

and 1’) are generated for each network structure while they have different vehicle 

distribution and arc connection. Consequently, the capacity tightness and actual 

numbers of arcs in the resulting expanded network are different. Two groups of 

instances are generated for each problem size (node number); hence, there are in total 

4 instances for a certain node number. The aggregate number of vehicles is given for 

the three vehicle types. The planning horizon is set to 10 periods.  

The PATH_BUILDER algorithm is implemented in C++ and all runs are made on a 

PC of 3.2 GHz CPU and 512 MB RAM. To evaluate the solution efficiency of the 

algorithm, direct solutions of model P are provided by executing the MIP solver 

ILOG CPLEX 7.5 on the same computer. CPLEX has been shown as a highly 

efficient solver for many multi-commodity flow problems (Castro, 2003) and 

therefore it serves as the reference solver in this study. All results are given in detail in 

Table 5-3. Here, the instance size is limited by the memory requirements of model P 

solution in CPLEX. The optimal solution value and CPU time in seconds are noted. 

The solution quality of the heuristic is presented by the gap between algorithm 

solution value and the optimal one. Model P near optima are obtained by applying the 

following relative gap termination criterion: 0% for problems with nodes less than 40, 

and 0.5% for larger problems, except that the gap was held at 1% for problems 5’, 9’, 

12 and 12’. These very small tolerances do not weaken solution quality much while 

saving substantial CPU time on the branch and bound process in proving that a 

solution found is the best. CPU times taken to find optimum and heuristic solutions 

are shown in columns 3 and 5. 
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Table 5-3 Detailed numerical results 

Model Solution Heuristic 
Problem Obj 

Value 
Runtime 

Secs. 
Obj 

Value 
Runtime 

Secs. Obj Gap 

1 51689 1.56 52151 0.72 0.89% 
1' 49477 1.52 50299 0.85 1.66% 
2 19748 2.25 20976 2.44 6.22% 
2' 20362 36.16 21183 1.46 4.03% 
3 52144 447.25 53067 2.86 1.77% 
3' 54000 105.31 54720 0.68 1.33% 
4 17103 4.20 17594 2.77 2.87% 
4' 19475 5.00 19808 0.85 1.71% 
5 41041 589.77 43376 11.17 5.69% 
5' 42886 1282.44 45038 3.50 5.02% 
6 38610 89.52 41336 8.42 7.06% 
6' 40091 36.44 42109 5.06 5.03% 
7 99554 70.25 104210 20.73 4.68% 
7' 102745 733.02 106521 12.38 3.68% 
8 35222 221.50 35417 4.44 0.55% 
8' 32943 55.41 34659 9.54 5.21% 
9 90082 246.89 98591 20.14 9.45% 
9' 82851 1181.94 93226 51.78 12.52% 
10 28643 149.47 32767 20.73 14.40% 
10' 25496 156.95 29857 33.04 17.10% 
11 96443 152.67 100403 64.69 4.11% 
11' 90317 703.00 95374 31.28 5.60% 
12 45655 1951.23 49098 51.50 7.54% 
12' 43604 4033.97 46832 52.82 7.40% 
13 106694 367.31 114114 188.76 6.95% 
13' 102024 593.86 108593 264.35 6.44% 
14 56769 289.05 59958 126.07 5.62% 
14' 57820 363.64 60628 108.12 4.86% 

 

It is observed that the CPU times taken by the PATH_BUILDER are almost always 

less than the direct model solution. In Table 5-4 and Table 5-5, the summary of results 

is provided. The first property that significantly affects heuristic performance is the 

problem size, which can be observed on both the heuristic and the direct model 

solution. The average percentile deviation from the optimum grows from 3.61% for 

small instances to above 7% for larger scale problems. The heuristic is also affected 

by global transportation capacity tightness on both solution quality and time aspects. 

The heuristic produces better solutions for tight instances. This might be because the 

utilities distribution is relatively in an average state among both current and 
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subsequent partial paths so that myopic path selection is avoided in tight problems. 

However, this feature also results in more exploration time for tight problems while in 

capacity loose instances the number of partial paths with positive utilities is less 

through the planning horizon. This effect is not obvious on smaller size problems less 

than 40 nodes due to the short CPU times consumed for both instances; however, the 

difference grows in larger scale problems over 40 nodes.  

Table 5-4 Summary of results- gap of objective value 
 Gap of Obj Value 
 All problems Tight Not tight 

All problems 5.69% 4.98% 6.40% 
Nodes<=40 3.61% 2.73% 4.49% 
Nodes>40 7.26% 6.68% 7.83% 

 
Table 5-5 Summary of results- run time 

 Runtime- Heuristic Runtime- Model Solution 
 All problems Tight Not tight All problems Tight Not tight 

All problems 39.33 48.13 30.52 495.41 462.63 528.20 
Nodes<=40 3.40 3.29 3.50 216.78 404.64 28.93 
Nodes>40 66.27 81.76 50.78 704.38 506.12 902.65 

 

To summarize, a quick solution approach is proposed in this section for the complex 

logistics support and evacuation coordination problem that arises in emergencies. 

PATH_BUILDER constructs a feasible itinerary for available vehicles quickly with 

the goal of maximizing service level for survivors and injured people. The 

performance of PATH_BUILDER is measured on a set of randomly generated grid-

networks so as to maintain integral valued arc travel times. Analyzing the overall 

solution quality and times, one can say that the algorithm could be an alternative to 

the exact model solution by providing substantial savings on computational time. 

5.2.5 Improvements on the Constructive Heuristic 

A possible development on the construction heuristic is the local search based 

methods; for instance, two-stop or one-stop swaps among routes of different vehicles 
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might lead to an improvement. However, this might bring significant computational 

cost due to the load feasibility conservation calculations necessary for such swaps. For 

the same reason, perturbation moves found in existing routing literature would not be 

as easy to effectively implement in this problem. Hence, a direct enhancement on the 

solution quality seems difficult to achieve based on this algorithm. 

Given the successful applications of meta-heuristics on combinatorial problems in the 

last twenty years, it is promising to develop more complex scheme to perform deep 

exploration of the most promising regions of the solution space. Another opportunity 

to enhance the overall solution efficiency is to exploit the network flow features 

which are neglected in vehicle-based heuristic PATH_BUILDER. Finally, although 

the parallel search employed in the constructive heuristic enhances the solution 

quality, it also leads to an increase in the runtime. Moreover, the information 

generated in the parallel process is discarded without any exploitation, which results 

in low efficiency on the computational resource utilization. Based on these 

observations, a meta-heuristic of ant colony optimization (ACO) is presented in the 

next section and compared with the constructive heuristic. 

5.3 The ACO Meta-heuristic for Disaster Relief Operations  

Given the hybrid characteristics of the ELP, it is a natural way to decompose the 

model into two components: the vehicle route construction, and the multi-commodity 

dispatch. They are solved sequentially where the first phase constructs the vehicles’ 

route, and then the multi-commodity problem is solved based on the resulting vehicle 

flows. Thus a solution of the original problem is given. Generally, a one-pass process 

may not produce good solution; an iteration framework must be developed, which 

enables both the diversification on building vehicle paths and the efficiency on 
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multiple commodities dispatch, as well as smooth communication between the two 

phases for the continuous improvement of solution quality. An ACO meta-heuristic is 

proposed for the problem in this section. It builds vehicle paths probabilistically under 

the guidance of pheromone trails while in the second phase a successive maximum 

flow (SMF) algorithm is developed for the commodities dispatch to different types of 

vehicle flows. Pheromone trails are updated according to the dispatch resulting from 

SMF. Thus, the two sub-problems are coordinated through trails and thereby 

integrated into the overall solution framework. A time expanded network is employed 

in this algorithm due to the dynamic structure of the model. The notation is defined 

next: 

l: A specific vehicle label 

(t,o,i): An arc with tail node o at time t and head node i; the arrival time at head node 

i by vehicle type m is implicitly set to t+toim 

Ltom: Set of the neighborhood nodes of current node o at time t by vehicle in type m 

atol: Arrival time at node o by vehicle l 

τtoim: Amount of accumulated pheromone trails of vehicles in type m on the arc 

(t,o,i); toim
μτ  denotes the pheromone trail in solution μ  

ptojm : Probability for choosing the next node j from node o at time t by vehicle in 

type m 

DEM: Set of demand types defined jointly by the original commodity (or wounded) 

demand type and the time period it emerges, demat or demht denotes a specific 

type in the set 

toilU μ : Utility achieved by vehicle l on arc (t,o,i) in solution μ  

σ: Preserved set of best solutions obtained. 
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A diagram is given below as an overall structure preview of the algorithm while the 

components are described with details in the following subsections.  

 Initialization: trail setting 

 

Stochastic vehicle paths building under 
guidance of pheromone trail 

 

 

 

 

 

 

Figure 5-2 Structure of the ACO meta-heuristic 

5.3.1 Route Construction 

ACO is a meta-heuristic approach inspired by the pheromone trail tracking and it 

imitates the behavior of ants that communicate with pheromones. It is proposed for 

solving hard combinatorial optimization problems and was first used on the traveling 

salesman problem, and has since then been successfully applied to several other 

problems such as the vehicle routing problem (Bullnheimer et al., 1999; Bell and 

McMullen, 2004), the quadratic assignment problem (Maniezzo, 1999), the 

scheduling problem (Merkle, 2000), and so on. A detailed description of theoretical 

results and applications on ACO can be found in recent papers by Dorigo and Blum 

(2005), and Dorigo and Stützle (2002). 

Artificial ants used in the ACO meta-heuristic conduct stochastic vehicle paths 

construction procedures that probabilistically build a route by iteratively adding arcs 

to partial itinerary. The addition of arcs is made by taking into account pheromone 

Dispatch commodities by successive 
maximum flow algorithm on the network 
formed by vehicle paths 

Trail and 
elite set 
updating 

Calculate the objective value; 
Post-optimization 
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trails that change dynamically to reflect the ants’ acquired search experience. To 

facilitate the information sharing and cooperative behavior among vehicles in the 

same type, ants are also classified by vehicle types and pheromone trails are 

differentiated and aggregated in terms of types. 

The algorithm runs on the time expanded network, which consists of all the nodes 

pairs reachable throughout the whole planning horizon by a vehicle type. Especially, 

it is assumed that a hold-over arc (the arc connecting a node from period t’ to t’+1, ∀ 

t’∈T) has infinite capacity. Initially, the algorithm assigns a ready time atol to all ants 

(vehicles) available at node o based on the parameter set avomt (l∈m). Each ant is 

tracked individually, and it selects the next customer node j to visit from the list of 

feasible locations Ltom and the path decision time is advanced to atjl = atol+ tojm untill 

it reaches the end of planning horizon T. The content of Ltom is set to all nodes 

adjacent to node o in node set C, and it is tractable because not all pairs of nodes are 

adjacent to each other in a practical network. Moreover, the sparse network is 

represented in adjacency-list form for space efficiency. To select the next customer j 

for vehicle l∈m, the ant uses the following probabilistic formula - also called the 

transition probability (Dorigo and Blum, 2005) - defined by eq.(5-3)(5-3): 

  

tom

tojm
tojm tom

toim
i L

p if j L
τ

τ
∈

=
∑

∈     (5-3) 

The algorithm constructs a complete tour for the current ant and prior to the next ant 

starting its tour. This continues until each ant constructs a feasible route and reaches 

the end of planning horizon. The route selection rule in eq. (5-3) is different from the 

usual ACO implementation. The greedy selection of the most favorable path is 

observed being dominated in the computation test and therefore forbidden in this 
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problem. In fact, due to the very large dimensionality of the problem and the 

converging search space in ACO, diversification (exploration) plays a key role in 

solution improvement process. It is observed that a real time (or frequent) probability 

updating scheme (strong exploitation) usually worsens solution quality although 

convergence is accelerated. The results are generally better when probability updating 

(eq. (5-3)) is conducted regularly using a limited elites set (σ) of best solutions. It is 

performed only if the following two conditions are satisfied: (1) new elite solution 

μ enters set σ; and (2) a predetermined number (0.5*|σ| in our implementation) of 

iterations are performed. The condition (1) is the common idea in ACO literature, 

while condition (2) ensures a wide search in the current solution stage so as to reduce 

the chance of missing some good solution zones. 

In addition, one may note that the desirability is not employed in this problem. 

Different from the conventional routing problem where length (cost) reveals the 

attractiveness of an arc, the desirability in this problem should be defined as the 

expected on utility to be achieved on that arc. However, these values could be 

drastically uneven among arcs and result in a myopic vehicle route choice. Hence, 

instead of using a very small influence factor to counteract this effect, the desirability 

is not explicitly defined but included in the pheromone trail information and a 

backward arc utility updating procedure (next subsection) is applied to reveal a 

relatively fair measure of arc attractiveness. 

In this problem, pheromone trail toiv
μτ  from a provisional solution μ  is calculated as 

the utilities over all vehicles of type v on the arc (t, o, i): 

  =toim toil
l m

Uμ μτ
∈
∑        (5-4) 
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where the vehicle utility toilU μ  is evaluated by the contribution to the objective value 

and calculated by eq. (5-5) in the later commodities dispatch phase. 

5.3.2 Commodities Dispatch and Trail Updating Strategies 

After the vehicle routing is settled, the commodities dispatch to be addressed in this 

phase is an integer multi-commodity flow problem. It contributes to the final solution 

quality by directly affecting the provisional objective value and the pheromone trail 

updating. Compared to the vehicle routes construction in phase one, this phase poses 

more computational burden due to the complexity in the integer multi-commodity 

flow problem. Moreover, the ACO meta-heuristic may run over large numbers of 

iterations. As discussed before, the solution speed is a major concern in real 

emergency situations for the accommodation of frequent re-planning incurred by 

information updates. Hence, a tradeoff between dispatch quality and speed must be 

made.  

Given these considerations, a successive maximum flow heuristic algorithm (SMF) is 

developed to solve the commodity dispatch problem. Initially a set DEM of demand 

types is constructed, which gives out at most (|H|+|A|)*|T| kinds of demand since the 

service rates at medical facilities are formulated in Model P as demands for wounded 

people on time period basis. Then SMF decomposes the multi-commodity flow 

problem into maximal flow components regarding each demand type, which are 

sorted and solved sequentially with the following heuristic procedure: 

Procedure SMF: 

(i) For each demand type (demat or demht) in DEM, calculate the unit weight 

utility (uwat=Pa*(T-t) /wa; uwht=Ph* (T-t)/wh); 
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(ii) Sort DEM in descending order according to uwat or uwht; 

(iii) For each demand demat (or demht)>0 in DEM:  

(a) Allocate the existing flow for the last dema’t’(or demh’t’) to vehicle flows, 

update vehicle capacity and utility toilU μ : for each vehicle l and arc (t, o, i) in its 

path (t+toim=t’, l∈m), suppose x units of flow a’ (or h’) is assigned, then: 

  ' ( ')*toil toil aU U P T tμ μ= + ∗ − x (or ' ( ')*toil toil hU U P T tμ μ= + ∗ − x )       (5-5) 

(b) Build provisional network: identify vehicles compatible with demat (or 

demht), extract the arcs in their paths, as well as the hold-over arcs that span 

from the beginning of planning horizon to period t. Calculate the capacity of 

each arc with respect to the demand type a (or h). 

(c) Apply maximum flow algorithm to the provisional network; Update the 

supplies in type a (h) and demand accordingly.  

(d) If demht >0 (surplus service rate), then the unsatisfied demand vanishes by 

setting demht= 0; else if demat>0, then the unsatisfied demand transfers to the 

next period by setting dema(t+1)= dema(t+1) + demat, and demat= 0. 

The push-relabel method is employed in step (iii)(c) in SMF, which is known as the 

most efficient algorithm so far for the maximum flow problem (Cherkassky and 

Goldberg, 1997). In addition, the provisional networks constructed for each demand 

are quite compact due to the restriction of vehicle flows. Hence, the SMF algorithm 

shall not pose any problem on computation cost. 

In order to improve future solutions, the pheromone trails must be updated to reflect 

the ant’s performance and the quality of the solutions found. Promising solution 

spaces should be marked and favored in future iterations. The pheromone trail is 
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updated whenever a solution μ  enters the elite set. For each vehicle type m on arc (t, 

o, i), the following rule is applied: 

  = (1- )toim toim toim
μτ ρ τ ρτ+      

 (5-6) 

A convex combination of the existing and added trails is employed here instead of 

evaporation process. By setting small parameter ρ and a large initial trail value, 

eq.(5-6) suggests a diversified search at the initial stages of solution process (the 

accumulated trails on visited arcs decrease) whereas intensification is emphasized in 

the later as the accumulated trails on visited arcs begin increasing themselves. The 

balance scheme between intensification and diversification can be adjusted at ease by 

parameter ρ. In addition, the initial trail 0
toimτ  is set to the maximal possible utility of 

vehicle type m on the arc: 

  0
toim ,

( )* max { *( / ), *( /oim h m h a m ah H a A
T t t P cap w P cap wτ

∈ ∈
= − − )}         (5-7) 

In emergency logistics operations, a vehicle may be fully utilized only in some stages 

of its route spanning the entire planning horizon, for example, an ambulance is loaded 

only in backhaul. Furthermore, some cooperation among vehicles could result in a 

higher overall performance, so it is not unusual to find in the optimal solution of the 

model that some vehicles are dedicated to the transfer work between other vehicles 

during some periods. In these situations, an arc choice based merely on the utilities 

achieved on the candidate arcs may lead to inferior results according to our 

observation, even though it is a probabilistic process. Therefore, a backward path 

utility updating procedure is called to address this issue before trail updating eq.(5-6), 

by which pheromone trails on the posterior arcs are revealed to front so that the ant 

could avoid myopic path choice: for each vehicle, scan the path from the end to the 
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beginning, record the maximal utility found so far, and use it to replace the utility on 

the current arc.  

In addition to the ACO algorithm, a post-optimization procedure is also developed 

which improves existing solution by exploiting the most promising part of each elite 

solution and re-combining them into new solution. Because each solution may be 

biased on some vehicles, the combination of all those favored vehicles may produce 

good solution or even the best solution to replace an elite item and therefore enhance 

the convergence speed. The procedure is conducted whenever the probability updating 

is eligible to perform and at least one vehicle makes improvement on its best path. It 

can be described as follows: 

(i) Construct a new set of vehicle paths by combining the best path of each 

vehicle, and 

(ii) Run SMF and evaluate the solution quality: if a replacement happens, then 

update the elite set and trails. 

5.3.3 Numerical Results 

The ACO algorithm is implemented in C++ and all runs are made on the same set of 

test problems as in the previous section. In all ACO solutions, search parameters are 

set to the following values: ρ=0.05, |σ|=20. The algorithm terminates when there is 

no new solution entering the elite set in 30 consecutive iterations. All results are given 

in detail in Table 5-6. The optimal solution value and runtime in seconds are noted. 

The solution optimality quality of the ACO meta-heuristic is presented by the gap 

between algorithm solution value and the optima in column 4. The object value gap 

between the ACO algorithm and the greedy construction heuristic are also provided in 

column 5 to evaluate their solution qualities. CPU time is presented in column 3. In 
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addition, for the equitable measure of solution speed, the optimality gaps given by 

ACO (column 4 in Table 5-6) are fed back to CPLEX as tolerances, in which all the 

problems are re-solved. The runtimes of model solution with tolerance and the gaps 

between them and the ACO runtimes are presented in the last two columns. 

Table 5-6 Numerical results 

ACO Meta-heuristic Model Solution with 
Tolerance Problem 

Obj Value Runtime Optimality 
Gap 

Heuristic 
Gap Runtime Runtime 

Gap 
1 51858 0.97 0.33% -0.56% 1.38 42.19% 
1' 49683 0.88 0.42% -1.22% 1.23 40.71% 
2 20272 2.38 2.65% -3.36% 1.19 -50.15% 
2' 20877 2.17 2.53% -1.44% 2.73 25.93% 
3 53307 6.79 2.23% 0.45% 12.75 87.78% 
3' 54568 2.67 1.05% -0.28% 31.97 1095.96% 
4 17157 6.86 0.32% -2.48% 4.03 -41.24% 
4' 19509 4.11 0.17% -1.51% 5.28 28.62% 
5 42396 11.41 3.30% -2.26% 17.63 54.43% 
5' 45451 4.50 5.98% 0.92% 34.41 664.75% 
6 39556 28.38 2.45% -4.31% 9.17 -67.68% 
6' 41001 8.69 2.27% -2.63% 9.36 7.71% 
7 102465 10.88 2.92% -1.67% 53.19 388.86% 
7' 105568 13.27 2.75% -0.89% 44.19 232.88% 
8 35596 6.33 1.06% 0.51% 135.47 2040.43% 
8' 33363 11.17 1.28% -3.74% 24.05 115.27% 
9 93501 28.18 3.79% -5.16% 96.02 240.74% 
9' 87490 30.93 5.60% -6.15% 99.41 221.43% 
10 29604 10.46 3.35% -9.65% 74.11 608.57% 
10' 26759 11.14 4.95% -10.38% 85.44 666.94% 
11 102107 24.62 5.87% 1.70% 110.83 350.15% 
11' 95699 21.75 5.96% 0.34% 117.28 439.35% 
12 48408 38.00 6.03% -1.41% 126.98 234.21% 
12' 46308 28.26 6.20% -1.12% 111.69 295.23% 
13 111859 24.50 4.84% -1.98% 163.92 569.15% 
13' 105817 31.84 3.72% -2.56% 168.42 428.89% 
14 57394 30.82 1.10% -4.28% 200.48 550.56% 
14' 59282 33.82 2.53% -2.22% 208.734 517.21% 

  

Table 5-7 to Table 5-10 present the summary of results based on the data given in the 

above table. Table 5-7 measures performance robustness by the average value and 

standard deviation (SD) of CPU time on the problems grouped in same size. Columns 

5, 8 and 11 show the relative standard deviation (RSD). The RSD values are high for 
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both solvers because the size of the problem affects CPU time significantly; besides, 

the data sets are quite different for the problems in a specific group. Nevertheless, 

ACO meta-heuristic shows a relatively more robust performance with lower RSD 

value of 76.74% than 94.12% in model solution with tolerance. This stable 

performance may result from the more compact representation of the network 

(adjacency list) in ACO implementation compared the incidence matrix in model P. 

The RSD value in PATH_BUILDER is the highest (159.30%) showing that the 

performance of the greedy construction heuristic is highly dependent on the data 

setting. 

Table 5-7 Summary of results- average and standard deviation of runtimes 

Heuristic Solution 
Runtime 

ACO Meta-heuristic 
Runtime 

Model Solution with 
Tolerance Runtime Group Problem 

Average SD RSD Average SD RSD Average SD RSD 
1 1-2' 1.37 0.79 57.55% 1.60 0.79 49.24% 1.63 0.74 45.25%
2 3-4' 1.79 1.19 66.38% 5.11 2.07 40.49% 13.51 12.90 95.47%
3 5-6' 7.04 3.44 48.85% 13.25 10.48 79.14% 17.64 11.85 67.19%
4 7-8' 11.77 6.82 57.89% 10.41 2.92 28.08% 64.22 49.03 76.35%
5 9-10' 31.42 14.82 47.15% 20.18 10.89 53.97% 88.74 11.43 12.88%
6 11-12' 50.07 13.86 27.68% 28.15 7.08 25.15% 116.70 7.43 6.37% 
7 13-14' 171.82 70.71 41.15% 30.24 4.03 13.32% 170.65 38.30 22.44%

All Problems 39.33 62.64 159.30% 15.56 11.94 76.74% 69.69 65.59 94.12%
 

The problems are classified according to the tightness and problem size in Table 5-8 

and corresponding solution optimality gaps are provided. It is observed that the ACO 

meta-heuristic produces solutions with an average gap around 3%. ACO solution 

quality is affected by transportation capacity tightness, where the average gaps are 

3.48% and 2.64% for tight and non-tight problems, respectively. Problem size is the 

other impacting factor as expected, which results in a double average gap on larger 

problems. Furthermore, the influence of tightness increases with the problem size. For 

instance, considering smaller size problems with less than 40 nodes, there is only a 

small difference (0.49%) between tight and non-tight problems in the average gap 
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from the optimum. This difference grows to 1.12% in larger scale problems over 40 

nodes. The objective value gaps from ACO to greedy heuristic are also provided in 

the last 3 columns in Table 5-8, from which one can see that the constructive heuristic 

is dominated by ACO algorithm. 

Table 5-8 Summary of results- solution quality 

 Optimality Gap of ACO Heuristic Gap of ACO 
 All problems Tight Not tight All problems Tight Not tight 

All problems 3.06% 3.48% 2.64% -2.41% -1.38% -3.43% 
Nodes<=40 1.97% 2.22% 1.73% -1.56% -0.49% -2.62% 
Nodes>40 3.87% 4.43% 3.31% -3.04% -2.05% -4.04% 

 

Solution speeds are presented in Table 5-9. The small instances with less tightness can 

be solved 16.13% faster with CPLEX than with the ACO meta-heuristic given the 

same tolerance. Although problem size contributes to the runtime increment for both 

methods, one can see the model P solution time (column 5) increases faster than ACO 

(column 2). Hence, the heuristic speed outperforms the direct model solution on larger 

instances. Furthermore, capacity tightness has virtually no influence on ACO 

algorithm speed. For the small scale instances, model solution with tolerance 

responses to capacity tightness while this effect diminishes on larger problems, which 

indicates the dominant factor affecting CPU time lies on the network configuration 

rather than tightness so that CPLEX is capable of finding solutions within stable CPU 

time for both tight (68.04 Secs.) and non-tight (71.34 Secs.) problems. Although it 

runs for a number of repetitive iterations, the ACO algorithm also shows faster speed 

than greedy heuristic except on the small instances with less than 40 nodes (Table 

5-10). This is because PATH_BUILDER evaluates partial path utility for each vehicle 

resulting in larger resource consumption whereas the ACO meta-heuristic computes 

trails on the vehicle type basis and maintains only one path for each vehicle in an 

iteration. 
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Table 5-9 Summary of results- runtime 

 Runtime-ACO Meta-heuristic Runtime-Model Solution with 
Tolerance 

 All problems Tight Not tight All problems Tight Not tight 
All problems 15.56 15.23 15.90 69.69 68.04 71.34 
Nodes<=40 6.65 4.54 8.76 10.93 16.56 5.29 
Nodes>40 22.25 23.25 21.25 113.76 106.66 120.87 

 
Table 5-10 Summary of results- runtime gap 

 Runtime Gap- Model Solution with 
Tolerance to ACO Meta-heuristic 

Runtime Gap- Heuristic to ACO 
Meta-heuristic 

 All problems Tight Not tight All problems Tight Not tight 
All problems 349.60% 346.95% 352.26% 77.29% 110.28% 44.30% 
Nodes<=40 157.42% 330.97% -16.13% -38.96% -31.01% -46.90% 
Nodes>40 493.74% 358.93% 628.55% 164.48% 216.25% 112.70% 

 

To summarize, due to the effective exploration scheme in ACO and exploitation of 

the network structure, the meta-heuristic provides substantial savings on 

computational time on larger scale instances and it creates a good compromise 

between solution quality and speed. The ACO algorithm outperforms the constructive 

heuristic on the solution quality; especially, it leads to lower runtime on larger 

instances. The result presented also suggests that this approach is promising in solving 

the larger emergency logistics problems. 

5.4 Summary 

In this chapter, two solution approaches are proposed for the emergency logistics 

problem. The greedy heuristic PATH_BUILDER constructs vehicle itineraries upon a 

greedy utility criterion according to which a limited neighborhood around the 

vehicle’s location is assessed. The utilities are collected on the way between origin-

destination nodes by exploiting any supply/demand nodes that lie on the partial path. 

This construction based heuristic achieves quick solution compared to the direct 

model solution. Based on a different search principle, the ACO meta-heuristic 
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decomposes the original emergency logistics problem into two sequential phases and 

iterates between them. The performance of the ACO algorithm is compared with the 

direct model solution as well as PATH_BUILDER. The ACO algorithm results in 

better solution quality within shorter runtimes for larger instances. Analyzing the 

overall solution quality and times, one can say that solution quality achieved within a 

minute of runtime is acceptable for the planner in real emergency situation where 

there is continuous uncertainty and information dynamism. The results also suggest 

that this decomposition approach may be efficient for other complex combinatorial 

problems with interdependent decision variables. In addition, the proposed approach 

can be the core of a suite of heuristics developed for the extended models such as 

location-routing problem in emergency logistics, which will be described in the next 

chapter. 
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6 Location Routing Problem in Disaster Response 

Activities 

In the previous chapters, models and various solution methods were proposed for the 

ELP. This chapter extends the model by considering the emergency medical units 

planning problem. To provide maximum coverage of medical need in the affected 

areas, the capabilities of medical facilities have to be re-distributed among all medical 

units to achieve overall maximal service level. This necessitates finding the optimal 

medical personnel allocation equilibrium among available units. The extension is 

integrated into the model proposed in chapter 4, and the ACO meta-heuristic proposed 

in Chapter 5 is also developed for the solution of this location routing problem.  

6.1 Problem Description 

The extended model studied here aims to coordinate the transportation of 

commodities from major supply centers to distribution centers in affected areas and 

wounded people to temporary and permanent emergency units. The model enables 

selecting the best among possible proposed locations for temporary emergency units 

where injured people can be taken care of. The service capacities of temporary 

emergency centers in the affected area are supplied by major medical centers in the 

area. Hence, rather than having a fixed cost for establishing temporary centers in the 

objective function, the model seeks to achieve an equilibrium among re-allocated 
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service levels to minimize transportation delay for patients with different priorities 

and localities. Following the formulation in previous chapters, the model is an 

integrated capacitated location-routing model with a network flow based structure. 

The integrated location-routing model (LRP) subsumes both facility location problem 

(FLP) and vehicle routing problem (VRP), and optimizes the locations and capacities 

of facilities as well as vehicle routes and schedules. Extensive survey on FLP and 

VRP are found in Owen and Daskin (1998), Desrochers et al. (1988), Fisher (1995b) 

and Toth and Vigo (2002). These sub-problems have been shown to be NP hard 

(Cornuejols et al., 1977; Lenstra and Rinnooy Kan, 1981), thus the LRP also belongs 

to the class of NP-hard problems. Due to its complexity, exact solution approaches to 

the LRP have been very limited. The procedures for solving the LRP generally follow 

the sequential methods because an incorporation of all the sub-problems together is 

computationally impractical. A classification of LRP models was given by Min et al. 

(1998) and it is based on VRP features such as ability to deliver only or deliver and 

pick up, single or multiple vehicles, uncapacitated or capacitated vehicles, and time 

windows, and FLP features such as uncapacitated or capacitated facilities and facility 

layers (existence of transshipment nodes-secondary facilities). Generally, the VRP 

assumptions incorporated into LRP describe very simple settings where a facility is 

served by only one capacitated vehicle that conducts a single tour and a client can 

only be served by one facility – non-split delivery assumption- (Tuzun and Burke, 

1999; Albareda-Sambola et al., 2005). Heuristic approaches were common in solving 

LRP (Srivastava, 1993; Hansen et al., 1994) and recently, meta-heuristics were also 

proposed for this problem. Tuzun and Burke (1999) proposed a two-phase tabu search 

approach for the solution of LRP. Wu et al (2002) applied decomposition method to 

the multi-depot LRP and solved the sub-problems sequentially by simulated 
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annealing. Lin and Kwok (2005) made a comparison study between tabu search and 

simulated annealing based algorithms on a multi-objective version of LRP.  

In this model supply availability is also limited whereas in conventional LRP and 

VRP models, supply availability is assumed to be unrestricted. The FLP sub-problem 

in the model involves the selection of locations for temporary emergency centers 

given possible sites in the affected area. Such centers are established after the disaster 

to provide immediate care for injured people whose conditions do not need immediate 

service from fully equipped hospitals. This reduces transportation requirements to 

major medical centers. However, especially during the initial response time, these 

temporary centers utilize the resources of other hospitals (medical personnel and 

equipment). Therefore, temporary centers reduce the service capabilities of hospitals. 

Depending on how fast care can be provided (based on transportation time needed to 

reach temporary centers and hospitals) and on the number and classification of injured 

people, the model formulates an equilibrium among the service levels of temporary 

and permanent medical centers by treating total service capacity as fixed. The FLP 

sub-problem proposed here does not involve any explicit coverage constraints since 

the locations of sites where such temporary centers can be established are rather 

restricted by the structural demolition rates of affected zones, and it is often difficult 

to satisfy distance-based location restraints. However, the objective function reflects 

the proximity of selected sites by penalizing the delay in the provision of care 

according to injury priority. The latter eliminates the need of imposing a fixed charge 

to established temporary facilities, since these facilities reduce the service levels of 

hospitals that might serve higher priority patients. This idea corresponds to a location-

routing problem where different facilities have different manufacturing capabilities 

and based on the routing problem and transportation lead times, overall system service 
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level is maximized (the latter can be interpreted as maximal coverage) by optimizing 

allocation of shared resources among collaborating facilities. 

The notations in this chapter are defined, together with the extended mathematical 

formulation in Appendix II. The proposed model and the two-stage algorithm is 

illustrated on an earthquake scenario based on Istanbul’s risk grid as well as 

hypothetical disaster scenarios with up to sixty nodes (Yi and Özdamar, 2007). 

6.2 Extended ACO Solution for the Location-Routing Problem 

Based on the ACO method in the last chapter, a solution framework is proposed for 

the location-routing problem. It integrates three levels of decision making in a 

computationally efficient manner, i.e., the emergency unit location-allocation problem 

(LAP), vehicle route construction and commodity dispatch. In the location stage of 

the procedure, an ACO algorithm is extended to determine a good distribution of 

medical equipment and personnel, followed by stochastic vehicle path construction 

under the guidance of heuristic information (pheromone trails), and the commodity 

dispatch phase pushes the multi-commodity flows on the resulting network by a 

successive maximum flow (SMF) algorithm. Although the sub-problems are solved 

sequentially, each time when a move is made at the location stage, the routing stage is 

performed based on the pheromone trails laid in the previous iterations but it does not 

start from scratch. In this way, good vehicle routes can be constructed on a localized 

space as opposed to a global search including the previously dominated routes; 

therefore a lot of unnecessary computation time is saved. Furthermore, the pheromone 

trails for the first two stages are synchronized by updating with the multi-commodity 

dispatch resulting from SMF. Thus the sub-problems are coordinated and naturally 

integrated in the solution framework. 
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According to the problem definition in section 6.1, the model does not impose an 

upper bound on the service rate of temporary emergency units and assumes service 

rates can be distributed on individual basis. The objective is to determine the optimal 

service rates at each potential medical unit. As an initiative of each iteration in the 

search process, the quick solution of the LAP is extremely important for the overall 

computational efficiency. A simple ACO procedure is applied to the service rates 

distribution. Since multiple types of wounded exist in the model, heuristic information 

must be shared among the same type of service rates. Hence, multi-type artificial ants 

are employed and each ant denotes a unit service rate of the same type. The 

pheromone trail τL
ih is defined as aggregated service rate of type h allocated to node 

i (L serves as an indication of location sub-problem). No desirability is defined in this 

stage because no obvious principle exists favoring the selection of any node. Then the 

probability pL
jh for allocating the current service rate (ant) to node j are defined by: 

 
L
jhL

jh L
ih

i CE

p if j CE
τ

τ
∈

=
∑

∈       (6-1) 

Using the above formula each ant randomly selects a node from a given set of 

potential emergency units. This continues until all the service rates are allocated. 

After location stage is accomplished, the ACO meta-heuristic in chapter 5.3 is applied 

sequentially to solve the original emergency logistics problem, followed by trail 

update process, where the same trail updating strategies are employed here. Whenever 

a trail updating is triggered to routing ants, it is simultaneously applied to location 

ants by the following eq.(6-2); however, the probability updating eq.(6-1) is 

performed only if the other condition is also satisfied: a predetermined number 
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(0.5*|σ| in this implementation) of iterations are performed. This ensures a wide 

search in the current solution stage to avoid myopic solution: 

 = (1- )* arg max{ }
L

L L
ih ih ih

Lμ

μ σ
τ ρ τ τ

∈
+      (6-2) 

where the same evaporation parameter ρ is used. σL is the elite solution set with the 

same dimension as σ in Chapter 5 and they are updated simultaneously whenever a 

solution enters the elite set. In addition, the initial trail τL
ih is set to the average 

number of total service rates over potential emergency units. In this way, the 

emergency unit location problem and vehicle route construction are coordinated and 

synchronized, the heuristic information obtained in the search process are fully 

utilized and substantial computation time is saved.  

6.3 Numerical Results 

Twenty-eight test instances are generated in a similar procedure as in the last chapter 

while capacity tightness is relaxed to show the enhancement on system-wide 

performance resulting from the re-allocation of service rates among emergency units. 

The total number of vehicles is increased to the range of [22, 81]. Details on problem 

characteristics are provided in Table 6-1. The second and third columns present the 

number of nodes and the number of potential emergency units to be selected. The 

number of actual arcs in the expanded network consists of the arcs and nodes 

reachable by all vehicles throughout the whole planning horizon. To get more 

extensive results, two problems in the same group (for example, problem 1 and 1’) are 

generated for each network structure and have same vehicle number and distribution 

while differing in potential hospitals number. Moreover, for each problem size 

(determined by number of nodes), we have two groups of different instances, where 
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the second one has double the number of potential emergency units. The number of 

vehicles is given in aggregate for three vehicle types. The planning horizon is set to 

10 periods. Search parameters are set to the same values as in the previous chapter in 

all ACO runs. 

Table 6-1 Characteristics of test problems 

Problem No. of 
Nodes

No. of 
Potential 
Hospital 

Sites 

No. of 
Arcs in 

Expanded 
Network

No. of 
Vehicl

es 

1 20 2 351 22 
1' 20 4 351 22 
2 20 2 429 17 
2' 20 4 429 17 
3 30 3 606 20 
3' 30 6 606 20 
4 30 3 630 28 
4' 30 6 630 28 
5 40 4 1073 31 
5' 40 8 1073 31 
6 40 4 895 35 
6' 40 8 895 35 
7 50 5 1084 39 
7' 50 12 1084 39 
8 50 5 1077 33 
8' 50 12 1077 33 
9 60 7 1134 41 
9' 60 15 1134 41 
10 60 7 1186 52 
10' 60 15 1186 52 
11 70 9 1775 56 
11' 70 18 1775 56 
12 70 9 1748 66 
12' 70 18 1748 66 
13 80 10 1840 72 
13' 80 20 1840 72 
14 80 10 1913 81 
14' 80 20 1913 81 

 

The algorithm is implemented in C++ and all computational results are given in detail 

in Table 6-2. First of all, by comparing the objective values of problems within each 

group, one can see the re-allocation among a higher number of potential hospital sites 

leads to better relief performance. In the table, the direct model solution by CPLEX 
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and the runtime in seconds are provided. The solution quality of the ACO meta-

heuristic is presented by the gap between algorithm solution value and the near 

optima. To save the computational cost in the verification of optimality, direct model 

solutions are obtained by applying the following relative termination criterion: 0.5% 

for all the problems except that 1% for problem 6’ and 10’. Similar to the previous 

computational tests, all the problems are re-solved in CPLEX with relative 

termination tolerance set to the identical optimality gap given by ACO meta-heuristic 

(column 6 in Table 6-2). The last two columns give the CPLEX runtime and the gap 

to ACO algorithm runtime. 

Table 6-2 Detailed numerical results 

Model Solution ACO Meta-heuristic Model Solution 
with Tolerance Problem 

Obj 
Value 

Runtime 
Secs. 

Obj 
Value 

Runtime 
Secs. 

Gap(OV-
OP) 

Runtime 
Secs. 

Runtime 
Gap 

1 49002 1.83 49051 2.60 0.10% 2.20 -15.14% 
1' 45427 3.48 46184 3.26 1.67% 1.98 -39.07% 
2 44232 41.14 46143 2.54 4.32% 4.44 74.41% 
2' 43267 41.75 45233 1.97 4.54% 4.25 115.85% 
3 52709 75.14 54964 3.76 4.28% 14.78 293.64% 
3' 52327 110.34 54842 8.73 4.81% 13.22 51.41% 
4 40609 20.17 42418 12.30 4.45% 5.39 -56.17% 
4' 37116 15.69 39252 16.80 5.75% 5.34 -68.20% 
5 40720 118.03 43137 10.63 5.93% 9.94 -6.49% 
5' 37301 120.55 40699 18.70 9.11% 13.38 -28.48% 
6 38135 22.02 40709 16.25 6.75% 9.42 -42.02% 
6' 33853 152.31 37503 24.52 10.78% 9.63 -60.75% 
7 96242 81.66 101038 22.35 4.98% 61.80 176.50% 
7' 88986 258.23 96978 39.36 8.98% 66.05 67.79% 
8 100604 55.64 103074 31.59 2.46% 20.78 -34.22% 
8' 96624 44.97 100570 28.60 4.08% 23.14 -19.10% 
9 90954 189.14 99294 18.54 9.17% 80.13 332.24% 
9' 87947 301.38 96953 34.99 10.24% 102.05 191.69% 
10 76470 261.50 84871 34.12 10.99% 97.95 187.12% 
10' 66101 279.34 76032 63.92 15.02% 95.80 49.86% 
11 87621 236.81 95510 49.58 9.00% 121.72 145.52% 
11' 83227 252.22 91993 61.10 10.53% 119.86 96.16% 
12 89271 311.61 99350 50.80 11.29% 154.48 204.08% 
12' 82859 463.33 94795 64.13 14.41% 132.59 106.75% 
13 90996 257.92 101336 28.72 11.36% 220.19 666.67% 
13' 85956 291.06 98251 47.58 14.30% 211.91 345.36% 
14 94115 308.06 100887 40.34 7.20% 192.55 377.34% 
14' 85792 215.31 92352 62.62 7.65% 195.375 211.99% 
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Table 6-3 to Table 6-5 present the summary of results. In Table 6-3 performance 

robustness is measured by the average value and standard deviation (SD) of run time 

on the problems grouped in same size. Columns 5, 8 and 11 show the relative standard 

deviation (RSD). The RSD values are high for both CPLEX and ACO because the 

data sets are quite different for the problems in a specific group; moreover, the size of 

the problem affects CPU time significantly (Table 6-5), which results in the high RSD 

value across all problems (Last row, Table 6-3) in CPLEX (with same tolerance) and 

ACO that are 102.56% and 71.27%, respectively. This indicates ACO meta-heuristic 

has a relatively higher robust performance.  

The problems are classified according to the number of potential emergency units and 

problem size in Table 6-4 and corresponding average gaps are provided. Columns 2-4 

are the average objective value gaps between ACO solutions and CPLEX optima. It is 

observed that the ACO meta-heuristic produces solutions with an average gap below 

8% and it solves most problems within a minute, which is acceptable for re-planning 

purposes with frequent information updates. ACO solution quality is affected to a 

certain degree by the number of potential hospital sites, where the average gaps are 

6.59% and 8.71% for the problems with less and more potential sites, respectively. 

Furthermore, the influence of sites number increases with the problem size. For 

instance, considering smaller size problems less than 40 nodes, there is a small gap 

difference (1.8%). This difference grows to 2.34% in larger scale problems over 40 

nodes. It also can be concluded that the problem size has a much more significant 

impact on the solution quality than the hospital sites number (5.21% for small 

instances and 9.48% for larger ones). Columns 8-10 in Table 6-5 give average speed 

gaps between ACO and CPLEX with same tolerance. CPLEX runs faster on small 

problems but is dominated by ACO on larger problems. From Table 6-5 one can see 
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that sites number has virtually no influence on CPLEX CPU time while affects ACO 

speed constantly for all the problems, hence the runtime gap of more sites instances 

(last column) are always smaller than less sites cases.  

Table 6-3 Summary of results- average and standard deviation of runtimes 

Model Solution Runtime ACO Meta-heuristic 
Runtime 

Model Solution with 
Tolerance Runtime Group Problem 

Average SD RSD Average SD RSD Average SD RSD 
1 1-2' 22.05 22.41 101.61% 2.59 0.53 20.32% 3.22 1.30 40.53%
2 3-4' 55.34 45.56 82.33% 10.40 5.52 53.13% 9.68 5.02 51.89%
3 5-6' 103.23 56.34 54.58% 17.52 5.76 32.87% 10.59 1.87 17.65%
4 7-8' 110.12 99.93 90.75% 30.48 7.07 23.18% 42.94 24.31 56.61%
5 9-10' 257.84 48.62 18.86% 37.89 18.93 49.96% 93.98 9.59 10.21%
6 11-12' 315.99 103.38 32.72% 56.40 7.30 12.94% 132.16 15.90 12.03%
7 13-14' 268.09 40.88 15.25% 44.82 14.19 31.66% 190.52 34.35 18.03%

All Problems 161.81 124.19 76.75% 28.59 20.37 71.27% 71.08 72.90 102.56%
 

Table 6-4 Summary of results- gap of objective value 

 Gap of Obj Value 
 All problems Less sites More sites 

All problems 7.65% 6.59% 8.71% 
Nodes<=40 5.21% 4.31% 6.11% 
Nodes>40 9.48% 8.31% 10.65% 

 

Table 6-5 Summary of results- runtime 

 ACO Meta-heuristic Model Solution with 
Tolerance Gap of Runtime 

 All 
problems

Less 
sites 

More 
sites 

All 
problems

Less 
sites 

More 
sites 

All 
problems 

Less 
sites 

More 
sites 

All 
problems 28.59 23.15 34.02 71.08 71.13 71.04 118.74% 164.53% 72.95%

Nodes<=40 10.17 8.01 12.33 7.83 7.69 7.97 18.25% 41.37% -4.87%
Nodes>40 42.40 34.50 50.29 118.52 118.70 118.35 194.11% 256.91% 131.31%

 

6.4 Summary 

In this chapter, a solution framework is proposed for a complex location-routing 

problem that arises in emergencies. First the integrated location-routing model is 

introduced for coordinating logistics support and evacuation operations in response to 

emergencies. Next, an extended ACO solution framework is developed based on the 
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approach for the original emergency logistics problem, where a strategy of 

synchronizing location selection and route construction is employed to reduce 

computational burden. The numerical results show that location-routing model can 

result in notable enhancement of the overall disaster relief performance. Moreover, 

analyzing the overall solution quality and times, the extension of facilities planning 

does not add to computational complexity significantly. This suggests that the 

proposed approach of modeling the facility planning problem is suitable for the 

emergency logistics problem. 

97 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



7 Conclusions and Future Research Directions 

7.1 Conclusions 

In the previous chapters, several modeling strategies were investigated and solution 

methods were proposed to address the ELP. The model and solution were also 

extended to address the medical facility planning problem. The contributions of this 

research can be summarized as follows: 

 A network flow based formulation for the ELP is proposed and its 

efficiency is verified through comparison with conventional vehicle based 

formulation. The model presented essentially coordinates wounded people 

evacuation, commodity delivery, and vehicle scheduling. In addition, the 

location-routing problem is also addressed as an extension of the basic ELP 

model, which achieves equilibrium among the service levels of temporary 

and permanent medical centers under the constraint of limited total service 

capacity. This kind of modeling strategy may be employed in other logistics 

problems. 

 Based on the solution of the proposed model, a two-stage algorithm was 

proposed to disaggregate the vehicle flows and generate load 

pickup/delivery instructions in each route. This algorithm and the 

optimization packages together form a solution framework to produce 

98 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



operational plans for emergency logistics. The dynamic operations of the 

emergency relief system were illustrated based on real world scenarios, 

together with a succinct discussion on uncertainty in emergency logistics 

planning. 

 A constructive heuristic based on parallel vehicle exploration is first 

proposed in an attempt to produce fast solutions. The heuristic 

PATH_BUILDER constructs vehicle itineraries using a greedy utility 

criterion according to which a limited neighborhood around the vehicle’s 

location is assessed. This heuristic achieves quick solutions compared to the 

direct model solution. However, the utilization of the computational 

resource is not efficient because the large quantity of information generated 

in the search process is discarded without exploitation. Hence, an ACO 

meta-heuristic is developed to enhance the solution efficiency. The ACO 

algorithm decomposes the original emergency logistics problem into two 

sequential sub-problems, where the routing sub-problem takes advantage of 

the effective exploration scheme of large search spaces in this population-

based meta-heuristic, and the dispatch sub-problem employs the network 

flow structure in the formulation. The performance of the algorithm is 

tested on a number of randomly generated networks and the results indicate 

that this algorithm performs well in terms of solution quality and the run 

time consumption. The ACO solution framework is also extended for the 

proposed location-routing model.  
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7.2 Future Research Directions 

7.2.1 Possible Improvements on the Solution Methods 

The ACO meta-heuristic proposed in Chapter 5 is essentially an extension of the 

constructive heuristic, and this population-based method has produced satisfactory 

results by its highly effective exploration scheme of large search spaces. Given the 

successful applications of local search based meta-heuristics in logistics problems 

such as Tabu search in VRP, it seems promising to employ these advanced local 

search methods in the ELP. Although our preliminary computational results regarding 

Tabu search application on this problem is not comparable to the ACO approach, a 

mixed meta-heuristic based on different principles from various approximate methods 

discussed in Chapter 2 may help in improving solution quality. Moreover, the 

information on the optimality (or the quality) of the solution obtained is important in 

performing the emergency operation. In this thesis, the solution quality is evaluated 

by the gap between the meta-heuristic result and CPLEX optimality. However, as the 

large memory requirement of the model in CPLEX, it deserves the effort in the future 

to develop approaches from both meta-heuristics and conventional heuristics to obtain 

the lower bound or fast solution of the model, which can provide an alternative 

evaluation scheme for the proposed solution methods.  

Mathematical programming methods are dominated by heuristics in the VRP. 

However, they still have many uses for some other types of NP-hard problems such as 

network design problems that explore the structure of the mathematical formulation. 

Moreover, the progress made in the simplex implementations and the specialized 

interior-point algorithm during recent years allows people to consider the solution of 

integer multi-commodity flow problems that have been adopted in a wide variety of 

100 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



important large-scale applications. Given the network problem embodied in the ELP, 

it is observed that a medium-size instance up to 60 nodes can be solved in reasonable 

time by the default branch and cut routine in CPLEX. 

Besides the readily available simplex-based methods, the special structure of ELP 

makes decomposition a possible solution method. The research on price-directive 

decomposition includes two categories of algorithm: Lagrangian relaxation and 

Dantzig-Wolfe decomposition. The Lagrangian relaxation is inclined to make a full 

exploitation of the formulation structure and Lagrangian heuristics have been applied 

widely to obtain primal solutions. The other is based on column generation 

approaches. Although research on column generation algorithm has been quite active, 

column generation based heuristic receives less attention in literature (Vanderbeck, 

2005). In the latter context, the heuristics of sub-problems produce promising columns 

for the master problem, where the knowledge of the original problem can be fully 

exploited. Having been tested in a large number of implementations, these two 

algorithms are not always capable of producing fast solutions (Huisman et al., 2005; 

Guignard, 2003; Ahuja et al., 1993). Hence, the study on these methods for the ELP 

should integrate various heuristic principles and take the quick solution requirement 

into consideration. Finally, for both exact and heuristic methods, the solution of very 

large applications will be enabled using parallel computers. 

7.2.2 Model Extension and Simulation  

A preliminary discussion was given in chapter 4 for the possible directions of 

addressing uncertainties in emergency logistics problems; however, due to its 

practical importance, this topic is worth further investigation on both modeling and 

solution aspects. The proposed ACO meta-heuristic has been the core heuristic 
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developed for the location-routing problem. Based on its capability to address 

interdependent decision variables, this approach will also be developed to deal with 

the fuzzy model proposed in Yi and Özdamar (2004). In addition, broader solution 

methods based on soft computing could be considered for the uncertainty issue. 

Besides the uncertain parameters related to wounded people and commodities 

demands discussed in the above paper, there are several other issues regarding the 

implementation of the proposed solutions which need to be taken into future research: 

 Road congestion is a very important risk factor for ground vehicles in 

disaster relief practice and can be considered in different aspects. The study 

on contraflow network configuration can be a potential remedy to reduce 

road congestion during emergency operations. In addition to that, road 

damage induces another uncertain parameter, especially in the first few 

periods of the planning horizon, when the information of road damage is 

not clear. This uncertainty aggravates the traffic congestions and as a 

consequence causes major delays in the planned emergency operations. 

Moreover, even the road damage information is obtained in the subsequent 

planning periods; its impact on the vehicle traveling time is not 

immediately available to the logistics planner. 

 Service failure may be another source of risk due to demolished hospitals 

and major supply centers, risk of non-usability of equipment.  

While such uncertainties and traffic flow control cause fundamental difficulties in the 

optimization framework, microscopic traffic simulation models, which are capable of 

addressing complex individual parameters and their interaction among various factors, 

may provide an alternative solution approach. Previous research review on traffic 
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control can be found in Tuydes (2005). In addition, the simulation results can provide 

a complementary performance evaluation to the objective value of the optimization 

models, which is of particular value to the planner since several practical factors that 

are out of the reach of optimization model are taken into consideration. Hence, the 

traffic simulations collaborating with the proposed optimization models can serve as 

an insightful diagnosing tool to help improve the overall modeling and solution 

methods. 
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Appendix I Input of Model P 

Table AI-1 Commodity demand distribution percentages 

 Node 
 1 2 3 4 5 6 

Total number 
(people equivalent) 

T=1 0.20 0.02 0.23 0.13 0.05 0.38 39700 
T=5 (expected) 0.22 0.03 0.11 0.22 0.11 0.32 9300 
T=5 0.25 0.02 0.11 0.18 0.12 0.32 10000 

 

Table AI-2 Supply availability distribution percentages and fleet composition 

 Node 
 7 8 9 10 11 12 13 14 15 16 17 

Total number 
(people equivalent)

T=1 0.09 0.04 0.09 0.10 0.09 0.09 0.11 0.09 0.10 0.09 0.10 17950 
T=2 0.10 0.01 0.09 0.11 0.12 0.10 0.12 0.10 0.07 0.10 0.09 13500 
T=3 0.10 0.00 0.10 0.11 0.12 0.10 0.12 0.10 0.08 0.10 0.09 10200 

 Service rates 
H 15 10 10 15 15 20 20 20 0 0 0 125 
L 25 30 35 30 35 35 30 30 0 0 0 250 

 Fleet 
composition Unit capacity

Helicopters 25 1500 
Trucks 24 15000 

Ambulance 52 600 
 

Table AI-3 Percentages of wounded people 

 Node  
 1 2 3 4 5 6 Total number 

H 0.25 0.06 0.15 0.20 0.20 0.15 2020 
T=1 

L 0.21 0.13 0.17 0.17 0.17 0.17 2400 
H 0.17 0.21 0.13 0.14 0.14 0.21 710 T=5 

(expected) L 0.17 0.19 0.14 0.16 0.16 0.19 580 
H 0.22 0.19 0.13 0.15 0.16 0.15 680 

T=5 
L 0.17 0.20 0.10 0.19 0.14 0.20 590 
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Figure AI-1 District based aggregate affected areas (nodes 1-6), supply distribution centers 

and hospitals (7-15), two aiding cities (16-17) 
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Appendix II Mathematical Formulation 

The mathematical formulation for the location routing problem in Chapter 6 is given 

below, which embodies the evacuation problem and the facility planning problem.  

Additional Sets and parameters: 

CE: Set of potential emergency center sites including existing emergency centers, 

CE ⊆ C\CD 

CH: Set of available emergency centers, CH ⊆ CE 

 

Additional Decision variables: 

sho: Integer number of allocated service rate at an emergency facility o; sho=0 (∀ 

o∈C\CE) 

 

Location-Routing Model:   

 Minimize Σa∈A Σo∈CD Σt Pa devaot + Σh∈HΣt Ph devht    (0) 

Subject to 

Σ
t

q=1 daoq - Σm∈M
Σ

 t

q=1
Σ p∈C[Kpqotm Zapomq - Zaopmq]=devaot  (∀ a∈A, o∈CD, t∈T) (1) 

Σ
m∈M

 Σ
 t

q=1
Σ p∈C[- Kpqotm Zapomq + Zaopmq ]≤Σ

 t

q=1
supaoq (∀a∈A, o∈C\CD, t∈T) (2) 

Yopmt ≤ K * Σ
 |T|

q=t Kotpqm    (∀o∈C, p∈C, m∈M, t∈T) (3) 

Yopmt* capm ≥ Σ
a∈A

 wa * Zaopmt + Σ
h∈H

 wh * Xhopmt (∀o∈C, p∈C, m∈M, t∈T) (4) 

Σ
 t

q=1
 Σ p∈C [Yopmq - Kpqotm Ypomq] ≤ Σ

 t

q=1
 avomq   (∀ o∈C, m∈M, t∈T) (5) 

Σ
m∈MΣ

 t

q=1 Σ p∈C[ - Kpqotm Xhpomq + Xhopmq ] ≤ Σ
t

q=1 dhoq (∀ h∈H, o∈CD, t∈T) (6) 

Σ
 t

q=1 
Σ

m∈M [ Kpqotm Xhpomq - Xhopmq ] ≥  Σ
 t

q=1  
sphoq (∀ h ∈H, o∈C\CD, t∈T) (7) 
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Σ
t
q=1 Σo∈C[dhoq - sphoq] = devht      (∀h∈H, t∈T)   (8) 

Σ
o∈CE  

sho =  Σ
o∈CH  

scapho                       (∀ h ∈H)   (9) 

sphot ≤  sho      (∀ h ∈H, o∈C, t∈T)              (10) 

Yopmt, Xhopmt, Zaopmt, devaot, devhot , sho ≥ 0 (∀h ∈H, a∈A, o∈C, p∈C, m∈M, t∈T) (11)  
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