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Abstract. This paper focuses on a generic model for service network design, which 

includes asset positioning and utilization through constraints on asset availability at 

terminals. We denote these relations as “design-balance constraints” and focus on the 

design-balanced capacitated multi-commodity network design model, a generalization of 

the capacitated multi-commodity network design model generally used in service network 

design applications. Both arc and cycle-based formulations for the new model are 

presented. The paper also proposes a Tabu Search meta-heuristic framework for the arc-

based formulation. Results on a wide range of network design problem instances from the 

literature indicate the proposed method behaves very well in terms of computational 

efficiency and solution quality. 
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Introduction 
Network design formulations are used to model a wide range of applications in planning 
transportation, logistics, telecommunication, and production systems. In these 
applications, multiple commodities, goods, data, people, etc., must be routed between 
different points of origin and destination over a network with possibly limited capacity. 
Moreover, other than the routing cost proportional to the number of units of each 
commodity transported over a network link, a fixed cost must be paid the first time the 
link is used, representing its construction (opening), improvement, or set up cost. The 
network design problem then consists in finding a minimum cost design, i.e., a selection 
of arcs in the network to enable the flow of commodities while minimizing the total 
network cost: the sum of the fixed cost of including the arcs in the final design and the 
variable cost of routing the commodities. Presentation of different network design models 
and their applications can be found, for example, in Minoux (1986), Magnanti and Wong 
(1984), Ahuja et al. (1995), Balakrishnan, Magnanti, and Mirchandani. (1997), and 
Crainic (2000). 

Service network design models generally address issues related to the planning, 
selection and, eventually, scheduling, of services in consolidation-based transportation 
systems. In such formulations, network links represent services (or parts thereof) that 
could be included into the transportation plan operated by the carrier. Link fixed costs 
then represent the cost of operating the corresponding services, while variable costs stand 
for the cost or moving commodities using the selected services. All these costs may 
include measures related to vehicle and load handling in terminals and en route from one 
terminal to another, delays, crews, and so on. The planning scope is generally on a 
tactical, mid-term horizon, level, as opposed to the strategic, long-term scope of network 
design models. Several efforts have been directed toward the formulation of service 
network design models and surveys are proposed by Christiansen, Fagerholt, and Ronen 
(2004) and Christiansen et al. (2007) for maritime transportation, Cordeau, Toth, and 
Vigo (1998) for rail transportation, Crainic and Laporte (1997) and Crainic (2003) for 
land-based long-haul transportation, and Crainic and Kim (2007) for intermodal 
transportation. 

Service network design models usually account for issues related to various 
service types and characteristics, infrastructure (terminals, mostly) and service capacities 
and congestion, load consolidation, vehicle classification and, eventually, consolidation 
into convoys (e.g., multi-trailers operated by motor carriers and the blocks and trains 
characteristic of rail transportation), broad policies regarding the repositioning of assets 
(power, vehicles, crews).  It is generally implicitly assumed, however, that assets – crews, 
power units, and vehicles, particularly – are available when needed and, consequently, 
their management, assignment and repositioning, is left to be dealt with at the operational 
level of planning on an already decided service network schedule. In fact, with the 
exception of Smilowitz, Atamtürk, and Daganzo (2003) who consider a fleet of trucks in 
the context of express-courier services, the circulation of vehicles is considered only 
when dealing with airplanes or ships (e.g., Armacost, Barnhart, and Ware, 2002, for 
express-courier services with a heavy air component) where the high vehicle acquisition 
and operation costs focuses the problem on the routing of the fleet. Moreover, all such 
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contributions we are aware of propose ad-hoc solution approaches taking advantage of 
the structure of the particular problem considered.  

With the increasing pressure on carriers to decrease costs and improve service 
quality, combined to the growth in demand for intermodal transportation, addressing asset 
management issues jointly with the design of the service network and schedule 
increasingly appears as the most appropriate approach. This trend is readily apparent in 
rail transportation, but may also be observed in some motor-carrier operations. With 
respect to railways and Intermodal transportation, for example, North-American railways 
have created intermodal subdivisions which operate so-called “land-bridges” providing 
efficient container transportation by long, double-stack trains between the East and the 
West coasts and between these ports and the industrial core of the continent (so-called 
“mini” land-bridges). New container and trailer-dedicated shuttle-train networks are 
being created within the European Community with the goal of offering high-quality 
services and, thus, contribute to increase the part of traffic using environmental friendlier 
rail transportation (Bektaş and Crainic, 2007). 

Several such services implement, or contemplate to implement, some form of full-
asset-utilization operation policy, which generally corresponds to operating regular and 
cyclically-scheduled services with fixed composition. In other words, given a specific 
frequency (daily or every x days), each service occurrence operates a train of the same 
capacity (length, number of cars, tonnage) and the same number and definition, i.e., 
origin, destination, and length, of blocks (groups of cars traveling together as a unit from 
the origin to the destination of the block; blocks result from classification operations at 
yards). Assets, engines, rail cars and, even, crews, assigned to a system based on full-
asset-utilization operation policies can then “turn” continuously following circular routes 
and schedules (e.g., Andersen and Christiansen, 2006 and Petersen and Crainic, 2007). 
Little effort has been dedicated, however, to designing service network schedules whilst 
simultaneously considering vehicle positioning and balancing. This paper aims to 
contribute to fill this gap. 

The contribution of this paper is twofold. First, it presents a generic model for 
service network design that includes asset positioning and utilization. This is addressed 
through constraints on the requirement of asset availability in order to perform services. 
We denote these relations as “design-balance constraints” and focus on the design-
balanced capacitated multi-commodity network design (DBCMND) model, a 
generalization of the capacitated multi-commodity network design (CMND) model 
generally used in service network design applications. Both arc and cycle-based 
formulations for the DBCMND are presented. Second, the paper proposes a Tabu Search 
meta-heuristic framework to address the arc-based formulation of the DBCMND. This 
contribution is one of, if not the first solution method dedicated to the generic network 
design model with design-balance constraints. The algorithm is applied on network 
design instances from the literature and very good computational results are presented. 

The paper is structured as follows. Section 1 is dedicated to the problem statement 
and modeling, while Section 2 presents the DBCMND formulations. Section 3 details the 
Tabu Search meta-heuristics. Experimental results are presented and analyzed in Section 
4 and we conclude in Section 5.  
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1. Problem Statement and Notation 
The DBCMND formulations and the Tabu Search meta-heuristic introduced in the next 
sections are general and may be applied to any network. To enhance the presentation, 
however, we first introduce the problem in the context of the scheduled service network 
design problem with asset-management considerations, which can be stated as follows: 1) 
select services and their schedules such that all commodities can be transported from their 
origin to their destination within their specified time windows, and 2) route assets to 
ensure their availability at terminals to perform the selected services. Total cost is to be 
minimized. 

A single asset type is considered in this paper. It is also assumed that only one 
unit of asset is used to perform a service. Assets may be crews, trucks, tractors, ships, 
engines, cars, etc. The single-asset hypothesis is reasonable when services are indeed 
performed by “single” vehicles, e.g., ships or rail intermodal convoys in European shuttle 
networks, or when the management of a given asset presents more challenges and 
constraints to building the transportation plan than the others. Multiple asset management 
considerations and detailed operational constraints (e.g., maintenance periods) are beyond 
the scope of this paper and are left to future research. 

Service network design problems are defined on networks made up of nodes and 
links, where nodes stand for terminals, while links represent possible services providing 
transportation between these terminals. Scheduled problem variants are addressed 
through time-space diagrams capturing the dynamics of the system over a given planning 
horizon (e.g., a week) discretized into a number of periods (e.g., a day). Nodes then 
represent the terminals at all time periods. We denote N  the set of nodes. Figure 1 shows 
the space-time diagram for a three-terminal system and a seven-period planning horizon. 

 
Figure 1.Time-Space Diagram for Cyclic Service Schedule 

Let A  represent the arcs of the time-space diagram. Most arcs in A represent the 
scheduled services (departures) that may be included in the service network. Assuming 
non-stop services that depart from terminals at the end of time periods and arrive at the 
beginning of time periods, we represent a service as an arc between two terminal 
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nodes ( ), ,i, j i j∈N . Figure 1 illustrates a number of potential services, e.g., departing 
from the node representing terminal 3 at the end of day 1 and arriving at the node 
representing terminal 2 at the beginning of day 3. Horizontal lines between nodes are the 
so-called holding arcs representing the choice of keeping vehicles and loads at terminals 
for one time period. Waiting at terminals incurs “variable” costs (e.g., depreciation 
values) but fixed “selection” costs are generally not considered. 

Note that, it is assumed the designed service network is repetitive for a given time 
horizon (e.g., a season) for which the current resource and demand conditions of the 
carrier hold. Schedule repetition is quite common for many types of transportation service 
networks: public transit, airlines, many intermodal train operations, intercontinental liner 
shipping, etc. Arcs going “backwards” in time represent schedule repetitiveness. Such 
arcs stand for services in operation at the transition from one schedule repetition to the 
next. Thus, in Figure 1, the arc going from terminal 1 at the end of day 6 to terminal 2 at 
the beginning of day 1 is a “backward” arc representing a service leaving on day 6 of the 
current week and arriving on day 2 of the following week. 

Demand for transportation is given for a set of commodities P , which represent 
possibly different products that need moving at particular times between particular origin 
and destination terminals. Each commodity P∈p thus requires that a certain quantity wp 
be moved from origin node o(p) to destination node s(p), which capture both the 
geographic and temporal attributes of the corresponding demand. Unit costs p

ijc  
associated to each arc (i,j)  and commodity p represent the costs incurred moving 
commodities on services or having then wait at terminals. The “fixed” cost of selecting 
and operating service A∈(i,j)  is denoted ijf , while the service capacity is iju . 

Two sets of decision variables are normally associated with design formulations 
and are appropriate in this setting as well. A selection decision variable ijy  is associated 
to each service, that is 1ijy = , if arc (i,j)  is opened (service is selected), and 0 otherwise. 

Continuous variables p
ijx , ( , ) ,i j p∈ ∈A P , represent the flow distribution within the 

service network and stand for the volume of commodity p moved by service (i,j) .  

The scope of design-balanced formulations is to address the asset availability 
requirements at terminals. The movements of the selected services result in a number of 
vehicles leaving and arriving at terminal nodes. Within the hypotheses of a full-asset-
utilization policy, the number of vehicles available for service at any given period and 
terminal, just arrived or in waiting at the terminal, must be in sufficient numbers for the 
planned services to be able to leave the terminal during the period. This translates in the 
requirement of a vehicle balance at terminal nodes, i.e., the number of services destined 
to a node must equal the number of services emanating from the same node. (To follow 
the basic idea of full-asset-utilization policies and without loss of generality, we do not 
consider safety stocks.)  Adding balance requirements for vehicles at each node addresses 
the vehicle availability and positioning implicitly and yields the DBCMND formulations 
presented in the next section. 
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2. Design-Balanced Service Network Design Models 
Let X and Y represent the vectors of flow ( p

ijx , PA ∈∈ pji ,),( ) and design ( ijy , A∈),( ji ) 
variables, respectively. Define }),(|{:)( ANN ∈∈ ++ jiji  and }),(|{:)( ANN ∈∈ ijji -- , the 
outward and inward neighbors of node i∈N , respectively. For each commodity p and 
node i, set  

if  ( ),
if  ( ) ,

0  otherwise.

p
p

i p

w i o p
d w i d p

=⎧
⎪= − =⎨
⎪
⎩

 

The arc-based formulation of the design-balanced scheduled service network 
design problem can then be written as follows: 

( , ) ( , )

( ) ( )

( ) ( )

( , ) (1)

. . , , (2)

0 (3)

, ( , ) (4)

0, ( , ) , (5)

{0,1}, ( ,

p p
ij ij ij ij

i j p i j

p p p
ij ji i

j i j i

ji ij
j i j i

p
ij ij ij

p

p
ij

ij

Minimize z X Y f y c x

s t x x d i p

y y i

x u y i j

x i j p

y i j

+ −

− +

∈ ∈ ∈

∈ ∈

∈ ∈

∈

= +

− = ∀ ∈ ∀ ∈

− = ∀ ∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈

∈ ∀

∑ ∑ ∑

∑ ∑

∑ ∑

∑

A P A

N N

N N

P

N P,

N,

A,

A P.

) (6)∈A

 

The objective function (1) accounts for the total system cost, the fixed cost of 
selected arcs plus the cost of routing the commodity demand, and aims to select the 
minimum cost design. Equations (2) are the commodity flow conservation relations. 
Equations (3) are the design-balance constraints, which state that the total number of 
open design arcs terminating into any node must equal the number of open design arcs 
going out of that node. The linking (forcing) constraints (4) state that the total commodity 
flow assigned to an arc cannot exceed the arc capacity if the arc is opened (yij = 1) and 
must be 0 if the arc is closed (yij = 0). Relations (5) and (6) are non-negativity and 
integrality constraints for the decision variables. 

Notice that removing constraints (3) from the formulation yields the general arc-
based capacitated multi-commodity network design model (CMND) formulation. We 
thus dub the model (1) – (6) the arc-based design-balanced capacitated multi-commodity 
network design formulation (a-DBCMND). Further notice that, as for the CMND 
formulation, the capacitated multi-commodity minimum cost flow problem (CMCF) is 
obtained for a given design-balanced feasible design vectorY : 
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( , ) ( )

( ) ( )

( ( )) (7)

s.t. , (8)

( , ) ( ), (9)

0 ( , ) ( ), (10)

p p
ij ij

p i j Y

p p p
ij ji i

j i j i
p

ij ij
p

p
ij

Minimize z x Y c x

x x d i p

x u i j Y

x i j Y p

+ −

∈ ∈

∈ ∈

∈

=

− = ∀ ∈ ∀ ∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈

∑ ∑

∑ ∑

∑

P A

N N

P

N P,

A

A P,

 

where AA ⊆)Y(  stands for the set of service arcs included in the design Y , while 0,p
ijx =  

for all arcs ( , ) ( ).i j Y∉A  

The design-balance constraints (3) strongly link arc choices. To illustrate, assume 
arc (Terminal 3, day 2 to Terminal 1, day 5) in Figure 1 is selected. Both nodes connected 
by the selected service are then “out of balance” with respect to constraints (3), which are 
not obeyed (Figure 2). The balance at these nodes can be restored only by selecting 
additional services in a cascading effect as shown in Figure 3. Notice that, the four 
selected arcs form a cycle. Recalling that assets (vehicles) are associated to each opened 
arc (service), a cycle represents a vehicle rotation over the planning horizon of the 
schedule. We use this insight to reformulate the model. 

 

 

Figure 2. The Service (Terminal3, Day3) to (Terminal 1, Day 5) 
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Figure 3. A Feasible Vehicle Rotation 

Define the set of possible design cycles K  given the set of design and holding 
arcs, and set KA ∈∈ kjiak

ij ,),(, , to 1 if service arc (i,j) is in cycle k and to 0, otherwise. 

Define cycle-design variables K∈kk ,η , equal to 1 if cycle k is selected (and 0, 
otherwise). We may then reformulate the arc model to obtain the cycle-based 
formulation, c-DBCMND: 

( , ) ( , )

( ) ( )

( , ) (11)

s.t. , (12)

( , ) , (13)

1 ( , ) (14)

0 ( , ) , (15)

{0,1

k k p p
ij ij ij ij

i j k p i j

p p p
ij ji i

j i j i
p k k

ij ij ij
p

k k
ij

k

p
ij

k

Minimize z X Y f a c x

x x d i p

x u a i j k

a i j

x i j p

η

η

η

η

+ −

∈ ∈ ∈ ∈

∈ ∈

∈

∈

= +

− = ∀ ∈ ∀ ∈

≤ ∀ ∈ ∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈

∈

∑ ∑ ∑ ∑

∑ ∑

∑

∑

A K P A

N N

P

K

N P,

A K,

A,

A P,

} (16)k∀ ∈K.

 

The advantage of the c-DBCMND formulation compared to a-DBCMND is that 
the design-balance constraints (3) are taken care of implicitly through the cycle-design 
variable definition and constraints (14), which are set-packing constraints stating that an 
arc may be included in one selected cycle only. The disadvantage of c-DBCMND is the 
size of the set of cyclesK . It is computationally infeasible to enumerate all cycle-design 
variables and linking constraints (13) for large scale instances. Dynamic cycle (column) 
generation procedures will most certainly be required for any exact or meta-heuristic 
procedure addressing the c-DBCMND. We do not address c-DBCMND in this paper but 
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have introduced it for a more complete description of the model, and the insight cycle 
variables offer into feasible solution structures.  

Un-capacitated fixed-charge network design problems are difficult as they belong 
to the class of NP-hard problems (Magnanti and Wong, 1986). Capacitated problems, 
represented by the CMND model, are even harder (Balakrishnan, Magnanti, and 
Mirchandani, 1997) due to, among other factors, the competition of commodities for the 
network capacity, the degeneracy of  the minimum cost network flow sub-problem, and 
the difficulty of representing trade-offs between the fixed costs and capacities of design 
arcs. Adding the node balance constraints adds further complexity to the problem because 
of the additional interdependency among arc choices mentioned above. Consider, for 
example, that one obtains the CMND formulation by relaxing the design-balance 
constraints (3) in the a-DBCMND model. Even finding feasible solutions is far from 
trivial. In the case of the CMND, a (not necessarily good) feasible solution may be easily 
found by setting all binary design variables to one (opening all arcs) and solving the 
CMCF problem. This is not the case for the DBCMND problem, where the design-
balance constraints prevent the trivial “all arcs open” solution to be feasible, except for 
special instances. We therefore assume that DBCMND belongs to the class of NP-hard 
problems. Then, because tailored heuristics appear to perform best for large-scale CMND 
problem instances (see the survey papers indicated in the Introduction and the references 
therein), we introduce a tabu search meta-heuristic as an initial attempt at finding good 
feasible solutions for the arc formulation of the DBCMND problem. 

3. Tabu Search Meta-heuristic 
Tabu Search (TS) methods are neighborhood-based meta-heuristics (Glover, 1986; 
Glover and Laguna, 1997). Thus, in its basic form, TS iteratively moves from the current, 
incumbent, solution to a new one selected from a neighborhood of the incumbent. The 
neighborhood of a solution is a set of other solutions that can be obtained from it by 
applying one or a few simple changes. The transition from the incumbent solution to a 
neighbor solution is called a neighborhood move. The best solution of the neighborhood 
is selected as the new incumbent, non-improving moves being accepted to attempt to 
escape local minima. Learning processes build memories relative to attributes of visited 
solutions to guide the search. In particular, tabu lists are introduced to avoid cycling. A 
tabu list is a short-term memory mechanism, which stores attribute values identifying the 
moves that produced recent solutions. When examining an incumbent’s neighborhood, 
moves that have attributes equal to those stored in the tabu list are discarded.  TS meta-
heuristics may be divided into phases, each with its own distinctive neighborhoods. 

The TS algorithm we propose addresses the arc formulation and searches through 
the space of the design vectors. It is composed of two local-search phases. The first, 
denoted exploration phase searches for potentially “good” solutions through relatively 
simple moves between possibly infeasible solutions. The neighborhood is based on add 
and drop moves of individual arcs. A penalty is added to each infeasible solution based 
on an estimation of how far from feasibility it is. The purpose of the penalty is to control 
infeasibility and induce the search to aim for a trade off between cost and infeasibility. 
The goal of the second phase, denoted feasibility phase, is to reach good feasible 
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solutions starting from the results of the first phase. The neighborhood moves in the 
second phase are based on an add/drop procedure of paths of design arcs. 

These neighborhoods may be very large and an exhaustive search can be very 
computationally demanding. Candidate lists of potentially “good” neighbors are therefore 
determined in each of the two phases of the TS procedure to decrease the computational 
requirements of selecting the next move. A candidate list contains a sub-set of neighbor 
solutions that are deemed worth investigating, i.e., neighbors that one believes may lead 
to improved solutions, according to one or several criteria.  

The following subsections present the various elements of the algorithm, whose 
overall layout with section pointers can be found in Figure 4. 

Procedure phase / stage Section 

Initialization 
• Solve the LP relaxation of the a-DBCMND formulation 
• Round up design variables → a possibly infeasible starting solution 

3.1 

Phase I: Exploration 3.2 – 3.5 

• Set up the candidate list of non tabu neighbors, i.e., arcs to drop 
from or to add to the incumbent 3.4, 3.5 

• Evaluate approximate solution value for each neighbor  3.2, 3.3 

• Select the neighbor with the minimum estimated value  

• Move to this neighbor, which becomes the incumbent 
o Update the design vector & solve the corresponding CMCF 
o Update the tabu list 
o Update the residual capacity and the penalty lists 

3.4, 3.5 

• Verify stopping condition; Go to Phase II if the value of the overall 
best solution did not improve sufficiently in the last iterations 3.1 

Phase II: Feasibility 3.6 – 3.8 

• Set up the candidate list of four moves: paths to open or close 3.6, 3.7 

• Evaluate each move by solving the corresponding CMCF 
• Select the move yielding the lost total system cost 

3.7 

• If no feasible solution is found from the candidates, return to 
Exploration, Phase I, otherwise update the incumbent 3.8 

Global update: Keep track of best overall solution  

Stop: On reaching time limit 3.1 

Figure 4. Overall Tabu Search Algorithmic Structure 
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3.1 Initialization and stopping criteria 
To obtain an initial solution, we first solve r-DBCMND, the linear relaxation of the a-
DBCMND formulation, given by relations (17) – (22). If all design variables are integer 
in the LP solution, we have a feasible initial solution. Otherwise, a possibly infeasible 
initial solution is built by rounding up the fractional values for the 0 0ijy >  design 
variables. Notice that, since the exploration phase allows moves between infeasible 
solutions, the initial solution needs not be feasible. 

0 0

( , ) ( , )

( ) ( )
0 0

( ) ( )

0

( , ) (17)

s.t. , , (18)

0, (19)

, ( , ) , (20)

0, ( , ) , (21)

p p
ij ij ij ij

i j p i j

p p p
ij ji i

j i j i

ji ij
j i j i

p
ij ij ij

p

p
ij

ij

Minimize z X Y f y c x

x x d i p

y y i

x u y i j

x i j p

y

+ −

− +

∈ ∈ ∈

∈ ∈

∈ ∈

∈

= +

− = ∀ ∈ ∀ ∈

− = ∀ ∈

≤ ∀ ∈

≥ ∀ ∈ ∀ ∈

∑ ∑ ∑

∑ ∑

∑ ∑

∑

A P A

N N

N N

P

N P,

N,

A

A P,

[0,1], ( , ) (22)i j∈ ∀ ∈A.

 

The exploration phase stops and the algorithm proceeds to the feasibility phase 
when the best overall solution value did not improve by at least lg% over the last li 
iterations. We denote these parameters the improvement gap, lg,, and the improvement 
range, li, respectively. 

The Tabu Search meta-heuristic could be stopped based of various criteria, e.g., 
after a number of successive iterations without notable improvements. To facilitate the 
comparative analysis of the proposed TS algorithm relative to a MIP solver, we stop the 
meta-heuristic after a predefined amount of time, maxτ . 

3.2 Neighborhood structure for the exploration phase 
The add/drop idea is an intuitive scheme to define moves, neighbors being obtained by 
either adding or dropping arcs from the design vector of the incumbent. This approach 
was adopted, for example, in Powell (1986), Koskosidis, Powell, and Solomon (1992), 
and Crainic et al. (1993). The add/drop procedure has proven to be less effective in 
addressing the general CMND problem, however, path (Crainic, Gendreau, and 
Farvolden, 2000) and cycle-based procedures (Ghamlouche, Crainic, and Gendreau, 
2003) having offered superior performances. This behavior is due to the fact that in a 
multi-commodity network, there are generally several paths available for each 
commodity. Then, opening or closing a single link may prove of little consequence, since 
one may often reroute traffic and obtain an almost equivalent solution.  

We believe, however, that the design-balance constraints of the DBCMND model 
induce strong connections between design decision variables and thus increase the impact 
of arc add/drop moves. Recall that selected design arcs in a feasible solution form cycles. 
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Then, adding/dropping an arc to/from a cycle may restore feasibility with respect to the 
design-balance constraints at the two extreme nodes of the arc or, alternatively, may 
destroy it. Thus, for example, adding arc (i,j) to the network in Figure 5 would result in 
nodes i and j becoming imbalanced, while dropping any black arc would also make the 
solution infeasible. We therefore base the first-phase neighborhood on arc add/drop 
moves enhanced by ideas from Ghamlouche, Crainic, and Gendreau (2003) resulting in 
possibly several arc openings along a given path. Each move is defined by an arc being 
added or dropped and, thus, the total number of potential neighbor solutions is equal to 
the cardinality of the set of arcs, |A|  (each arc can be closed if open, and opened if 
closed).  

 

Figure 5. Illustration of Add/Drop Ideas 

Using the add/drop procedure presented in Section 3.3 yields feasibility with 
respect to commodity flows, but does not guarantee feasibility with respect to the design-
balance constraints. We therefore implement an infeasibility-monitoring scheme to guide 
the search toward feasible solutions or toward solutions close to feasibility. Let the 
penalty value, P, represent an estimate of how far the solution is from feasibility with 
respect to the design-balance constraints. The penalty value is then added to the total 
system cost, Z, to yield the solution value, V = Z + P, according to which neighboring 
solutions are compared. By using this measure, a solution with a relatively high total 
system cost that is close to feasibility may be preferred to one with a lower total system 
cost that is further from feasibility. 

The penalty value is obtained using two parameters, the total system imbalance 
and the maximum absolute imbalance. Both parameters are obtained from the node 
imbalances in the network, computed as the difference between the number of open 
outgoing and incoming arcs at each node i, 

( ) ( )

.i
ji ij

j i j i

y yψ
−∈ ∈

= −∑ ∑
+N N

 The node imbalance 

is thus negative when there are more outgoing than incoming arcs and vice versa. Figure 
6 shows two nodes, one with negative imbalance, the other with positive node imbalance.  
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The total system imbalance, Nψ , is calculated as the sum over all absolute node 

imbalances, i

i
ψ ψ=∑N , and gives an indication of the infeasibility of the system by 

representing the total number of imbalances that need to be fixed at all the nodes. The 
maximum absolute imbalance, maxψ , is the largest absolute value of all node imbalances, 

( )max max iψ ψ= , and points to the difficulty of achieving feasibility relative to the node 

with the highest imbalance. 

 

Figure 6. Illustration of Node Imbalance 

Using the analogy of scheduled transportation networks, the node imbalance at a 
given node i can be interpreted as having to add || iψ  empty vehicle movements in or out 
of that node. The cost of adding an “empty-vehicle” move, f

~ , is here approximated as 
the product of the average of the fixed costs of the arcs in the network, f , and an 
empirical scaling parameter, τ , used to control the importance of the penalty value in 
evaluating neighbor solutions. Then, in order to induce a penalty that increases “non-
linearly” with the infeasibility of the solution, we multiply the estimated cost of an 
“empty-vehicle move” (arc), the total system imbalance, and the maximum node 
imbalance. The penalty value is thus computed as max ,P fψ ψ= N  where .f fτ=  

3.3 Moves for the exploration phase 
Arc-add/drop moves change the design vector of the incumbent resulting in a new design 
vector and flow distribution. To evaluate such a move, one must evaluate the change in 
design and flow-related costs and account for the differences in the infeasibility measures 
(if any). For drop moves, one must also verify whether closing the arc would result in 
connectivity loss for some commodities and, thus, in an infeasible flow distribution. 
Solving the capacitated multi-commodity minimum cost flow (CMCF) problem for the 
new design vector would provide these results, but at a heavy computational cost if 
performed for each potential neighbor. We therefore propose fast heuristics described in 
the following two sub-sections for closing and opening an arc, respectively. 

3.3.1 Closing arcs 
Closing arc (i,j) with positive flow in the incumbent solution implies the corresponding 
flow distribution is no longer feasible because the paths carrying the commodities 
currently using arc (i,j), }0|{ >∈ p

ijij xp: PP , are disconnected. Figure 7 illustrates a network 
with flow of two commodities (light from node d to node a, and dark grey from node a to 
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node d) and arc attributes (fixed cost, variable cost, capacity, total flow). Closing arc (i,j) 
results in the dark-grey commodity no longer having a feasible flow path. 

To maintain flow feasibility, the commodities on arc (i,j) must be redirected onto 
other paths. These paths could use currently open arcs only, or could also use currently-
closed arcs that would be open following the move. It is this latter idea, inspired by the 
work of Ghamlouche, Crainic, and Gendreau (2003), which we develop.  

 

Figure 7. 2-Commodity Network 

The redirection of the commodities may be done individually, for each 
commodity, or as an aggregated entity resulting in a smaller computational effort. We 
favor the first alternative, because redirecting commodities individually allows for a more 
efficient use of the residual capacity of open arcs, ∑

∈

−=
Pp

p
ijijij xur , as the flow volumes are 

smaller. 

Several procedures may be used to redirect the flow of a given commodity, each 
requiring the definition of a particular residual graph. One could, for example, solve the 
minimum cost flow problem for the particular commodity on a graph where the flows of 
the other commodities are fixed and closed arcs are eligible to pass flow. Such an 
approach would be computationally heavy, however. Then, to limit the computational 
burden, we choose to redirect flow on a single path only, namely the “cheapest” path on a 
suitably defined residual graph. If such a graph cannot be found, the move is declared 
infeasible.  

The redirection is thus performed by constructing a pΓ -residual graph, 
),( Γ

p
Γ
p ANG = , where pp wΓ =  is the total volume of commodity P∈p . All open arcs, except 

arc (i,j), are included in the residual graph if their residual capacity, klr , is larger than pΓ , 

}1|{, ∑
∉

≥−=∧=∈=
ijp

pp
klklklkl

openΓ Γxury(k,l)
P

AA , 

while closed arcs are included in the residual graph if their capacity iju  is larger than pΓ : 
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}0{, p
klkl

closedΓ Γuy|(k,l) ≥∧=∈= AA  

The union of the two sets makes up the arc set of the residual graph, 
closedΓ

p
openΓ

p
Γ
p

,, AAA ∩= . Notice that, the residual capacity of an arc is calculated without the 
flows of the commodities in ijP . This means that the flows on any arc used by the 
commodities in ijP  are removed entirely from the network, and new paths must be found 
from their origin to their destination nodes. 

The path on which the flow is redirected is determined for each commodity by 
solving the shortest path on its residual graph with arc costs: 

⎪
⎩

⎪
⎨

⎧

∈⋅

∈⋅+
=

openΓ,p
kl

closedΓ,p
klkl

Γ
kl

lkifΓc

lkifΓcf
c

A

A

),(

),(
 

The cost of using a closed arc represents the cost of opening it, klf , plus the cost of 
routing the commodity. The cost of using an open arc is the cost of routing the 
commodity only. Solving the shortest path for a commodity ijp P∈  results in a path pπ  
with set of arcs )( pΓ

p πA . The subset of arcs in )( pΓ
p πA  that require the original arcs to be 

opened is denoted }0)(),(|),{( =∧∈Δ∈=Δ ij
pΓ

ppp yjiYjiY πππ A  and the total cost of using path 
pπ  can be expressed as ∑

∈

=Δ
)(),( pΓ

pji

Γ
ij

Γ
p cZ

πA

. 

 

Figure 8. Residual Network for Dark-Grey Commodity Closing Arc (i,j) 

Figure 8 shows the residual graph for the dark-grey commodity obtained closing 
arc (i,j) in Figure 7. Arc costs are shown on each arc. Notice, e.g., that arc (j,c) is not 
included in the residual graph because its capacity ujc=1 is less than the required 
redirection flow 2=pΓ . Similarly arc (b,a) is not included because its residual capacity is 
zero. The shortest path (and coincidentally the only feasible path) in the residual network 
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is (a,i), (i,b), (b,j), and (j,d) and requires the opening of arc (b,j) in the original network. 
Figure 9 displays the updated network. 

 

Figure 9. Updated Network Design and Flows 

We perform flow redirection sequentially for each commodity. Because the 
design changes when a closed arc is used (i.e., opened) in the path, and because the 
residual capacity of several open arcs is modified as well, the residual network needs to 
be updated after redirecting each commodity ijp P∈ . In the current implementation, 
commodities are redirected in lexicographical order. Whenever a commodity has been 
redirected or when no path may be found (the corresponding move is infeasible), it is 
removed from the set ijP . 

The procedure used to calculate the total system cost of a neighbor obtained by 
closing arc (i,j) is summarized in Figure 10. The procedure starts by initializing the total 
system cost to that of the incumbent less the fixed cost, ijf , of arc (i,j) that is to be closed 
and less the routing cost of commodities ijP  on all arcs. The total system cost is updated 
following each commodity redirection by adding the new path cost. The design vector is 
updated with the arcs to be opened, π

pYΔ , and the flow vector is updated with the flow of 
the new commodity path. Repeating the update of the flow and design vectors results in 
an approximation for the neighbor solution )~,~( nn XY  and the corresponding estimated total 
system cost nZ~ ; this is then used for the neighbor solution value comparison. 

3.3.2 Opening arcs 
Opening an arc can improve the node imbalances of an incumbent solution and thereby 
move the search towards a feasible solution. We therefore include arc-add moves in the 
exploration phase of the search. 

Opening an arc means the fixed cost associated to it is incurred and must be added 
to the total system cost. It also implies that new routing possibilities for commodities may 
exist resulting in a decrease of the flow distribution cost. It is not clear at all, however, 
that this reduction is more important than the increase in fixed cost. Solving the CMCF 
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would provide the answer to this question but, similarly to drop moves, we desire to 
avoid the burden of performing this computation for every possible add move. Thus, 
because the flow distribution of the incumbent is still feasible once a new arc is opened, 
we will simply assume that no other optimization is possible and approximate the total 
system cost for the candidate solution by adding the fixed cost of the arc to be opened to 
the total system cost of the incumbent. Ignoring the impact of the flow re-distribution 
overestimates the value of potential add moves, but we prefer to allocate the available 
computing time to the exploration of the solution space. 

1
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Figure 10. Estimating the Total System Cost Following a Close Move 

3.4 The candidate list for the exploration phase 
The basic add/drop move has  A  potential neighbor solutions. An exhaustive search of the 
neighborhood may result in the examination of uninteresting moves and the waste of 
computational time. It is more effective to consider a limited number of “good” potential 
solutions only. A list of candidate arcs, that is a subset of network arcs, 1

n ⊆C A , is 
therefore built for the incumbent solution at iteration n. 

In the implementation proposed here, we determine the candidate list by 
concatenating four candidate sub-lists, each ordered according to a particular criterion: 

fC , open arcs with the highest fixed cost; 

vC , open arcs with the highest variable cost; 
n
rC , open arcs with highest residual capacity; 
n
pC , select arcs with the lowest estimated penalty value nP~ . 

In the current implementation, the length of each sub-list is fixed empirically at lf, lv, lr, 
and lp, respectively. 
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The motivations behind the four criteria are as follows. Closing an arc with a high 
fixed or variable cost can reduce the total system cost. Arcs with high residual capacity 
do not fully use their capacity and may therefore have a high marginal fixed cost per unit 
of flow. Closing an arc with large residual capacity could thus remove the fixed cost 
associated to the arc while only a small amount of flow would have to be redirected. 
Choosing an arc, be it either open or closed, with a low expected penalty value would 
decrease the solution value and thus move the search towards a feasible solution. 

The order of the fixed cost fC  and variable cost vC  sub-lists is known a priori and 
will not change during with the progress of the algorithm. The residual-capacity and 
penalty sub-lists, n

rC and n
pC , respectively, need to be updated at each iteration. The impact 

of closing an arc may involve opening other arcs and, due the interdependency between 
opening and closing arcs and the node imbalances, it is not possible (short of solving the 
resulting problem) to determine the exact penalty value of a potential neighbor solution 
when establishing the candidate list for an incumbent solution. An estimate of the penalty 
value and, in turn, of the order of the sub-list is proposed instead. This approximation is 
based on the simplifying assumption that the design only changes by adding or dropping 
the candidate arcs, without considering the impact of the single-path-based enhancement. 
The resulting system imbalance, N

nψ~ , is then easily computed based on the incumbent 
solution’s system imbalance, N

1−nψ , by updating the imbalance changes in the candidate 
arc’s two nodes: 

1 1 1( ) ( ),  where ( )  and  ( ) .i j i i i j j j
n n n n n n n n n nψ ψ ψ ψ ψ ψ ψ ψ ψ ψ− − −= + Δ + Δ Δ = − Δ = −N N  

This operations is not sufficient, however, to estimate the maximal node 
imbalance, max~

nψ , of potential neighbor solution. To illustrate, let’s assume that node i has 
the maximal node imbalance in the incumbent solution, max

11 −− = n
i
n ψψ , and that arc ),( ji  is 

closed. Let us further assume that the absolute value of the node imbalance at node i is 
smaller in the potential neighbor solution than in the incumbent solution, i

n
i
n 1−< ψψ . 

There is no guarantee that the maximal node imbalance is equal to the node imbalance in 
node i for the potential neighbor solution, as there might be another node k with the same 
maximal imbalance in the incumbent solution, max

11 n
i
n

k
n

k
n ψψψψ === −− . The maximal 

imbalance for the potential solution would not change then, even though the imbalance at 
node i becomes smaller. To determine the real value of the maximal node imbalance, all 
the nodes in the network would need to be examined for potential neighbor solutions. To 
limit computational requirements, max~

nψ  is estimated using the following approximation: 

⎪⎩

⎪
⎨
⎧ <<

= −−−−−

otherwise),max(

andif~
max

11
max

11
max

1max
j

n
i
n

n
j

nn
i
nn

n
ψψ

ψψψψψ
ψ  

The approximation assumes, correctly, that the maximal node imbalance does not 
change if the node imbalances at nodes i and j in the incumbent solution are both smaller 
than the maximal node imbalance. When, however, the imbalance at node i or j in the 
incumbent solution is equal to the maximal node imbalance, max

1−nψ , the value may change. 
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When the maximal node imbalance increases, the new maximal node imbalance is 
calculated correctly by the approximation. On the other hand, when the node imbalance 
decreases, there is, as explained, no guarantee that there is not another node in the 
network with the maximal node imbalance. However, to reward the decrease of a (large) 
node imbalance, the estimated penalty cost is calculated as if the maximal node 
imbalance for the network has decreased.  

The estimated penalty value of a potential neighbor solution is based on the 
potential system imbalance and the estimated potential maximal imbalance 

max~~~~
nnn fP ψψ ⋅⋅= N , while the estimated total solution value for a potential neighbor solution, 

used to order the penalty sub-list n
pC , is calculated as the sum of the estimated total 

system cost (see Section 3.3) and the estimated penalty value .n n nV Z P= +  

3.5 Tabu list for the exploration phase 
The tabu list contains information on the previous lt solutions and, to avoid cycling, 
solutions in the tabu list may not be considered as potential neighbors of the incumbent. 
Since moves are based on flipping the value of a single arc-design variable, a move 
selecting the same arc within the span of the following lt iterations is defined as tabu. The 
tabu list can thus be seen as a list holding the previous lt selected arcs. 

An arc added to the tabu list at iteration n thus stays tabu for an add/drop move 
until iteration n+lt. In our definition of neighborhoods and moves, however, the value of 
a design variable may also be modified during the flow redirection operation, as 
described at Section 3.3. Applying the tabu criterion to these modifications would be 
abusive. In fact, given the differences in the arc manipulations performed (single arc 
versus several arcs in paths), the solutions yielded by the two operations are quite 
different in most cases. Furthermore, since redirection paths point toward potential 
improvements in the problem solution, the inclusion of a tabu arc in a redirection path 
may be viewed as an indication that a new and better solution will be obtained. In Tabu 
Search vocabulary, this is identified as an aspiration criterion. In our context, this means 
that an arc in the tabu list can re-enter the solution if it is chosen on a commodity 
redirection path. 

The tabu list is initialized as an empty list, {Ø}=T . For iterations tln ≤ , the arc 
selected at iteration n, 1

n
nc ∈C , is added to the tabu list nc= ∪T T . For iterations tln > , the 

first (oldest) element of the tabu list, arc ,
tn lc −  is removed and the arc of the current 

iteration 1
n

nc ∈C  is put at the end of the tabu list to get nln cc
t
∪= −\TT . 

3.6. Neighborhood structure for the feasibility phase 
The neighborhood structure of the exploration phase allows moves between infeasible 
solutions with respect to the design-balance constraints. There is therefore no guarantee 
that the exploration of the solution space in this phase will result in feasible solutions. 
The feasibility phase is designed specifically to find feasible solutions. 

Assume an infeasible incumbent solution 1−nc  is available at the termination of the 
exploration phase, i.e., a number of nodes are imbalanced. Consider once more the 
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network in Figure 5. Assuming arc ),( ji  is not included in the design, the solution is 
feasible with respect to the design-balance constraints. Adding arc ),( ji  makes the 
solution infeasible because there are imbalances at nodes i and j. More specifically, the 
imbalance at node i is -1, while that of node j is +1. It is easily seen that for any 
imbalanced solution, the sum of the absolute negative imbalances is always equal to the 
sum of the positive imbalances. The addition of an arc ),( ji  to the design will decrease 
the imbalance by 1 at origin node i and increase the imbalance by 1 at destination node j.  

The idea behind the neighborhood structure for the feasibility phase is to 
determine a pair of oppositely imbalanced nodes, to close or open a path of arcs between 
them, and thereby reduce the imbalances at the two nodes. Closing a path from a node 
with negative imbalance to a node with a positive imbalance will reduce the imbalance at 
both nodes, as will opening a path from a node with a positive imbalance to a node with 
negative imbalance. 

Figure 11 illustrates connecting two nodes i and j by closing and opening a path 
from i to j, in the top and lower networks, respectively. The imbalance at each node is 
indicated. Closing or opening a path does not impact the imbalances at the nodes of the 
path different from i and j, because both an incoming and an outgoing arc are removed or 
added to each of these nodes, respectively. Feasible solutions with respect to the design-
balance constraints can be achieved by closing the arcs on path ),( di , ),( ad , and ),( ja  as 
shown with grey arcs in the top network, or by opening the arcs on path ),( hj , ),( gh , 

),( fg , and ),( if  in the lower network. 

Iteratively matching oppositely imbalanced nodes and closing or opening paths 
between them eventually reduces the imbalances to zero at all the nodes in the network 
and generates a feasible solution. 

3.7. Moves and neighbor solution evaluation for the feasibility phase 
The template for the neighborhood moves for the feasibility phase is the add/drop 
procedure. Instead of adding or dropping a single arc, as in the exploration phase, 
however, the add/drop procedure is performed on paths. As indicated previously, to 
achieve a feasible solution with respect to the design-balance constraints, we iteratively 
match pairs of oppositely-signed imbalanced nodes and connect them with paths that 
close or open arcs. If the procedure is successful, 2/ψN  iterations are performed, where 

Nψ  is the total network imbalance, which is equivalent to reducing the imbalance at two 
nodes (one negative and one positive) at each iteration. Otherwise, the exploration search 
is restarted from the best infeasible incumbent of the feasibility phase. 

The following procedure is used to match the nodes:  

• The maximum imbalance node is identified, }{ maxψψi: i = ; 

• The set of nodes with oppositely signed imbalances are identified, 
}0{ <⋅∈ jicc ψ|ψj: NN .  
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• A candidate set, 1
2
−nC , of paths to open or close is then constructed between node i 

in cN and any of the other nodes in cN . The candidates are evaluated and the best 
path is selected as the move to implement. Section 3.8 addresses the issue of 
selecting the candidate set. 

 

Figure 11. Eliminating Node Imbalances through Path Opening and Closing 

Opening or closing a path modifies significantly the design and may have a big 
impact on the commodity flows. When a path is closed, many commodities have to be 
redirected. Opening a path may result in better route possibilities for some commodities. 
Any of these operations may start a ripple effect of flow redistribution. Such 
modifications are too deep and complex to be approximated by the procedures introduced 
previously for adding or closing individual arcs. Therefore, to get a reasonable evaluation 
of the impact of a feasibility move on the flow distribution, the CMCF problem is solved 
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for each candidate path in 1
2
−nC . The design and flow vectors obtained by adding or 

removing the path resulting in the smallest total system cost, *
cZ , are implemented 

resulting in a new incumbent solution. 

3.8. The candidate list for the feasibility phase 
Several paths could possibly be closed or open for a single pair of imbalanced nodes. 
When several imbalanced nodes exist, the number of possible paths between positive and 
negative imbalanced nodes is large. Furthermore, because the evaluation of each potential 
path is performed by solving the CMCF problem, this step may represent a costly 
procedure with respect to computational time. We thus restrict the number of examined 
candidate paths to a limited number of interesting ones. 

We propose a candidate list containing four paths. Each of the four candidate 
paths is found by solving the shortest path problem between node { }maxii : ψ ψ=  and 

nodes cj N∈ , on four modified networks with appropriately customized arc costs. For 
each of the four modified networks, the best of the calculated shortest paths is selected as 
candidate. The four modified networks and the associated arc costs are: 

Small-commodity-flow network. The network ),( 11 ANG =  is built of the set of open arcs 
}1),(|),{(: 11 =∧∈∈ ijyjiji AAA  and the arc costs are set to the their total flow values 

21 ),( A
P

∈∀=∑
∈

jixc
p

p
ijij . The candidate path identified on this network, 1π , should have little 

flow on it and closing it would require only a relatively small amount of commodity flow 
to be redirected. Thus, closing this path offers a significant chance of finding a feasible 
flow while saving the fixed costs of the arcs. 

High-fixed-cost network. The network ),( 22 ANG =  is built of the set of open arcs 
}1),(|),{(: 22 =∧∈∈ ijyjiji AAA  and the arc costs are set equal to the largest fixed cost of all 

arcs in A  minus the fixed cost of each arc 2

),(

2 ),()(max A
A

∈∀−=
∈

jiffc ijkl
lk

ij . The candidate 

path computed on this network, 2π , will consist of high-cost arcs. Closing the arcs on this 
path will remove the high fixed costs and reduce the total system cost. 

Small-variable-cost network. The network ),( 33 ANG =  is built of the set of inversed 
closed arcs }0),(|),{(: 33 =∧∈∈ ijyijji AAA . The arc costs are set to the variable costs of 
the arcs in A , 33 ),( A∈∀= jicc jiij . The candidate path from this network, 3π , will consist of 
arcs with small variable costs. Opening this path may enable some cheaper routing 
alternatives for commodities, thereby reducing the variable cost component of the total 
system cost although fixed costs are incurred by opening the arcs in the path. 

Low-fixed-cost network. The network ),( 44 ANG =  is built of the set of inversed closed 
arcs }0),(|),{(: 44 =∧∈∈ ijyijji AAA  and the arc cost are set to the fixed cost of the arcs in 
A , AA ∈∈∀= ),(,),( 44 ijjifc jiij . The candidate path computed on this network, 4π , will 
consist of arcs with low fixed cost. Opening this path will result in an increase in the total 
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system cost and is included as a “last resort” candidate to reduce the absolute imbalances 
by opening the cheapest possible path. 

Because the candidate list examines a subset of four paths only, there is no 
guarantee that it is possible to determine a new incumbent solution. If no feasible solution 
is found from any of the candidates in 1

2
−nC , the feasibility phase is terminated and the 

exploration phase continues from the infeasible incumbent solution obtained thus far in 
the feasibility phase.  

There could be other interesting candidate paths, possibly found on other graphs 
with different cost structures or alternative path-construction methods. However, as shall 
be shown in the next section, limiting the candidate list to the four proposed paths is more 
than adequate for the cases studied. 

4. Computational results 
The performance of the algorithm is tested on the network design instances used in 
Crainic, Gendreau, and Farvolden (2000) and Ghamlouche, Crainic, and Gendreau 
(2003). There are two sets of instances, identified as R-problems and C-problems, out of 
which a number of the most difficult ones have been selected for the final 
experimentation. Both sets of instances are general transshipment networks with no 
parallel arcs and one commodity per origin-destination pair. The instances differ in size 
(nodes, arcs, commodities). Furthermore the fixed cost, variable cost, and capacity vary 
in relative importance for each of the instances. The same arc unit cost is used for all 
commodities.  

 The network design instances have varying arc capacities. It must be presumed 
that in a scheduled service network design application, service capacities are somewhat 
homogenous. However, intuitively, it can be assumed that it is more difficult to solve the 
DBCMND model on networks with heterogeneous capacities due to the fixed 
cost/capacity trade-off. We thus assume the results presented here do not over-estimate 
the performance of the proposed algorithm on scheduled service design network 
applications.  

The shortest path instances within the Tabu Search algorithm are solved with the 
ML-Thresh-X2 procedure from Jørgensen and Madsen (2004), while the CMCF 
problems are solved using the Xpress-MP LP-solver. The algorithm is implemented in 
C++ using Microsoft Visual Studio NET 2003 using the Xpress-BCL builder component 
library. The performance of the Tabu Search meta-heuristic is compared to that of the 
Xpress-MP MIP-solver. All computations are performed on a laptop computer with a 
2.26 GHz Intel Pentium 4 processor. 

4.1 Initial parameter tuning 
Eight parameters appear in the Tabu Search meta-heuristic and need to be tuned. An 
initial calibration phase was therefore performed with the goal of finding a single 
parameter configuration that could be applied to all instances regardless of their network 
characteristics. 

Ten instances were selected from the C and R problem sets for the parameter 
tuning experiment. These problems represent the various possible network characteristics 
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and are listed in Table 1. For each problem indicated in the first column, the next three 
columns indicate the problem dimensions: numbers of nodes, arcs, and commodities, 
respectively. The “capacity ratio” figure is computed as the ratio of commodity demand 
over the total network capacity; A “tight” capacity ratio signifies limited capacity in 
relation to the total demand and a “loose” figure, a surplus of capacity. The “cost ratio” 
figure is the ratio of the fixed cost over the variable cost of arcs. The “Opt. solution” 
column indicates whether an optimal solution was found for the instance solving the 
problem within a 3600s time limit using the Xpress-MP MIP solver. As can be seen, the 
selected instances display various combinations of characteristics and are representative 
of the instances in the data sets.  
 

Instance name Network size Network characteristic 
 Nodes Arcs Commodities Capacity ratio Cost ratio Opt. solution

R10,F05,C2 20 120 40 Medium Medium Yes 

R12,F10,C2 20 120 200 Medium High Yes 

R13,F01,C8 20 220 40 Tight Low Yes 

R15,F10,C8 20 220 200 Tight High Yes 

C20,230,200,F.L. 20 230 200 Loose High No 

R16,F1O,C1 20 314 40 Loose High No 

R17,FO1,C1 20 318 100 Loose Low Yes 

R18,F05,C2 20 315 200 Loose Medium No 

C30,520,100,V,T 30 519 100 Tight Low No 

C100,400,30,F,L,10 100 400 30 Loose High No 

Table 1. Problem Instances for Calibration 

The parameter tuning experiment was conducted using a 2-level 28 factorial 
experimentation plan (Montgomery, 2000), where each of the eight parameters was 
evaluated on two levels, low and high. Table 2 displays for each parameter the section 
where it was first introduced and the values for the two levels. The details of the 
experiment can be found in Pedersen (2006). A single parameter configuration was 
selected based on the results of this experimentation and was used to evaluate the 
algorithm performance. The selected parameter values are shown in the last column of 
Table 2. The results of the calibration gave indications of a robust algorithm with respect 
to the parameter settings. A claim further supported by the computational results in the 
following section.  

4.2. Tabu Search versus MIP-Solver 
The algorithms were tested on instances from the R and C data sets. The 24 most difficult 
instances have been selected from the C data set and the 54 most difficult ones from the R 
data set. The TS meta-heuristic add the Xpress-MP MIP solver were applied to each of 
the 78 problem instances with a 3600 seconds CPU-time limit. 

The computational results for the selected C and R instances are shown in Tables 
3 and 4, respectively. The two tables are composed identically. The “XpressMP” column 
shows the results obtained with the Xpress-MP MIP solver within the 3600 seconds 
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computational time limit. The “Bound” and “XP/Bound” columns show the lower bound 
of the instance obtained by the MIP-solver and the relative gap between the MIP solution 
and this lower bound, respectively. The “TS” column gives the results obtained using the 
Tabu Search meta-heuristic within 3600 CPU seconds with the selected parameter 
setting. Finally the “TS/XP” and the “TS/Bound” columns show the relative gaps 
between the Tabu Search and the MIP-solver results, and the TS algorithm results and the 
lower bound, respectively. A ‘n/a’ signifies that no integer solution was obtained within 
the time limit. Note that for the nine C problems and the two R problems for which the 
MIP-solver failed to find a feasible integer solution, the TS algorithm succeeded. The TS 
algorithm ability to find feasible solutions for all 78 instances gives a first indication of 
its robustness. 

Parameter Section Values 
Tested 

Value  
Selected 

Iteration improvement range li 3.1 10, 30 10 

Improvement gap lg 3.1 0.5%, 5% 5% 

Penalty scaling factor Π  3.2 0.5, 2 0.5 

Length of the tabu list lt 3.5 5, 25 25 

Number of fixed cost candidates lf 3.4 5, 15 5 

Number of variable cost candidates lv 3.4 5, 15 15 

Number of residual capacity candidates lr 3.4 5, 15 15 

Number of penalty capacity candidates lp 3.4 5, 15 5 

Table 2. Parameters of the Tabu Search Meta-heuristic 

To analyze the results presented in Tables 3 and 4, we categorize the distribution 
of the relative gaps between the results obtained with the TS algorithm and with 
XpressMP’s MIP-solver. Table 5 shows that for 17 out of 24 C problems and for 16 out 
of 54 R problems, the TS algorithm outperformed the MIP-solver. In aggregated figures, 
the TS algorithm outperformed the MIP-solver in 33 out of 78 instances. These figures by 
themselves may not seem very convincing. However, it is important to note that the TS 
algorithm outperformed the MIP-solver for most of the larger and hence more difficult 
instances.  

4.3. Analysis of Tabu Search algorithmic behavior 
The scope of this section is to present the results of tests performed in order to better 
understand the behavior of the Tabu Search meta-heuristic. The analysis of these results 
should be of help in assessing the algorithm’s characteristics and applicability.  

The first analysis regards the performance of the algorithm in relation to the 
network characteristics. An analysis of the relative gaps between the best feasible MIP-
solver solution and the lower bound for the R-instances shows that they peak for the loose 
capacity instances (labeled FXX,C1) and become lower as the capacity becomes tighter. 
This somewhat different from the observations made for general network design 
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problems where the tendency is that the higher the fixed/variable cost ratio, the larger the 
gap and, thus, the more difficult the instances (the F10,CX labeled instances being the 
most difficult independently of the problem size). 
 

Instance Nodes Arcs Com. XpressMP Bound XP / Bound TS TS / XP TS / Bound 

C20,230,200,V,L 20 228 200 101.112 86.180 14,77% 102.919 1.76% 16.26% 

C20,230,200,F,L 20 230 200 153.534 122.311 20.34% 150.764 -1.84% 18.87% 

C20,230,200,V,T 20 229 200 105.840 92.608 12.50% 103.371 -2.39% 10.41% 

C20,230,200,F,T 20 228 200 154.026 124.358 19,26% 149.942 -2.72% 17.06% 

C20,300,200,V,L 20 294 200 81.184 73.894 8,98% 82.533 1.63% 10.47% 

C20,300,200,F,L 20 292 200 131.876 110.533 16,18% 128.757 -2.42% 14.15% 

C20,300,200,V,T 20 291 200 78.675 74.583 5,20% 78.571 -0.13% 5.08% 

C20,300,200,F,T 20 291 200 127.412 106.628 16,31% 116.338 -9.52% 8.35% 

C30,520,100,V,L 30 518 100 55.138 54.160 1,77% 55.981 1.51% 3.25% 

C30,520,100,F,L 30 516 100 n/a 92.636 n/a 104.533 n/a 11.38% 

C30,520,100,V,T 30 519 100 53.125 52.681 0,84% 54.493 2.51% 3.33% 

C30,520,100,F,T 30 517 100 106.761 97.653 8,53% 105.167 -1.52% 7.14% 

C30,520,400,V,L 30 520 400 n/a 111.054 n/a 119.735 n/a 7.25% 

C30,520,400,F,L 30 520 400 n/a 143.335 n/a 162.360 n/a 11.72% 

C30,520,400,V,T 30 516 400 n/a 114.725 n/a 120.421 n/a 4.73% 

C30,520,400,F,T 30 518 400 n/a 148.210 n/a 161.978 n/a 8.50% 

C30,700,100,V,L 30 680 100 48.849 48.400 0,92% 49.429 1.17% 2.08% 

C30,700,100,F,L 30 680 100 65.516 59.483 9,21% 63.889 -2.55% 6.90% 

C30,700,100,V,T 30 687 100 47.052 46.260 1,68% 48.202 2.39% 4.03% 

C30,700,100,F,T 30 686 100 57.447 55.123 4,05% 58.204 1.30% 5.29% 

C30,700,400,V,L 30 685 400 n/a 94.725 n/a 103.932 n/a 8.86% 

C30,700,400,F,L 30 679 400 n/a 128.950 n/a 157.043 n/a 17.89% 

C30,700,400,V,T 30 678 400 n/a 95.183 n/a 103.085 n/a 7.67% 

C30,700,400,F,T 30 683 400 n/a 128.441 n/a 141.917 n/a 9.50% 

Table 3. Computational Results for the C-Problem Instances (3600 sec.) 

The previous observation seems to indicate that tight capacity DBCMND 
problems are easier to solve than loose capacity ones. This could be explained by the 
impact of the design-balance constraints. When the global capacity of the network is 
tight, a larger number of arcs need to be open in order to provide the means to flow the 
commodities. For DBCMND problem instances, this forces a high “open” versus “closed 
arcs” ratio to satisfy the design-balance constraints. Since many arcs need to be open in 
the final solution, the LP-relaxation is tighter and hence results in better lower bounds 
than for loose-capacity problem instances. 
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Instance Nodes Arcs Com XpressMP Bound XP / Bound TS TS / XP TS / Bound 
R13,F01,C1 20 220 40 147349 147349 0.00% 147837 0.33% 0.33% 
R13,F05,C1 20 220 40 281283 269793 4.08% 281668 0.14% 4.22% 
R13,F10,C1 20 220 40 404045 365588 9.52% 404434 0.10% 9.61% 
R13,F01,C2 20 220 40 155887 155887 0.00% 159852 2.48% 2.48% 
R13,F05,C2 20 220 40 295180 292249 0.99% 311209 5.15% 6.09% 
R13,F10,C2 20 220 40 443831 411984 7.18% 470034 5.57% 12.35% 
R13,F01,C8 20 220 40 218787 218787 0.00% 225339 2.91% 2.91% 
R13,F05,C8 20 220 40 502811 480366 4.46% 512027 1.80% 6.18% 
R13,F10,C8 20 220 40 812606 764751 5.89% 875984 7.24% 12.70% 
R14,F01,C1 20 220 100 422709 422709 0.00% 431562 2.05% 2.05% 
R14,F05,C1 20 220 100 835597 717432 14.14% 811102 -3.02% 11.55% 
R14,F10,C1 20 220 100 1259890 954048 24.28% 1193950 -5.52% 20.09% 
R14,F01,C2 20 220 100 452591 452591 0.00% 465762 2.83% 2.83% 
R14,F05,C2 20 220 100 912189 848873 6.94% 942678 3.23% 9.95% 
R14,F10,C2 20 220 100 1397100 1210230 13.38% 1401880 0.34% 13.67% 
R14,F01,C8 20 220 100 704719 699947 0.68% 720882 2.24% 2.90% 
R14,F05.C8 20 220 100 1696780 1659720 2.18% 1795650 5.51% 7.57% 
R14,F10,C8 20 220 100 2874660 2681490 6.72% 2997290 4.09% 10.54% 
R15,F01,C1 20 220 200 1042790 969165 7.06% 1039440 -0.32% 6.76% 
R15,F05,C1 20 220 200 2297560 1718650 25.20% 2170310 -5.86% 20.81% 
R15,F10,C1 20 220 200 3304180 2436030 26.27% 3194270 -3.44% 23.74% 
R15,F01,C2 20 220 200 1176860 1164850 1.02% 1205790 2.40% 3.40% 
R15,F05,C2 20 220 200 2723740 2368130 13.06% 2698680 -0.93% 12.25% 
R15,F10,C2 20 220 200 4349910 3467490 20.29% 4447950 2.20% 22.04% 
R15,F01,C8 20 220 200 2402800 2392650 0.42% 2472860 2.83% 3.24% 
R15,F05,C8 20 220 200 5807050 5774260 0.56% 6067350 4.29% 4.83% 
R15,F10,C8 20 220 200 9169890 9025170 1.58% 10263600 10.66% 12.07% 
R16,F01,C1 20 314 40 140082 140082 0.00% 142692 1.83% 1.83% 
R16,F05,C1 20 314 40 259840 236810 8.86% 261775 0.74% 9.54% 
R16,F10,C1 20 314 40 364786 310584 14.86% 374819 2.68% 17.14% 
R16,F01,C2 20 314 40 142381 142381 0.00% 145266 1.99% 1.99% 
R16,F05,C2 20 314 40 275626 251711 8.68% 277307 0.61% 9.23% 
R16,F10,C2 20 314 40 396966 341107 14.07% 391386 -1.43% 12.85% 
R16,F01,C8 20 314 40 180199 178497 0.94% 187176 3.73% 4.64% 
R16,F05,C8 20 314 40 396721 376351 5.13% 423320 6.28% 11.10% 
R16,F10,C8 20 314 40 637944 571578 10.40% 649121 1.72% 11.95% 
R17,F01,C1 20 318 100 364784 362602 0.60% 374016 2.47% 3.05% 
R17,F05,C1 20 318 100 730195 583094 20.15% 718135 -1.68% 18.80% 
R17,F10,C1 20 318 100 1150630 769660 33.11% 1041450 -10.48% 26.10% 
R17,F01,C2 20 318 100 382593 382315 0.07% 393608 2.80% 2.87% 
R17,F05,C2 20 318 100 761041 695446 8.62% 786198 3.20% 11.54% 
R17,F10,C2 20 318 100 1195710 971426 18.76% 1162290 -2,88% 16.42% 
R17,F01,C8 20 318 100 531791 523185 1.62% 539817 1.49% 3.08% 
R17,F05,C8 20 318 100 1284720 1195670 6.93% 1348750 4.75% 11.35% 
R17,F10,C8 20 318 100 2047390 1927200 5.87% 2227780 8.10% 13.49% 
R18,F01,C1 20 315 200 869263 772151 11.17% 864425 -0.56% 10.67% 
R18,F05,C1 20 315 200 1869230 1302720 30.31% 1640200 -13.96% 20.58% 
R18,F10,C1 20 315 200 2390740 1793780 24.97% 2399230 0.35% 25.24% 
R18,F01,C2 20 315 200 980178 900627 8.12% 962402 -1.85% 6.42% 
R18,F05,C2 20 315 200 2146670 1703640 19.38% 1958160 -9.63% 11.62% 
R18,F10,C2 20 315 200 n/a 2478890 n/a 2986000 n/a 16.98% 
R18,F01,C8 20 315 200 1560790 1507840 3.39% 1617320 3.50% 6.77% 
R18,F05,C8 20 315 200 4230970 3817170 9.78% 4268580 0.88% 10.58% 
R18,F10,C8 20 315 200 n/a 6180620 n/a 7440780 n/a 16.94% 

Table 4. Computational Results R-Problem Instances 
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Turning to the gaps between the TS and the MIP-solver solutions relative to the 
same the R instances, one notices that the Tabu Search largely outperforms the MIP-
solver on high-fixed-cost, loose-capacity instances (F05,C1 and F10,C1) for the two 
largest instance groups (R17 and R18). Furthermore, the TS algorithm also outperforms 
the MIP-solver on the largest high fixed/variable cost ratio instances in R18. This 
indicates that the algorithm is robust with respect to instance attributes and appears 
particularly useful for addressing network instances where MIP-solvers may struggle.  

 
Data 
set 

 
n/a 

 
<[-5%] 

[-5%]-
[-2.5%] 

[-2.5%]-
[0%] 

[0%]- 
[2.5%] 

[2.5%]-
[5%] 

 
>[5%] 

C 9 1 6 1 6 1 0 
R 2 5 5 4 19 12 7 
C+R 11 6 11 5 25 13 7 

Table 5. Comparative Distribution of Relative Gaps TS versus XpressMP 

One notices that the performance of the Tabu Search algorithm on loosely 
capacitated problem instances is better than on very-tight capacitated instances. This 
behavior could be explained by the choice of redirecting flow on single paths when 
closing arcs in the Exploration phase (Section 3.3).  Indeed, when arc capacities are tight, 
residual capacities are generally small and more than one path could be required for flow 
redirection. This results in infeasible moves for a number of commodities and a less 
thorough exploration of the search space. While the performance of the method is very 
good, this behavior points to the need for further research into more sophisticated, but 
still efficient flow-redirection mechanisms. 

Considering actual scheduled service network design applications, a rather large 
number of potential services and departure times are usually considered. Fixed costs tend 
to be important in these cases reflecting the asset-related costs associated to operating 
vehicles and convoys. Variable costs, reflecting the cost of transporting commodities 
(passengers or freight) are less important. This translates into large networks with high 
fixed cost and loose capacity (considering the many possible services considered initially) 
characteristics. It therefore seems that the Tabu Search meta-heuristic we propose would 
perform well addressing DBCMND problem instances coming from transport service 
network design applications.  

Candidate selection Phase 1 

lf lp lr lv 
33.20% 21.70% 31.80% 13.29% 

Candidate selection Phase 2 

Path 1 Path 2 Path 3 Path 4 
58.03% 12.16% 15.26% 14.55% 

Table 6. Distribution of Candidate Selection for the Tabu Search  

Let’s now turn to the behavior of the algorithm relative to the candidate lists in the 
two phases of the Tabu Search. The goal is to investigate whether candidates are chosen 
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from all four sub-lists in the exploration phase and all four candidate paths are selected in 
the feasibility phase. The results may be used to further tune the algorithm and remove 
eventual redundant computations. 

Table 6 displays the distribution of the best neighbor selection from the candidate 
sub-lists in the explorations phase (Phase 1) and that of the selection of the four candidate 
paths in the feasibility phase (Phase 2). The figures are averages taken over all 78 
instances. As can be seen from the table, all four candidate sub-lists and path candidates 
contribute to the selection of the best neighbor solution. Obviously, the actual selection 
distributions vary with the individual instances. Thus, for instance, the penalty sub-list 
has a tendency of not providing any best neighbor solutions for some instances. Then, as 
it is often the case, the algorithm could be more finely tuned for the particular setting of a 
given application. All strategies contribute to the performance of the algorithm when sets 
of problem instances are considered, however, which is the case for the present 
experimentation. 

The third and last analysis we present in this section targets the interaction 
between the exploration and the feasibility phases and the resulting impact on the search 
trajectory according to the values of the total solution cost and of the solution value (total 
solution cost + penalty value) for the current solution. 

Figure 12 shows the graphs of this evolution for instance C20,200,300,F,L. As 
can be seen, the initial solution r-DBCMND and rounding heuristic yield a solution with 
high cost and penalty values. The algorithm starts off with the exploration phase and 
switches to the feasibility phase after eleven iterations because of the improvement gap of 
5% and the iteration range value of 10. Every ten iterations the feasibility phase sets in, 
which can be seen at the points where the two curves meet (penalty value=0). An 
interesting observation is that the best solution is found after 55 iterations of the 
exploration phase and 5 initiations of the feasibility phase. For the remaining time, the 
search oscillates above the best found solution. This could signify that the algorithm 
produces good feasible solution very fast for this rather easy particular instance. For more 
complex instances, the stopping criterion used terminates the search before the 
improvement in feasible solutions smoothes out, as illustrated in Figure 13. 

Figure 13 shows the evolution of the solution values for instance 
C30,520,400,F,T. The points where the curves drop indicate when the feasibility phase 
was run. The solution value improves with each feasibility-phase run. The search is 
stopped on a time limit, however, and further improvements could probably be achieved. 
The small number of iterations performed for this instance result from the requirement to 
solve several CMCF problems for the feasibility phases, which is very computationally 
demanding. Thus, for example, between 500 and 1000 CPU seconds where required per 
run of the feasibility phase depending on the level of imbalance. This raises the question 
of whether an alternative evaluation method should be applied during the feasibility 
phase to speed the evaluations or if fewer candidate paths should be investigated. Later 
studies might shed new light on this issue. In the meantime, it should be noted that, 
although the feasibility phase is computationally demanding, it also proves to be the 
driving force behind improving the feasible solution values and achieving good feasible 
solutions.  
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Figure 12. Evolution of Solution Values for Instance C20,200,300,F,L  
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Figure 13. Evolution of Solution Values for Instance C20,520,400,F,T 

4.4. Simple multi-search implementation investigation 
The outcome of the initial parameter tuning was a parameter configuration that appeared 
to produce the overall best results for the TS algorithm. Nevertheless, different network 
characteristics might require different parameter configurations to obtain the best possible 
solutions. We examine this possibility by solving each instance with the same Tabu 
Search algorithm but with several parameter configurations and selecting the best result 
among those obtained by these configurations. We will thus see whether a significant 
benefit could be obtained and gauge the robustness of the method.  

Note that the proposed methodology corresponds to the so-called independent 
multi-search strategy, much used to design parallel meta-heuristics (e.g., Crainic, 2005, 
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Crainic and Nourredine, 2005, Cung et al., 2002). According to this strategy, the 
algorithm would be deployed on different CPUs with different parameter configurations. 
The different runs would take place in parallel, the best solution among those found by 
the individual searches being selected as the overall best one. 

We selected five additional parameter configurations, shown in Table 7 together 
with the one used in the previously. As can be seen, only six of the eight parameters vary 
in the six configurations. We have chosen to fix the improvement range and improvement 
gap due to the significant importance of the feasibility phase in finding good feasible 
solutions. To allow as many feasibility-phase executions as possible, the improvement 
range and the improvement gap were kept at their low and high level, respectively. The 
remaining 6 parameters were used at various levels.  

Parameter Description Values 

lf # of Fixed cost candidates 5 5 10 5 10 5 
lp # of Penalty cost candidates 5 5 5 5 10 5 
lr # of Residual capacity candidates 15 5 5 10 10 15 
lv # of Variable cost candidates 15 5 5 10 10 15 
lt Tabu Iist Iength 25 25 20 20 10 10 
 Penalty value scale 0.5 0.5 2 2 2 0.5 

lg Improvement gap 5% 5 5 5 5 5 
li Improvement range 10 10 10 10 10 10 

 Average score 3.14 3.60 4.01 4.06 3.71 2.41 

Table 7. Parameter Settings for the Multi-search Experiment 

The computational results from the parallel implementation can be seen in Tables 
8 and 9. The three columns labeled “XpressMP”, “TS”, and “Parallel TS” display the 
computational results from the MIP-solver, the Tabu Search with the initial parameter 
configuration (previous results), and the best Tabu Search solution over the six parameter 
configurations, respectively. The figures in column “Parallel improv.” show the relative 
improvement for the multi-search TS relative to the Tabu Search run with the initial-
parameter configuration. The last two columns, “TS avg.” and “St. dev.”, show the 
average solution values obtained from the six parameter configurations and the standard 
deviation with respect to these average solution values, respectively. The computational 
results for the individual parameter settings for the individual runs can be found in 
Pedersen (2006). 

The figures in Tables 8 and 9 indicate that some improvement can indeed be 
obtained from an independent multi-search implementation, where various parameter 
configurations characterize the individual searches. Most improvements are small, 
however, 59 out 78 instances displaying improvements less than 2%. There are a few 
instances, however, for which significant improvements can be achieved, e.g., the 
10.31% improvement for instance R15,F10,C8. This confirms that a multi-search 
approach may improve the quality of the solutions obtained. It also raises the questions 
whether the proposed methodology with a single parameter setting is sufficiently robust. 
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We have thus analyzed the performance of the initial parameter configuration in 
relation to the other five. The “Average scores” row at the bottom of Table 7 displays an 
aggregated measure of “success” for each parameter configurations and provides the 
means of performance comparisons. A score from 1 to 6 (1 being the best) was given to 
each configuration for each problem instance, 1 representing the best solution value and 
6, the worst. Table 7 displays the averages over the instances. 

Instance XpreesMp TS Parallel TS Parallel 
improv. 

TS avg. St. dev. 

C20,230,200,V,L 101.112 102.919 101.345 -1.55% 103.076 1.12% 
C20,230,200,F,L 153.534 150.764 148.384 -1.60% 151.166 1.22% 
C20,230,200,V,T 105.840 103.371 103.371 0.00% 105.559 1.85% 
C20,230,200,F,T 154.026 149.942 144.766 -3.58% 147.652 1.39% 
C20,300,200,V,L 81.184 82.533 80.269 -2.82% 80.951 1.07% 
C20,300,200,F,L 131.876 128.757 126.258 -1.98% 128.297 1.20% 
C20,300,200,V,T 78.675 78.571 78.444 -0.16% 79.749 1.27% 
C20,300,200,F,T 127.412 116.338 116.338 0.00% 118.591 1.21% 
C30,520,100,V,L 55.138 55.981 55.786 -0.35% 56.256 0.57% 
C30,520,100,F,L n/a 104.533 101.612 -2.87% 103.967 1.15% 
C30,520,100,V,T 53.125 54.493 54.092 -0.74% 54.298 0.27% 
C30,520,100,F,T 106.761 105.167 104.702 -0.44% 106.661 1.41% 
C30,520,400,V,L n/a 119.735 118.071 -1.41% 119.700 0.97% 
C30,520,400,F,L n/a 162.360 160.979 -0.86% 163.332 1.05% 
C30,520,400,V,T n/a 120.421 120.421 0.00% 121.310 0.68% 
C30,520,400,F,T n/a 161.978 161.978 0.00% 164.852 1.07% 
C30,700,100,V,L 48.849 49.429 49.429 0.00% 49.723 0.45% 
C30,700,100,F,L 65.516 63.889 63.292 -0.94% 63.635 0.50% 
C30,700,100,V,T 47.052 48.202 47.487 -1.51% 47.969 0.52% 
C30,700,100,F,T 57.447 58.204 57.187 -1.78% 58.343 1.20% 
C30,700,400,V,L n/a 103.932 103.932 0.00% 105.835 1.76% 
C30,700,400,F,L n/a 157.043 148.114 -6.03% 161.398 7.26% 
C30,700,400,V,T n/a 103.085 103.085 0.00% 103.797 0.69% 
C30,700,400,F,T n/a 141.917 138.609 -2.39% 141.743 1.17% 

Table 8. Sequential versus Multi-search Performance Comparisons, C problems 

A perfectly equal-quality performance would have yielded an average score of 3.5 
for each configuration. While such a perfect match cannot be expected, the various 
configurations perform rather similarly. None stands out as particularly bad, the worst 
score being 4.06 for configuration 4. The configuration 6, with a score of 2.41, proves to 
be somewhat better than the first five. It is interesting to note that the only difference 
between this configuration and the initially selected one is a shorter tabu-list length. This 
is an indication that the initial set of problem instances used for calibration was probably 
too small and we misjudged somewhat the appropriate level for this parameter. 

The scores indicate, nevertheless, that the Tabu Search meta-heuristic is robust 
with respect to the parameter selection. High-quality results are obtained over a range of 
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parameter values for quite a diverse set of problem instances. This claim is further 
supported by investigating the standard deviations on the values of the best solutions 
obtained with each of the six parameter configurations. These results are displayed in the 
last columns of Tables 8 and 9. Only 10 out of the 74 instances display a standard 
deviation larger than 2%, the highest being 7,26% for instance C30,700,400,F,L. The 
standard deviation values are thus quite small, particularly considering the very different 
characteristics of the 78 problem instances, supporting the claim of a robust algorithm 
with respect to parameter settings and problem-instance characteristics.  

5. Conclusions and Perspectives 
This paper focused on a generic model for transportation service network design with 
asset management considerations. Traditionally, in many instances, fleet management 
issues were not directly included into tactical planning and processes aimed at designing 
the transportation plan. This situation evolves rapidly and addressing asset management 
issues jointly with the design of the service network and schedule increasingly appears as 
the most appropriate approach. This trend is readily apparent in rail transportation, 
intermodal services, in particular, but may also be observed in some motor-carrier 
operations.  

In this paper, we model the asset positioning and utilization through constraints on 
asset availability at terminals. We denote these relations as “design-balance constraints” 
and focus on the design-balanced capacitated multi-commodity network design model 
(DBCMND), a generalization of the capacitated multi-commodity network design model 
(CMND) generally used in service network design applications. We analyze the problem 
and propose generic arc and cycle-based formulations for the DBCMND. 

The paper also proposes a Tabu Search meta-heuristic framework to address the 
arc-based formulation of the DBCMND. The algorithm is based on two local-search 
phases. The first explores the design-defined solution space though a hybrid of an 
add/drop procedure and single path-based neighborhoods. Infeasible solutions with 
respect to the design-balance constraints are admissible in this phase. The second phase 
then aims to identify good feasible solutions. The Tabu Search meta-heuristic was applied 
on a wide range of network design problem instances from the literature and its behavior 
was analyzed through comparisons to the exact solution method offered by the Xpress-
MP MIP-solver, as well as to the solutions of an independent multi-search procedure 

Very good results were obtained in terms of computational efficiency and solution 
quality. The proposed method performed well compared to the exact MIP-solver over the 
entire set of test problem instances, with even better performance for the largest problem 
instances. The multi-search experiment showed that some improvement may be further 
achieved. It also indicated the proposed method is robust with respect to parameter 
setting and problem-instance characteristics. 
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Instance XpressMP TS Parallel TS Parallel imp. TS avg. St. dev. 
R13,F01,C1 147349 147837 147.349 -0.33% 147.768 0.14% 
R13,F05,C1 281283 281668 281.668 0.00% 284.719 0.92% 
R13,F10,C1 404045 404434 400.656 -0.94% 405.197 0.70% 
R13,F01,C2 155887 159852 156 585 -2.09% 158.638 0.87% 
R13,F05,C2 295180 311209 307.180 -1.31% 310.148 0.53% 
R13,F10,C2 443831 470034 437.396 -7.46% 454.649 2.83% 
R13,F01,C8 218787 225339 223.541 -0.80% 225.043 0.52% 
R13,F05,C8 502811 512027 510.887 -0.22% 520.720 1.49% 
R13,F10,C8 812606 875984 839.174 -4.39% 870.713 2.43% 
R14,F01,C1 422709 431562 427.872 -0.86% 430.679 0.47% 
R14,F05,C1 835597 811102 811.102 0.00% 829.272 1.38% 
R14,F10,C1 1259890 1193950 1.157.500 -3.15% 1.179.155 1.79% 
R14,F01,C2 452591 465762 458.240 -1.64% 463.558 0.76% 
R14,F05,C2 912189 942678 917.832 -2.71% 934.399 1.45% 
R14,F10,C2 1397100 1401880 1.356.910 -3.31% 1.384.428 1.28% 
R14,F01,C8 704719 720882 720.494 -0.05% 726.171 0.74% 
R14,F05,C8 1696780 1795650 1.795.650 0.00% 1.838 053 1.80% 
R14,F10,C8 2874660 2997290 2.997.290 0.00% 3.075.418 2.04% 
R15,F01,C1 1042790 1039440 1.032.640 -0.66% 1.045.135 0.89% 
R15,F05,C1 2297560 2170310 2.082.990 -4.19% 2.127.448 1.44% 
R15,F10,C1 3304180 3194270 3.116.770 -2.49% 3.180.830 1.27% 
R15,F01,C2 1176860 1205790 1.191.440 -1.20% 1.202.992 0.60% 
R15,F05,C2 2723740 2698680 2.698.680 0.00% 2.725.057 1.02% 
R15,F10,C2 4349910 4447950 4.310.340 -3.19% 4.397.752 1.26% 
R15,F01,C8 2402800 2472860 2.465.650 -0.29% 2 473.680 0.44% 
R15,F05,C8 5807050 6067350 5.969.370 -1.64% 6.044.925 1.06% 
R15,F10,C8 9169890 10263600 9.304.650 -10.31% 9.840.033 4.61% 
R16,F01,C1 140082 142692 140.149 -1.81% 141.531 0.70% 
R16,F05,C1 259840 261775 261.775 0.00% 263.875 0.98% 
R16,F10,C1 364786 374819 360.884 -3.86% 366.544 1.59% 
R16,F01,C2 142381 145266 143.921 -0.93% 145.350 0.92% 
R16,F05,C2 275626 277307 273.024 -1.57% 276.821 1.20% 
R16,F10,C2 396966 391386 387.601 -0.98% 391.869 0.86% 
R16,F01,C8 180199 187176 185.397 -0.96% 189.834 1.83% 
R16,F05,C8 396721 423320 419.945 -0.80% 429.169 1.73% 
R16,F10,C8 637944 649121 647.212 -0.29% 662.796 1.99% 
R17,F01,C1 364784 374016 365.913 -2.21% 368.587 0.81% 
R17,F05,C1 730195 718135 702.957 -2.16% 717.800 1.40% 
R17,F10,C1 1150630 1041450 1.026.040 -1.50% 1.036.430 0.73% 
R17,F01,C2 382593 393608 389.249 -1.12% 392.201 0.42% 
R17.F05,C2 761041 786198 786.198 0.00% 800.117 1.23% 
R17,F10,C2 1195710 1162290 1.159.440 -0.25% 1.172.777 1.08% 
R17,F01,C8 531791 539817 539.817 0.00% 549.197 1.14% 
R17,F05,C8 1284720 1348750 1.323.330 -1.92% 1.345.490 1.00% 
R17,F10,C8 2047390 2227780 2.207.590 -0.91% 2.246.002 2.03% 
R18,F01,C1 869263 864425 864.425 0.00% 879.355 0.88% 
R18,F05,C1 1869230 1640200 1.627.700 -0.77% 1.668.745 1.73% 
R18,F10,C1 2390740 2399230 2.366.280 -1.39% 2.425.505 2.95% 
R18,F01,C2 980178 962402 962.402 0.00% 971.682 0.78% 
R18,F05,C2 2146670 1958160 1.958.160 0.00% 1.987,065 1.59% 
R18,F10,C2 n/a 2986000 2.986.000 0.00% 3.012.392 0.90% 
R18,F01,C8 1560790 1617320 1.613.790 -0.22% 1.619.775 0.35% 
R18,F05,C8 4230970 4268580 4.268.580 0.00% 4.421.490 2.75% 
R18,F10,C8 n/a 7440780 7.194.120 -3.43% 7.610.975 4.53% 

Table 9. Sequential versus Multi-search Performance Comparisons, R problems 
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A number of interesting research directions may be identified. Considering the 
proposed Tabu Search framework, a first area where to improve algorithm performance is 
using a dynamic adjustment of the parameter configuration. This should provide the 
means to guide the algorithm according to the characteristics of the particular instance 
and, hopefully, improve the performance. A second direction concerns the enhancement 
of the method through additional phases targeting particular problem or search 
characteristics. Thus, for example, we observed that the feasibility phase of the current 
implementation seems to struggle on network instances with a sparse arc structure. This 
is mainly due to the fact that when the network is sparse, paths to open are hard to find, 
while paths to close often result in infeasible minimum cost network flow sub-problems. 
A scarcity-detection mechanism and a phase directed toward such instances could help. 
This potential 3rd phase could use partial instead of full paths in defining neighborhoods 
and, thus, diversify the imbalance structure by shifting the imbalances between nodes. 
This brings us to the possibility of introducing additional, so-called long-term memory 
mechanisms and associated intensification and diversification schemes. The former 
would make sure that the solution space is fully explored around good solutions, while 
the latter would provide the means to direct the search toward previously unexplored 
regions. Different directions of research concern alternative formulations, e.g., the cycle-
based model, and solution approaches, including exact algorithms. We have initiated 
work on some of these research directions and plan to report results in the near future. 
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