
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Models and Temporal Logics for Timed Component
Connectors

F. Arbab, C. Baier, F.S. de Boer, J.J.M.M. Rutten

REPORT SEN-R0411 JULY 2004

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Models and Temporal Logics for Timed Component
Connectors

ABSTRACT
Component-based software engineering advocates construction of software systems through
composition of coordinated autonomous components. Significant benefits of this approach
include software reuse, simpler and faster construction, enhanced reliability, and dramatic
reductions in the complexity of construction of provably correct critical systems, many of which
involve real-time concerns. Effective, flexible component composition by itself still poses a
challenge today and yet the special nature of real-time constraints makes component-based
construction of real-time systems even more demanding. The coordination language Reo
supports compositional system construction through connectors that exogenously coordinate
the interactions among the constituent components which unawarely comprise a complex
system, into a coherent collaboration. The simple, yet surprisingly rich, calculus of channel
composition that underlies Reo offers a flexible framework for compositional construction of
coordinating component connectors with real-time properties. In this paper, we present an
operational semantics for the channel-based component connectors of Reo in terms of Timed
Constraint Automata and introduce a temporal-logic for specification and verification of their
real-time properties.

1998 ACM Computing Classification System: C.2.4, D.1.3, D.2.4, D.2.6, D.2.11, D.2.13, D.3.2, D.3.3, F.1.2, F.3.1, F.3.2,
F.3.3

Keywords and Phrases: Coordination, Real-time, Composition, Reo, Constraint Automata, Timed Automata, Linear
Temporal Logic, Timed Data Streams

Models and Temporal Logics for Timed Component Connectors

Farhad Arbab1,3, Christel Baier2, Frank de Boer1,3, Jan Rutten1,4

1Centrum voor Wiskunde en Informatica, Department of Software Engineering, Amsterdam, The Netherlands
2Universität Bonn, Institut für Informatik I, Germany

3 Universiteit Leiden, The Netherlands
4 Vrije Universiteit Amsterdam, The Netherlands

Abstract

Component-based software engineering advocates construction of software systems through compo-
sition of coordinated autonomous components. Significant benefits of this approach include software
reuse, simpler and faster construction, enhanced reliability, and dramatic reductions in the complexity
of construction of provably correct critical systems, many of which involve real-time concerns. Effec-
tive, flexible component composition by itself still poses a challenge today and yet the special nature of
real-time constraints makes component-based construction of real-time systems even more demanding.

The coordination language Reo supports compositional system construction through connectors
that exogenously coordinate the interactions among the constituent components which unawarely com-
prise a complex system, into a coherent collaboration. The simple, yet surprisingly rich, calculus of
channel composition that underlies Reo offers a flexible framework for compositional construction of
coordinating component connectors with real-time properties. In this paper, we present an operational
semantics for the channel-based component connectors of Reo in terms of Timed Constraint Automata
and introduce a temporal-logic for specification and verification of their real-time properties.

Keywords and phrases: Coordination, Real-time, Composition, Reo, Constraint Automata, Timed
Automata, Linear Temporal Logic, Timed Data Streams

1998 ACM Computing Classification: C.2.4, D.1.3, D.2.4, D.2.6, D.2.11, D.2.13, D.3.2, D.3.3, F.1.2,
F.3.1, F.3.2, F.3.3

1 Introduction

The task of designing a complex concurrent system with several components requires a coordination model
that formalizes their mutual interactions. The internals of black-box components cannot be modified to
implement such coordinated interactions. Coordination, therefore, becomes the responsibility of the “glue-
code” that inter-connects the constituent components of a composite system, and of its underlying run-
time middle-ware. Reo [5] offers a powerful glue language for implementation of coordinating component
connectors based on a calculus of mobile channels.

In this paper, we consider the real-time aspects of Reo when the behavior specification of channels and
component interfaces can involve timing constraints. Because connectors, not components, are the primary
concern in Reo, our primary interest here is with channels whose behavior involves temporal constraints;
and with their composition. For instance, a deadline t for the availability of some data can be formalized
as the behavior of a FIFO channel that associates an expiration date, t, with every data item that enters its
buffer: the channel loses a data item in its buffer t units of time after it enters through its source (unless,
of course, it is dispensed through its sink in the meanwhile). Another example is a timer channel that gets
activated by a data item through its source, after which it returns a timeout signal through its sink, after
a specified delay of exactly t units of time.

As the operational model for Reo connector circuits, we use timed constraint automata (TCA) which
extend their untimed version [7] with the concepts borrowed from classical timed automata with location
invariants [1, 18]. TCA have two kinds of transitions: (1) internal changes of the locations caused by some

1

time constraints and (2) transitions that represent the synchronized execution of I/O-operations at some
of the ports. Using ideas similar to [7], the construction of a timed constraint automaton from a given
timed Reo circuit can be performed in a compositional manner, using composition operators on TCA that
model Reo’s operators join and hide to build complex connectors out of instances of basic channel types.

One conceptual difference between TCA and classical timed automata is the treatment of immediate
actions or urgent synchronous channels, as they are used e.g., in the tools [20, 17, 32]. The assumption
that synchronous I/O-operations must be executed as soon as they become enabled makes no sense in our
framework. For instance, assume that we have a FIFO channel carrying data from node A to node B
and a synchronous channel from B to another node C. As soon as A places a value in the FIFO buffer it
becomes available for consumption through node B, and thus, the synchronous communication between B
and C become enabled. On the other hand, the input and output of the same data item must not occur
simultaneously through a FIFO channel, by its definition. Thus, we need a delay for the synchronization
between B and C. Moreover, Reo allows to explicitly specify deadlines of “shortly delayed” activities
or other time constraints (e.g., lower bounds for the delay) using an appropriate combination of timed
channels.

The semantics of the TCA and timed Reo circuits relies on timed data streams as in [8, 7], comprising a
formalization of the possible data-flow at each node over time. To specify a desired coordination mechanism,
we use a variant of linear temporal logic (LTL) [25, 22] with real-time constraints, which we call timed
scheduled-data-stream logic (TSDSL) and has a semantics based on timed data streams. TSDSL essentially
relies on a combination of the time-abstract temporal modalities in LTL and timed regular expressions [9].
We show through a series of examples how TSDSL can serve as a specification formalism for (timed) Reo
circuits, sketch the ideas of a model checking algorithm, and explain the relation of TSDSL with refinement
relations.

Related models. There are several other related real-time models that also focus on aspects of coor-
dination. Timed interface automata (TIA) [11] or real-time variants of I/O-automata, e.g., [23, 14, 19],
are related to TCA in the same way as their untimed versions. I/O-automata rely on the assumption of
input-enabledness which is not required (and would not make sense) in constraint automata.

The purpose of TIA is orthogonal to our approach involving timed Reo connectors and TCA. (There
are some conceptional differences, e.g., TIA use action labels rather than port names, but these are
not important as the formal definition of TIA and TCA can be adapted to eliminate these differences.)
The major goal of TIA is to provide a formalism to specify and to check the compatibility of real-time
components by means of their interfaces. Our focus is on compositional reasoning about (design and
analysis of) channel-based coordination mechanisms, based on their data-flow. Thus, our framework allows
to design and analyze a coordination context in which certain components are used and to construct their
interfaces, while the approach of interface automata allows to check a-posteriori whether a design makes
the components work together in the desired way.

Although compositionality in timed Reo and TCA is in the spirit of real-time process algebras, e.g., [26, 31,
21], Reo’s philosophy of composing connectors out of a variety of basic channel types via join and hiding
and supporting any kind of synchronous or asynchronous communication differs from classical process
algebra approaches which provide operators for modeling choice, parallelism, and recursion (all of which
are implicit in Reo).

Organization of the paper. Timed constraint automata are introduced in Section 2. In Section 3 we
explain the main features of Reo circuits and how timed constraint automata can serve as their operational
model. Timed scheduled-data-stream logic (TSDSL) is introduced in Section 4. Section 5 concludes the
paper.

The submitted version has an appendix which contains some technical details and pictures for larger TCA.
To meet the length restriction, the appendix will be removed in the final version.

2

2 Timed constraint automata

Edges in timed constraint automata are labeled with tuples (N, dc, cc, C) where N is a set of ports/nodes
that synchronously perform certain I/O-operations, dc is a data constraint that specifies the concrete
values that are transferred through those I/O-operations, cc is a clock constraint, and C is a set of clocks
that are reset to 0. If N = ∅ then the edge represents an internal move (in which case dc = true).
Before presenting the formal definition, we give a simple example. Fig. 1 shows on its left a Reo circuit
with a 1-bounded FIFO-channel with expiration connecting nodes A and B and a synchronous channel
connecting nodes B and C. A FIFO channel “with expiration” is a lossy channel that loses any data
item that remains in its buffer longer than its “expiration date” which in this case is 3 time units after it
enters the buffer of the channel. Thus, in this example, there is an implicit deadline for the data transfer
operation at node B. The picture on the right shows the TCA corresponding to this Reo circuit. In the

{A}, x := 0, d := dA

{B,C}, dB = dC = d

A B

x≤ 3

x = 3≤ 3 s̄(d)
s

C

Figure 1: Reo circuit and timed constraint automaton

TCA on the right-hand-side in Fig. 1, location s stands for the initial configuration where the buffer is
empty, while location s̄(d) represents the configuration where the buffer is filled with data element d. If
nodes B and C are ready for I/O-operations within 3 time units, in location s̄(d) then we assume that B
takes an element d from the buffer and immediately forwards it to C. This corresponds to the transition
labeled with the set {B, C} and the data constraint dB = dC = d. Although there is no explicit lower
time bound for the delay of the {B, C}-transition, our semantics forces some time elapse in location s̄(d)
before the {B, C}-transition can fire, even if B and C are waiting for an input value. This is different in
ordinary timed automata, but is needed here because a FIFO channel (by its definition) does not allow for
the synchronous transfer of data from its source to its sink end. If B cannot transfer the element out of
the FIFO buffer (because no I/O operation is available on C to synchronize with B), the message is lost
3 time units after entering s̄(d). This is modeled by the invariance condition x ≤ 3 at location s̄(d) which
forces the automaton to leave s̄(d) if the current value of x is 3.

Notation 2.1 (Data assignments, data constraints) In the sequel, we assume finite and non-empty
sets Data consisting of data items that can be transferred through channels, and N consisting of node
names. A data assignment denotes a function δ : N → Data where ∅ �= N ⊆ N . We use notations like
δ =

[

A �→ δA : A ∈ N
]

to describe the data-assignment that assigns the value δA ∈ Data to every node
A ∈ N . Data constraints can be viewed as a symbolic representation of sets of data assignments. Formally,
data constraints (denoted dc) are propositional formulas built from the atoms “dA ∈ P” and “dA = dB”
where A, B ∈ N and P ⊆ Data (plus the standard boolean connectors ∧, ∨, ¬, etc.). For N ⊆ N , DA(N)
denotes the set of all data assignments for the node-set N and DC (N) the set of data constraints that at
most refer to the terms dA for A ∈ N . We write DA for

⋃

∅�=N⊆N DA(N) and DC for DC (N). �

Notation 2.2 (Clock assignments, clock constraints) Let C be a finite set of clocks. A clock assign-
ment means a function ν : C → IR≥0. If t ∈ IR≥0 then ν + t denotes the clock assignment that assigns
the value ν(x) + t to every clock x ∈ C. If C ⊆ C then ν[C := 0] stands for the clock assignment that
returns the value 0 for every clock x ∈ C and the value ν(x) for every clock x ∈ C \C. A clock constraint
(denoted cc) for C is a conjunction of atoms of the form “x ⊲⊳ n” where x ∈ C, ⊲⊳ ∈ {<,≤, >,≥, =} and
n ∈ IN . CA(C) (or CA) denotes the set of all clock assignments and CC (C) (or CC) the set of all clock
constraints. �

3

The symbol |= stands for the obvious satisfaction relation for data (or clock) constraints which results from
interpreting data (clock) constraints over data (clock) assignments. Satisfiability, validity, logical equiva-
lence ≡ and logical implication ≤ of data (clock) constraints are defined as usual. For data constraints,
we often use simplified notations such as “dA = d” rather than “dA ∈ {d}”.

Definition 2.3 (Timed constraint automata) A TCA is a tuple T = (S, C,N , E , S0, ic) where S is a
finite set of control states (also called locations), C a finite set of clocks, N a finite set of node names, and
S0 ⊆ S a set of initial locations. ic : S → CC is a function that assigns to any location s an invariance
condition ic(s). The edge relation E is a subset of S × 2N ×DC ×CC × 2C ×S such that dc ∈ DC (N) for
any edge e = (s, N, dc, cc, C, s̄) ∈ E. Moreover, we assume that all data and clock guards on the edges and
the invariance conditions are satisfiable. (For edges with the empty node-set, we require a data constraint
dc with dc ≡ true.) �

The automaton in Fig. 1 is a simplified picture for a TCA where d is used as a data parameter. The
presented TCA has the location space S = {s} ∪ {s̄(d) : d ∈ Data}. The assignment “d := dA” in the
parametric version stands for the data constraint dA = d in the TCA. An interface specification of a timed
sequencer that coordinates the data-flow of two components via synchronous channels is shown in Fig. 2.
We assume the deadline t = 3 for the write-operations, that is, the sequencer in location s waits up to t
time units to synchronize with component 1. If it fails then the sequencer moves via the edge labeled with
the empty set to location s̄ and tries to synchronize with component 2, and so on.

{A}, x < 3, x := 0

{B}, x < 3, x := 0

A B
x≤ 3

x = 3
s̄

Comp 1 Comp 2

Sequencer

x≤ 3

s

x = 3

Figure 2: Timed sequencer

Example 2.4 (Alternating Bit Protocol) We consider a variant of the ABP where two components
(the sender and the receiver) are connected via lossy synchronous channels. We follow here essentially
the description in [24] but do not assume unreliable channels that may lose data in an unpredictable way.
Instead, we assume lossy synchronous channels (as in Reo, see Section 3) where a data item written to the
source end of such a channel is lost if the sink end of the channel cannot perform a matching I/O-operation
to consume it.

Sender ReceiverI O

A

B

C

D

Via its input port I, the sender is fed with some input which it delivers to the receiver via the channel
connecting ports A and C. The receiver acknowledges the receipt of the message via the channel between
D and B and outputs the message through its port O. The sender attaches a bit to the messages and
expects the corresponding control bit as acknowledgment. If the expected control bit b arrives through
port B then the sender switches its mode and sends the next message together with the bit ¬b. If a certain
deadline (tS in our example) expires then the sender resends the message with the same control bit b with
a delay of at most ρS . The same upper bound ρS is assumed for the time interval between the receipt of a
message d on input port I and the sending a message from output port A. Acknowledgments that contain
a non-expected control bit are ignored as they belong to the previous message.

4

in(0)
try(d,0)

wait(d,0)
x = tS

x := 0

{A},dA = (d,0){I},d := dI

wait(d,1) try(d,1)
in(1)

x = tS

x := 0

{I},d := dI

{A},dA = (d,1)

{B},dB = 0

{B},dB = 1

{B},dB = 0

{B},dB = 1

wait(0) out(d,0) ack(0)

y = tR

ack(1) out(d,1) wait(1)

{O},dO = d

y := 0

{C},d := msg(dC)

{D},dD = 1

{C}

dC ∈ Msg×{1}

dC ∈ Msg×{1}

{C},d := msg(dC)

dC ∈ Msg×{0} {O},dO = d

y := 0

{D},dD = 1

y = tR

{C},dC ∈ Msg×{0}

x := 0

x≤ tS

x≤ tS

x := 0

y := 0 y < ρRy≤ tR

y := 0

y≤ ρR

y < ρR y≤ tR
y≤ ρR

x≤ ρS

x≤ ρS

x := 0

x := 0

y := 0

y := 0

Figure 3: TCA for the sender and the receiver of the ABP

The behavior of the receiver is complementary to that of the sender. In mode b, the receiver waits for the
arrival of an input (d, b) through its port C and acknowledges its receipt with the bit b, while messages of the
form (d,¬b) are ignored. The receiver resends the acknowledgment if the next message with the expected
control bit b does not arrive within tR time units. (In particular, the receiver resends the control bit of
the last message infinitely many times if data-flow at port I eventually terminates.) Moreover, we assume
the upper time bound ρR for the success of the write-operation on output port O as well as the receiver’s
acknowledgment by sending the control bit. Fig. 3 shows the interface specifications for the sender and the
receiver by (data parametrized) TCA. We assume here the data domain Data = {0, 1}∪Msg∪Msg×{0, 1}
and write msg to denote the projection of the pairs (d, b) to the message-component (i.e., msg(d, b) = d).
Fig. 9 shows the “combined” TCA TABP for the ABP.1 �

Definition 2.5 (State-transition graph of a TCA) Given a TCA T as above, T induces a state-
transition graph AT = (Q,−→, Q0) as follows. The states are pairs q = 〈s, ν〉 consisting of a loca-
tion s and a clock assignment ν. Thus, the state space is Q = S × CC. The set of initial states is
Q0 = {〈s0,0〉 : s0 ∈ S0,0 |= ic(s0)} where 0 stands for the clock assignment that returns the value 0 for
all clocks. The transition relation −→ ⊆Q× 2N ×DA× IR≥0 ×Q is defined by the following rules:

(s, N, dc, cc, C, s̄) ∈ E ,
t > 0 s.t. ν + t̄ |= ic(s) for all 0 < t̄ ≤ t
(ν + t)[C := 0] |= ic(s̄) and ν + t |= cc
δ ∈ DA(N) s.t. δ |= dc

〈s, ν〉
N,δ,t
−−−→ 〈s̄, (ν + t)[C := 0]〉

If N = ∅, we use in addition the same rule with t = 0:

(s, ∅, true, cc, C, s̄) ∈ E , ν[C := 0] |= ic(s̄), ν |= cc

〈s, ν〉
∅,∅,t
−−−→ 〈s̄, ν[C := 0]〉

A state q = 〈s, ν〉 is called terminal iff it has no outgoing transitions, but allows the possibility for unbounded
passage of time, i.e., ν + t |= ic(s) for all t>0. A time-lock refers to a state q = 〈s, ν〉 that has no outgoing
transitions and there exists a t > 0 with ν + t �|= ic(s). T is called time-lock free iff AT does not contain a
reachable time-lock. �

Edges with non-empty node-sets can fire only after some positive delay. This reflects the general idea of
constraint automata where all observable activities that occur at the same time instant (i.e., atomically)
are collapsed into a single transition.

1Essentially, this TCA is obtained by the join operator (cf. Def. 3.4), while taking care of the special semantics of lossy
synchronous channels, which forces its sink and the source ends to synchronize if both can perform I/O-operations.

5

Notation 2.6 (Runs, time divergence) Let T be a TCA as before and q = 〈s, ν〉 a state in AT . A
q-run (or briefly run) in T denotes any (finite or infinite) sequence of successive transitions in AT starting
in state q. Formally, a q-run has the form

q = q0
N0,δ0,t0−−−−−→ q1

N1,δ1,t1−−−−−→ . . .

where q0 = q. q is called initial if q0 ∈ Q0. q is called time divergent if q is infinite and t0 + t1 + . . . = ω.
Maximality of a run means that it is either time divergent or finite and ends in a terminal state. �

Intuitively, Ni is the set of nodes in state qi that are scheduled to synchronously perform the next I/O-
operations, while δi represents the concrete values that are exchanged through those operations at the
nodes A ∈ Ni. The value ti stands for the delay.

Notation 2.7 (TSD stream) A timed scheduled data stream for a node-set N denotes any (finite or
infinite) sequence Θ = (N0, δ0, t0), (N1, δ1,t1), . . . ∈ (2N×DA×IR≥0)

∞ such that δi ∈ DA(Ni), 0<t0<t1<. . .
and limi→∞ ti = ω if q is infinite. The empty TDS stream is denoted by the symbol ε. The length
|Θ| ∈ IN ∪ {ω} is defined as the number of triples (N, δ, t) in Θ. The execution time τ(Θ) is ω if Θ is
infinite, tk if |Θ| = k + 1, and 0 if Θ = ε. We write TSDS (N) or simply TSDS to denote the set of all
TSDS for node-set N . �

Notation 2.8 (TSDS-language of a TCA) If q is a run in a TCA T as above then the induced TSD
stream Θ(q) = (Ni0 , δi0 , t̄i0), (Ni1 , δi1 , t̄i1), . . . is obtained from q by (1) removing all transitions in q with
the empty node set, (2) building the projection on the transition labels, and (3) replacing the sojourn times
ti by the absolute time points t̄i = t0 + . . . + ti. The generated language of a state q in AT is L(T , q) =
{Θ(q) : q is a maximal q-run}. The language L(T) consists of all TSD streams Θ(q) where q is a maximal
and initial run. �

For instance, the language of the timed sequencer in Fig. 2 consists of all TSD streams Θ = ((Ni, δi, t̄i))i

where Ni ∈
{

{A}, {B}} and t̄i+1 − t̄i > 3 if Ni+1 = Ni.

3 Timed Reo circuits

Reo [5] is a channel-based exogenous coordination model wherein complex coordinators, called connectors,
are built from instances of basic channel types using certain composition operators. In this paper, as
in [8, 7], we do not consider the dynamic behavior of components in creating and composing connectors.
We concentrate here on connectors that have graphical representations as Reo circuits which express the
mechanisms that coordinate the data-flow through the channels connecting the input/output ports of some
components.

Reo’s notion of channel is far more general than its common interpretation and encompasses any primitive
communication medium with exactly two ends. Channel ends are classified into source ends through which
data enter and sink ends through which data leave their respective channels. A write operation can be
performed on the source end of a channel, providing data to enter into the channel, while a take operation
can be performed on the sink end of a channel to obtain data out of the channel. We explain the workings
of Reo with a few examples of its basic channel types and formalize their behavior by TCA.

FIFO channels. The simplest form of an asynchronous channel is a FIFO channel with one buffer cell,
which we denote as FIFO1. A FIFO1 channel is graphically represented by a small box in the middle of
an arrow. The buffer is assumed to be initially empty if no data item is shown in the box in its graphical
representation (as in the example below). The graphical representation of a FIFO1 channel whose buffer
initially contains a data element d is the same except that it also shows a d inside the box representing its
buffer.

6

≤ t

B BAA

On the left in this figure, we have a normal FIFO1 channel which keeps a data item in its buffer until it
is taken out through its sink. On the right we show a lossy variant, called expiring FIFO1, where a data
item is lost if it is not taken out of the buffer through the sink end of the channel within t time units after
it enters through its source end.

{A}

s
x = t

d := dA

x≤ t

s̄(d)
s

d := dA

{A}, x := 0

{B}, dB = d

¯̄s(d)

{B}, x < t, dB = d

d := dA

{A}, x = t, x := 0

Figure 4: TCA for a normal and an expiring FIFO1 channels

Synchronous channels. A synchronous channel, depicted as a solid arrow, has one source- and one
sink-end. Write and take operations must occur simultaneously on the two ends of this channel, which is
formalized by a TCA with a single location:

A B
s {A,B}

dA = dB

A P -producer is a synchronous channel that, like a normal synchronous channel, allows write and take
operations to succeed atomically on its source and sink ends, respectively, except that the value dispensed
through this channel’s sink end is always a data element d ∈ P , regardless of the value it consumes through
its source end.

A B
s {A,B}

dB ∈ PP

A lossy synchronous channel (depicted as a dashed arrow) is similar to a normal synchronous channel,
except that it always accepts all data items through its source end. If it is possible for it to simultaneously
dispense the data item through its sink (e.g., there is a take operation pending on its sink) the channel
transfers the data item; otherwise the data item is lost.

A B
s {A,B}

dA = dB

{A}

The above figure shows a TCA that captures the general “possible” behavior of a lossy synchronous channel.
To model the context-sensitive behavior of a lossy channel where the {A}-transition is impossible if B is

7

ready to synchronize, the concept of priorities can be used as we explain in the forthcoming paper [6].
More exotic channels permitted in Reo include the synchronous drain that has two source ends. Because
a drain has no sink end, no data value can ever be obtained from this channel. Thus, all data accepted by
this channel are lost. A synchronous drain accepts a data item through one of its ends iff a data item is
also available for it to simultaneously accept through its other end as well.

A B {A,B}

Timer. The source end of a t-timer channel accepts any input value d ∈ Data and returns on its sink
end a timeout signal after a delay of t time units.

A B

s
s̄

x≤ t

{B},x = t

{A},x := 0

t

dB = “timeout”

dB = “timeout”

{A,B}, x = t

x := 0

A t-timer with the off-option allows the timer to be stopped before the expiration of its delay when a
special “off” value is consumed through its source end. Similarly, the reset-option allows the timer to be
reset to 0 after it has been activated when a special “reset” value is consumed through its source end. The
following figure shows a t-timer with both the reset- and the off-options.

A B

s
s̄

x≤ t

{B},x = t

{A},x := 0

t

dB = “timeout”

dB = “timeout”

{A,B}, x = t

x := 0
{A},dA = “off”

{A},dA = “reset”, x < t

x := 0

x < t

A timer with early expiration makes the timer produce its timeout signal through its sink and reset itself
when it consumes a special “expire” value through its source.

A B

s
s̄

x≤ t

{B},x = t

{A},x := 0

t

dB = “timeout”

dB = “timeout”

{A,B}, x = t

x := 0

{A,B},x < t

x := 0

dB = “timeout”

dA = “expire”

In some cases, it is useful to have a timer that is initially activated. In the graphical representation of
this timer, we simply put the word “on” under its circle-symbol. In its TCA, we declare s̄ as the initial
location (rather than s).

8

I D

t

E

A

B

C

0

F1

F

F2

I D

t

E

A

B

C

0

F1 F

F2

join
t

A

B

0
hiding

TT

T

Figure 5: Example construction of a Reo circuit

Reo circuits. Complex connectors have graphical representations, called Reo circuits, which can be
generated by applying certain composition operators to channels. We may think of a Reo-circuit as a finite
graph where the nodes are labeled with pairwise disjoint, non-empty sets of channel ends and where the
edges represent the established channels. The major operations to create Reo connector circuits are join
and hiding.

To construct a Reo circuit, we start with several instances of basic channels and organize them in a graph
where initially each channel end constitutes a separate node, and each pair of nodes are connected by an
edge representing their respective channel. We then apply a series of join operations that take as input two
nodes A and B and combine them into a new node C. In this way, several channel ends may coincide on
one node. If all channel ends coincident on a node C are source ends, C is called a source node and it acts
as a replicator: writing a data item to a source node succeeds when all of its coincident channel ends are
capable of accepting the data item simultaneously, in which case the data item is atomically copied into
every one of the source ends coincident on C. If all channel ends coincident on C are sink ends, C is called
a sink node and it behaves as a merger: an attempt to take a data item from a sink node succeeds when
at least one of its coincident channel ends has a suitable value to offer, in which case the suitable value
available through one of these channel ends is non-deterministically selected for the take operation. If C
contains both source and sink channel ends then C is called a mixed node and it behaves as a self-contained
pumping station, combining the replicator and merger behavior of source and sink nodes. No take or write
operation can be performed on a mixed node; a mixed node autonomously selects suitable values available
through its coincident sink ends (merger behavior) and copies them to its coincident source ends (replicator
behavior).

The hiding operator allows to create “components” by putting a thick box around a circuit, insulating all
of its mixed nodes inside the box and allowing access to its sink and source nodes, placed on the border of
the box, only. The idea is that the mixed nodes are internal to the component and no other component can
modify or connect to them. Formally, we make hidden (mixed) nodes invisible and abstract their names
away.

Fig. 5 demonstrates how to built a Reo circuit via join and hiding. Mixed node I serves as an initializer
which activates the timer. Either A and B synchronize before the timer expires or the timeout signal
occurs at T (after exactly t time units). In either case, the buffer is refilled and the whole procedure
restarts.

When modeling Reo circuits by (timed) constraint automata the locations stand for the configurations
of the circuits (e.g., contents of the FIFO channels) while the transitions stand for the possible data-flow
at one time instance and its effect on the configuration. Intuitively, if we regard a circuit itself as a
component, the source nodes of the circuit act as the input ports, and its sink nodes as the output ports
of the component. The data-flow through mixed nodes is totally specified by the circuit.

There is a subtle difference between the roles of the sink and source nodes on the one hand and the mixed
nodes on the other hand. If an edge contains at least one sink or source node A then the transition must
be regarded as conditional: it can be taken under the condition that the environment that controls the
data-flow at node A (the component that uses A as an in- or output port) performs the corresponding
I/O-operation. On the other hand, any transition with a node-set consisting of mixed nodes only can be
taken without any involvement by the environment.

9

Example 3.1 The following figure shows on its left how an expiring FIFO1 channel can be constructed
out of a normal FIFO1 channel and a timer set to expire after t time units. On the right we have a circuit
that ensures the lower bound “>t” for a take operation on B; it yields a FIFO1 channel that guarantees
every data item will remain in its buffer at least t time units.

A B

t

A B

t

We may also control the frequency of data transfer in synchronous channels with time-constrained channels.
In the following figure, on the left, data-flow from A to B is possible only once every ≥ t time units.

A B

t

A
B

t on
expire

C

The t-timer with early expiration in the circuit on the right ensures that as long as data items are available
at A, they will be consumed at least once every t time units. Whenever a take operation is performed on C,
the data item available at A is transferred through B to C via the synchronous and the lossy synchronous
channels that connect these nodes. The transfer at A simultaneously produces an “expire” signal (through
the P -producer connected to A, where P is the singleton data set {expire}) which prematurely fires the
timer channel, enabling the synchronous drain to allow the data transfer at B. If no take operation occurs
at C, the timer produces its timeout-signal after t time units, enabling the transfer of a data item from A
to B, because the lossy synchronous channel at B always accepts (and in this case loses this data item).
(Because the two ends of the timer always have to synchronize in this circuit, the assumption that the
timer is initially on is essential, since otherwise it can never be started.) �

0 t

A

B

0

≤ t

≤ t

expire

on

D

F

E

C

H

I

J

G

expire

Figure 6: Reo circuit for a timed sequencer

Example 3.2 (Timed sequencer) The timed sequencer in Fig. 2 can be realized by the Reo circuit
shown in Fig. 6 (and hiding all nodes except for A and B). Here, we use a t-timer with early expiration

10

which is assumed to be initially switched on. A can transfer a value only if D simultaneously also takes a
value from the upper buffer. The expiring FIFO1 channel allows this to happen only at some point in time
t0 < t. If this happens, an expire-signal is sent (via the P -producer from D to G where P is the singleton
data set {expire}) which forces the timeout-signal to become available at H. Because the buffer of the
left FIFO1 channel is full and it is connected at E through a synchronous drain and a lossy synchronous
channel via J to H, the availability of the timeout-signal at H triggers the synchronous transfer of the
contents of the left FIFO1 channel into the right FIFO1. The replication behavior of H also attempts
to simultaneously write a copy of the timeout-signal into the top lossy synchronous channel connected
to H. However, because at this point in time (i.e., t0), there is no data available at C, the synchronous
drain connected to C prevents I from participating in the transfer of this copy of the timeout-signal from
H; therefore, the lossy synchronous channel connecting H to I loses this data. At this point, the same
behavior symmetrically repeats with B.

If A has no value to transfer within the first t time units then D does not transfer the data element out
the buffer but the timeout signal becomes available at H at time t. Simultaneously, the message in the
buffer of the upper expiring FIFO1 channel is lost. At this point in time (i.e., t), there is no data available
at C, and the synchronous drain connected to C prevents I from participating in the transfer of a copy of
the timeout-signal from H; the lossy synchronous channel connecting H to I loses this data.

On the other hand, node E can take the data element out of the buffer of the left FIFO1 channel. Also
G is ready to start the timer again. Thus, H synchronizes with the nodes J , E and G which yields a
configuration symmetric to the initial one with B instead of A.

{B,F,GF ,G,H, I,C}, x < t, x := 0

x≤ t

{H,C, I,GC,G}, x = t, x := 0

x≤ t

{H,J,E,GE ,G}, x = t, x := 0

{A,D,GD,G,H,J,E}, x < t, x := 0

The above figure shows the TCA (before hiding) where we skip the data constraints.2 �

{A}, x := 0

{B}

A B

x≤ 3

x = 3

≤ 3

s̄
s

Figure 7: When does B perform a take-operation?

Remark 3.3 (Time-constraints for the I/O-operations) In the Reo circuit in Fig. 7, node B is a
mixed node which is “always” ready to consume a message from the buffer of the expiring FIFO1 channel

2In addition to the node-names used in the circuit, we use the names GE , GC , GD and GF to make clear which take-
operation is performed on node G. Such auxiliary names will also be used in the compositional approach to model the merge
semantics.

11

because the synchronous drain on its right is “always” ready to dispose of any value. The TCA for this
circuit has a TSD stream of the form ({A}, [A �→ d], 0), ({A}, [A �→ d], 4), ({A}, [A �→ d], 8), . . . where A
continuously transfers data items into the buffer of the expiring FIFO1 channel, which in turn loses them
all because the data transfer at B takes longer than the specified expiration bound of 3 time units (e.g.,
because the synchronous drain is too slow). In fact, the above circuit makes no assumptions about the
possible delay of B’s data transfer operation. Its TCA involves an enabled transition with a node-set
consisting of a mixed node with an unbounded delay.

One possibility to avoid such scenarios is to assign deadlines to edges e = (s, N, dc, cc, C, s̄) where N
consists of mixed nodes. For instance, assigning a deadline of 2 to the {B}-edge in the above example
ensures that all values transferred by A are eventually taken out of the buffer by B. However, the timing
behavior of the nodes (deadlines or lower time bounds for I/O-operations) can also be made explicit at
the syntax level of Reo circuits, using an appropriate combination of Reo’s timed channels. For instance,
the deadline of 2 in the above example can be guaranteed by a 2-timer with the off-option as follows:

A B
≤ 3

2

off

�

We now define the join operator on TCA which captures the replicator semantics of source (or mixed)
nodes. It can serve as the semantic operator for the join of two nodes where at least one of them is a source
node. We assume that we are given the TCA T1 and T2 for two fragments R1 and R2 of a Reo circuit and
that we want to perform the join operations for the nodes Bi (in T1) and B̃i (in T2), i = 1, . . . , n, where at
least one of the nodes Bi or B̃i is a source node (i.e., has no coincident sink channel end). We first rename
B̃i into Bi and then apply the following join operator to T1 and T2.

Definition 3.4 (Join for TCA) Given two TCA Ti = (Si, Ci,Ni, Ei, S0,i, ici), i = 1, 2, with disjoint
clock sets, the product T1 ⊲⊳ T2 is defined as an TCA with the location space S = S1 × S2, the set
S0 = S0,1 ×S0,2 of initial locations, the node-set N = N1 ∪N2, and the clock set C = C1 ∪C2. The location
invariance is given by ic(〈s1, s2〉) = ic1(s1)∧ ic(s2). The edge relation E is obtained through the following
rules. The first rule concerns the “synchronization case” where two edges with common nodes are combined
as well as the case where two edges with non-empty “local” node-sets are taken simultaneously:

(s1, N1, dc1, cc1, C1, s̄1) ∈ E1,
(s2, N2, dc2, cc2, C2, s̄2) ∈ E2,

N1 ∩N2 = N2 ∩ N1, N1 �= ∅, N2 �= ∅, dc1 ∧ dc2 �≡ false

(〈s1, s2〉, N1 ∪ N2, dc1 ∧ dc2, cc1 ∧ cc2, C1 ∪ C2, 〈s̄1, s̄2〉) ∈ E

The second rule applies to edges all of whose involved nodes are local to only one of the automata:

(s1, N1, dc1, cc2, C1, s̄1) ∈ E1, N1 ∩N2 = ∅

(〈s1, s2〉, N1, dc1, cc1, C1, 〈s̄1, s2〉) ∈ E

and its symmetric rule. In particular, the latter rule applies to transitions with empty node-sets. �

A correctness result for the join operator is presented in the appendix (Section A).

To mimic the merge semantics of sink (or mixed) nodes we use the same technique as in [8, 7]. To join two
nodes A and B where each of them contains at least one sink end we (1) choose a new node-name, say C,
and (2) return TMerger (A, B, C) ⊲⊳ TA ⊲⊳ TB where TA and TB are the TCA that model the sub-circuits
containing A and B respectively, and TMerger (A, B, C) has the following form:

12

{A,C}

dA = dC

{B,C}

dB = dC

Hiding a node-set M in a TCA removes all M -nodes from its edges. However, given an edge with a
node-set consisting of M -nodes only, we must ensure that this edge can be taken only after some positive
delay. We model this by using an additional clock.

Definition 3.5 (Hiding for TCA) Given a TCA T = (S, C,N , E , S0, ic), a new clock y /∈ C, and M ⊆
N , we define ∃M [T] = (S, C ∪ {y},N \ M, E ′, S0, ic) where E ′ is obtained by the rule:

(s, N, dc, cc, C, s̄) ∈ E , (N = ∅ ∨ N \ M �= ∅)

(s, N \ M,
∨

δ∈DA(M)

dc[A/δA : A ∈ M], cc, C ∪ {y}, s̄) ∈ E ′

(s, N, dc, cc, C, s̄) ∈ E , ∅ �= N ⊆ M
(s, ∅, true, cc ∧ (y > 0), C ∪ {y}, s̄) ∈ E ′

Here, dc[A/δA : A ∈ M] is derived from dc by the syntactic replacement of the term dA with the value
δA ∈ Data for all A ∈ M . (More precisely, we replace “dA ∈ P” with true or false, depending on whether
or not δA belongs to P .) �

Example 3.6 The TCA for the circuit in Fig. 5 can be obtained by joining the TCA for all of its involved
channels together with TMerger (F1, F2, F).

x≤ t

x := 0

{I}

{A,B,C,F1,F}

x = t

{D,E,F2,F,T}

x≤ t

x := 0x = t

x = t {A,B}

x = t

{D,E,F2,F,T, I}

{A,B,C,F1,F, I}x = t

x = t x = t
x = t

{A,B}{T}

{T} y > 0

y := 0 y := 0

The above figure shows the resulting TCA before and after hiding. (For simplicity, we skip the data
constraints and irrelevant resettings of y). �

Of course, using arbitrary combinations of timed channels can lead to TCA with time-locks. However,
using (modifications of) standard region- or zone-graph algorithms [1, 18] we may check the time-lock
freedom of a given Reo circuit.

4 Timed Scheduled-Data-Stream Logic

To specify the behavior of timed Reo circuits, one can use a TCA T and require that the TSD-language
generated by a given Reo circuit is contained in L(T). In this sense, T specifies the “legal” behavior of
the circuit. However, it is often easier to use a logical formalism to express the desired properties rather
than using an automata model. In this section, we introduce Time Scheduled-Data-Stream Logic (TSDSL)
which is a real-time variant of LTL and allows to reason about the observable data-flow of a Reo circuit
by means of the TSD streams generated by its underlying TCA. Instead of the modality © (next step),

13

TSDSL uses formulas of the type 〈〈α〉〉ϕ which consist of a so-called timed scheduled-data expression α and
a formula ϕ. This type of formulas is inspired by propositional dynamic logic [12] and extended temporal
logic [29]. The timed scheduled-data expressions are variants of timed regular expressions [9] built from
atoms of the form 〈N, dc〉. The TSD expressions specify sets of finite TSD streams. The intuitive meaning
of 〈〈α〉〉ϕ is that every initial run has a finite prefix generating a word of the language of α such that ϕ
holds for its corresponding suffix.

Syntax of TSDSL. In the sequel, we assume a fixed finite and non-empty set N of nodes. The abstract
syntax of TSDSL-formulas is given by the following grammar:

ϕ ::= true

∣

∣

∣
ϕ1 ∧ ϕ2

∣

∣

∣
¬ϕ

∣

∣

∣
〈〈α〉〉ϕ

∣

∣

∣
ϕ1Uϕ2

where α is a timed scheduled-data expression (TSD expression) built by the grammar:

α = 〈N, dc〉
∣

∣

∣
α1 ∨ α2

∣

∣

∣
α1 ∧ α2

∣

∣

∣
α1;α2

∣

∣

∣
α∗

∣

∣

∣
αI

Here, N is a non-empty node-set, dc a satisfiable data constraint for N , and I ⊆ IR≥0 ∪ {ω} a (possibly
unbounded) time interval with its upper-bound in IN ∪ {ω}. The meanings of α1 ∨ α2 (union, choice),
α1 ∧ α2 (intersection)3, α1;α2 (concatenation, sequential composition), and α∗ (Kleene closure, finitely
many repetitions) are obvious. αI has the same meaning as α, except for the additional requirement that
the total execution time falls in the time interval I.

Intuitively, 〈〈α〉〉ϕ holds for a TCA iff all its TSD streams have a finite prefix that generates an α-stream
and ϕ holds for its remaining suffix. The dual operator for 〈〈α〉〉ϕ is [[α]]ϕ = ¬〈〈α〉〉¬ϕ which holds for
a TCA iff for each of its TSD streams Θ and all prefixes of Θ that generate an α-word, the formula ϕ
holds for the corresponding suffix of Θ. Other boolean connectives, like disjunction ∨ or implication →,
are derived in the usual way.

Remark 4.1 We can also allow for ω-regular TSD expressions that result from adding an ω-operator.
Although this increases expressiveness, we skip this option here. In contrast to the real-time extensions of
LTL, as, e.g., in [16, 3, 2], TSDSL does not use time-constrained temporal modalities such as U≤t. These
can be added to TSDSL, but in the examples (see below) it turned out that the time-constraints in the
TSD expressions are sufficient to formulate the relevant properties of Reo circuits. �

Simplified notation. We often skip the semicolon for the concatenation operator (i.e., αβ stands short
for α;β). We simply write 〈N〉 for 〈N, true〉 and often omit brackets: e.g., 〈A, dc〉 is short-hand for 〈{A}, dc〉
and 〈〈N〉〉 for 〈〈〈N〉〉〉. We write 〈. . . A . . .〉 to denote the disjunction of the expressions 〈N〉 where N ranges
over all subsets of N that contain the node A. 〈¬A〉 stands for the disjunction of all expressions 〈N〉 where
N ranges over all non-empty node-sets that do not contain A. 〈·〉 denotes the disjunction of all atoms 〈N〉
where N is an arbitrary non-empty node-set. 〈〈·〉〉ϕ stands for 〈〈〈·〉〉〉ϕ. We also often skip true and write 〈〈α〉〉
for 〈〈α〉〉true: e.g., the TCA for the normal FIFO1 channel (Fig. 4) satisfies the formula

[[(〈A〉〈B〉)∗]]〈〈A〉〉 ∧ [[(〈A〉〈B〉)∗〈A〉]]〈〈B〉〉

which states that the data-flows at nodes A and B alternate, starting with A.

3Standard regular expressions do not contain an intersection operator (although regular languages are closed under inter-
section). However, as pointed out in [9], in timed settings, the class of timed languages induced by timed regular expressions
without an explicit intersection operator is not closed under intersection.

14

Derived operators. The standard next step operator is derived as ©ϕ = 〈〈·〉〉ϕ In particular, ©true

asserts the occurrence of some observable data-flow, while ¬© true states that data-flow has stopped. The
modalities eventually and always can be derived as usual by definitions ♦ϕ = trueUϕ and �ϕ = ¬♦¬ϕ.
For instance, the following TSDSL formula specifies the behavior of a normal FIFO1 channel (cf. Fig. 4):

�

(

∧

d∈Data

[[〈A, dA = d〉]]〈〈〈B, dB = d〉〉〉

)

∧ �(〈B〉 → ©〈A〉)

The expiring FIFO1 channel in Fig. 4 satisfies the TSDSL formula

�

(

∧

d∈Data

[[〈A, dA = d〉]](〈〈〈B, dB = d〉<t〉〉 ∨ ¬〈〈〈·〉<t〉〉)

)

which expresses the fact that within t time units after A’s write-operation either B takes the element
from the buffer or there is no observable data-flow. For the timed sequencer (Fig. 2 and Example 3.2) the
following formula holds

�[[A]]
(

〈〈〈B〉≤t〉〉 ∨ ¬〈〈〈·〉≤t〉〉
)

stating that whenever data-flow is observed at A, within the next t time units there is either data-flow at
B or no observable data-flow at all.

The weak variant Ũ of until is obtained as ϕ1Ũϕ2 = (ϕ1Uϕ2) ∨ (�ϕ1). For instance, the t-timer with
reset-option (but without the off-option) fulfills the formula

�[[A]]
(

〈〈〈A, dA = reset〉<t〉〉Ũ〈〈〈B, dB = timeout〉〉〉
)

.

To provide the formal definition of the semantics of a TSD expressions and TSDSL-formulas we need some
additional notation for working with TSD streams.

Notation 4.2 (Time cuts, concatenation, Kleene closure) Let Θ = (N0, δ0, t0), (N1, δ1, t1), be
a TSD stream as in Notation 2.7. For a point in time t ∈ IR≥0, we define Θ ↑ t as the suffix of Θ that
ignores every data-flow that occurs before t and formalizes the observable behavior in the time interval
[t,∞[. That is, Θ ↑ t = ε if |Θ| = k + 1 < ω and tk < t. Otherwise, Θ ↑ t = (Nk, δk, tk), . . .) where k is the
smallest index such that tk ≥ t.

Θ ↓ t is the TSD stream that describes the data-flow in the time interval [0, t[. That is, Θ ↓ t = ε if Θ = ε

or t0 ≥ t. Otherwise, Θ ↓ t = (N0, δ0, t0), . . . , (Nk, δk, tk) where k is the largest index such that tk < t.

The concatenation of finite TSD streams is defined as follows. We define Θ;ε = ε;Θ = Θ. If Θ1 =
(N0, δ0, t0),. . .,(Nn, δn, tn) and Θ2 =(M0, σ0, ρ0),. . .,(Mm, σm, ρm) then Θ1;Θ2 is(N0, δ0, t0),. . .,(Nn, δn, tn),
(M0, σ0, tn + ρ0), . . ., (Mm, σm, tn + ρm). If L and L̃ are TSDS-languages with the same node-set N then
L;L̃ =

{

Θ ; Θ̃ : Θ ∈ L, Θ̃ ∈ L̃
}

and L∗ =
⋃

n≥0 Ln where L0 = {ε}, Ln+1 = Ln;L. �

Semantics of TSD expressions and TSDSL-formulas. We define L(α) ⊆ TSDS by structural
induction. L(〈N, dc〉) is the set of all TSD streams of length 1 that have the form (N, δ, t) where δ |= dc.
We define L(α1∨α2) = L(α1)∪L(α2), L(α1∧α2) = L(α1)∩L(α2), L(α1;α2) = L(α1);L(α2) and L(α∗) =
L(α)∗. The semantics of time-constrained expressions is formalized by L(αI) = {Θ ∈ L(α) : τ(Θ) ∈ I}.4

The satisfaction relation |= for TDSL-formulas and TSD streams is defined by structural induction as
shown in Fig. 8. For the derived [[. . .]]-operator, we obtain Θ |= [[α]]ϕ iff for all t ≥ 0 we have: Θ ↓ t ∈ L(α)
implies Θ ↑ t |= ϕ. We define L(ϕ) =

{

Θ ∈ TSDS (N) : Θ |= ϕ
}

and define logical equivalence ≡ of
TSDSL-formulas as ϕ1 ≡ ϕ2 iff L(ϕ1) = L(ϕ2). If T is a TCA and q a state in AT then q |= ϕ iff
L(T , q) ⊆ L(ϕ). Moreover, we define T |= ϕ iff L(T) ⊆ L(ϕ).

4Recall that τ(Θ) denotes the execution time of Θ (see Notation 2.7).

15

Θ |= true

Θ |= ϕ1 ∧ ϕ2 iff Θ |= ϕ1 and Θ |= ϕ2

Θ |= ¬ϕ iff Θ �|= ϕ

Θ |= ϕ1Uϕ2 iff ∃ t ∈ IR≥0 s.t. Θ ↑ t |= ϕ2

and Θ ↑ ρ |= ϕ1 for all ρ with 0 ≤ ρ < t

Θ |= 〈〈α〉〉ϕ iff ∃ t ∈ IR≥0 s.t. Θ ↓ t ∈ L(α) ∧ Θ ↑ t |= ϕ

Figure 8: Satisfaction relation for TSDSL-formulas

Example 4.3 (Alternating bit protocol) The properties of the ABP (see Example 2.4 and Fig. 9) can
be specified by the formula

ϕABP(t) =
∧

d∈Data

�[[〈I, dI = d〉]]〈〈(〈¬I〉∗〈O, dO = d〉)≤t〉〉

for some time bound t. ϕABP(t) states that whenever the sender receives a message d at port I, within
its next t time units the receiver will output d at port O during which time the sender does not accept a
new input message through port I.5

For an arbitrary choice of the time-parameters tS , tR, ρS and ρR we cannot expect that TABP |= ϕABP(t).
For instance, if ρR = 5 and tR = tS = 2 then the following behavior is possible. The first input at I
arrives at time instant 2.5. The receiver may move to location ack(1) earlier, say at time instant 1.5.
With the take-operation at input port I, the automaton moves from state 〈in(0), ack(1), x = 2.5, y = 2〉
to 〈try(d, 0), ack(1), x = 0, y = 2〉. At time 3.5, the sender tries to send (d, 0) through port A and
moves to location wait(d, 0). Now, clock x has the value 0, clock y the value 2. After 1 time unit the
receiver sends the control bit b = 1 which the sender ignores. Thus, we enter the global state q =
〈wait(d, 0),wait(0), x = 1, y = 0〉. The sender is forced to move to location try(d, 0). One time unit later,
clock y has the value 2 and forces the receiver to leave location wait(0). We enter now the global state
〈try(d, 0), ack(1), x = 1, y = 0〉. After waiting for 1 time unit, the sender resends the pair (d, 0) which
leads to the global state 〈wait(d, 0), ack(1), x = 0, y = 1〉. One time unit later, the receiver resends the
control bit 1 which the sender ignores again. We now reenter state q and may continue in the same way,
without ever producing an output at port O. Hence, for this choice of the time-parameter we obtain
TABP �|= �(〈I〉 → ♦〈O〉). In particular, there is no t such that ϕABP(t) holds for TABP .

Assuming ρR < ρS < tR and ρR < tS then no message sent via the lossy channel connecting A and C will
be lost. In fact, it can only happen that the receiver acknowledges more than once the receipt of the
last message (because no upper time bound is assumed for the arrival of messages at input port I). The
reachable fragment of the TCA is shown in Fig. 10. We obtain TABP |= ϕABP(ρS + ρR), stating that the
delay for the output at O is bounded above by the maximal sojourn time of the sender in location wait(d, b)
plus the maximal delay ρR for the receiver to send the acknowledgment after it receives a message through
port C. (This is the best bound we can expect.) The fact that messages along the A–C channel are never
lost can be formalized by the TSDSL formula ¬♦〈〈A〉〉 which states that it is not possible to observe a
data-flow at node A only (not together with C).

When ρR <tS <tR and ρS <tR−tS , messages sent from A to C may get lost. However, when A resends the
message the receiver accepts the message through port C. In this case, we have TABP |= ϕABP(ρS+ρR+tS),
stating that the delay for the output at port O is at most the maximal delay for the sender and receiver
to send their messages along the lossy channels connecting them plus the deadline tS which the sender
uses for resending message-bit pairs. The reachable part of the TCA under these assumptions is shown in
Fig. 11. The property that a message sent along the A–C channel can be lost only once can be formalized
by the TSDSL formula ¬♦〈〈〈A〉〈¬I〉∗〈A〉〉〉. �

5As input on I can occur simultaneously with the receiver resending its acknowledgment of the previous message via port
D, the atom 〈I, dI = d〉 can be replaced with the expression 〈I, dI = d〉 ∨ 〈{I, D}, dI = d〉.

16

The TSDSL Model Checking problem addresses the question of whether T |= ϕ holds for a given
TCA T and TSDSL formula ϕ. We briefly sketch the main ideas of a TSDSL model checking algorithm
that relies on variants of standard automata-based algorithms for LTL and (timed) regular expressions.

First, we switch from ϕ to ¬ϕ which we regard as a formula of (untimed) LTL with action labels. Here,
〈〈α〉〉 is treated as a next step operator with the label α. Then, we may apply standard techniques, e.g., [30,
15, 27, 13], modified for the action-labeled case, to construct a nondeterministic Büchi automaton B for
¬ϕ, whose transitions are labeled with the expressions α that occur in sub-formulas 〈〈α〉〉ψ of ϕ. We now
turn B into a TCA TB with Büchi acceptance condition. (See Appendix A.)

For this, we first construct a TCA Tα for every TSD expression α that occurs in B as a transition-label.
Tα has a unique initial location, called start(α), and a location stop(α) such that L(α) is the set of all
TSD streams Θ that are induced by a finite run in Tα starting in start(α) and ending in stop(α). The
construction of the TCA Tα is by structural induction, essentially as described in [9]. For instance, for
α = γI we introduce one new clock x that is not used in Tγ and perform the following construction for Tα:

Tγ
start(α) start(γ) stop(γ)

stop(α)

x := 0 x ∈ I

The invariance condition “x ∈ I” ensures that location stop(α) can be entered only in runs where the
execution time lies within the time interval I. (Here, the edges from stop(γ) to stop(α) are labeled with
the empty node-set and data and clock constraint true.)

The TCA TB is now obtained as follows. The locations in TB consist of the states in the Büchi automaton
B and the locations in the TCA Tα.6 We then replace every transition q

α
−→ p in B with the following

fragment of TB:

Tα

start(α) stop(α)
reset all clocks

q p

in Tα

We then have L(TB) = L(¬ϕ) where Büchi acceptance is assumed for TB. Thus, by Corollary A.7, T |= ϕ
iff L(T ⊲⊳ TB) = L(T) ∩ L(ϕ) = ∅. Hence, we may apply (modifications of) the standard region graph
algorithms to check for emptiness of timed automata [1].

TSDSL versus refinement relations. Let T1 and T2 be two TCA with the same node-set N . Clearly,
if L(T1) ⊆ L(T2) then, for any TSDSL-formula ϕ, T2 |= ϕ implies T1 |= ϕ. Thus, if L(T1) = L(T2)
then T1 and T2 satisfy exactly the same TSDSL-formulas. A sufficient decidable criterion for checking
(TSDLS- or) language-equivalence of two TCA is to switch to a coarser equivalence corresponding to
timed bisimulation for ordinary timed automata [10]. In our setting, a timed bisimulation for a TCA T is
the coarsest equivalence ∼ on the state space Q of the induced state-transition graph AT such that for all
q1, q2 ∈ Q with q1 ∼ q2 and all N ⊆ N , δ ∈ DA(N), t ∈ IR≥0:

∀q1
N,δ,t
−−−→ p1 ∃p2 ∈ Q s.t. q1

N,δ,t
−−−→ p2 and p1 ∼ p2.

The simulation relation is defined as the coarsest binary relation � on the state space Q of AT such that
for all q1, q2 ∈ Q with q1 � q2 and all N ⊆ N , δ ∈ DA(N), t ∈ IR≥0:

6We assume that the state spaces and clock sets are disjoint and that for any TSD expression α that occurs more than
once in B a copy of Tα is used.

17

∀q1
N,δ,t
−−−→ p1 ∃p2 ∈ Q s.t. q1

N,δ,t
−−−→ p2 and p1 � p2.

The relation � is finer than language-inclusion, and thus, preserves all TSDSL formulas in the sense that
if q1 � q2 and q2 |= ϕ then q1 |= ϕ. The question of whether one state of a TCA simulates another one
can be answered with the help of the region graph construction as in [28].

5 Conclusion

In this paper, we introduced a formal model to reason about timing constraints for Reo component connec-
tors. We presented composition operators for join and hiding that can serve as a basis for the automated
construction of an automata-model from a given (timed) Reo circuit and as a starting point for its formal
verification. In particular, (slightly modified versions of) well-known algorithms for checking time-lock free-
dom in ordinary timed automata can serve for checking the realizability of the coordination mechanisms of
a Reo circuit with timing constraints. Moreover, we suggested a linear-time temporal logic for reasoning
about the real-time behavior of component connectors by means of their timed scheduled-data streams
and explained how the standard region- or zone-graphs model checking algorithms for timed automata can
be adapted for our setting.

Our future work includes an implementation of the presented model checking algorithms and case studies.
Moreover, we intend to study an alternating-time logic in the style of [4] that allows to reason about the
possibility for certain components to cooperate such that a given (real-time) property holds.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994.

[2] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal of the ACM,
43(1):116–146, 1996.

[3] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41:181–204, 1994.

[4] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. Journal
of the ACM, 49:672–713, 2002.

[5] F. Arbab. Reo: A channel-based coordination model for component composition. Mathematical
Structures in Computer Science, 14(3):1–38, 2004.

[6] F. Arbab, C. Baier, F. de Boer, J.J.M.M. Rutten, and M. Sirjani. Modeling context-senstive behaviors
of component connectors with priorities. Forthcoming paper, 2004.

[7] F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani. Modeling component connectors in
reo by constraint automata. In FOCLASA’03, Electronic Notes in Theoretical Computer Sci-
ence, 2003. To appear. For the full version see http://web.informatik.uni-bonn.de/I/ baier/

publikationen.html.

[8] F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component connectors. In D. Pat-
tinson M. Wirsing and R. Hennicker, editors, Recent Trends in Algebraic Development Tech-
niques, Proceedings of 16th International Workshop on Algebraic Development Techniques (WADT
2002), volume 2755 of Lecture Notes in Computer Science, pages 35–56. Springer-Verlag, 2003.
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf.

[9] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of the ACM, 49(2):172–206,
2002.

[10] K. Cerans. Decidability of bisimulation equivalences for parallel timer processes. In Proc. CAV,
volume 663 of LNCS, pages 302–315, 1993.

18

[11] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In Proc. EMSOFT, volume 2491
of LNCS, pages 108–122, 2002.

[12] M. J. Fischer and R.J. Ladner. Propositional dynamic logic of regular programs. Journal of Computer
and System Science, 8:194–211, 1979.

[13] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc. 13th International Con-
ference on Computer Aided Verification (CAV), volume 2102 of Lecture Notes in Computer Science,
pages 53–65, 2001.

[14] R. Gawlick, R. Segala, J. Soegaard-Andersen, and N. Lynch. Liveness in timed and untimed systems.
Information and Computation, 141(2):119–171, 1998.

[15] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In Protocol Specification Testing and Verification, pages 3–18. Chapman & Hall, 1995.

[16] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In Proc. LICS, pages 402–413.
IEEE Computer Society Press, 1990.

[17] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems. Software
Tools for Technology Transfer, 1:110–122, 1997.

[18] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-Time
Systems. Information and Computation, 111(2):193–244, 1994.

[19] D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. A framework for modelling timed
systems with restricted hybrid automata. In Proceedings 24th IEEE International Real-Time Systems
Symposium (RTSS’03), pages 166–177. IEEE Computer Society, 2003.

[20] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal on Software Tools
for Technology Transfer, 1(1-2):134–152, 1997.

[21] L. Leonard and G. Leduc. An enhanced version of timed lotos and its application to a case study. In
Proc. Formal Description Techniques VI, pages 483–498. North-Holland, Amsterdam, 1994.

[22] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer, New
York, 1992.

[23] M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrained automata (extended abstract). In Proc.
CONCUR, volume 527 of LNCS, pages 408–423, 1991.

[24] R. Milner. Communication and Concurrency. Prentice Hall International Series in Computer Science.
Prentice Hall, 1989.

[25] A. Pnueli. The temporal logic of programs. In Proc. FOCS, pages 46–57. IEEE Computer Society
Press, 1977.

[26] G. M. Reed and A. W. Roscoe. A timed model for communication sequential processes. Theoretical
Computer Science, 58:249–261, 1988.

[27] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc. 12th Interna-
tional Conference on Computer Aided Verification (CAV), volume 1855 of Lecture Notes in Computer
Science, 2000.

[28] S. Tasiran, R. Alur, R. Kurshan, and R. Brayton. Verifying abstractions of timed systems. In Proc.
CONCUR, volume 1119 of LNCS, pages 546–562, 1996.

[29] P. Wolper. Specification and synthesis of communicating processes using an extended temporal logic.
In Proc.POPL, pages 20–33, 1982.

[30] P. Wolper, M. Vardi, and A. Sistla. Reasoning about infinite computation paths. In Proc. FOCS,
pages 185–194. IEEE Computer Society Press, 1983.

19

[31] W. Yi. CCS + time = an interleaving model for real time systems. In Proc. ICALP, volume 510 of
LNCS, pages 217–228. Springer-Verlag, 1991.

[32] S. Yovine. Kronos: A verification tool for real-time systems. Software Tools for Technology Transfer,
pages 123–133, 1997.

20

A Join, hiding and Büchi acceptance

Notation A.1 (Join and hiding for TSD streams) Let Θ be a TSD stream over N and B ∈ N . The
projection Θ|B ∈ (Data × IR≥0)

∞ of Θ on B denotes the sequence of pairs (d, t) ∈ Data × IR≥0 that is
obtained from Θ by (1) removing all triples (N, δ, t) where B /∈ N ; and (2) replacing any remaining triples
(N, δ, t) with the pair (δB, t).

If M ⊆ N then hide(Θ, M) denotes the unique TSD stream Θ̄ ∈ TSDS (M) such that Θ̄|B = Θ|B for all
B ∈ M . Given two TSD streams Θ1 ∈ TSDS (N1) and Θ2 ∈ TSDS (N2), their join is undefined if there is
a node B ∈ N1 ∩ N2 such that Θ1|B �= Θ2|B. Otherwise we define their join Θ1 ⊲⊳ Θ2 ∈ TSDS (N1 ∪ N2)
as the unique TSD stream such that (Θ1 ⊲⊳ Θ2)|A = Θi|A if A ∈ Ni. �

Notation A.2 (Join and hiding for TSDS-languages) Given two TSDS-languages L1 ⊆ TSDS (N1)
and L2 ⊆ TSDS (N2), their join L1 ⊲⊳ L2 ⊆ TSDS (N1 ∪ N2) consists of all TSD streams Θ that can
be obtained by joining the TSD streams Θ1 ∈ L1 and Θ2 ∈ L2. If M ⊆ N and L ⊆ TSDS (N) then
∃M [L] = {hide(Θ, M) : Θ ∈ L}. �

The following lemma can be proved using similar arguments as in the untimed case (cf. [7]):

Lemma A.3 Let T , T1 and T2 be TCA. Then,

(a) L(T1 ⊲⊳ T2) = L(T1) ⊲⊳ L(T2).

(b) L(∃M [T]) = ∃M [L(T)]

The join of TSDS-languages with the same node-set agrees with their intersection. Thus, we obtain:

Corollary A.4 If T1 and T2 are TCA with the same node-set then L(T1 ⊲⊳ T2) = L(T1) ∩ L(T2).

Definition A.5 (TCA with Büchi acceptance) A Büchi TCA denotes a pair F = (T , Sacc) consisting
of a TCA T = (S, Q,N , E , S0, ic) and a set Sacc ⊆ S of accepting locations. A q-run in T is called accepting
iff it is either finite and ends in an accepting location, or visits infinitely often an accepting location. The
language L(F) denotes the set of TSD streams that can be generated by an accepting maximal run. �

Note that for any TCA T we have L(T) = L(FT) where FT is the Büchi TCA that results from T by
declaring all locations to be accepting.

The join of two Büchi TCAs F1 and F2 with disjoint clock-sets is defined as the standard join operator
(Def. 3.4) where the accepting locations 〈s1, s2〉 in F1 ⊲⊳ F2 are those such that location s1 is accepting
in F1 and location s2 is accepting in F2. The hiding operator ∃M [F] for Büchi TCA relies on the hiding
operator for TCA (Def. 3.5) and does not change the accepting locations. We then have:

Lemma A.6 L(F1 ⊲⊳ F2) = L(F1) ⊲⊳ L(F2) and L(∃M [F]) = ∃M [L(F)]

For Büchi TCA with the same node-set we obtain:

Corollary A.7 If F1 and F2 are two Büchi TCA with the same node-set then L(F1 ⊲⊳ F2) = L(F1) ∩
L(F2).

21

B TCA for the alternating bit protocol

Fig. 9 shows the full TCA TABP that is obtained by joining the automata for the sender and the receiver.
Figs. 10 and 11 show the relevant fragments for the assumptions (ρR < min{ρS , tS}) ∧ (ρS < tR) and
(ρR < tS < tR) ∧ (ρS < tR − tS), respectively.

in(0)
try(d,0) wait(d,0)

x = tS

{A,C},dA = dC = (d,0)

{I},d := dI

wait(d,1) try(d,1)
in(1)

x = tS

x := 0, y := 0
{I},d := dI

{A,C},dA = dC = (d,1)

{B,D}

dB = dD = 1

{O},dO = d

wait(0)
wait(0) out(d,0)

wait(d,0)
ack(0)

{O},dO = d

wait(1)ack(1) wait(1)out(d,1)

wait(d,1)

x≤ tS x≤ tS

y≤ tR y < ρR

x≤ tS
y≤ ρR

x≤ tS

{B,D}

dB = dD = 0

y := 0

y≤ tRy≤ tR

y := 0

y≤ tR
x := 0

x≤ ρS

x := 0

x := 0, y := 0

x := 0

x := 0
y≤ ρR y < ρR

x≤ ρS

try(d,0)

ack(1)

y≤ ρR

x≤ ρS

wait(d,0)

x = tS

{A},dA = (d,0) x≤ tS

x := 0

x := 0

ack(1)

wait(d,0)

x≤ tS

wait(0)
y := 0

y = tR

{B,D}

dB = dD = 1

y := 0

y = tR

y := 0

x = tS
x := 0

{D}, dD = 1

y := 0

wait(d,1)

x≤ tS

wait(1)
try(d,1)

ack(0)

y≤ ρR

x≤ ρS

x≤ tS

ack(0)
wait(d,1)

y := 0

y = tR
x = tS
x := 0

x = tS
x := 0

{A},dA = (d,1)

x := 0

y := 0

y = tR
{D}, dD = 0

y := 0

{B,D}
dB = dD = 0

y := 0

y≤ tR

y≤ tR

ack(1)
y≤ ρR

y := 0

y = tR {D}, dD = 1

y := 0

in(0) {I},d := dI

x := 0

ack(0)

y≤ ρR

y := 0

y = tR

{D}, dD = 0

y := 0

{I},d := dI

x := 0

in(1)

y≤ ρR

y≤ ρR

try(d,0)

y≤ ρR

x≤ ρS

wait(d,0)

x = tS

{A},dA = (d,0)

x≤ tS

x := 0

x := 0

wait(d,0)

x≤ tS

wait(1)

y := 0

y = tR

x = tS
x := 0

{D}, dD = 1

y := 0

y≤ tR

y≤ tR

y := 0

y = tR

ack(0)

wait(1)

{A},dA = (d,0)

x := 0

wait(d,1)

x≤ tS

try(d,1)

y≤ ρR

x≤ ρS

wait(0)

y := 0

y = tR

x = tS
x := 0

x = tS
x := 0

{A},dA = (d,1)

x := 0

{D}, dD = 1

y≤ tR

{A},dA = (d,1)

x := 0

ack(1)

x≤ ρS

wait(0)

try(d,1)

y≤ tR

y := 0

y = tR

y := 0

{I,D},d := dI

x := 0
y := 0

{I,D},d := dI

x := 0

y := 0

Figure 9: TCA TABP for the ABP

22

in(0)
try(d,0) wait(d,0)

{A,C},dA = dC = (d,0)

{I},d := dI

wait(d,1) try(d,1)
in(1)x := 0, y := 0

{I},d := dI

{A,C},dA = dC = (d,1)

{B,D}

dB = dD = 1

{O},dO = d

wait(0)
wait(0) out(d,0)

wait(d,0)
ack(0)

{O},dO = d

wait(1)ack(1) wait(1)out(d,1)

wait(d,1)

x≤ tS x≤ tS

y≤ tR y < ρR

x≤ tS
y≤ ρR

x≤ tS

{B,D}

dB = dD = 0

y := 0

y≤ tRy≤ tR

y := 0

y≤ tR
x := 0

x≤ ρS

x := 0

x := 0, y := 0

y≤ ρR y < ρR

x≤ ρS

try(d,0)

ack(1)

y≤ ρR

x≤ ρS

{D}, dD = 1

y := 0

try(d,1)

ack(0)

y≤ ρR

x≤ ρS

{D}, dD = 0

y := 0

ack(1)
y≤ ρR

y := 0

y = tR
{D}, dD = 1

y := 0

in(0) {I},d := dI

x := 0

ack(0)

y≤ ρR

y := 0

y = tR

{D}, dD = 0

y := 0

{I},d := dI

x := 0

in(1)

{D, I},d := dI

x := 0

y := 0

{D, I},d := dI

x := 0

dD = 0, y := 0

dD = 1

Figure 10: TCA for the ABP for ρR < min{ρS , tS} and ρS < tR

23

in(0)
try(d,0) wait(d,0)

{A,C},dA = dC = (d,0){I},d := dI

wait(d,1) try(d,1)
in(1)x := 0, y := 0 {I},d := dI

{A,C},dA = dC = (d,1)

{B,D}

dB = dD = 1

{O},dO = d

wait(0)
wait(0) out(d,0)

wait(d,0)
ack(0)

{O},dO = d

wait(1)ack(1) wait(1)out(d,1)

wait(d,1)

x≤ tS x≤ tS

y≤ tR y < ρR

x≤ tS
y≤ ρR

x≤ tS

{B,D}

dB = dD = 0

y := 0

y≤ tRy≤ tR

y := 0

y≤ tR
x := 0

x≤ ρS

x := 0

x := 0, y := 0

y≤ ρR y < ρR

x≤ ρS

try(d,0)

ack(1)

y≤ ρR

x≤ ρS

wait(d,0)

{A},dA = (d,0)
x≤ tS

x := 0

ack(1)

wait(d,0)

x≤ tS

wait(0)

{B,D}

dB = dD = 1

y := 0

x = tS
x := 0

{D}, dD = 1

y := 0

wait(d,1)

x≤ tS

wait(1)
try(d,1)

ack(0)

y≤ ρR

x≤ ρS

x≤ tS

ack(0)
wait(d,1)

x = tS
x := 0

{A},dA = (d,1)

x := 0

{D}, dD = 0

y := 0

{B,D}
dB = dD = 0

y := 0

y≤ tR

y≤ tR

ack(1)
y≤ ρR

y := 0

y = tR {D}, dD = 1

y := 0

in(0) {I},d := dI

x := 0

ack(0)

y≤ ρR

y := 0

y = tR

{D}, dD = 0

y := 0

{I},d := dI

x := 0

in(1)

y≤ ρR

y≤ ρR

{I,D},d := dI

y := 0

x := 0

{I,D},d := dI

y := 0

x := 0

Figure 11: TCA for the ABP for ρR < tS < tR and ρS < tR − tS

24

