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Abstract
This paper proposes a novel approach to help computing system administrators in monitoring
the security of their systems. The approach is based on modeling the system as a privilege graph
exhibiting operational security vulnerabilities and on transforming this privilege graph into a
Markov chain corresponding to all possible successful attack scenarios. A set of tools has been
developed to support this approach and to provide automatic security evaluation of Unix systems
in operation.
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1 INTRODUCTION

Computing system security relies mostly on users, operators and administrators, and even the
best designed system, if badly operated, would be unsecure. Most authentication and protection
mechanisms can be diverted by malicious or careless users, then allowing possible intruders to
perform security breaches. This is not surprising since most users are less interested in security
than in efficiency, flexibility and cooperation with other users.
   A scrupulous system administrator should try to maintain the best security for his system with
the least incidence on user operation. It is thus tremendously important to assess the operational
system’s security level and to monitor the evolution of this security level with respect to system
configuration modifications, application or operation changes and environment evolution.
   This paper develops an approach to evaluate the security of operational computing systems.
Examples are taken from Unix™ systems, but the approach could be extended to other
operating systems and to distributed systems as well. Section 2 shows how to model a
computing system in a way exhibiting vulnerabilities that could be exploited by a possible
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intruder. Section 3 presents a mathematical model which enables to compute probabilistic
security measures corresponding to the difficulty for a possible intruder to perform a security
breach. Finally, Section 4 describes a set of tools which have been developed to support this
approach, and to provide automatic security evaluation of Unix systems in operation.

2 DESCRIPTION OF OPERATIONAL SYSTEM VULNERABILITIES

It has been shown in (Dacier and Deswarte, 1994) that vulnerabilities can be represented in a
privilege graph. In such a graph, a node X represents a set of privileges owned by a user or a set
of users (e.g., a Unix group). An arc from node X to node Y represents a possibility for a user
owning X privileges to extend his privileges to obtain those of node Y. Some sets of privileges
are highly sensitive (e.g. the super user privileges). These nodes are called “target” nodes since
they are the most likely targets of attacks. On the other hand, it is possible to identify some
nodes as the privileges of possible attackers; these nodes will be called “attacker” nodes. For
example, we can define a node called “insider” which represents the minimal privileges of any
registered user (e.g., the privilege to execute login, to change his own password, etc.). If a path
exists between an attacker node and a target node, then a security breach  can potentially occur.
   As a matter of fact, the vulnerability represented by an arc is not necessarily a security flaw.
Instead, it can result from the use of a feature designed to improve security. For instance, in
Unix, the .rhosts file enables a user to grant most of his privileges to another user without
disclosing his password.
   Figure 1 gives an example of such a privilege graph with arcs being labelled by vulnerability
classes.
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Figure 1 Example of a privilege graph.

3 A PROBABILISTIC APPROACH FOR SECURITY ASSESSMENT

The privilege graph highlights system vulnerabilities which an intruder can take advantage of.

Some of the identified flaws have to be eliminated, however, some others may correspond to
functionalities required by the users. In this situation, the security administrator must enhance
the security of the system whilst preserving, as far as possible, its ease of use. In this sense,



deciding which flaws must be eliminated and which ones can be ignored should be based on the
evaluation of the risks induced by the residual flaws. Hence, it is important to develop a method
which enables to evaluate the impact of residual flaws on operational security.
   In the following, we present an example (the maze analogy) which outlines the main properties
that we believe should be satisfied by the model chosen for security evaluation. Then, we
propose a modeling framework for security evaluation which allows these intuitive properties to
be satisfied.

3.1 The “maze” analogy

The privilege graph can be compared to a maze where the nodes correspond to rooms and each
arc between two nodes corresponds to a door that allows access from one room to another. The
doors are transparent so that one can see the content of the rooms that can be directly accessed
from them. Each door can be opened in a single direction, and once opened it cannot be closed.
The doors are equipped with locks of different qualities: each lock can be characterized by a
parameter which determines the success rate of the breaking process applied to it. One of the
rooms contains a target which may be accessed by an attacker placed in an another room of the
maze. The attacker has no knowledge of the whole topology of the maze and he has to try to
reach the target. However, the attacker knows all the mechanisms that are available to break the
locks. He can apply one mechanism to each lock and wait until the lock is broken. During this
waiting time he can apply other mechanisms to try to open other doors.
   Let us assume that the attacker has two main qualities which characterize any human being:
• Memory: he remembers all the rooms he has already visited and the rooms that can be

accessed from them.
• Common sense: he will not try to break a lock allowing access to a room he has already

visited from another room.

   Different situations are studied hereafter.
   Direct path. Let us suppose that there is only one path leading to the target such that each
room has only one door to get into the following room (direct path). Thus, the difficulty
cumulated by the attacker to reach the target is proportional to the number of doors he has to
open and also to the reliability of each lock he has to break. In this case, the cumulated difficulty
can be estimated by adding the difficulties associated with each lock he has to break.
   Multiple path. Let us assume that there are two direct paths leading to the target.
Undoubtedly, the target is less protected than in the previous case due to the existence of the
second path: the attacker can simultaneously try to break different locks. Then, his rate of
success depends on the failure rates of the locks which are simultaneously addressed.
   Major impact of the shortest path. The shortest path is the one which allows to reach the
target with the lowest cumulated difficulty. It is likely that the least reliable lock will be easier to
break than the others; then, the lowest cumulated difficulty up to the target is mainly given by the
shortest path. However, since the attacker does not know the whole topology of the maze, he
may decide to choose another path if he believes that it will lead him to reach the target. At each
step where different possibilities are offered to him, he has to make a choice. Then, all the paths
have to be considered to estimate the cumulated difficulty up to the target. Intuitively, the
cumulated difficulty will be of the order of magnitude of the shortest path divided by the number
of paths having this value.



  Security evaluation: intuitive properties. The maze analogy allows us to derive some
intuitive properties that should be satisfied by the quantification model to be chosen for security
evaluation based on the privilege graph:
P1: Security increases if the “length of the paths” leading to the target increases.
P2: Security decreases if the “number of paths” leading to the target increases.
P3: Security is mainly affected by the shortest path leading to the target.

3.2 Quantification variables for security assessment

The first step towards security assessment is to define significant variables that can be used to
characterize and evaluate security. As discussed in (Dacier et al., 1995), we believe that “Effort”
and “Time” spent by a potential attacker to reach the security target  are sufficient to
characterize the potential intrusion process. Indeed, some kinds of attacks, for instance Trojan
Horses, require a small amount of effort to be spent by the attacker for their implementation,
however a long period of time may pass before the attack is successful. Other attacks are
complex, but once implemented their effect is immediate. Combinations of both kinds of attacks
are also possible. As a consequence, we have chosen to derive evaluations with respect to both
variables and then to analyse simultaneously the results obtained.
   Two main properties are stated hereafter concerning security evolution with respect to “Time”
and “Effort”; further justifications and examples can be found in (Dacier et al., 1995):
• Security is directly proportional to the time needed by an attacker to succeed in his attack.
• Security is directly proportional to the effort required for the implementation of an attack.

   Estimation of “Time” and “Effort”. As most potential attacks rely on well known breaking
techniques we believe that it is possible for security experts who have a deep knowledge of the
system under study to build a database gathering identified breaking rules and then assign
“Time” and “Effort” values to each attack.
   As regards “Time estimation”, it is noteworthy that the probability for an attack to succeed in
a given period of time mainly depends on the target user profile. Tools are available for statistical
estimation of user profiles based on the analysis of the users behaviour and of their interactions
within the system. These tools have been developed for intrusion detection, for instance IDES
(Lunt et al., 1990) and more recently NIDES (Jagannathan et al., 1993) which can be used in
Unix environments. Then, we can use the statistical profiles provided by such tools in order to
estimate the success rates relative to the attacks identified in the privilege graph, without relying
only on security experts judgement. Moreover, these statistical profiles can be continuously
updated in real-time which allows to observe dynamically the variation of estimated values of the
success rates of the attacks.
   For “Effort” estimation, it is possible to define a measurement scale allowing to order the
different attacks according to the difficulty of implementing them. We propose a 4-level rating
scale as an example, where Level 1 (the lowest level) corresponds to the least difficult attacks
(well known attacks frequently used by intruders in reported detected intrusions), and Level 4
includes sophisticated attacks that require the intruder to be physically close to the target system.
Note that, since our main objective is to define a quantification scale to observe security
evolution, we do not need to have too many levels for ranking attacks. Moreover, having a
reduced number of levels will allow easier interpretation of the security quantification results.



3.3 Intrusion process model

In the previous sections, we have mentioned that security may be affected if at least one path
leading to the specified target exists, i.e., if at least one attack scenario can succeed. Nevertheless,
we didn't clearly explain yet how these scenarios can be identified from the privilege graph. This
is the aim of the following paragraph.

Assumptions
Let us consider the privilege graph given in Figure 2. Each arc in the graph refers to a specific
attack. In order to derive all the scenarios of attacks that might be made by the user “insider”  in
order to reach the user A, we need to make assumptions about the behavior of this potential
intruder. As real data characterizing intruders profiles are not available, we have derived a
minimum set of assumptions which are based on common sense:
A1) A priori, the intruders do not know the whole topology of the privilege graph. They only

know the attacks that can be directly applied in a single step.
A2) The intruders have a good memory. They remember all the sets of privileges they already

acquired during the intrusion process.
A3) The intruders are sensible. They will not attempt an attack which would give them

privileges they already have.

   The last two assumptions are clearly realistic. The first assumption is justified by the fact that
any one who wants to build the whole privilege graph needs all the set of privileges described in
the graph. If the intruder already has these privileges, then he does not need to build the graph!
Finally, we should note that the intrusion process is stopped when the target is reached.
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Figure 2 Example of a privilege graph.

   Let us examine the scenarios of attacks that can be followed by the user “insider” to obtain
user A's set of privileges. At the beginning, he knows that attacks 1 and 2 are possible. Suppose
that he chooses attack 1; at the next step he has the choices between attacks 3 and 2; indeed
based on assumption 2, the intruder remembers that he has the possibility to try attack 2 that he
did not apply at the previous step. If at this step he successfully applies attack 3 then the target is
reached and the intrusion process stops. However, if he tries attack 2 after 1, then he will have
the same set of privileges as if he tried attack 2 followed by 1. At this step, he has the choice
between attacks 4 and 3, etc.

Intrusion process state graph
Figure 3 plots the complete state graph characterizing the intrusion process derived from
Figure 2. To improve the clarity of the figure, Xadmin and insider are respectively referred to as X
and I. States transitions occur when new privileges are obtained. The arcs between states are



labelled by the names of the attacks corresponding to new privileges acquisition. When the
process moves from one state to another one, the set of privileges indicated in the new state
includes all the privileges obtained in the already visited states. Blacked states indicate that the
target has been reached. It can be noticed that depending on the path followed by the intruder,
there are some states in the graph from which some possible transitions have been discarded.
This is due to assumption A3. For instance, from any state BFIP1X (no matter the scenario
leading to it) only attacks 3 and 6 are considered; attack 7 is discarded as it corresponds to the
acquisition of P1 privileges which have already been obtained by the intruder. Note that figure 3
can be simplified by grouping duplicated states. For instance state FIP1   can be reached by
applying the scenarios 1-2 or 2-1.
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Figure 3 Intrusion process state graph summarising the scenarios of potential attacks.

3.4 Mathematical model for security quantification

The last step in our approach concerns the definition of a mathematical model that allows us to
evaluate the mean effort and the mean time to reach the target  (i.e., that takes into account the
identified paths leading to the target). The choice of a mathematical model should undoubtedly
be based on plausible assumptions in order to obtain significant results. Any model is an
approximation of reality, with some unavoidable trade-offs between plausibility and usability.
Our investigations led us to choose a Markovian model which satisfies the following
requirements: 1) the results obtained are consistent with the intuitive properties regarding
security evolution, and 2) the model is mathematically tractable. In the following we briefly
outline some results which support this statement considering the “Time” variable. The same
justifications also apply to the “Effort” variable.
   The Markov model is based on the assumption that the probability to succeed in a given attack
before time t is described by an exponential distribution given by: P(t) = 1- exp(- t). Practical
considerations derived from the use of this distribution are the following:
• The potential intruder will eventually succeed in reaching the target, if a path leading to the

target exists, provided that he spends enough time.
• The rate to succeed in a given attack is constant with respect to time.
• The mean time to succeed in a given attack is given by 1/ .



   The last point is particularly valuable since the knowledge of the attack rates is sufficient to
characterize the whole distribution. These rates can be estimated as discussed in Section 3.2
  Various probabilistic measures can be derived from Markov models, among these, the MTTF
(Mean Time To Failure) which characterizes in our context the mean time for a potential intruder
to reach the specified target. This metric allows easy physical interpretation of the results: the
higher the MTTF the better the security. The analytical expressions that can be derived from the
Markov model are detailed in (Dacier et al., 1995). Moreover, it is proved that the intuitive
properties presented in Section 3 are also satisfied.

4 EVALUATION TOOLS

In order to show the feasibility of our approach, we have developed a prototype integrating a set
of tools allowing the implementation of the different steps of the approach in order to evaluate
the operational security of a Unix system:
1) Building the privilege graph: in a first step, we model the system by building its privilege

graph. We have developed a tool, named ASA for Automatic Security Advisor, to construct
automatically the privilege graph related to a Unix system. So far, ASA is using many
procedures included in the COPS package (Farmer and Spafford, 1990).

2) Definition of the security policy: in this step, the security targets (what must be
protected) and the potential attackers (against whom) are specified. This phase is facilitated
by the use of a graphical language called Mirò (Heydon, 1992).

3) Evaluation phase: the privilege graph is transformed into a Stochastic Petri Net from
which the Markov chain describing the potential intrusion state graph is automatically
derived. Different initial markings are generated. The reachability graph corresponding to
each marking is derived and some security measures are evaluated. The tool used in this step
is SURF2 (Metge et al., 1994) .

4) Presentation of the results: the results are processed according to some selection criteria
in order to be efficiently displayed on the prototype graphical user interface.

5 EXAMPLE

In order to illustrate the kind of results that can be obtained with our approach, let us consider
the example already presented in Section 2. In Figure 4, the thickness of the arcs characterizes
the difficulty of the attacks: the thicker the arc, the easier the attack. In this figure a unit failure
rate corresponds to one success of the corresponding attack per week in average; 0.2
corresponds to one success per month, etc. To characterize very easy attacks we have attributed
to them a very high transition rate value: 5000.
   The users identified in the privilege graph were grouped into different sets according to the
roles assigned to them in the system (see Figure 5). For instance users A and E belong to the
same group “Professor”, additionally A belongs to “Proj1” and E also belongs to “Proj2”.
Each role defines a set of users. We consider that each of these sets defines a specific team of
possible attackers.
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Figure 5 Grouping the users according to their roles in the system.

   Let us assume that we want to protect the privileges owned by A, E and F. These three nodes
are the target nodes, according to our definitions. The MTTF values calculated for each attacker
team and for each of these targets are given in Figure 6 in an increasing order.
   In this example, we make the hypothesis that the people having the same role in the system
trust each other. Therefore, target A, for example, is not supposed to be threatened by any
member of Proj1 and the corresponding MTTF is not displayed in this figure. The same is true
for other roles and targets.
   The lessons learned from Figure 6 are summarized hereafter.
• Considering the three targets together, the most threatening groups are PhD (B, C), PROJ1

(A, B, D, P1) and SYSTEM (F, G). A careful analysis of the graph (Dacier, 1994) shows the
following: B is a member of both groups PROJ1 and PhD; there is an easy path between B
and G; G is a member of SYSTEM which has high privileges. By transitivity, the two other
groups (PROJ1 and PhD) can obtain these high privileges too.



Target A: MTTF Target E: MTTF Target F: MTTF
PhD: 0.980984 PhD: 1.000200 PhD: 0.191057
SYSTEM: 0.983763 SYSTEM: 1.020092 PROJ1 : 0.199734
insider: 1.143936 PROJ1 : 1.200590 insider: 0.305684
STUDENT: 1.176475 insider: 1.314162 PROFESSOR : 0.364364
PROJ2 : 2.983863 STUDENT: 1.400790 STUDENT: 0.399934
PROF2: 2.983863 PROF1: 1.400790 PROF1: 0.399934

PROJ2 : 2.095333
PROF2: 2.095333

Figure 6 MTTF (in # weeks) evaluated for each team of attackers.

• The low value of the MTTF from insider to F (0.305) indicates that the evaluated threat
mainly results from path insider-P1-B-Filter-G-Xadmin-F rather than from insider-F.
However, the presence of this path can be detected since the calculated value is lower than the
MTTF obtained when only the path insider-F is considered (equal to 1).  

• The existence of multiple paths between an intruder and a target have a major impact on
security. For instance, the group PROF2 which contains user E only, can easily obtain user
F privileges (MTTF  2 weeks) while the length of all the paths between E and F is more
than 4 weeks (because all these paths contain either P2-F or P2-G).

   It must be noted that the graph can also be used as a predictive tool. This means that various
alternatives to enhance security can be tested by evaluating the impact of possible modifications
on the security of the system and then selecting the most efficient ones. The results obtained
would help in convincing the users to adopt the proposed modifications. For instance, the
suppression of the facility which introduced the path between B and G, which has been
identified as harmful to the security, would increase the security. Note that, in (Dacier, 1994),
various modifications have been proposed and their consequences on security analyzed.

6 POTENTIAL APPLICATIONS AND CONCLUSION

We are currently working on some enhancements of the prototype in order to allow efficient
application of the approach to real life systems. Various potential applications of the proposed
approach are summarized hereafter.
1) Monitoring of the operational security. Once the security policy defined, each phase of
the evaluation process is completely automated. Therefore, it is possible to run an evaluation
once a day to monitor system security evolution. It is thus possible to identify the causes of
variations, such as the installation of new software or the registration of new users, and
potentially to detect a malicious user, stealing, day after day, new privileges from other users.
2) Simulation and deduction. Security constraints are sometimes conflicting with user
requirements: users ask for widely open systems, ease of use and flexibility while the security
administrator tries to protect sensitive information. Our prototype can help the administrator to
manage this kind of problems: he can evaluate the effectiveness of different possible
modifications of the privilege graph and then get some pragmatic data that should help him to
convince the users of the validity and usefulness of the changes he proposes to the system.
3) Enrichment of the intrusion detection tools. We have already mentioned in Section 3.2
how our model can benefit from statistical profiles generated by intrusion detection tools. From
an other point of view, we think that intrusion detection tools could benefit from our results: they



could be enriched with some functionalities of the privilege graph. For instance, if a potential
intruder is detected, it is possible to evaluate the risk that he represents with respect to the
security constraints and to raise an alarm adapted to the corresponding risk.
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