
Models and Tools for SOA Governance

Patricia Derler1 and Rainer Weinreich2

1 Paris-Lodron University of Salzburg, Austria
2 Johannes Kepler University of Linz, Austria

patricia.derler@sbg.ac.at, rainer.weinreich@jku.at

Abstract. Organizations are moving rapidly towards Service-Oriented
Architectures (SOAs). Benefits include cost reduction through reuse, bet-
ter integration through standardization, and new business opportunities
through agility. The successful implementation of an SOA requires not
only protocols and technologies like SOAP and WSDL but also support
for the processes of creating, validating and managing services in an en-
terprise. Tools for SOA governance and management are evolving to be
the heart of enterprise SOAs. We present an approach for supporting
SOA governance activities. Notable aspects of our approach are an ex-
tensible model for describing service metadata of arbitrary service types
(not only Web services), the concept of service proposals for the process
of service specification and service creation, a service browser for service
reuse, and support for service evolution through information about ser-
vice versioning, service dependencies and service installations.

Keywords: Service-Oriented Architecture (SOA), SOA governance, ser-
vice metadata, service repository, service life cycle.

1 Introduction

Organizations are adopting Service-Oriented Architecture (SOA) as the cen-
tral principle for structuring their enterprise-wide software system architectures.
SOA is both a business strategy and an architectural principle [1]. The busi-
ness strategy aligns the software infrastructure with the business processes of
the organization by modeling business processes as high-level services. From the
architectural viewpoint, SOA is a means of partitioning the functionality of a
software system into reusable and composable software components (services).

The frequently mentioned benefits of an SOA include cost reduction through
cross-organizational reuse of services, agility through alignment with business
processes, new business opportunities through agility, independent development
through separation of concern, better scalability through isolation, and integra-
tion of legacy systems through the additional service layer [4]. The last aspect is
especially attractive, since existing legacy systems can be wrapped and reused
by services instead of being replaced.

Typically, the term SOA goes hand in hand with Web services [5]. Web service
specifications such as SOAP [17], WSDL [18], UDDI [13], the WS-* family [3],

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 112–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Models and Tools for SOA Governance 113

and BPEL [19] are important prerequisites for business to business (B2B) and
enterprise application integration (EAI).

For this reason, the focus of much work in this area has been (and still is)
on Web services and related standards. However, standards for interoperability
are not sufficient for realizing the benefits of SOA. In addition, activities for
creating, validating, deploying and managing services need to be supported.
Therefore, approaches for SOA governance and management are emerging [4].

We present an approach for supporting the specification, reuse, creation, de-
ployment and evolution of enterprise services. The approach is based on an
extensible model for service metadata and includes tools for describing services,
creating service proposals, browsing and searching a service repository, and ana-
lyzing service dependencies. The approach is the result of analyzing the require-
ments of the IT infrastructures of cooperating financial institutions in Austria.

2 Overview

This paper is structured as follows: In Section 3 we describe the organizational
processes and system structure for which we developed our approach; this in-
cludes a description of service-related artifacts and their relationships. In Section
4 we describe the process for identifying, specifying, creating, developing and de-
ploying enterprise services; this section gives an impression of various activities
and roles and presents a typical service life cycle. Section 5 contains an overview
of our model and shows how the requirements and the processes described in the
previous sections are represented in the model. In Section 6 the developed tools
are described along with how selected activities and processes that are impor-
tant in a typical service life cycle are supported. Section 7 contains a discussion
of our approach. In Section 8 we comment on related work. Finally, the paper
concludes with a summary and a description of the main points in Section 9.

3 Organizational Processes and System Structure

The presented models and tools were developed for a particular organization in
the financial domain. The organization provides and manages the IT infrastruc-
ture of financial institutions (banks, insurance companies) and cooperates with
other IT organizations and departments in this domain. For this purpose, the
organization develops and deploys services.

As the following description shows, the system structure and requirements are
generally applicable to many commercial organizations and the example is fairly
typical for the application of a service-oriented approach.

To explain the processes involved in creating, deploying, hosting, and manag-
ing services, we need to elaborate on service development and service operation.

For a number of institutions, the organization develops and deploys appli-
cations and services which it operates in its own computing center. Those ap-
plications and services might use services operated by partner institutions, and
services operated by the organization itself might be used by applications and



114 P. Derler and R. Weinreich

services of partner institutions (B2B integration). In addition, services developed
by the organization might also be operated by partner organizations and vice
versa. This leads to rather complex application and service relationships that
need to be managed. Important questions include the following:

(q1) Which services are available?
(q2) Where is a service deployed?
(q3) Which organization is the service provider?
(q4) Who is responsible for service development and evolution?
(q5) Which other services does a service need?
(q6) Which (external) applications and services depend on a service?

The first question (q1) focuses on service (re)use and is important during ser-
vice specification and development. The questions about service dependencies
(q5 and q6) are especially important for service evolution and release manage-
ment. They help to determine how customers and partners are affected by a new
version and which clients are affected (q3 and q4): a customer who simply uses
a service might need to update his software (depending on compatibility issues);
while a partner who operates a service needs to be informed that a new version
is available (q2).

The system structure of the organization contains typical elements of an SOA.
Business logic and processes are distilled into services that typically integrate
legacy systems. In this context, a huge part of the organization’s business rules
are implemented on a mainframe and can be used via Customer Information
Control System (CICS) [6] transactions, which are encapsulated resource adap-
tors that are used via transaction codes (TRACOS). The mapping from services
to CICS transactions is an important aspect during service definition and design
and is supported by our approach.

From a development and release management perspective, it is interesting
to describe how products are structured and how services are packaged. Prod-
ucts consist of clients and services and are the units of release planning. Service
modules are the units of deployment and versioning. Services are typically imple-
mented using J2EE. Some of the services are published as Web services. Aside
from typical Web service clients using WSDL and SOAP, clients can also be
implemented in Java accessing the services via IIOP; this is typically the case
for Java web clients.

4 Service Life Cycle

This section describes part of a service life cycle, in particular activities and roles
from service identification to deployment. Three roles that participate in the life
cycle are the product manager, the service developer, and the administrator.

The product manager determines customer requirements, specifies a service
for the business logic needed and is responsible for associating the service with
a product. The developer is responsible for implementing the service and de-
cides how the service is structured on a technical level, which might include the



Models and Tools for SOA Governance 115

Fig. 1. Service identification, creation and deployment

assignment of a service to a service module. After the development, a service
enters a multistage testing and release process.

Figure 1 shows the process in more detail. First, the requirements for the new
software are collected by the product manager (1), who organizes the required
functionality into services and clients. During specification, the product manager
checks whether a service with the required functionality already exists. If an
appropriate service is found, this task is complete (3). If no appropriate service
is found, the product manager creates a service proposal and assigns it to an
existing product (2). The product manager might also propose already existing
services that could or must be used for implementing the new functionality.

The created service proposals are forwarded to the development team for
the specified product. The development team decides whether to reject, accept
or modify a proposal (4). If a proposal is accepted (5), the service enters the
development process. The process of service creation can also start with the
service developer creating a service without a service proposal (5). This is usually
the case for general services that are used in multiple products.

After development has started, the service can be assigned to a service module
(6) and details of a service are defined. Examples include contact information,
details of a particular service implementation, the service interface, an informal
description, the planned release date, dependencies on other services or libraries,



116 P. Derler and R. Weinreich

properties, and required resources (7). After the development of the service is
finished and all information about a service is stored, the service can be installed
as part of a service module (8).

A service module is first installed in a test zone by the service administrator. If
the tests are successful, the service module is rolled out to the service operators,
where it is tested with production data in the integration zone.

Finally, the service module and its services are deployed to the production
zone. Since an operator might host services for different customers, a service
module is installed and tested in an integration zone for each customer before it
moves to the production zone.

5 Model

Figures 2-5 show simplified parts of the model for service metadata. The model
consists of eight main areas. The central elements describing proposals, products,
services, service implementations, libraries and policies are depicted in Figure 2.
Elements for describing properties, resources, dependencies and installations can
be found in Figure 3 and Figure 5; Figure 4 shows an example for properties.

Fig. 2. Proposals, Products, Services, and Libraries

Proposals. Proposals can be created for services and clients (ServiceProposal,
ClientProposal) or for the usage of services or libraries (UsageProposal). A pro-
posal contains information about the proposed client, service, or library and
status information that indicates whether the proposal has been accepted, real-
ized or rejected.

Products. A product consists of clients and service modules. A service module
contains one or more services. The version of a service module defines the version



Models and Tools for SOA Governance 117

of all contained services. Different versions of a service are part of different
service modules, which indicates that the service module is the smallest unit
of deployment. If a service needs to be deployed and versioned separately, it
can be packaged into a separate service module. A service module has an owner
attribute that defines the organization responsible for service development and
maintenance. The attribute deactivationDate shows how long the service module
and its services are supported by the service producer. A service element might
have one or more associated tags, which can be used for browsing and searching
services in the repository.

Libraries. The Library element is used to model the relationship of services to
other software artifacts that are not services. Libraries are software components
that are not reusable via a network connection like services; instead, they are
typically bound to the service (or service module) that uses the library. A library
might represent an adapter to an external resource like a CICS transaction. The
LibraryKind defines the properties and resources that are required to define a
specific library. For example, a special instance of a LibraryKind describes CICS
transactions.

Service implementations. The service implementation element describes how
a particular service is implemented. In our case, a service can be implemented
as a Web service, an EJB service or a JMS service. A service can have zero or
more service implementations.

Policies. Policies define the access level and quality of service indicators for an
SOA resource. A user name defines the person, user group or company and a
role indicates the access or quality-of-service level. Policies can be defined on the
level of products, service modules, clients or services.

Properties, resources, and contacts. Services and service implementations
have various properties and resources. For example, a service property could
describe the security mechanism for accessing the service. The documentation
for a service is a typical service related resource while the EJB home interface
of an EJB Service is a resource of the service implementation.

We chose a generic mechanism to store properties and resources of model
classes. The model classes Property and Resource describe kinds of properties
and resources (see Figure 3). Concrete values for properties and resources are
stored in PropertyInstances and ResourceInstances. Properties and resources are
connected to many classes in the model. The attribute datatype for a property

Fig. 3. Properties, Resources and Contacts



118 P. Derler and R. Weinreich

Fig. 4. Property Example

and the attribute resourcetype for a resource enable the validation of resources
and properties. The attributes min occurence and max occurence define how
many instances of a property or resource are required and allowed. Property-

Values define possible values for the property. The contact element is used for
describing persons responsible for specific products, clients and services.

An example for a property is the security mechanism which is used for the
authentication of a service and the authorization of the usage of a service (see
Figure 4). Possible values for the security mechanism are the Username Token
[24] which authenticates the service consumer with a username and optionally
a password to the service provider, the Kerberos Token [25], a generated token
for authentication which is used by Windows, or custom binary security to-
kens. Those security mechanisms are stored as PropertyValues for the Property

security mechanism. To show which security mechanism a service uses, a Proper-
tyInstance with the chosen security mechanism is associated with the service. An
example for a resource is the WSDL-File which is usually part of the description
of a web service. In our example, the CustomerSearchService is implemented as
a web service and this web service (CustomerSearchWebService) is associated
with a resource instance containing a link to the actual WSDL file.

Instances (installations). Service modules and clients can be installed for dif-
ferent customers and operating zones. The operating zone can be test, integra-
tion or production. Installing a service means creating an instance in our model.
Instances are also created for other elements, like clients, service modules, and
service implementations (see Figure 5). Instance elements contain installation-
specific information like the JNDI name of an EJB service.

The status of a service is derived from the installation location of the service
module. If the service module is installed in a test zone, the service status changes
to test ; if the module is installed in the production zone, the status changes to
production; if a new version of an existing service is created, the status of the
old version is changed to deprecated.



Models and Tools for SOA Governance 119

Fig. 5. Dependencies and Instances

Dependencies. Services can be used by other services and by clients. A De-

pendency is defined between two elements where one element is used by another
one; one element provides information, the other one consumes this information
(see Figure 5). On a more detailed level, dependencies can be defined for service
implementations; on a less detailed level, dependencies can be defined for service
modules. The model imposes no restrictions on the direction of the dependen-
cies and allows incorrect dependencies such as a service using a client. Currently,
such constraints have to be checked at the application level.

6 Tools

We provide two main tools, the Service Repository Console and the Service
Browser, that are based on the model described in Section 5 and support the
life cycle activities described in Section 4. Both tools were implemented on the
basis of the Eclipse platform. This means that they can be used as standalone
applications but can also be integrated into a software development environment.

The Service Repository Console is used for creating service proposals and
service descriptions, for specifying service relationships, and for defining service
installations. The Service Repository Console is depicted in Figure 6. The tool
offers multiple views showing service proposals, services and service installations.
The main area (see (2) in Figure 6) shows detailed information about the element
selected in a view and can also be used for editing the element.

The Service Browser can be used for searching and browsing the service repos-
itory and for investigating service details, service relationships and service status.
The browser, shown in Figure 7, offers a view for browsing products and ser-
vices, a search view for searching services according to various criteria, a view
for browsing the structure of a particular product, and a view for browsing
client-to-service and service-to-service dependencies.

In the following, we illustrate the usage of the tools in the service life cycle
presented in Section 4.



120 P. Derler and R. Weinreich

Fig. 6. Service Repository Console

Fig. 7. Service Browser

The process is typically started by the product manager, who is responsible
for defining a product and for determining product requirements, product de-
velopment and other product related tasks through the complete product life
cycle. The product manager can define products, clients and services using the



Models and Tools for SOA Governance 121

repository console, specify new services and new clients, and propose their real-
ization by creating service and client proposals (see (1) in Figure 6). The product
manager can also define dependencies on existing services and thus propose the
services that should or might be used by the new service. The icons of the
displayed service proposals show whether the proposal is a client or a service
proposal and whether it has been processed, accepted or rejected. The product
manager can create a proposal from an existing, similar service or client. This
activity is supported by the repository console. To find appropriate services, the
product manager can use the service browser depicted in Figure 7. He can also
use the service browser to study the existing services and their dependencies in
more detail.

The proposals and their states can be viewed by the development team. If
the team decides to implement a service, they must create a new service entity
in the repository. Services can be created from a proposal or directly without
a proposal. Services without proposals are typically created if the product has
been restructured or if internal services are needed. If a service is created on
the basis of a service proposal, the state of the proposal is automatically set to
accepted. The proposal already contains suggested elements and dependencies
on the new service. This information is automatically transferred to the service
metadata and can be modified and extended by the service developer. At this
stage, the service is already part of the repository and assumes the state de-

velopment. Using this feature, other product managers and developers can keep
track of planned services and release dates. The developer can also define service
modules as the units of versioning and deployment and assign services to service
modules, as shown in (2) in Figure 6. During development, the metadata of a
service is continually extended. In particular, the actual dependencies, proper-
ties and resources of the chosen service implementation are provided. If a service
is completely described, it can be released for installation in the test zone.

The Service Repository Console is also used for managing information about
service installations (see (3) in Figure 6). The installations are organized by
products and show the installed service modules along with version, location
(operator), and installation zone. Installations can also be queried using the
Service Browser. Together with the information about service dependencies, this
information can be used to check which clients and services are affected when
updating a service or when releasing a new version of a service.

7 Discussion and Further Work

We decided to create a very generic model. Properties and resources are stored as
instances of the Property and Resource model elements; this facilitates adding
and removing properties and resources without changing the model; only the
data must be changed. Dependencies have also been modeled in a generic way.
Dependencies can exist pairwise between services, clients, service modules and
service implementations. The advantage of this approach is flexibility. The draw-
back is that certain constraints are not enforced by the model; for example,



122 P. Derler and R. Weinreich

incorrect dependencies, such as a service using a client, must be prevented by
the tools. Other approaches would be to specify such constraints using the Ob-
ject Constraint Language (OCL) [20] in the model or to split the model into a
metamodel and a model. Classes like Property and Resource could be elements
of the metamodel and the concrete instances of a property such as the security
mechanism could be elements of the model (i.e., the metamodel instance). This
would lead to a richer but also heavier and more complex model with the advan-
tage that more semantic information would be expressed in the model and the
disadvantage that the model must be changed when data changes or new prop-
erties are needed. In our approach, all special model elements and constraints
were implemented by the tools on the basis of the generic model.

Currently, the tools provide support for various activities in a service life cycle.
For example: Services can be specified with service proposals; service proposals
can be accepted or rejected; services can be added to products; dependencies on
other services can be described and analyzed; services can be installed only if they
are completely described. This means that the tools provide passive support for
service governance activities by providing and validating useful information and
by offering context-dependent functionality for the various roles and activities.
The tools currently provide no active support for modeling a specific process or
notifying specific users in case of process- or state-specific events. The latter could
be realized through a notification mechanism (publish/subscribe) that informs
users in case of changes. Additional useful and partly necessary enhancements
include role-based authentication and authorization.

Since the tools are implemented as plug-ins, they can be integrated in an
Eclipse-based workplace or development environment. Additional integration
with development tools would be desirable. For instance, deployment information
could be generated out of service metadata and parts of the service metadata
(e.g., the class name of a service implementation) could be derived automatically
from the development environment.

In Section 3, we posed 6 important questions that need to be answered for a
successful SOA implementation. In the following, we outline how these questions
are answered by our approach. Available services (q1) are described in the service
element of the model and the Service Repository Console and the Service Browser
offer lists with filter and grouping options to browse those services. The Instance

concept of the model describes deployed services (q2) and attributes of those
service instances hold information about the location of a service. The Service
Repository Console provides a view containing a list of deployed services for
each product. The person responsible for service development and evolution
(q4) is described in the owner attribute of the service module element in the
model. This information can be viewed and edited in the Service Repository
Console. Dependencies between internal and external services and applications
(q5 and q6) are modeled by the Dependency concept of the model. The Service
Repository Console offers a list of services, dependent services and clients and
required services. The Service Browser provides a graphical representation of the
dependencies. The role of a service in a relationship (q3) is modeled in the role



Models and Tools for SOA Governance 123

attribute in the Dependency concept. When creating a dependency between two
elements in the Service Repository Console, this role attribute must be defined.

8 Related Work

Web Service Distributed Management (WSDM) [11] by OASIS comprises two
sets of specifications: management using Web services (MUWS) and manage-
ment of Web services (MOWS). The first specification addresses the use of Web
services as the foundation of a distributed management framework [21]. The use
of Web services for creating a governance or management infrastructure is not
the focus of our approach. The second WSDM specification, MOWS, concen-
trates on managing Web services themselves, which usually means controlling
and monitoring Web services as resources. This also differs from our approach,
since we focus on controlling and governing the process of establishing a service-
oriented architecture, which includes the process of developing a service, but not
controlling the service itself. In fact, a service management approach is com-
plimentary to governing service life cycle activities and might provide valuable
information for governance activities. Both approaches are needed to successfully
install an SOA governance framework.

The Common Information Model (CIM) [12] by the Distributed Management
Task Force (DMTF) describes managed elements across an enterprise, includ-
ing systems, networks and applications [21]. CIM contains a metamodel and
generically managed object classes. The purpose of CIM is to integrate different
management approaches and to allow the exchange of management information
between systems throughout the network. DMTF does not intend to support the
reuse of services and the governance of service life cycle activities.

The MNM Service Model [9][10] is a reference model for service management.
The model is intended to describe a typical service life cycle. The life cycle phases
described include design, negotiation, provisioning, usage and deinstallation. The
model includes typical roles participating in the service life cycle, such as user,
customer and client. It also identifies typical interactions and life cycle activities,
such as contract management, problem management, security management, us-
age, customer care and change management. The interactions and activities are
not described in detail, however; their refinement is stated as an open research
issue. The MNM Service Model is intended to provide a conceptual model for
describing the relationship of artifacts, roles and activities in the service life cy-
cle. It can be used to analyze service-oriented solutions and architectures and
as a conceptual model for implementing governance and management processes.
It is not intended for storing actual service-related information or as a basis for
governance and management tools.

UDDI [13] is a specification for (Web) service registries. It provides a stan-
dardized API for publishing and discovering services and defines registry entries.
UDDI supports especially Web services through tModel registry entries. UDDI
can be used to implement private and public registries. A public registry is a
global directory for business services and is intended to support global service



124 P. Derler and R. Weinreich

reuse. A private registry supports service reuse within one organization and the
establishment of business-to-business transactions with selected partners. The
main goal of UDDI is service advertisement and discovery. Its primary aim is
not governance of service life cycle aspects such as service definition, implemen-
tation and evolution, though it could be used to store certain information for
such activities. Contrary to service repositories described below, a UDDI reg-
istry stores only information that is needed for service (re)use, not for service
development and maintenance.

Manolescu and Lublinsky [14] describe service repositories as a solution for the
problem of finding service information and for supporting design, implementa-
tion, testing and reuse of services. They identify roles using the repository, such
as service developer, service designer, architects and infrastructure specialists.
The repository is intended to support the inception, design, implementation,
deployment, enhancements, versions and discovery of services with the goal of
reuse. Dependency management, versioning and change notification are men-
tioned as functionalities that should be supported by a service repository. This
is an indication that service repositories are seen as a central element for SOA
governance and reuse.

A number of commercial registries/repositories exist. Most of them are based
on UDDI, some on ebXML. Examples include Systinet 2 [7], Centrasite [8] by
Software AG, X-Registry by Infravio [16] and the SUN Service Registry by
SUN Microsystems [23]. The functionality typically provided by such commercial
approaches includes service discovery, dependency management, change notifi-
cation, authentication and identity management, policy management, and fed-
eration with other repositories. In some areas the functionality clearly exceeds
the functionality provided by our approach, including features such as security
(authentication) and change notification. Some features are similar, like support
for service description, service discovery and dependency management. Some
registries like the Sun Service Registry support phased deployment to differ-
ent zones, which is also supported by our approach. Some products support
additional features such as impact analysis and support for tracking and analyz-
ing processes. Competing standards for repository interoperability are emerg-
ing. Examples include the Governance Interoperability Framework (GIF) [2]
and SOALink [22]. Noteworthy features of our approach are support for product
management, versioning and evolution, IDE and workplace integration, a rich
user interface, different kinds of services, and implicit state tracking of services.
The last feature implicitly derives the life cycle status of a service (development,
test, active, deprecated, etc.) from the metadata provided. The status of a ser-
vice cannot be changed if not the all elements of required information have been
provided to advance the service to the next state in the life cycle.

9 Conclusion

We have presented an approach for supporting service reuse and service life cycle
activities. The approach is based on a generic model for describing SOA artifacts



Models and Tools for SOA Governance 125

in the various stages of the service life cycle. The model contains elements for
describing client and service proposals initiated by the product manager. These
proposals are eventually transformed to client and service descriptions and in-
stances. The model also contains elements for products and service modules,
which are used for representing the units of product management and the units
of versioning and deployment, respectively. Two tools are presented that use a
service repository that is based on the model presented. The Service Repository
Console is used for creating service proposals and service descriptions, for spec-
ifying service relationships, and for defining service installations. The Service
Browser is used for searching and browsing the service repository and for inves-
tigating service details, service relationships and service status. The tools can be
used for service reuse and for coordinating and governing the activities of prod-
uct managers, developers and administrators. Together the repository and the
tools represent an important step towards SOA governance and management.

Acknowledgments. The presented approach was developed as part of a joint
project of the Software Competence Center Hagenberg (SCCH) and the GRZ-IT
Center Linz. Both authors were members of the SCCH project team. We wish to
thank Hermann Lischka, Thomas Kriechbaum and Johannes Mayr from the GRZ
IT Center Linz and Thomas Ziebermayr from the SCCH for their cooperation
and support.

References

1. Borges, B., Holley, K., Arsanjani, A.: Service-Oriented Architecture. WebServices
Journal 4(9) (2004)

2. Systinet: Governance Interoperability Framework (2006), Retrieved June 29, 2006,
from http://www.systinet.com/products/gif/overview

3. Motahari Nezhad, H.R., Benatallah, B., Casati, F., Toumani, F.: Web service in-
teroperability specifications. IEEE Computer 39(5), 24–32 (2006)

4. McGovern, J., Ambler, S.W., Stevens, M., Linn, J., Sharan, V., Jo, E.K.: A Practi-
cal Guide to Enterprise Architecture. Prentice Hall PTR, Englewood Cliffs (2003)

5. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

6. IBM: Customer Information Control System (2006), Retrieved June 26, 2006, from
http://www-306.ibm.com/software/htp/cics/

7. Systinet: Systinet 2 Overview. (2006), Retrieved June 26, 2006, from
http://www.systinet.com/products/systinet 2

8. Software AG: Software AG brings governance to SOA (2006), Retrieved June 26,
2006, from
http://www.softwareag.com/Corporate/Solutions/soa governance/

default.asp

9. Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., Schmidt, H.,
Hegering, H.-G., Langer, M., Nerb, M.: Towards Generic Mananagement Concepts:
a Service Model Based Approach. In: 7th IEEE/IFIP Symposium on Integrated
Network Management, Seattel, Washington, USA (2001)

http://www.systinet.com/products/gif/overview
http://www-306.ibm.com/software/htp/cics/
http://www.systinet.com/products/systinet_2
http://www.softwareag.com/Corporate/Solutions/soa_governance/default.asp
http://www.softwareag.com/Corporate/Solutions/soa_governance/default.asp


126 P. Derler and R. Weinreich

10. Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., Schmidt, H.:
The MNM Service Model - Refined Views on Generic Service Management. Journal
of Communications and Networks 3(4) (2001)

11. OASIS: OASIS Web Service Distributed Management (WSDM) (2006), Retrieved
June 26, 2006, from http://www.oasis-open.org/

12. DTMF: Common Information Model (CIM) Standards (2006), Retrieved June 26,
2006, from http://www.dmtf.org/standards/cim/

13. OASIS: OASIS Universal Description, Discovery and Integration (2006), Retrieved
June 26, 2006, from http://www.uddi.org/

14. Manolescu, D., Lublinsky, B.: SOA Enterprise Patterns - Services, Orchestration
and Beyond (DRAFT). To by published by Morgan-Kaufman Publishers in 2007
(2006), Retrieved 29, 2006, from http://orchestrationpatterns.com/

15. Brauer, B., Kline, S.: SOA Governance: A Key Ingredient of the Adaptive Enter-
prise. HP & Systinet White Paper (2005), Retrieved June 20, 2006, from
http://www.systinet.com/resources/white papers/

16. Infravio: X-Registry Platform Overview (2006), Retrieved June 26, 2006, from
http://www.infravio.com/products/

17. W3C: SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation 24
June 2003 (2006), Retrieved June 28, 2006, from
http://www.w3.org/TR/soap12-part1/

18. W3C: Web Services Description Language (WSDL) 1.1. W3C Note 15 March
2001(2006), Retrieved June 28, 2006, from http://www.w3.org/TR/wsdl/

19. OASIS: Web Services Business Process Execution Language, Version 2.0. Commit-
tee Draft, 17th May, 2006 (2006), Retrieved June 28, 2006 from
http://www.oasis-open.org/

20. OMG: Object Constraint Language (2006), Retrieved June 28, 2006, from
www.omg.org/docs/ptc/05-06-06.pdf

21. Papazoglou, M.P., van den Heuvel, W.-J.: Web Services Management: A Survey.
IEEE Internet Computing (2005), (November/December 2005)

22. Soa Link Organization: SoaLink (2006) Retrieved June 29, 2006, from
http://www.soalink.com/

23. Sun Microsystems: Effective SOA Deployment using an SOA Registry Repository,
A Practical Guide (2005), Retrieved June 29, 2006, from
http://www.sun.com/products/soa/registry/

24. OASIS: Web Services Security Username Token Profile 1.1. OASIS Standard
Specification, 1st February, 2006 (2006), Retrieved October 28, 2006, from
http://www.oasis-open.org/committees/download.php/16782/

wss-v1.1-spec-os-UsernameTokenProfile.pdf

25. OASIS: Web Services Security Kerberos Token Profile 1.1. OASIS Standard
Specification, 1st February, 2006 (2006), Retrieved October 28, 2006, from
http://www.oasis-open.org/committees/download.php/16788/

wss-v1.1-spec-os-KerberosTokenProfile.pdf

http://www.oasis-open.org/
http://www.dmtf.org/standards/cim/
http://www.uddi.org/
http://orchestrationpatterns.com/
http://www.systinet.com/resources/white_papers/
http://www.infravio.com/products/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl/
http://www.oasis-open.org/
www.omg.org/docs/ptc/05-06-06.pdf
http://www.soalink.com/
http://www.sun.com/products/soa/registry/
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf

	Introduction
	Overview
	Organizational Processes and System Structure
	Service Life Cycle
	Model
	Tools
	Discussion and Further Work
	Related Work
	Conclusion

