
Models for Advancing PRAM and Other Algorithms into Parallel

Programs for a PRAM-On-Chip Platform ∗

Uzi Vishkin George C. Caragea Bryant Lee

April 2006

University of Maryland, College Park, MD 20740

UMIACS-TR 2006-21

Justin Rattner, CTO, Intel, Electronic News, March 13, 2006: “It is better for Intel to get
involved in this now so when we get to the point of having 10s and 100s of cores we will have the
answers. There is a lot of architecture work to do to release the potential, and we will not bring
these products to market until we have good solutions to the programming problem.” [underline
added]

Abstract

A bold vision that guided this work is as follows: (i) a parallel algorithms and programming course
could become a standard course in every undergraduate computer science program, and (ii) this course
could be coupled with a so-called PRAM-On-Chip architecture — a commodity high-end multi-core
computer architecture. In fact, the current paper is a tutorial on how to convert PRAM algorithms into
efficient PRAM-On-Chip programs. Coupled with a text on PRAM algorithms as well as an available
PRAM-On-Chip tool-chain, comprising a compiler and a simulator, the paper provides the missing link for
upgrading a standard theoretical PRAM algorithms class to a parallel algorithms and programming class.
Having demonstrated that such a course could cover similar programming projects and material to what
is covered by a typical first serial algorithms and programming course, the paper suggests that parallel
programming in the emerging multi-core era does not need to be more difficult than serial programming.
If true, a powerful answer to the so-called parallel programming open problem is being provided. This
open problem is currently the main stumbling block for the industry in getting the upcoming generation
of multi-core architectures to improve single task completion time using easy-to-program application
programmer interfaces. Known constraints of this open problem, such as backwards compatibility on
serial code, are also addressed by the overall approach.

More concretely, a widely used methodology for advancing parallel algorithmic thinking into par-
allel algorithms is revisited, and is extended into a methodology for advancing parallel algorithms to
PRAM-On-Chip programs. A performance cost model for the PRAM-On-Chip is also presented. It
uses as complexity metrics the length of sequence of round trips to memory (LSRTM) and queuing de-
lay (QD) from memory access queues, in addition to standard PRAM computation costs. Highlighting
the importance of LSRTM in determining performance is another contribution of the paper. Finally,
some alternatives to PRAM algorithms, which, on one hand, are easier-to-think, but, on the other hand,
suppress more architecture details, are also discussed.

1 Introduction

Parallel programming is currently a difficult task. Current methods tend to be coarse-grained and use either
a shared memory or a message passing model. These methods often require the programmer to think in a
way that takes into account details of memory layout or architectural implementation. It has been a common

∗Partially supported by NSF grant 0325393

1

sentiment that the development of an easy way for parallel programming would be a major breakthrough;
see, e.g., Culler and Singh [CS99].

Indeed, to date the outreach of parallel computing has fallen short of historical expectations. Overall,
there is a strong renewed interest in inventing new programming languages that accommodate simple repre-
sentation of concurrency. However, during the previous decades thousands of papers have been written on
this topic. This effort brought about a fierce debate between a considerable number of schools-of-thoughts.
One of these approaches, the “PRAM approach”, emerged as a clear winner in this “battle of ideas”. In fact,
we would like to defend an even stronger premise: “Had a parallel architecture that can look to the perfor-
mance programmer like a PRAM been feasible in the early 1990s, its parallel programming approach would
have become common knowledge and the prevailing standard by now”. As evidence to support this premise
we point out that 3 of the main algorithms textbooks (taught in standard undergraduate computer science
courses everywhere by 1990) [Baa88, CLR90, Man89] chose to include large chapters on PRAM algorithms.
The PRAM was the model of choice for parallel algorithms in all major algorithms/theory communities and
was taught everywhere. The only reason that this win did not register in the collective memory as the clear
and decisive victory it really is that, at about the same time (early 1990s), it became clear that it will not
be possible to build such a machine (i.e., one that can look to the performance programmer as a PRAM)
using early 1990s technology.

The Parallel Random Access Model (PRAM) is an easy model for parallel algorithmic thinking and for
programming. It abstracts away architecture details by assuming that many memory accesses to a shared
memory can be satisfied within the same time as a single access. As noted above, the PRAM was developed
during the 1980s and 1990s in anticipation of a parallel programmability challenge. It provides the second
largest algorithmic knowledge base right next to the standard serial knowledge base.

With the continuing increase of silicon capacity, it becomes possible to build a single-chip parallel
processor. Such demonstration has been the purpose of the Explicit Multi-Threading (XMT) project
[VDBN98, NNTV03] that seeks to prototype a PRAM-On-Chip vision, as on-chip interconnection networks
provide enough bandwidth for connecting processors-to-memories.

Thread-level parallelism (TLP) allows multiple threads of execution to proceed concurrently. There is a
long record of compiler efforts for parallelizing serial code. Two representatives include [AALT95, ACK87].
While there have been some success stories, it is now recognized that automatic parallelization by compilers
is generally insufficient.

The PRAM-On-Chip platform, to be discussed later in the current paper, is quite broad. The current
paper will focus on a thread-level parallelism (TLP) approach for programming it. However, instead of using
operating system threads, as in most current systems, threads are defined by the programming language
and handled by its implementation. Also, threads are short and the overall objective for multi-threading is
reducing single-task completion time.

Several multi-chip multiprocessor architectures targeted implementation of PRAM algorithms, or came
close to that: (i) The NYU Ultracomputer project sought to approximate the PRAM [AG94], viewing the
PRAM as providing theoretical yardstick for limits of parallelism as opposed to a practical programming
model [Sch80]. (ii) The Tera/Cray Multi-threaded Architecture (MTA) advanced Burton Smith’s 1978 HEP
novel hardware design. Seeking to hide latencies to memory ([SCB+98]) each processor has sufficiently
many (128 was a typical number) hardware threads that can context switch quickly. The paper [BCF05]
suggests that MTA is close to a PRAM and may allow more efficient implementation of algorithms with
irregular memory access such as those from graph theory. Some authors have stated that an MTA with
large number of processors looks almost like a PRAM [CFS99]. (iii) The SB-PRAM may be the first multi-
chip multiprocessor architecture whose declared objective was to provide emulation of the PRAM [KKT00].
It allows writing computer programs that are similar to the original PRAM algorithms. A 64-processor
prototype has been built [DKP02]. (iv) Although a language rather than an architecture, NESL also made
a contribution to implementing PRAM algorithms by making the algorithms easier to express using the
NESL functional language [Ble96]. NESL programs are compiled and run on standard multi-chip parallel
architectures. However, the fact remains that the PRAM theory has generally not reached out beyond the
ivory towers of academia. For example, the jury is still out on whether the PRAM can provide an effective
abstraction for a proper design of a multi-chip multi-processors. The main difficulty [CS99] appears to be
the limits on the bandwidth of such a multi-chip architecture.

2

More of the case for a lower hanging fruit, PRAM-On-Chip, is presented next. Guided by the fact that
the number of transistors on a chip already exceeds one Billion, up from less than 30,000 circa 1980, and
keeps growing, the main insight behind PRAM-On-Chip is as follows. The Billion transistor chip era allows
for the first time a low-overhead on-chip multi-processor thereby avoiding concerns regarding the higher
overhead of multi-chip multiprocessors. It also allows an evolutionary path from serial computing. The
drastic recent slow down in clock rate improvement for commodity processors will force vendors to seek
single task performance improvements through parallelism. While some have already noted likely growth to
100-core chips by 2015, they are yet to choose programming languages and architectures toward harnessing
these enormous hardware resources toward single task completion time. PRAM-On-Chip addresses these
issue.

Some key differences between the PRAM-On-Chip and the above multi-chip approaches are: (i) its larger
bandwidth, benefiting from the on-chip environment; (ii) lower latencies to shared memory, since an on-chip
approach allows on-chip shared caches; (iii) effective support for serial code; this may be needed for backward
compatibility for serial programs, or for serial sections in PRAM-like programs; (iv) effective support for
parallel execution where the amount of parallelism is low; certain algorithms (e.g., breadth first-search (BFS)
on graphs presented later) have particularly simple parallel algorithms; some are only a minor variation of
the serial algorithm; since they may not offer sufficient parallelism for some multi-chip architectures, such
important algorithms had no merit for these architectures; and (v) PRAM-On-Chip introduced a so-called
Independence of Order Semantics (IOS), that is each thread executes at its own pace and any ordering of
interactions among threads is valid. If more than one thread may seek to write to the same shared variable
this would be in line with the PRAM “arbitrary CRCW” convention (see section 2.1). This feature improves
performance as it allows processing with whatever data is available at the processing elements and saves
power as it reduces synchronization needs. The feature could have been added to multi-chip approaches
providing some, but apparently not all the benefits.

Other PRAM-related approaches tended to emphasize competition with (massively parallel) parallel
computing approaches and have not paid that much attention to serial code, serial mode in a parallel
program, or even parallel execution where the amount of parallelism is low.

The approach could also support standard application programming interfaces (APIs) such as those
used for graphics (e.g. OpenGL) or circuit design (e.g. VHDL). Use of high-level APIs can allow automatic
extraction of much more parallelism than from code written for performance programming languages such as
C. With an effective implementation of such an API for a PRAM-On-Chip (see figure 17.b), an application
programmer could take advantage of parallel hardware with few or no changes to an existing API. See
[GV06] for a recent example of speedups exceeding a hundred fold over serial computing for gate-level
VHDL simulations on PRAM-On-Chip.

The main contribution of this paper is presenting a programming methodology for converting PRAM
algorithms to PRAM-on-chip programs. An overview of some alternatives to PRAM algorithms, which are
easier-to-think, but, on the other hand, suppress more architecture details, are also discussed. Performance
models used in developing a PRAM-On-Chip algorithm are described in section 2. An example of using the
models is given in section 3. Section 4 explains compiler optimizations that could affect the actual execution
of programs. Section 5 gives another example for applying the models to the prefix sums problem. Section
6 presents Breadth-First Search (BFS) in the PRAM-On-Chip Programming Model. Section 7 explains
the application of compiler optimizations to BFS and compares performance of several BFS implementa-
tions. Section 8 discusses the Adaptive Bitonic Sorting algorithm and its implementation while section 9
introduces a variant of Sample Sorting that runs on a PRAM-On-Chip. Section 10 discusses matrix-vector
multiplication. Some empirical validation of the models is presented in section 11. We conclude in section
12.

2 Model descriptions

Given a problem, a “recipe” for developing an efficient PRAM-on-chip program from concept to implemen-
tation is proposed. In particular, the stages through which such development needs to pass are presented.

Figure 1 depicts the proposed methodology. For context, the figure also depicts the widely used Work-

3

1

design
Algorithm

Problem

High−level Work−Depth
Description

to PRAM" methodology

proposed "parallel thinking
to PRAM−on−chip program" methodology

original "parallel thinking

Legend:

PRAM−on−chip programmers
proposed shortcut for

"How to think in parallel"

Sequence of steps

Each step: Set of concurrent

Work−Depth Model

2

Scheduling
Lemma

3

Allocate/schedule processors

No. of parallel steps

PRAM Model

5

PRAM−on−chip
Execution Model

With nesting

PRAM−on−chip
Programming Model

Without nesting4

Informal Work/Depth complexity

operations

Sequence of steps

Work/Depth complexity

Each step: Sequence of p concurrent
operations

Each step: Sequence of concurrent
operations

Language−based Performance

Program in High−Level Language Program in Low−Level Language

Programmer

Compiler
Machine Level

Run−time Performance

Figure 1: Proposed Methodology for Developing PRAM-On-Chip Programs in view of the Work-Depth
Paradigm for Developing PRAM algorithms.

Depth methodology for advancing from concept to a PRAM algorithm; namely, the sequence of models
1 → 2 → 3 in the figure illustrates progression from a high-level description to a PRAM algorithm. For
developing a PRAM-on-chip implementation, we propose following the sequence of models 1 → 2 → 4 → 5:
given a specific problem, an algorithm design stage will produce a High-Level description of the parallel
algorithm; this informal description is fleshed out as a sequence of steps each comprising a set of concurrent
operations. In a first draft, the set of concurrent operations can be implicitly defined. See the BFS example in
Section 2.2.1. This first draft is refined to a sequence of steps each comprising now a sequence of concurrent
operations. Such formal Work-Depth description fully spells out how to advance in a given step, whose
sequence of concurrent operations include j operations indexed by integers from 1 to j, from each index
i where 1 ≤ i ≤ j, to an operation. The programming effort amounts to translating this description into
a single-program multiple-data (SPMD) program using a high-level PRAM-on-chip programming language.
From this SPMD program, a compiler will transform and reorganize the code to achieve the best performance
in the target PRAM-on-chip execution model. As a PRAM-on-chip programmer gains experience, he/she
will be able to skip box 2 (the Work-Depth model) and directly advance from box 1 (high-Level Work-Depth
description) to box 4 (high-level PRAM-on-chip program). We also demonstrate some instances where it
may be advantageous to skip box 2 because of some features of the programming model (such as some ability
to handle nesting of parallelism). In Figure 1 this shortcut is depicted by the arrow 1 → 4. Much of the
current paper is devoted to presenting the methodology and demonstrating it. We start with elaborating on
each model.

2.1 PRAM Model

PRAM (for Parallel Random Access Machine, or Model) augments the standard serial model of computation,
known as RAM [AU94], with parallelism. A PRAM consists of p synchronous processors and a global
shared memory accessible in unit time from each of the processors. The only mean of inter-processor
communication is through the shared memory. Different conventions exist regarding concurrent access to the
memory, including: (i) exclusive-read exclusive-write (EREW) under which simultaneous access to the same
memory location for read or write purposes are forbidden, (ii) concurrent-read exclusive-write (CREW),
which allows concurrent reads but not writes, and (iii) concurrent-read concurrent-write (CRCW) where
both are permitted, and a convention regarding how concurrent writes are resolved is specified. One of these
conventions, Arbitrary CRCW, stipulates that concurrent writes into a common memory location result in
an arbitrary processor, among those attempting to write, succeeding, but it is not known in advance which

4

processor.
The are quite a few sources for PRAM algorithms including [JáJ92, KR90, EG88, Vis02]. An algorithm

in the PRAM model is described as a sequence of parallel time units, or rounds; each round consists of
exactly p instructions to be performed concurrently, one per each processor. Producing such a description
imposes a significant burden on the algorithm designer. Luckily this burden can be somewhat mitigated
using the Work-Depth methodology.

2.2 The Work-Depth Methodology

Introduced in [SV82], the Work-Depth methodology for designing PRAM algorithms has proved to be quite
useful as a framework for describing parallel algorithms and reasoning about their performance. For example,
it was used as the description framework in [JáJ92]. The methodology is guided by seeking to optimize two
quantities in a parallel algorithm: depth and work. Depth represents the number of steps the algorithm would
take if unlimited parallel hardware was available, while work is the total number of operations performed,
over all parallel steps.

The methodology suggests starting by producing an informal description of the algorithm in a high-level
work-depth model (HLWD), and then advancing this description into a fuller presentation in a model of
computation called Work-Depth. We proceed to describe these two models next.

2.2.1 High-Level Work-Depth Description

A HLWD description consists of a succession of parallel rounds, each round being a set of any number
of instructions to be performed concurrently. Descriptions can come in several flavors, and even implicit
descriptions, where the number of instructions is not obvious, are acceptable.

Example: Given is an undirected graph G(V, E), where the length of every edge in E is 1, and a source
node s ∈ V ; the breadth-first search (BFS) algorithm finds the lengths of the shortest paths from s to every
node in V . An informal work-depth description of the parallel BFS algorithm can look as follows. Suppose
that V , the set of vertices of the graph G, is partitioned into layers, where layer Li includes all vertices of V
whose shortest path from s includes exactly i edges. The algorithm works in iterations. In iteration i, layer
Li is found. Iteration 0: node s forms layer L0. Iteration i, i > 0: Assume inductively that layer Li−1 has
already been found. In parallel, consider all the edges (u, v) that have an endpoint u in layer Li−1; if v is
not in a layer Lj, j < i, it must be in layer Li. As more than one edge may lead from a vertex in layer Li−1

to v, vertex v is marked as belonging to layer Li by one of these edges using the arbitrary concurrent write
convention. This ends an informal, high-level work-depth verbal description.

A pseudocode description of an iteration of this algorithm could look as follows:

f o r a l l v e r t i c e s v in L(i) pardo
f o r a l l edges e=(v ,w) pardo

i f w unv i s i t e d
mark w as part o f L(i +1)

The above HLWD descriptions challenge us to try to find an efficient PRAM implementation for an iteration.
Namely, given a p-processor PRAM how to allocate processors to tasks to finish all operations of an iterations
as quickly as possible? As noted earlier, a more detailed description in the Work-Depth model would address
these issues.

2.2.2 Work-Depth Model

In the Work-Depth model the description is to be cast in terms of successive time steps, where the concurrent
operations in a time step form a sequence; each element in the sequence is indexed by a different index between
1 and the number of operations in the step. The Work-Depth model is formally equivalent to the PRAM. For
example, a work-depth algorithm with T (n) depth (or time) and W (n) work runs on a p processor PRAM in

at most T (n) + ⌊W (n)
p ⌋ time steps. The simple equivalence proof follows Brent’s scheduling principle, which

5

was introduced in [Bre74] for a model of parallel model of computation that was much more abstract than
the PRAM (counting arithmetic operations, but suppressing anything else).

Example (continued): We only note here the challenge for coming up with a Work-Depth description
for the BFS algorithm. The challenge would be to find a way for listing in a single sequence all the edges
that have as an endpoint a vertex of layer Li. In other words, the Work-Depth model does not allow us
to leave nesting of parallelism unresolved. On the other hand PRAM-On-Chip programming should allow
nesting since this mechanism provides an easy way for parallel programming. It is also important to note
that the PRAM-on-chip architectures includes some limited support for nesting of parallelism. The way
in which we suggest to resolve this problem is as follows. The ideal long term solution is: (a) allow the
programmer free unlimited use of nesting, (b) have it implemented as efficiently as possible by compiler, and
(c) make the programmer (especially the “performance programmer”) be fully aware of the cost of using
nesting. However, since our compiler is not yet mature enough to handle this matter, our tentative short
term solution is presented in Section 6, which shows how to build on the support for nesting provided by the
architecture. There is merit to this “manual solution” beyond its tentative role till the compiler matures. It
should still need to be taught (even after the ideal compiler solution is in place) in order to explain the cost
of nesting to programmers.

The reason for bringing this issue up this early in the discussion is that it actually suggests that our
methodology does not necessarily need to make a “complete stop” at the Work-Depth model, but can
perhaps detour it and proceed directly to the PRAM-like programming methodology.

2.3 PRAM-on-chip Programming Model

The PRAM-on-chip programming model is a framework for a high-level programming language. It can
be used to implement an algorithm described in the Work-Depth presentation model, but as noted before
it also offers shortcuts from higher-level descriptions. The overall objective of the programming model
is to mitigate two goals: (i) Programmability: given an algorithm in HLWD or Work-Depth model, the
programmer’s effort should be minimized; and (ii) Implementability: effective compiler translation into the
PRAM-on-chip execution model should be feasible.

A fine-grained, SPMD type model, in which execution frequently alternates between serial and parallel
execution mode, is presented. As illustrated in Figure 2, a Spawn command prompts a switch from serial
mode to parallel mode. The Spawn command can specify any number of threads. Ideally, each such thread
can proceed until termination (a Join command) without ever having to busy-wait or synchronize with other
threads. To facilitate that, an independence of order semantics (IOS) was introduced: the programmer can
use commands (e.g., “prefix-sum”) that permit threads to proceed even if they try to write into the same
memory location. This was inspired by the PRAM arbitrary concurrent-write convention noted earlier.

The following are some of the primitives in the PRAM-on-chip programming model:

Spawn Instruction. Used to start a parallel section. Accepts as parameter the number of parallel threads
to start.

Thread-id. A special variable name used inside a parallel section, which evaluates to the thread ID. This
allows SPMD style programming.

Prefix-sum Instruction. The prefix-sum instruction defines an atomic operation. Operating on two vari-
ables, a base variable B and an increment variable R, the result of a prefix-sum is that B gets the
value B + R, while R gets the original value of B. Some interesting uses of the prefix-sum instruction
are when several concurrent threads use it with respect to the same base. It provides a tool for imple-
menting IOS as well as for inter-thread coordination. While, the basic definition of prefix-sum follows
the fetch-and-add of the NYU-Ultracomputer [GGK+82], PRAM-on-Chip uses a fast parallel hardware
implementation (ps()) if R is from a small range (e.g., one bit) and B can fit one of a small number
of global registers; otherwise, prefix-sums are done using a prefix-sum-to-memory (psm()) instruction
and are resolved by queuing to memory.

Nested parallelism. A parallel thread can be programmed to initiate more threads. However, as noted
in Section 2.2.2 this comes with some (tentative) restrictions and cost caveats, due to compiler and

6

Spawn Join Spawn Join

Figure 2: Switching between serial and parallel execution modes in the PRAM-on-chip programming model.
Each parallel thread executes at its own speed, without ever needing to synchronize with another thread

hardware support issues. As illustrated with the Breadth-First search example, nesting of parallelism
could improve the programmer’s ability to describe an algorithms in a clear and concise way. Nesting
is discussed in several places in the current paper, including section 4.1.

Note that Figure 1 depicts two alternative PRAM-On-Chip programming models: without nesting and
with nesting. The Work-Depth model maps directly into the programming model without nesting. Allowing
nesting could make it easier to turn a description in the High-Level Work-Depth model into a program.

Since our current embodiment of PRAM-On-Chip is called XMT, for eXplicit Multi-Threading, we
call the illustration of this programming model XMTC. XMTC is a superset of the language C, obtained
from it by adding structures for the above primitives.

Examples of XMTC code Several examples of actual implementations of PRAM algorithms using
XMTC are presented in figure 3. While each of these programs is discussed in greater detail in the fol-
lowing sections, the purpose of the table was to convey to readers familiar with other parallel programming
frameworks the relative conciseness of these programs. Some language constructs, such as variable and func-
tion declarations, have been left out in this table, but they need to be included in a valid XMTC program.

Next, the language features of XMTC are demonstrated using the array compaction problem, presented
in figure 3.a: given an array of integers T [0..n− 1], copy all its non-zero elements into another array S; any
order will do. The special variable $ denotes the thread-id. The command spawn(0,n-1) spawns n threads
whose id’s are the integers in the range 0 . . . n − 1. The ps(increment,length) instruction executes an
atomic prefix-sum command using length as the base and increment as the increment value. The variable
increment is local to a thread while length is a global variable which will hold the number of non-zero
elements copied at the end of the spawn block. Variables declared inside a spawn() block are local for each
thread, and are usually much faster to access than the shared memory. 1

To evaluate performance in this model, a Language-Based Performance Model is used: performance costs
are assigned to each primitive instruction in the language and rules are specified for combining them into
expressions. Such performance modeling was used by Aho and Ullman [AU94] and was generalized for
parallelism by Blelloch [Ble96]. The paper [DV00] used language-based modeling for studying parallel list
ranking relative to an earlier performance model for XMT.

2.4 PRAM-on-chip Execution Model

The execution model depends heavily on particulars of the PRAM-on-chip implementation. For illustration
purposes, we will use the XMT PRAM-on-chip platform (see [NNTV03]).

A bird eye’s view of XMT is presented in Figure 4. A number of (say 1024) Thread Control Units (TCUs)
are grouped into (say 64) clusters. Clusters are connected to the memory subsystem by a high-throughput,
low-latency interconnection network; they also interface with specialized units such as prefix-sum unit and
global registers. A hash function is applied to memory addresses in order to provide better load balancing
at the shared memory modules. An important component of a cluster is the read-only cache included at
cluster level; this is used to store values read from memory by a TCU and also holds the values read by
prefetch instructions. The memory system consists of memory modules each having several levels of cache

1On XMT, local thread variables are typically stored into local registers of the executing hardware thread control unit
(TCU). The programmer is encouraged to use local variables to store frequently used values This type of optimizations can also
be performed by an optimizing compiler.

7

(a) Array compaction
l ength = 0;
spawn (0 , n−1) { // s t a r t one thread per array e lement

in t increment = 1;
i f (T[$] != 0) {

// execute p r e f i x−sum to a l l o c a t e one entry in array S
ps (increment , l ength) ;
S [increment] = T[$] ;

}
}
(b) k-ary Tree Summation
/∗ Input : N numbers in sum [0 . .N−1] ∗
∗ Output : The sum o f the numbers in sum [0] ∗
∗ The sum array i s a 1D complete t r e e r ep r e s en ta t i on (See Summation s e c t i o n) ∗/

l e v e l = 0;
whi l e (l e v e l < l o g k (N)) { / / p roc e s s l e v e l s o f t r e e from l e ave s to root

l e v e l ++;
spawn (c u r r e n t l e v e l s t a r t i n d e x , c u r r e n t l e v e l en d i nd e x) {

i n t count , loca l sum =0;
f o r (count = 0 ; count < k ; count++)

temp sum += sum [k ∗ $ + count + 1] ;
sum [$] = loca l sum ;

}
}
(c) k-ary Tree Prefix-Sums
/∗ Input : N numbers in sum [0 . .N−1] ∗
∗ Output : the p r e f i x−sums o f the numbers in ∗
∗ pre f ix sum [o f f s e t t o 1 s t l e a f . . o f f s e t t o 1 s t l e a f+N−1] ∗
∗ The pre f ix sum array i s a 1D complete t r e e r ep r e s en ta t i on (See Summation) ∗/

kary tree summation (sum) ; / / run k−ary t r e e summation a lgor i thm
pre f ix sum [0] = 0 ; l e v e l = l og k (N) ;
wh i l e (l e v e l > 0) { // a l l l e v e l s from root to l e ave s

spawn (c u r r e n t l e v e l s t a r t i n d e x , c u r r e n t l e v e l en d i nd e x) {
i n t count , l o c a l p s = pre f ix sum [$] ;
f o r (count = 0 ; count < k ; count++) {

pre f ix sum [k∗$ + count + 1] = l o c a l p s ;
l o c a l p s += sum [k∗$ + count + 1] ; }

}
l e v e l −−;

}
(d) Breadth-First Search
/∗ Input : Graph G=(E,V) us ing adjacency l i s t s (See Programming BFS s e c t i o n) ∗
∗ Output : d i s t anc e [N] − d i s t anc e from s t a r t ve rtex f o r each vertex ∗
∗ Uses : l e v e l [L] [N] − s e t s o f v e r t i c e s at each BFS l e v e l . ∗/

// run p r e f i x sums on degree s to determine po s i t i o n o f s t a r t edge f o r each vertex
s ta r t ed g e = kary p r e f i x sums (degree s) ;
l e v e l [0]= s ta r t node ; i =0;
whi l e (l e v e l [i] not empty) {

spawn (0 , l e v e l s i z e [i] − 1) { // s t a r t one thread f o r each vertex in l e v e l [i]
v = l e v e l [i] [$] ; / / read one vertex
spawn (0 , degree [v] −1) { // s t a r t one thread f o r each edge o f each vertex

in t w = edges [s t a r t edg e [v]+$] [2] ; / / read one edge (v ,w)
psm(gatekeeper [w] , 1) ; / / check the gatekeeper o f the end−vertex w
i f gakeeper [w] was 0 {

psm(l e v e l s i z e [i +1] ,1) ;// a l l o c a t e one entry in l e v e l [i +1]
s t o r e w in l e v e l [i +1] ; }

}
}
i++;

}
(e) Sparse Matrix - Dense Vector Multiplication
/∗ Input : Vector b [n] , spa r s e matrix A[m] [n] g iven in Compact Sparse Row form , ∗
∗ as in f i g u r e 1 2 ∗
∗ Output : Vector c [m] = A∗b ∗/

spawn (0 ,m) { // s t a r t one thread f o r each row in A
in t row sta r t=row [$] , e l ements on row = row [$+1]− r ow sta r t ;
spawn (0 , e lements on row −1) {// s t a r t one thread f o r each non−ze ro e lement on row

// compute A[i] [j] ∗ b [j] f o r a l l non−ze ro e lements on current row
tmpsum[$]= values [r ow sta r t+$]∗b [columns [r ow sta r t+$]] ;

}
c [$] = kary tree summation (tmpsum [0 . . e l t s on row −1]) ; / / sum up

}

Figure 3: Implementation of some PRAM algorithms in the XMT PRAM-on-chip framework to demonstrate
compactness.

8

Figure 4: An overview of the XMT PRAM-on-chip Architecture.

memories. In general each logical memory address can reside in only one memory module, alleviating cache
coherence problems. This explains why only read-only caches are used at the clusters. The Master TCU
runs serial code, or the serial mode for XMT. When it hits a Spawn command it initiates a parallel mode
by broadcasting the same SPMD parallel code segment to all the TCUs. As each TCU captures its copy,
it executes it is based on a thread-id assigned to it. A separate distributed hardware system, reported
in [NNTV03] but not shown in figure 4, ensures that all the thread id’s mandated by the current Spawn
command are allocated to the TCUs. A sufficient part of this allocation is done dynamically to ensure that
no TCU needs to execute more than one thread id, once another TCU is already idle.

A program in the high-level PRAM-on-chip Programming model needs to be translated by an optimizing
compiler in order to take advantage of features of the architecture. A program in the Execution model could
include prefetch instructions, as well as broadcast instructions, where some values needed by all, or nearly
all TCUs, are broadcasted to all. More advanced optimizations such as combining shorter virtual threads
into a longer thread (a mechanism called “thread clustering”), are also considered at this optimization stage.
If the programming model allows nested parallelism, the compiler will use the mechanisms supported by
the architecture to implement or emulate it. Compiler optimizations and issues such as nesting and thread
clustering are discussed in section 4.

To evaluate the performance of a program in this model, we use an extension of the notions of work and
depth to include measurements appropriate for an execution model, and then proceed to give a formula for
estimating execution time based on them.

The depth of an application in the PRAM-on-chip Execution model must include the following three
quantities: (i) Computation Depth, given by the number of operations that have to be performed sequentially,
either by a thread or while in serial mode. (ii) Length of Sequence of Round-Trips to Memory (or LSRTM)
which represents the number of cycles on the critical path spent by execution units waiting for data from
memory. A read request from a TCU usually causes a round-trip to memory (or RTM); memory writes
in general proceed without acknowledgment, thus not being counted as round-trips, but ending a parallel
section implies one RTM used to flush all the data still in the interconnection network to the memory. (iii)
Queuing delay (or QD) which is caused by concurrent requests to the same memory location; the response
time is proportional to the size of the queue.

The prefix-sum ps() primitive is supported by a special hardware unit that combines ps() calls from
multiple threads into a single multi-operand prefix-sum operation. In one thread, a ps() instruction causes
one RTM and 0 queuing delay.

In addition, a prefix-sum to memory (psm()) instruction is supported. Its syntax is similar to the ps()

9

instruction except the base variable is a memory location instead of a global register. This instruction is
executed by queued updates to the memory location rather than by special hardware, due to the difficulty in
creating multi-operand hardware that would operate on arbitrary memory locations. The psm() command
costs 1 RTM and additionally has a queuing delay equal to the number of threads calling psm() on the same
location.

We can now define the PRAM-on-chip “execution depth” and “execution time”. PRAM-On-Chip Execu-
tion Depth represents the time spent on the “critical path” (that is, the time assuming unlimited amount of
hardware) and is the sum of the PRAM computation depth, LSRTM, and QD on the critical path. Assuming
that a round-trip to memory takes R cycles:

Execution Depth = Computation Depth + LSRTM ×R + QD (1)

Sometimes more Work (the total number of instructions executed) can be executed in parallel than
what the hardware can handle concurrently. For the additional time spent executing operations outside the
critical path (i.e. beyond the Execution depth), the work of each parallel section needs to be considered
separately. Suppose that one such parallel section could employ in parallel up to pi TCUs. Let Worki =
pi ∗ComputationDepthi be the total computation work of parallel section i. If our architecture has p TCUs
and pi < p, we will be able to use only pi of them, while if pi ≥ p, only p TCUs can be used to start
the threads, and the remaining pi − p threads will be allocated to TCUs as they become available; each
concurrent allocation of p threads to p TCUs is charged as one RTM to the Execution Time, as denoted by
relation 2. The total time spent executing instructions outside the critical path over all parallel sections is
given in relation 3.

ThreadStartOverheadi =

⌈

pi − p

p

⌉

×R (2)

Additional Work =
∑

spawn block i

(

Worki

min(p, pi)
+ ThreadStartOverheadi

)

(3)

Adding up, the execution time of the entire program is:

Execution T ime = Execution Depth + Additional Work (4)

2.5 Clarifications of the modeling

Our model of performance attempts to distill the major factors affecting runtime specifically for the PRAM-
On-Chip platform. The performance modeling for PRAM-On-Chip has the advantage of being close to the
Work-Depth algorithmic framework, with additional accounting for memory costs using the LSRTM and
QD.

First, we would like to present a somewhat subtle point: Following the path from the HLWD model
to the PRAM-ON-Chip models in Figure 1 may be important not only for the purpose of developing a
PRAM-On-Chip program, but also for optimizing performance. Note that bandwidth is not accounted
for in the PRAM-On-Chip performance modeling, since a PRAM-On-Chip architecture should be able to
provide sufficient bandwidth for an efficient algorithm in the Work-Depth model. In other words, the only
way in which our modeling accounts for bandwidth is indirect: by first screening an algorithm through the
Work-Depth performance modeling, where we account for work.

Let us examine what could happen if PRAM-On-Chip performance modeling is not coupled with Work-
Time performance modeling. The program could include excessive speculative prefetching to supposedly
improve performance (reduce LSRTM). The subtle point is that the extra prefetches add to the overall work
count. In other words, accounting for them in the Work-Depth model prevents this “loophole”.

It is also important to recognize that the model abstracts away some significant details. The PRAM-
On-Chip hardware has a limited number of memory modules, and if multiple requests attempt to access the
same module, queuing will occur. Although the model accounts for queuing to the same memory location,
it does not account for queuing that may occur for accesses to different locations (in the same module).
However, hashing memory addresses among modules lessens problems that would occur for accesses with

10

high spatial locality and generally mitigates this type of “hot spots”. If functional units within a cluster are
shared between the TCUs, threads can be delayed while waiting for functional units to become available.
The model does also not account for these delays.

To some limited extent, the effect of these approximations on running times can be observed from the
experimental results in section 11, where a comparison with simulations is presented.

Similar to some serial performance modeling, the above modeling assumes that data is found in the
(shared) caches. This allows proper comparison to serial computing where data is found in the cache, as
the number of clocks to reach the cache for PRAM-On-Chip is assumed to be significantly higher than in
serial computing; for example, our prototype XMT architecture suggests values that range between 6 and
24 cycles for a round-trip to the first level of cache, depending on the characteristics of the interconnection
network and its load level; we took the conservative approach to use the value R = 24 cycles for one RTM
for the rest of this paper. We note that the number of clocks to access main memory should be about the
same as for serial computing and also that both for serial computing and for PRAM-On-Chip large caches
can be built. However, this modeling is inappropriate if PRAM-On-Chip is to be compared to Cray MTA
where no shared caches are used: for the MTA the number of clocks to access main memory is important
and it will not be appropriate not to include this figure for cache misses on PRAM-On-Chip, as well.

Note that some of the computation work is counted twice in our Execution Time, once as part of the
critical path under Execution Depth and once in the Additional Work factor. We could further refine our
analysis and propose a more accurate model, but with much more involved modeling. For the sake of clarity,
we made the choice to stop at the level of detail that allows for a concise presentation while providing relevant
results.

Other researchers that worked on performance modeling of parallel algorithms have typically focused on
different factors than those we have identified here. The reason is they dealt with other platforms. Helman
and JáJá [HJ99] measured the complexity of algorithms running on SMPs using the triplet of maximum num-
ber of non-contiguous accesses by any processor to main memory, number of barrier synchronizations, and
local computation cost. However, these quantities are less important in a PRAM-like environment. Bader,
Cong, and Feo [BCF05] found that in some experiments on the Cray MTA, the costs of non-contiguous mem-
ory access and barrier synchronization were reduced almost to zero by multithreading and that performance
was best modeled by computation alone. For the latest generation of the MTA architecture, researchers have
developed a calculator for performance that includes the parameters of count of trips to memory, number of
instructions, and number of accesses to local memory [FHKK05]. Our measures are still different because
the RTMs that we count are round trips to the shared cache, and we also count queuing at the shared cache.
In addition, we consider the effect of optimizations such as prefetch and thread clustering. Nevertheless, the
calculator should provide an interesting basis for comparison between performance of applications on MTA
and PRAM-On-Chip.

3 An Example for Using the Methodology: Summation

Consider the problem of computing the sum of n numbers. Given as input an array A of size n the output
provides the sum of its values. Developing a parallel program for this simple problem is presented next as
an example for the methodology of the previous section. Progressing through the models is presented. A
High-Level Work-Depth description of the algorithm is presented in figure 5.a. A non-recursive Work-Depth
presentation of this algorithm can be derived from it, as presented in figure 5.b.

In the WD algorithm, we use an unidimensional array to store all the elements of the tree, as shown in
figure 6. For the more general case of a complete k-ary tree, we store the root at element 0, followed by the
k elements of the first level, listed from left to right, then the k2 elements of second level etc. The array is
densely packed, with no gaps, thus (a) the children of node i are at indices k ∗ i + 1, k ∗ i + 2, . . . , k ∗ i + k
and (b) the parent of node i is at index ⌊ i−1

k ⌋. Note that this simple relationship between a node and its
children is helpful for improving performance.

We now proceed to express this algorithm in the PRAM-On-Chip Programming Model. Note that
the WD algorithm uses a balanced-binary tree approach, by repeatedly adding in parallel pairs of values.
Alternatively, k values can be summed serially; this constitutes a k-ary tree approach. The k-ary tree is

11

SUM(A, n)
I f n = 1 then sum = A[1] ; e x i t
For 1 <= i <= n / 2 pardo

B[i] = A[2 i − 1] + A[2 i]
Ca l l SUM(B, n/2)

For 1 <= i <= n pardo // B i s a 1D array
B[n−1 + i] = A[i] / / model o f a t r e e

For h = logn to 1 do
For 2ˆ (h−1) <= i < 2ˆh pardo

B[i] = B[2 i − 1] + B[2 i]
sum = B[1]

(a) (b)

Figure 5: The Summation Algorithm. (a) A High-Level Work Depth presentation. Pairs of values of A are
summed up and stored into array B, followed by a recursive call on array B. (b) A Work-Depth description

0

1 2

4 5 6 7

3 1 2 3 4 5 6 70

Figure 6: The array representation of a complete ternary tree. The array is densely packed, with the root
coming first, then the elements at level 1, and then the elements at level 2.

shorter when k > 2, having ⌈logkn⌉ instead of ⌈log2n⌉ levels; this reduces the number of iterations at the
cost of increased iteration complexity. The optimum k is chosen as the value that minimizes the estimated
running time in the performance model for a particular N . The k-ary tree is represented as a 1D array in the
complete tree representation, similar to the Work-Depth description. The PRAM-on-chip implementation
of this algorithm is presented in figure 3.b using the XMTC programming language.

We will consider the performance of the algorithm in the PRAM-On-Chip Execution Model in Section
4.4 after describing compiler optimizations.

4 Compiler Optimizations

Given a program in the PRAM-On-Chip Programming Model, an optimizing compiler can perform various
transformations on it to better fit the target PRAM-On-Chip Execution Model and reduce execution time.
We describe several possible optimizations and demonstrate their effect using the Summation algorithm
described above.

4.1 Nested Parallel Sections

Quite a few PRAM algorithms can be expressed with greater clarity and conciseness when nested parallelism
is allowed [Ble96]. For this reason, nesting parallel sections with arbitrary numbers of threads needs to be
allowed in the PRAM-On-Chip Programming Model. However, hardware implementation of nesting is not
free, and the programmer needs to be aware of the implementation overheads. In order to explain a key
implementation problem we need to review the hardware mechanism that allocates code threads to the p
physical TCUs. Consider an SMPD parallel code section that starts with a spawn(1,n) command, and each
of the n threads ends with a join command without any nested spawns. As noted before, the Master TCU
broadcasts the parallel code section to all p TCUs. In addition it broadcasts the number n to all TCUs.
TCU i, 1 ≤ i ≤ p, will check whether i > n, and if not it will execute thread i; once TCU i hits a join,
it will execute a special “system” ps() command with an increment of 1 relative to a counter that includes
the number of threads started so far; denote the result it gets back by j; if j > n TCU i is done, and if not
it will execute thread j; this process is repeated each time a TCU hits a join until all TCUs are done, when
a transition back into serial mode occurs.

Allowing nesting of spawn() commands would require: (i) Upgrading this thread allocation mechanism.
First, the number n representing the total number of threads will be repeatedly updated and broadcast to

12

the TCUs. (ii) Since a TCU gets just an integer result through the system ps() command, more information
is needed to link this integer to a new thread that needs to execute. In addition, we need to facilitate a way
for the parent (spawning) thread to forward initialization data to a child (spawned) thread.

In our prototype XMT PRAM-On-Chip Programming Model, we allow nested spawns of a small fixed
number of threads through the single-spawn and k-spawn instructions; sspawn() starts one single additional
thread while kspawn() starts exactly k threads, where k is a small constant (such as 2 or 4). Each of these
instructions causes a delay of one RTM before the parent can proceed, and an additional delay of 1-2 RTMs
before the child thread can proceed (or actually get started). Suppose that a parent thread wants to create
another thread whose virtual thread number (as referenced from the SPMD code) is v. First, the parent
uses a prefix-sum instruction to a global thread-counter register to create a unique thread ID i for the child.
The parent then enters the value v in A(i), where A is a specially designated array in memory. As a result of
executing an sspawn (or a kspawn command, see below) by the parent thread: (i) n will be incremented, and
at some point in the future (ii) the thread allocation mechanism will generate virtual thread i. The program
for thread i starts with reading v through A(i). It then can be programmed to use v as its “effective” thread
ID.

An algorithm that could benefit from nested spawns is the BFS algorithm. Each iteration of the algorithm
takes as input Li−1 the vertices whose distance from starting vertex s is i − 1 and outputs Li. As noted in
section 2.2, a simple way to do this is to spawn one thread for each vertex in Li−1, and have each thread
spawn as many threads as the number of its edges, one per edge.

In the BFS example, the parent thread needs to pass information, such as which edge to traverse, to child
threads. To pass data to the child, the parent writes data in memory at locations indexed by the child’s ID,
using non-blocking writes (namely, the parent sends out a write request, and can proceed immediately to its
next instruction without waiting for any confirmation regarding write has request). Since it is possible that
the child tries to read this data before it is available, it should be possible to recognize that the data is not
yet there and wait until the data is committed to memory. One possible solution for that is described in the
next paragraph. The kspawn instruction uses a prefix-sum instruction with increment k to get k thread IDs
and proceeds similarly; the delays on the parent and children threads are similar, though a few additional
cycles being required for the parent to initialize the data for all k children.

When starting threads using single-spawn or k-spawn, a synchronization step between the parent and the
child is necessary to ensure the proper initialization of the latter. Since we would rather not use a “busy-wait”
synchronization technique that could overload the interconnection network and waste power, our envisioned
PRAM-on-chip architecture would include a special primitive, called sleep-waiting: the memory system holds
the read request from the child thread until the data is actually committed by the parent thread, and only
then satisfies the request.

When advancing from the programming to the execution model, a compiler can automatically transform
a nested spawn of n threads, and n can be any number, into a recursive application of single-spawns (or k-
spawns). The recursive application divides much of the task of spawning n thread among the newly spawned
threads. When a thread starts a new child, it assigns to it half (or 1

k+1 for k-spawn) of the n− 1 remaining
threads that need to be spawned. This process proceeds in a recursive manner.

4.2 Clustering

The PRAM-On-Chip Programming Model allows spawning an arbitrary number of virtual threads, but
the architecture has only a limited number of TCUs to run these threads. In the progression from the
Programming Model to the Execution Model, we often need to make a choice between two options. The first
option is to spawn fewer threads each doing more computation, while the second one is to run the shorter
threads as is. Combining short threads into a longer thread is called clustering and offers several advantages:
(a) we can pipeline memory accesses that had previously been in separate threads; this can reduce extra
costs from serialization of RTMs and QDs that are not on the critical path; (b) spawning fewer threads
means reducing thread allocation overheads, i.e. the time required to start a new thread on a recently freed
TCU; (c) each spawned thread (even those that are waiting for a TCU) usually takes up space in the system
memory, to store the local data for the thread. If the code provides fewer threads than the hardware can
support, there are fewer advantages if any to using fewer longer threads. Also, running fewer, longer threads

13

+

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

serial sum serial sum serial sum serial sum

++

Figure 7: The sums algorithm with thread clustering.

can adversely affect the automatic load balancing mechanism. Thus, as discussed below, the granularity of
the clustering is an issue that needs to be addressed.

In some cases, clustering can be used to group the work of several threads and execute this work using
a serial algorithm. For example, in the Summation algorithm the elements of the input array are placed in
the leaves of a k-ary tree, and the algorithm climbs the tree computing for each node the sum of its children.
However, we can instead start with an embarrassingly parallel algorithm in which we spawn p threads that
each serially sum N

p elements and then the parallel summation algorithm is applied to the p sums. See figure
7.

With such switch to a serial algorithm, clustering is nothing more than a special case of the accelerating
cascades technique [CV86]. For applying accelerating cascades, two algorithms that solve the same problem
are used. One of the algorithms is slower than the other, but requires less work. If the slower algorithm
progresses in iterations where each iteration reduces the size of the problem considered, the two algorithms
can be assembled into a single algorithm for the original problem as follows: 1. start with the slower
algorithm and 2. switch to the faster one once the input size is below some threshold. This often leads to
faster execution.

When clustering is used an important question is to find the optimal crossover point between the slow
(e.g., serial) and faster algorithms. As pointed out in the literature, accelerating cascades can be generalized
to situations where more than two algorithms exist for the problem at hand.

A compiler should eventually be able to do the clustering automatically, though our current compiler
does not yet does that. When the number of threads is known statically (i.e., where there are no nested
spawns), clustering is simpler. However, even with nested spawns, our limited experience is that methods of
clustering tend not to be too difficult to implement. Both cases are described below.

Clustering without Nested Spawns Suppose we want to spawn N threads, where N ≫ p. Instead
of spawning each as a separate thread, we could trivially spawn only c threads, where c is a function of the
number of TCUs, and have each complete N

c threads in a serial manner. Sometimes an alternative serial
algorithm can replace the N/c threads.

Clustering for single-spawn and k-spawn In the hardware, updates regarding the number of current
virtual threads (either running or waiting) are broadcasted to TCUs as this number is updated. Assuming
some system threshold, each running thread can determine whether the number of (virtual) threads scheduled
to run is within a certain range. When a single-spawn is encountered, if below the threshold, the single-
spawn is executed; otherwise, the thread enters a temporary suspension mode and continues execution of
the original thread; the thread will complete its own work and can also serially do the work of the threads
it has suspended. However, the suspension decision can be revoked once the number of threads falls below a
threshold. If that occurs, then a new thread is single-spawned. Often, half the remaining work is delegated
to the new thread. Clustering with k-spawn is similar.

Using clustering, the number of running threads can be controlled. The best number of threads to run is
not necessarily p, the number of TCUs. If several threads complete at the same time and, a gap in parallel
hardware usage can occur, and it might take time to reach p running threads again. This can be avoided
by having a threshold larger than p. One optimization is to run shorter threads as execution progresses
toward completion of the parallel section. This will avoid a situation where all TCUs have already finished
but one long thread is still running [NNTV03]. When using the method of clustering mentioned above using
single-spawns and k-spawn, threads automatically become shorter as progress is made.

14

with no work

logpN Levels

Leaves

p

N−min(p,N−1)−1

K−1

with C work each

Nodes

Figure 8: The logp N levels of the tree closest to the root have Work
min(p,pi)

= C (where C is the cost per node)

because the parallel hardware is not saturated. The number of internal nodes at other levels is multiplied
by C, then divided by p. The leaves do not need to be counted for work analysis.

4.3 Prefetching

Special data prefetch instructions can be used to issue read requests for data values before they are needed;
this can prevent long waits due to memory and interconnection network latencies. Prefetched values are
stored in read-only buffers at the cluster level. Based on our experiments with different applications, the
interconnection network between TCUs and memory is expected to be powerful enough to serve all read
requests but perhaps not all prefetch requests. In particular, this suggests avoiding speculative prefetches.

Advanced prefetch capabilities are supported by modern serial compilers and architectures, and the
parallel domain is adopting them as well. Prefetching has been demonstrated to improve performance on
SMPs [TKS+05, GBIV01]. Pai and Adve [PA01] advocate both grouping read misses and using prefetch.
Our approach builds on these results, using thread clustering to group large numbers of read requests, and
possibly prefetching them as well. Grouping read requests allows overlapping memory latencies.

4.4 Example: Analysis of Summation Algorithm

We analyze the Summation algorithm in the PRAM-On-Chip Execution Model. The computation advances
by climbing (from leaves toward the root) a balanced k-ary tree. The algorithm has 2 RTMs for each level of
the tree, one to read sum from a node’s children (done in 1 RTM by prefetching all values) and one caused
by the join command. As the basic algorithm fits an EREW PRAM, there is no queuing.

In addition to RTMs, the computation depth is O(logk N) because a logarithmic depth tree is used.
Counting constants factors on our own XMTC implementation yields the (3k + 9) logk N + 2k + 33 portion
of the execution depth term below. We have computed the computation per node to be C = 3k + 2. The

Σ Work
min(p,pi)

term has a 2N
p component to copy data to the leaves of the tree and a C∗(N−min(p,N−1)−1)/(k−1)

p +

C ∗ logk(p) component, which is the cost to advance up the tree. This is derived by using the geometric
series to count the number of internal nodes in the tree (because each internal node is touched by one
thread), multiplying this by computation per node, and dividing by p. A level with less than p nodes has

Work
min(p,pi)

= (C×pi)
pi

= C. See figure 8.

The overhead to start additional threads for oversaturated cases is computed similarly.

Execution Depth = (2 logk N + 1) ×R + (3k + 9) logk N + 2k + 33 (5)

Additional Work =
2N + (3k + 2)(N − min(p, N − 1) − 1)/(k − 1)

p
+

+(3k + 2) logk p +

15

+

⌈

(N − min(p, N − 1) − 1)/(k − 1)

p
− logk

N

p

⌉

×R (6)

Clustering can be applied to the summation algorithm as summation allows switching to a serial algorithm
when there is excess parallelism. The clustering algorithm starts off with an embarrassingly parallel algorithm
and combines results at the end with the parallel summation algorithm, as follows:

1 . Let c be a constant . Spawn c threads that run the
s e r i a l summation a lgor i thm on a cont iguous sub−ar ray
o f n/c va lue s from the input ar ray . Each thread wr i t e s
the sum i t computed in to an array B.

2 . Ca l l the p a r a l l e l sums a lgor i thm on the ar ray B.

We now consider how clustering changes the execution time. c is the number of threads spawned in the
embarrassingly parallel section of the algorithm. SerSum(N) denotes the time for serial summation and
ParSum(N) the time of the parallel summation algorithm. The serial algorithm loops over N elements and,
by using prefetching to always have the next value available before it is used, we derived that SerSum(N) =
2N + 1×R. The execution time consists of first performing the serial algorithm on a set of N − c elements
(because it requires N − c pairwise additions to sum c groups of N/c elements) divided evenly among p
processors and then the parallel step. Namely,

Execution T ime = SerSum(
N − c

p
) + ParSum(c) (7)

The value of c, where p ≤ c ≤ N , that minimizes the execution time determines the best crossover point
for clustering. Suppose p = 1024. To allow numerical comparison, we need to assign a value to R, the
number of cycles in one RTM. As noted in section 2.5, for the prototype XMT architecture this value is
upper bounded by 24 cycles under the assumption that the data is already in the on-chip cache and there is
no queuing in the interconnection network or memory.

We found, not surprisingly, that for many (if not all) values N ≥ p, the best c is 1024. Since clustering
allows each thread to run a very efficient serial summation algorithm, the dry analysis implies the maximum
possible clustering was the best (hence c = 1024).

The optimum value for k can be determined by minimizing execution time for a fixed N . For N ≥ p
(where p = 1024), the parallel summation algorithm is only run on c = 1024 elements and in this case we
found that k = 8 is optimal.

5 Prefix-Sums

Prefix-sums is a basic routine underlying many parallel algorithms. Given an array A[0..n− 1] as input, let

prefix sum[j] =
∑j−1

i=0 A[i] for j between 1 and n and prefix sum[0] = 0. Two prefix-sum implementation
approaches are presented and compared: The first algorithm considered is closely tied to the synchronous
(“textbook”) PRAM prefix-sums algorithm while the second one uses a no-busy-wait paradigm [Vis00]. The
main purpose of the current section is to demonstrate designs of efficient PRAM-on-chip implementation and
the reasoning that such a design may require. It is perhaps a strength of the modeling in the current paper
that it provides a common platform for evaluating rather different algorithms. Interestingly enough, our
analysis suggests that when it comes to addressing the most time consuming elements in the computation,
they are actually quite similar.

Due to [LF80], the basic routine works in two stages each taking O(log n) time. The first stage is the
Summation algorithm presented previously, namely the computation advances up a balanced tree computing
sums. The second stage advances from root to leaves. Each internal node has a value C(i), where C(i) is
the prefix-sum of its rightmost descendant leaf. The C(i) value of the root is the sum computed in the first
stage, and the C(i) for other nodes is computed recursively. Assuming that the tree is binary, any right child
inherits the C(i) value from its parent, and any left child takes C(i) equal to the C(i) of its left uncle plus
this child’s value of sum. The values of C(i) for the leaves are the desired prefix-sums. See figure 9.

16

C(2,2)=21

B(0,1)=2
C(0,1)=2

B(0,2)=5
C(0,2)=7

B(0,3)=1
C(0,3)=8

B(0,4)=1
C(0,4)=9 C(0,5)=11

B(0,5)=2 B(0,6)=3
C(0,6)=14

B(0,7)=3
C(0,7)=17

B(0,8)=4
C(0,8)=21

B(1,1)=7
C(1,1)=7

B(2,1)=9
C(2,1)=9

B(3,1)=21
C(3,1)=21

B(1,4)=7
C(1,4)=21

B(1,3)=5
C(1,3)=14

B(1,2)=2
C(1,2)=9

B(2,2)=12

C(2,1)

B(0,1)=2
C(0,1)=2

B(0,2)=5
C(0,2)=7

B(0,3)=1
C(0,3)=8

B(0,5)=2
C(0,5)=11

B(0,4)=1
C(0,4)=9

B(0,6)=3
C(0,6)=14

B(1,1)
C(1,1)

B(1,2)
C(1,2)

B(1,3)=3
C(1,3)=17

B(1,4)=4
C(1,4)=21

B(2,1)

(a) (b)

Figure 9: (a) PRAM prefix-sums algorithm on a binary tree and (b) PRAM prefix-sums algorithm on a
k-ary tree (k=4).

5.1 Synchronous Prefix-Sums

The implementation of this algorithm in the PRAM-On-Chip Programming model is presented in figure 3.c
using XMTC pseudocode. Similar to the Summation algorithm, we use a k-ary tree instead of a binary one.
The two overlapped k-ary trees are stored using two one-dimensional arrays sum and prefix sum by using
the array representation of a complete tree as discussed in section 3.

The PRAM-On-Chip algorithm works by first advancing up the tree using a summation algorithm. Then
the algorithm advances down the tree to fill in the array prefix sum. The value of prefix sum is defined
as follows: (a) for a leaf, prefix sum is the prefix-sum and (b) for an internal node, prefix sum is the
prefix-sum for its leftmost descendant leaf.

Analysis of Synchronous Prefix-Sums We analyze the algorithm in the PRAM-On-Chip Execution
Model. The algorithm has 2 round-trips to memory for each level going up the tree. One is to read sum
from a node’s children, done in one RTM by prefetching all needed values at once. The other is to join the
spawn at the current level. Symmetrically, there are 2 RTMs for each level going down the tree. One to read
prefix sum of the parent and sum of all a node’s children. Another to join the spawn at the current level.
This gives a total of 4 ∗ logk N RTMs . There is no queuing.

In addition to RTMs, there is a computation cost. The depth is O(logk N) due to ascending and de-
scending a logarithmic depth tree, We have analyzed an actual XMTC implementation and determined the
constants to be (7k + 18) logk N + 2k + 39 portion of the depth formula. The Additional Work is derived
similarly to the summation algorithm. It contains a 3N

p term for copying data to the tree’s leaves and a
C∗(N−min(p,N−1)−1)/(k−1)

p + C ∗ logk p term to advance up and down the tree. This is derived by using the

geometric series to count the number of internal nodes in the tree (because each internal node is touched by
one thread and C = (7k +4) is the work per node) and considering that processing any level of the tree with

fewer than p nodes has Additional Work = (C×pi)
pi

= C. The overhead to start threads in oversaturated
conditions is computed analogously.

For the moment, we do not consider how clustering will be applied. Assuming that a round-trip to
memory takes R cycles, the performance of this implementation is as follows:

Execution Depth = (4 logk N + 3) ×R + (7k + 18) logk N + 2k + 39 (8)

Additional Work =
3N + (7k + 4)(N − min(p, N − 1) − 1)/(k − 1)

p
+

+(7k + 4) logk p +
⌈

(N − min(p, N − 1) − 1)/(k − 1)

p
− logk

N

p

⌉

× 2R (9)

17

5.2 No-Busy-Wait Prefix-Sums

A less-synchronous PRAM-On-Chip algorithm is presented. The Synchronous algorithm processes each level
of the tree before moving to the next, but this algorithm has no such restriction. The algorithm is based on
the No-Busy-Wait balanced tree paradigm [Vis00]. As before, we use a k-ary tree rather than binary trees.

The input and data structures are the same as previously, with the addition of the bi-dimensional array
gatekeeper providing a “gatekeeper” variable per tree node. The computation advances up the tree using a
No-Busy-Wait summation algorithm. Then it advances down the tree using a No-Busy-Wait algorithm to
fill in the prefix-sums.

The pseudocode of the algorithm in the PRAM-On-Chip Programming Model is as follows.

Spawn(f i r s t l e a f , l a s t l e a f)
Do whi le a l i v e

Perform psm on parent ’ s gatekeeper
I f l a s t to a r r i v e at parent

Move to parent and sum va lue s from ch i l d r en
Else

Join
I f at root

Join
pre f ix sum [0] = 0 // s e t pre f ix sum o f root to 0
Spawn(1 ,1) //spawn one thread at the root

Let pre f ix sum va lue o f l e f t c h i l d = pre f ix sum o f parent
Proceed through ch i l d r en l e f t to r i g h t where each ch i l d i s
a s s i gned pre f ix sum va lue equa l to pre f ix sum + sum o f l e f t
s i b l i n g Use a (k−1)−spawn to spawn a thread to r e c u r s i v e l y
handle each ch i l d thread except the l e f tmo s t
Advance to l e f tmo s t ch i l d and repeat

Analysis of No-Busy-Wait Prefix-Sums When climbing the tree, the implementation executes 2 RTMs
per level, just as in the previous algorithm. One RTM is to read values of sum from the children, and the
other is to use an atomic Prefix-sum instruction on the gatekeeper. The LSRTM to descend the tree is also
2 RTMs per level. First, a thread reads the thread ID assigned to it by the parent thread, in one RTM.
The second RTM is used to read prefix sum from the parent and sum from the children in order to do the
necessary calculations. This is an LSRTM of 4 logk N . Also, there are additional O(1) RTMs. Examining
our own XMTC implementation, we have determined the constants involved.

Queuing is also a factor. In the current algorithm, up to k threads can perform the Prefix-sum operation
at once on the same node and create a k queuing delay. The total QD on the critical path is k logk N .

In addition to RTMs and QD, we count computation depth and work. The computation depth is
O(logk N). Counting the constants our implementation yields (11 + 8k) ∗ logk N + 2k + 55. The k logk N
QD is added to this to make the (11 + 9k) ∗ logk N term. The Σ Work

min(p,pi)
part of the complexity con-

tains is derived similarly as in the synchronous algorithm. It contains an 18N
p term, which is due to

copying data to the tree’s leaves and also for some O(1) work that threads do at the leaves. There is a
C∗(N−min(p,N−1)−1)/(k−1)

p + C ∗ logk p term to traverse the tree both up and down. This value is derived by
using the geometric series to count the number of internal nodes in the tree and multiplying by the work per
internal node (C = (11 + 8k)) as well as considering that processing any level of the tree with fewer than p
nodes has Work

min(p,pi)
= C. Without considering clustering, the running time is given by:

Execution Depth = (4 logk N + 6) ×R + (11 + 9k) ∗ logk N + 2k + 55 (10)

Additional Work =
6 + 18N + (11 + 8k)(N − min(p, N − 1) − 1)/(k − 1)

p
+

+(11 + 8k) logk p +

18

+

⌈

(N − min(p, N − 1) − 1)/(k − 1)

p
− logk

N

p

⌉

× 2R (11)

5.3 Clustering for Prefix-sums

Clustering may be added to the Synchronous k-ary prefix-sums algorithm to produce the following algorithm.
The algorithm begins with an embarrassingly parallel section, uses the parallel prefix-sums algorithm to
combine results, and ends with another embarrassingly parallel section.

1 . Let c be a constant .
Spawn c threads that run the s e r i a l summation a lgor i thm on a
cont iguous sub−ar ray o f n/c va lue s from the input ar ray . The
threads wr i t e the r e s u l t i n g sum va lue s in to a temporary ar ray B.

2 . Invoke the p a r a l l e l p r e f i x−sums a lgor i thm on array B.
3 . Spawn c threads . Each thread r e t r i e v e s a pr e f i x−sum va lue from B.

The thread then execute s the s e r i a l p r e f i x−sum algor i thm on the
appropr i a t e sub−ar ray o f n/c va lue s from the o r i g i n a l a r ray o f
s tep 1 .

The serial summation algorithm is to iterate through the elements of the array and accumulate them in a
result variable. The serial prefix-sum algorithm is the same as the summation algorithm except that, while
iterating through the elements, the prefix-sum up to each element is stored in the result array.

The No-Busy-Wait prefix-sums algorithm can be clustered in the same way.
We now present the formulas for execution time using clustering. Let c be the number of threads that

are spawned in the embarrassingly parallel portion of the algorithm. Let SerSum be the complexity of
the serial summation algorithm, SerPS be the complexity of the serial PS algorithm, and ParPS be the
complexity of the parallel PS algorithm (dependent on whether the synchronous or No-Busy-Wait is used).
The serial sum and prefix-sum algorithms loop over N elements and from the serial code it is derived that
SerSum(N) = 2N + 1 × R and SerPS(N) = 3N + 1 × R. The following formula calculates the cost of
performing the serial algorithms on a set of N −c elements divided evenly among p processors and then adds
the cost of the parallel step:

Execution Depth = SerSum(
N − c

p
) + SerPS(

N − c

p
) + ParPS(c) (12)

Optimal k and Optimal Parallel-Serial Crossover The value c, where p ≤ c ≤ N , that minimizes
the formula determines the best crossover point for clustering. Let us say p = 1024 and R = 24. We have
checked that for many (if not all) values N ≥ p, the best c is 1024. Clustering allows each thread to run a
very efficient serial summation algorithm, and this implied the maximum possible clustering was the best
(c = 1024). This is the case for both algorithms.

The optimal k value, where k denotes the arity of the tree, to use for either of the prefix-sums algorithms
can be derived from the formulas. For N ≥ p (where p = 1024), the parallel sums algorithm is only run on
c = 1024 elements and in this case k = 8 is optimal for the synchronous algorithm and k = 7 is optimal for
the No-Busy-Wait algorithm, as shown in figure 10.a. When N < p, clustering does not take effect, and the
optimal value of k varies with N (for both algorithms).

5.4 Comparing Prefix-sums Algorithms

Using the performance model presented previously with these optimizations allows comparison of the pro-
grams in the PRAM-on-chip Execution Model. The execution time for various N was calculated for both
prefix-sums algorithms using the formula with clustering. This is plotted in figure 10.b.

The Synchronous algorithm performs slightly better, due to the smaller computation constants. The
LSRTM of both algorithms is the same, indicating that using gatekeepers and k-spawn is equivalent in
RTMs to using synchronous methods. The No-Busy-Wait algorithm has slightly longer computation depth

19

0 2 4 6 8 10 12 14 16
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

k

E
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Synchronous
No−Busy−Wait

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

200

400

600

800

1000

1200

1400

N

E
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Synchronous
No−Busy−Wait

(a) (b)

Figure 10: (a) Determining the optimum arity of the tree k for the two implementations of the Prefix-
Sums algorithm for N = 1024. (b) Execution times for the two implementations of the k-ary Prefix-Sums
algorithms. The optimum k is chosen for each case.

and more computation work due to the extra overhead of using gatekeepers and k-spawn. We note that in
an actual PRAM-On-Chip system, prefix-sums would be likely to be included as a library routine that could
be called by application developers.

6 Programming Parallel Breadth-First Search Algorithms

As noted earlier, Breadth-First Search (BFS) provides an interesting example for PRAM-On-Chip program-
ming. We assume that the graph is provided using the incidence list representation, as pictured in figure
11.a.

Let L(i) be the set of N(i) nodes in level i and E(i) the set of edges adjacent to these nodes. For
brevity, we will only illustrate how to implement one iteration. Developing from that the full program is
straightforward.

As described in section 2.2.1, the High-Level Work-Depth presentation of the algorithm starts with all
the nodes in parallel, and then using nested parallelism ramps up more parallelism to traverse all their
adjacent edges in one step. Depending on the extent that the target programming model supports nested
parallelism, the programmer needs to consider different implementations. We discuss these choices in the
following paragraphs, laying out assumptions regarding the target PRAM-on-chip model.

We noted before that the Work-Depth model is not a direct match for our proposed programming model.
With this in mind, we will not present a full Work-Depth description of the BFS algorithm; as will be shown,
the “ideal” implementation will be closer to the High-Level Work-Depth presentation.

6.1 Nested Spawn BFS

In a PRAM-on-chip programming model that supports nested parallel sections, the High-level PRAM-on-chip
program can be easily derived from the HLWD description:

For every ver tex v o f cur r ent l a y e r L(i) spawn a thread
For every edge e=(v ,w) adjacent on v spawn a thread

Traverse edge e

A more detailed implementation of this algorithm using the XMTC programming language is included in
figure 3.d. To traverse an edge, threads use an atomic prefix-sum instruction on a special “gatekeeper”
memory location associated with the destination node. All gatekeepers are initially set to 0. Receiving a
0 from the prefix-sum instruction means the thread was the first to reach destination node, and the newly

20

3 3 1 2 3

3 6 7 90

degree

start_edge

1

5

2

34

1

1

1

2

2

2

2

4

3

5

3 2

4

4

5

5

5

1

5

4

2

1

1

5

3

7

9

0

6

4

1

11

2

5

8

1

2

3

4

6

7

8

9

5

10

11

0

10

antiparalleledges

1 2 3 4 5

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

b1

b2

b3

b0

v4

v1
v2
v3

Marker
edges

...

w2
w1

E(i) level L(i+1)

time

|N(i)| threads p threads

level L(i)

(a) (b)

Figure 11: (a) The incidence list representation for a graph. (b) Execution of Flattened BFS algorithm.
First allocate E[i] to hold all edges adjacent to level[i]. Next, identify marker edges bi, which give the first
edge per each sub-array. Running one thread per sub-array, all edges are traversed to build level[i + 1].

discovered neighbors are added to layer L(i + 1) using another prefix-sum operation on the size of L(i + 1).
In addition, the edge anti-parallel to the one traversed is marked to avoid needlessly traversing it again (in
the opposite direction) in later BFS layers.

The Nested Spawn algorithm bears a natural resemblance to the HLWD presentation of the BFS algorithm
and in this sense, is the ideal algorithm to program. Allowing this type of implementations to be written
and efficiently executed is the desired goal of a PRAM-on-chip framework.

Several other PRAM-on-chip BFS algorithms will be presented to demonstrate how BFS could be pro-
grammed depending on the quantitative and qualitative characteristics of a PRAM-on-chip implementation.

6.2 Flattened BFS

In this algorithm, the total amount of work to process one layer (i.e. the number of edges adjacent to its
vertices) is computed, and it is evenly divided among a pre-determined number of threads p, value which
depends on architecture parameters. For this, a Prefix-sums subroutine is used to allocate an array of size
|E(i)|. The edges will be laid out flat in this array, located contiguously by source vertex. p threads are
then spawned, each being assigned one sub-array of |E(i)|/p edges and traversing these edges one by one.
An illustration of the steps in this algorithm can be found in figure 11.

To identify the edges in each sub-array, it is sufficient to find the first (or marker) edge in such an interval;
we can then use the natural order of the vertices and edges to find the rest. We start by identifying first (if
any) marker edge adjacent to vj for all vertices vj ∈ L(i) in parallel, then use a variant of pointer jumping
to identify all the marker edges are adjacent to vj using at most log2 p steps.

6.3 Single-spawn and k-spawn BFS

Although the programming model can allow nested parallelism, the execution model might include limited
or no support for nesting. To provide insight into the transformations applied by the compiler, and how
to reason about the efficiency of the execution, we present two implementations of the Nested Spawn BFS
algorithm that directly map into an Execution model with limited support for nesting.

The Single-spawn BFS Algorithm uses sspawn() and a binary tree type technique to allow the nested
spawning of any numbers T of threads in log2 T steps. The algorithm spawns one thread for each vertex in
the current level, and then ramps each thread up to degree(vertex) threads by iteratively using the sspawn()
instruction to delegate half a thread’s work to a new thread. When one edge per thread is reached, the edges
are traversed.

The pseudo-code for a single layer is as follows.

21

For every ver tex v o f cur r ent l a y e r L spawn a thread
While a thread needs to handle s > 1 edges

Use sspawn () to s t a r t another thread and
de l ega te f l o o r (s /2) edges to i t

Traverse one edge

The k-spawn BFS Algorithm follows the same principle as Single-spawn BFS, but uses the kspawn()

instruction to start the threads faster. By using a k-ary rather than binary tree to emulate the nesting, the
number of steps to start T threads is reduced to logk T .

The k-spawn BFS pseudo-code for processing one layer is:

For every ver tex v o f cur r ent l a y e r L spawn a thread
While a thread needs to handle s > k edges

Use kspawn () to spawn k threads and
de l ega te to each f l o o r (s /(k+1)) edges

Traverse (at most) k edges

7 Execution of Breadth-First Search Algorithms

In this section, we examine the execution of the Breadth First Search algorithms presented, and analyze the
impact compiler optimizations could have on their performance using the PRAM-on-chip Execution Model
as a framework to estimate running times.

7.1 Flattened BFS

When each of p threads traverses the edges in its sub-array serially, a simple optimization would prefetch the
next edge data from memory and overlap the prefix-sum operations, thus reducing the number of round-trips

to memory from O(|E(i)|
p) to a small constant. Such an improvement can be quite significant.

The Flattened BFS algorithm uses the prefix sums algorithm as a procedure; we will use the running
time computed in section 5. In our implementation, initializing all the TCUs with their proper subarrays
uses 3 RTMs to initialize one edge entry per vertex, and then 4 log2 p RTMs to do log2 p rounds of pointer

jumping and find all marker edges. Finally, p threads cycle through their subarrays of |E(i)|
p edges. By

using the optimizations described above, the only roundtrip to memory penalties paid in this step are that
of traversing a single edge. A queuing delay occurs at the node gatekeeper level if several threads reach the
same node simultaneously. This delay depends on the structure of the graph, and is denoted GQD in the
formula below.

In addition to LSRTM and QD, the computation depth also appears in the depth formula. The 10 log2 p
term is the computation depth of the binary tree approach to identifying marker edges. The computation
depth of the call to prefix-sums is included.

The dominating term of the Additional Work is 7|E(i)|/p + 28N(i)/p, which comes from the step at the
end of the algorithm in which all the edges are traversed in parallel by p threads, and the new found vertices
are added to level L(i + 1). The Additional Work portion of the complexity also contains the work for the
call to prefix-sums. The performance is:

Execution Depth = (4 logk N(i) + 4 log2 p + 14) ×R + 38 + 10 log2 p + 7|E(i)/p| +

+16N(i)/p + GQD + Computation Depth(Prefix sums) (13)

Additional Work =
7|E(i)| + 28N(i) + 15p + 17

p
+ ⌈

N(i) − p

p
⌉ × R +

+Additional Work(Prefix sums) (14)

As before, N(i) is the number of nodes in layer L(i) and R is the number of cycles in one RTM.

22

The second term of relation 14 denotes the overhead of starting additional threads in over-saturated
conditions. In the flattened algorithm, this can occur only in the initial phase, when the set of edges E(i) is
filled in. To reduce this overhead to zero, apply to the relevant parallel sections clustering to run only p

Note the following special case: when the number of edges adjacent to one layer is relatively small, there

is no need to start p threads to traverse them. We choose a threshold θ, and if |E(i)|
p < θ, then we use

p′ = |E(i)|
θ threads. Each will process θ edges. In this case, the running time is found by taking the formulas

above and replacing p with p′ = |E(i)|
θ .

7.2 Single-spawn BFS

In this algorithm, one thread per each vertex vi is started, and each of these threads then uses single-spawn
to get deg(vi) − 1 threads started.

To estimate the running time of this algorithm, we proceed to enumerate the operations that take place
on the critical path during the execution:

• Start and initialize the original set of N(i) threads, which in our implementation takes 3 round-trips
to memory to read the vertex data.

• Let dmax be the largest degree among the nodes in current layer. Use single-spawn and log2 dmax

iterations to start dmax threads using a balanced binary tree approach. Starting a new thread at each
iteration takes 2 round-trips to memory (as described in section 4.1), summing up 2 log2 dmax RTM
on the critical path.

• The final step of traversing edges implies using one prefix-sum instruction on the gatekeeper location
and another one to add the vertex to the new layer. Prefetching can be used here as well to reduce the
number of roundtrips when multiple edges are traversed by one thread.

The cost of queuing at gatekeepers is represented by GQD. In our implementation, the additional compu-
tation cost was 18 + 7 log2 dmax.

Up to |E(i)| threads are started using a binary tree, and when this number exceeds the number of TCUs p,
we account for the additional work and the thread starting overhead. We estimate these delays by following
the same reasoning as with the k-ary Summation algorithm in section 4.4 using a constant of C = 19 cycles
work per node as implied by our implementation.

The performance is:

Execution Depth = (7 + 2 log2 dmax)R + (18 + 7 log2 dmax) + GQD (15)

Additional Work =
19(|E(i)| − min(p, |E(i)| − 1) − 1) + 2

p
+

+19 log2 |E(i)| +

⌈

|E(i)| − p

p

⌉

×R (16)

To avoid starting too many threads, the clustering technique presented in section 4.2 can be applied.
This will reduce the additional work component since the cost of allocating new threads to TCUs will no
longer be paid for every edge.

7.3 k-spawn BFS

Similar to the case of the Single-spawn BFS algorithm, the k-spawn BFS algorithm uses a check of the
number of virtual threads to determine whether the k-spawn instruction should continue to be used or if
additional spawning is to be suspended.

The threads are now started using k-ary trees and are therefore shorter. The LSRTM is 2 logk dmax. The
factor of 2 is due to the 2 RTMs per k-spawn, as per Section 4.1.

23

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Expected number of edges traversed

E
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Flattened
sspawn
kspawn

300,000 350,000 400,000 450,000 500,000 550,000 600,000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Expected number of edges traversed

E
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Flattened
sspawn
kspawn

(a) N(i) = 500 (b) N(i) = 2000

Figure 12: Execution times when number of vertices is (a) N(i) = 500 and (b) N(i) = 2000. The optimal
value for k was calculated for each dataset.

The computation depth in our XMTC implementation is (5 + 4k) logk dmax. This is an O(k) cost per
node, where logk dmax nodes are on the critical path. The queuing cost at the gatekeepers is denoted by
GQD. The Additional Work is computed as in Single-spawn BFS with the constant C = 4k + 3 denoting
the work per node in the k-ary tree used to spawn the |E(i)| threads.

The performance is:

Execution Depth = (7 + 2 logk dmax)R + (5 + 4k) logk dmax + 15 + 4k + GQD (17)

Additional Work =
14|E(i)| + (4k + 3)(|E(i)| − min(p, |E(i)| − 1) − 1)/(k − 1)

p
+

+(4k + 3) logk |E(i)| +

⌈

|E(i)| − p

p

⌉

×R (18)

7.4 Comparison

We calculated execution time for one iteration (i.e., processing one BFS level) of the BFS algorithms presented
here and the results are depicted in Figure 12. This was done for two values for the number of vertices N(i)
in current level L(i), 500 and 2000. The analysis assumes that all edges with one end in L(i) lead to vertices
which have not been visited in a previous iteration; since there is more work to be done for a “fresh” vertex,
this constitutes a worst-case analysis. The same graphs are also used in Section 11 for empirically computing
speedups over serial code as we do not see how they could significantly favor a parallel program over the
serial one. To generate the graphs, we pick a value M and choose the degrees of the vertices uniformly at
random from the range [M/2, 3M/2], which gives a total number of edges traversed of |E(i)| = M ∗N(i) on
average. Only the total number of edges is shown in Figure 12. We arbitrarily set N(i + 1) = N(i), which

gives a queuing delay at the gatekeepers (GQD) of |E(i)|
N(i) = M on average. As stated in section 2.5, we use

the value R = 24 for the number of cycles needed for one roundtrip to memory.
For small problems, the k-spawn algorithm came ahead and the Single-spawn one was second best. For

large problems, the Flattened algorithm performs best, followed by k-spawn and Single-spawn. When the
hardware is sub-saturated, the k-spawn and Single-spawn algorithms do best because their depth component
is short. These algorithms have an advantage on smaller problem sizes due to their lower constant factors.
The k-spawn implementation performs better than Single-spawn due to the reduced height of the “Spawn
tree”. The Flattened algorithm has a larger constant factor for the number of RTMS, mostly due to the
introduction of a setup phase which builds and partitions the array of edges. For super-saturated situations,
the Flattened algorithm does best due to a smaller work component than the other algorithms.

24

Note that using the formulas ignores possible gaps in parallel hardware usage. In a highly unbalanced
graph, some nodes have high degree while others have low degree. As many nodes with small degree finish, it
may take time before the use of parallel hardware can be ramped up again. For example, in the Single-spawn
and k-spawn algorithms, the virtual threads from the small trees can happen to take up all the physical
TCUs and prevent the deep tree from getting started. The small trees may all finish before the deep one
starts. This means we are paying the work of doing the small trees plus the depth of the deep tree. One idea
for avoiding this would be to label threads according to the amount of work they need to accomplish, and
giving threads with more work a higher priority (e.g. by scheduling them to start as soon as possible). In the
Flattened BFS algorithm however, the edges in a layer are evenly distributed among the running threads,
and this issue does not appear.

8 Adaptive Bitonic Sorting

Bilardi and Nicolau’s [BN89] Adaptive Bitonic Sorting algorithm is discussed next. The key component
of this sorting algorithm is a fast, work-optimal merging algorithm based on Batcher’s bitonic network
and adapted for shared memory parallel machines. To implement the sorting, an efficient, general purpose
Merge-Sort type algorithm is derived using this merging procedure.

The main advantages of the Bitonic Merging and Sorting algorithms are the small constants involved and
the fact that they can be implemented on an EREW PRAM. This is an important factor for implementing an
algorithm on our proposed PRAM-on-chip model, since it guarantees that no queuing delays will occur. On
the other hand, PRAM-On-Chip caters well to the heavy reliance on pointer manipulation in the algorithm,
which tends to be a weakness for other parallel architectures.

For conciseness, we focus on presenting the Merging algorithm here. The purpose of this algorithm is to
take two sorted sequences and merge them into one single sorted sequence. We will only consider the case
where the problem size is N = 2n; the general case is treated in [BN89]. To start, one of the input sequences
is reversed and concatenated with the other one. The result is what is defined as a bitonic sequence, and
it is stored in a bitonic tree - a fully balanced binary tree of height log2 N whose in-order traversal yields
the bitonic sequence, plus an extra node (called spare) to store the Nth element. The goal of the bitonic
merging algorithm is to transform this tree into a binary tree whose in-order traversal, followed by the spare
node, gives the elements in sorted order.

The key observation of the algorithm is that a single traversal of a bitonic tree from the root to the leaves
is sufficient to have all the elements in the left subtree of the root smaller than the ones in the right subtree.
At each of the log2 N steps of one such traversal, one comparison is performed, and at most two pairs of
values and pointers are exchanged. After one such traversal, the algorithm is applied recursively on the left
and right children of the root, and after log2 N recursive calls (that can be pipelined, as explained below)
the leaves are reached and the tree is a binary search tree.

The full description of the algorithm can be found in [BN89], and can be summarized by the following
recursive function, called with the root and spare nodes of the bitonic tree and the direction of sorting
(increasing or decreasing) as arguments:

procedure bimerge (root , spare , d i r e c t i o n)
1 . compare root and spare va lue s to determine d i r e c t i o n o f swapping
2 . swap root and spare va lue s i f ne c e s sa ry
3 . p l = root , pr = spare
4 . whi l e pr not n i l
5 . compare pl , pr
6 . swap va lue s o f pl , pr and two subt r e e po i n t e r s i f ne c e s sa ry
7 . advance pl , pr toward l e a v e s

end
8 . in p a r a l l e l run bimerge (root . l e f t , root) , bimerge (root . r i ght , spare)
end

In this algorithm, lines 4-7 traverse the tree from current height to the leaves in O(log N) time. The

25

procedure is called recursively in line 8, starting at the next lowest level of the tree. This leads to an overall
time of O(log2 N).

We call stage(k) the set of tree traversals that start at level k (the root being at level 0). There are 2k

parallel calls in such a stage. Call phase(0) of a stage the execution of lines 1-3 in the above algorithm, and
phase(i), i = 1.. log N − k − 1 the iterations of lines 4-7.

To obtain a faster algorithm, we note that the traversals of the tree can be pipelined. In general, we can
start stage k + 1 as soon as stage k has reached its phase(2). On a synchronous PRAM model, all stages
advance at the same speed and thus they will never overlap; on a less-asynchronous PRAM implementation,
such as PRAM-on-chip, this type of lockstep execution can be achieved by switching from parallel to serial
mode after each phase. With this modification, the bitonic merging has a running time of O(log N).

We have experimented with two implementations of the Bitonic Merging algorithm:

Pipelined This is an implementation of the O(log N) algorithm that pipelines the stages. We start with
an active workset containing only one thread for stage(0) and run one phase at a time, joining threads
after one phase is executed. Every other iteration, we initialize a new stage by adding a corresponding
number of threads to the active workset. At the same time, the threads that have reached the leaves
are removed from the workset. When the set of threads is empty, the algorithm terminates.

Non-pipelined The Pipelined algorithm has a lock-step type execution, with one synchronization point
after each phase. An implementation with fewer synchronization points is evaluated, where all phases
of a stage are ran in one single parallel section with no synchronizations, followed by a join command
and then the next stage is started. This matches the O(log2 N) algorithm described above.

For the limited input sizes we were able to test, the performance of the pipelined version fell behind
the simpler non-pipelined version. The main reason is the overheads required by the implementation of
pipelining. Namely, some form of added synchronization, such as using a larger number of spawn blocks, is
needed.

9 Shared Memory Sample Sort

The Sample Sort algorithm [HC83, RV87] is a commonly used randomized sorting algorithm designed for
multiprocessor architectures; it follows a “decomposition first” pattern, making it a good match for dis-
tributed memory machines. Being a randomized algorithm, its running time depends on the output of a
random number generator. Sample Sort has been proved to perform well on very large arrays, with high
probability.

The idea behind Sample Sort is to find a set of p − 1 elements from the array, called splitters, which
partition the n input elements into p buckets bucket0 . . . bucketp−1 such that every element in bucketi is
smaller than each element in bucketi+1. The buckets are then sorted independently.

One key step in the standard Sample Sort algorithm is the distribution of the elements to the appropriate
bucket. This is typically implemented using “one-to-one” and broadcasting communication primitives usually
available on multiprocessor architectures. This procedure can create delays due to queuing at the destination
processor [BLM+91, RV87, DCSM96].

In this section we discuss the Shared Memory Sample Sort algorithm, which is an implementation of
Sample Sort for shared memory machines. The solution presented here departs slightly from the Sample
Sorting algorithm and consists of an EREW PRAM algorithm that is better suited for a PRAM-On-Chip
implementation.

Let the input be the unsorted array A and let p the number of hardware Thread Control Units (TCUs)
available. An overview of the Shared Memory Sample Sort algorithms is as follows:

Step 1. In parallel, a set S of s × p random elements from the original array A is collected, where p is
the number of TCUs available and s is called the oversampling ratio. Sort the array S, using an algorithm
that performs well for the size of S (e.g. adaptive bitonic sorting). Select a set of p − 1 evenly spaced
elements from it into S′: S′ = {S[s], S[2s], . . . , S[(p − 1) × s]} These elements are the splitters that will
partition the elements of A into p sets bucketi, 0 ≤ i < p as follows: bucket0 = {A[i] | A[i] < S′[0]},
bucket1 = {A[i] | S′[0] < A[i] < S′[1]}, . . . , bucketp−1 = {A[i] | S′[p − 1] < A[i]}.

26

01

i1

p−1,1

C

C

C ps
p−1,1

ps
01

i1
ps

B
0

B
1

B
p−1

jsum
global_ps0 global_psj global_psp−1

sum
0

sump−1
global_psp

sum1
global_ps1

... ...

TCU 0:

TCU i:

TCU p−1:

1 j p−10

i,p−1

0,p−1

Bucket:

ij

0j
ps

ps C

Cps

C
00

C
i0

C
p−1,0

ps
p−1,0

ps

ps

i0

00
C

0j

C
ij

C
p−1,j p−1,j

C ps
0,p−1

ps
i,p−1

ps
p−1,p−1 p−1,p−1

N−10 N/p−1 2N/p−1 (p−1)N/p−1

...

...
...
...

Figure 13: The helper matrix used in Shared Memory Sample Sort. cij stores the number of elements from
Bi that fall in bucketj. psij represent the prefix-sums computed for each column, and global ps0..p are the
prefix-sums and the sum of sum0..p−1.

Step 2. Consider the the input array A divided into p subarrays, B0 = A[0, . . . , N/p − 1], B1 =
A[N/p, . . . , 2N/p − 1] etc. The ith TCU iterates through the subarray Bi and for each element executes a
binary search on the array of splitters S′, for a total of N/p binary searches per TCU. The following quantities
are computed: (i) cij - the number of elements from Bi that belong in bucket bucketj. The cij make up
the matrix C as in figure 13, (ii) bucket idx[k] - the bucket in which element A[k] belongs. Each element is
tagged with such an index and (iii) serial[k] - the number of elements in Bi that belong in bucketbucket idx[k]

but are located before A[k] in Bi.
For example, if B0 = [105, 101, 99, 205, 75, 14] and we have S′ = [100, 150, . . .] as splitters, we will have

c0,0 = 3, c0,1 = 2 etc., bucket[0] = 1, bucket[1] = 1 etc. and serial[0] = 0, serial[1] = 1, serial[5] = 2.
Step 3. Compute prefix-sums ps[i, j] for each column of the matrix C. For example, ps[0, j],ps[1, j],. . . ,ps[p−

1, j] are the prefix-sums of c[0, j],c[1, j],. . . ,c[p − 1, j].
Also compute the sum of column i, which is stored in sumi. Compute the prefix sums of the sum1, . . . , sump

into global ps[0, . . . , p − 1] and the total sum of sumi in global ps[p].
Step 4. Each TCU i computes: for each element A[j] in segment Bi, iN/p ≤ j < (i + 1)N/p− 1:

pos[j] = global ps[bucket[j]] + ps[i, bucket[j]] + serial[j]

Copy Result[pos[j]] = A[j].
Step 5. TCU i executes a (serial) sorting algorithm on the elements of bucketi, which are now stored in

Result[global ps[i], . . . , global ps[i + 1] − 1].
At the end of Step 5, the elements of A are stored in sorted order in Result.
An implementation for the Shared Memory Sample Sort in the PRAM-On-Chip programming model can

be directly derived from the above description. Our preliminary experimental results show that this sorting
algorithm performs well on average; due to the nature of the algorithm, it is only relevant for problem
sizes N ≫ p, and its best performance is for N ≥ p2. Current limitations on the cycle-accurate simulator
have prevented us from running the sample-sort algorithm on datasets with such a N/p ratio. One possible
approach could be to scale down the architecture parameters by reducing the number of TCUs p, and
estimate performance by extrapolating the results.

10 Sparse Matrix - Dense Vector Multiplication

Sparse matrices, in which a large portion of the elements are zeros, are commonly used in scientific compu-
tations. Many software packages used in this domain include specialized functionality to store and perform
computation on them. Next we discuss the so called Matvec problem of multiplying a sparse matrix by a

27

dense vector multiplication routine. Matvec is the kernel of many matrix computations. Parallel implemen-
tations of this routine have been used to evaluate the performance of other parallel architectures [FHKK05],
[SG04].

To save space, sparse matrices are usually stored in a compact form, for example using a Compressed
Sparse Row (CSR) data structure: for a matrix A of size n × m all the nz non-zero elements are stored in
an array values , and two new vectors rows and cols are used to store the start of each row in A and the
column index of each non-zero element. An example is shown in figure 14.

A =

0 0 3 0 1 4 0
0 2 0 0 6 1 0
1 0 0 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 2 0

210 3 4 5row:

rows

cols

values

3 6 7 8 8 10

4

3

2 5 1 4 5 0 3 3 5

1 2 6 1 1 3 1 2

End

0

4

(a) (b)

Figure 14: Compressed Sparse Row representation for a matrix. (a) A sparse matrix. (b) The “packed”
CSR representation for matrix A.

An “embarrassingly parallel” solution to this problem exists: the rows of the matrix can all be processed
in parallel, each being multiplied with the dense vector. If the non-zero elements of the sparse matrix are
relatively well distributed among the rows, then the work is well balanced and the algorithm performs well.

One factor that influences the performance of this algorithm on a PRAM-on-chip platform is the fact that
the dense vector is read by all the parallel threads. On the XMT architecture, as TCUs request elements of
the vector from memory, they are stored in the read-only caches at the cluster level, and subsequent requests
from TCUs in the same cluster will not cause round-trips to memory and queuing.

The solution described above starts a thread for each row in the sparse matrix, and relies on the automatic
load balancing and scheduling performed by the system to distribute the work between the available TCUs.
However, if there are many rows in the matrix that have only few non-zero elements, it is not efficient to
pay the overhead of starting one thread per each row. Alternatively, we can write an implementation which
starts a smaller number of threads and attempts to better load-balance the work among them; a thread
stops working when it has processed a certain minimum number of elements, but not before completing the
row it is working on. Note that if there are rows that have a disproportionately large number of non-zero
elements, it is nontrivial to split the work between threads since the results have to be added together; it is
beyond the scope of this paper to present such an algorithm.

We have empirically compared the above two solutions by implementing the Matvec algorithms on the
XMT PRAM-on-chip platform, and have found that the second solution, that better load-balances the work
among the parallel hardware units, outperforms the embarrassingly parallel one for the range of inputs
tested.

Given the first algorithm, it is a feasible, though perhaps somewhat challenging, task for a compiler to
automatically generate the second, more efficient implementation. In general, if such a compiler can figure
out that the information about the lengths of the threads will be known before the start of the parallel
section, it could use this information to improve clustering. In the case of the first Matvec algorithm, the
total length (number of non-zero elements) and the prefix sums of the number of elements each thread will
process is actually provided as part of the input.

In Spring 2005, an experiment to compare development time between two approaches to parallel pro-
gramming of Matvec was conducted by software engineering researchers funded by the DARPA (HPCS -
High Productivity Computer Systems). One approach was based on MPI and was taught by John Gilbert, a
professor at the University of California, Santa Barbara. The second implemented the above two algorithms
using XMTC in a course taught by Uzi Vishkin at the University of Maryland. Both courses were graduate
courses. For the UCSB course this was the forth programming assignment and for the UMD course it was

28

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

60,000

80,000

100,000

120,000

140,000

160000

180000

200000

N

E
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Synchronous
No−Busy−Wait

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000
10

20

30

40

50

60

70

80

90

100

N

S
pe

ed
up

 o
ve

r
S

er
ia

l P
re

fix
−

su
m

s

Synchronous
No−Busy−Wait
Synchronous Linear Fit
No−Busy−Wait Linear Fit

(a) (b)

Figure 15: Execution times for k-ary prefix-sums (k = 2) implementations reported by the XMT cycle-
accurate simulator. (a) Comparison of synchronous and no-busy-wait prefix-sums programs. (b) Speedup
over serial prefix-sums. Due to current limitations of our simulator we could only run datasets of size up
to 200,000. However, fitting a linear curve to the data indicates that the speedups would exceed 100 for
problem sizes above 350,000

the second. The main finding [HVGB05] was that XMTC programming required less than 50% of the time
than for MPI programming.

11 Empirical Validation of the Performance Model

In this section we present a limited empirical attempt to validate the performance model developed in the
previous sections.

We proceed by comparing the computed running times for the Prefix-Sums and the Breadth-First Search
algorithms from sections 5 and 7 with cycle-counts of actual implementations which were ran on an XMT
simulator. The simulation engine aims at being cycle-accurate and it was derived from a synthesizable
gate-level description of the XMT architecture. A typical configuration includes 1024 TCUs grouped in 64
clusters and one Master TCU.

A gap between the simulations and the analytical model is to be expected. On one hand, the analytical
model as presented makes some simplifying assumptions, such as counting each computation as one cycle
and ignoring contention at the functional units and the interconnection network. On the other hand, at
the present time the XMTC compiler and the XMT cycle-accurate simulator lack a number of features that
were assumed for the performance model; more specifically, there is no support for prefetching and thread
clustering, and only limited broadcasting capabilities are included. Moreover, the sleep-wait mechanism
proposed in section 4.1 is not fully implemented, making the single-spawning mechanism less efficient. All
these factors cause the simulated cycle-counts to be higher than the ones computed by our formulas. However,
we are mostly interested in comparing results for the same problem; a goal of the present work is to test
programming approaches against the relative performance gain.

The results reported for k-ary prefix-sums (k = 2) by the XMT cycle-accurate simulator are shown in
figure 15.a. The synchronous program outperforms the no-busy-wait program, verifying what had been found
through the analytical model in figure 10. The execution times also increase linearly with N as was expected.
One difference is the large gap that the simulator shows between the synchronous program and no-busy-wait
execution times. This is explained by larger-than-anticipated overheads of the single-spawn instruction,
which will be mitigated in future single-spawn implementations such as the sleep-wait mechanism previously
described. Future use of k-spawn would also reduce the execution time. We also computed speedup results
of parallel prefix-sums by running a serial implementation on the XMT simulator.

Figure 16.a presents the number of cycles reported by the XMT cycle-accurate simulator for the Single-
Spawn and Flattened Breadth First Search XMTC implementations. The results show the execution times

29

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Expected number of edges traversed

S
im

ul
at

io
n

tim
e

in
 c

yc
le

s

sspawn
flattened

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
0

20

40

60

80

100

120

Expected number of edges traversed

S
pe

ed
up

 o
ve

r
se

ria
l v

er
si

on

sspawn
flattened

(a) (b)

Figure 16: (a) Execution times for BFS implementations reported by the XMT cycle-accurate simulator
when number of vertices is N(i) = 500 and (b) Speedups relative to a serial implementation for N(i) = 500

for only one iteration of the BFS algorithm, i.e. building BFS tree level L(i+1) given level L(i). The graphs
are generated using the same procedure described in section 7.4, with the number of vertices in levels L(i)
and L(i+1) set to 500. By varying the average degree per vertex M , we generated graphs with the expected
number of edges traversed in the range [12, 500..125, 000].

The results follow the same pattern as the ones presented in figure 12; similar to that figure, we observe
that the single-spawn implementation outperforms the Flattened BFS for smaller problem sizes, but the
smaller work factor makes the latter run faster when the number of edges traversed increases above a certain
threshold. Figure 16.b presents speedup results over a serial implementation of the BFS algorithm ran on
the XMT simulator.

Comparing the outcome of our dry analysis with the experimental results serves a double purpose: on
one hand, it makes us aware of the limitations of the analytical model and allows further refinements to
more closely match the architecture; at the same time, the benefit of new features can be easily evaluated
using the analytical model and then confirmed in the simulator, before committing to a much more costly
update to the hardware architecture.

Further information about the XMTC compiler and the cycle-accurate simulator can be found in [BV06].
An updated version of that document which reflects the most recent version of the XMT compiler and
simulator is available from http://www.umiacs.umd.edu/users/vishkin/XMT/XMTCManual.pdf and
http://www.umiacs.umd.edu/users/vishkin/XMT/XMTCTutorial.pdf.

12 Conclusion

The programming assignments in a one semester parallel algorithms class taught recently at the Univer-
sity of Maryland included parallel MATVEC, general deterministic (Bitonic) sort, breadth first search on
graphs, and sample sort. This fact provides a powerful demonstration that the PRAM theory coupled with
PRAM-On-Chip programming are on par with serial algorithms and programming. A first class on serial
algorithms and serial programming typically does not require more demanding programming assignments.
The purpose of the current paper is to augment a typical textbook understanding of PRAM algorithms with
an understanding of how to effectively program a PRAM-On-Chip computer system to allow such teaching
elsewhere.

It is also interesting to compare the PRAM-On-Chip approach with other parallel computing approaches
from the point of view of the first course to be taught. Other approaches tend to push the skill of parallel
programming ahead of parallel algorithms. In other words, unlike serial computing and the PRAM-on-chip
approach, where much of the intellectual effort of programming is taught in algorithms and data structure
classes and programming itself is deferred to self-study and homework assignments, the art of fitting a serial

30

(a) (b)

Figure 17: (a) Productivity of performance programming. Note that the path leading to (4) is much easier
than the path leading to (2), and transition (3) is quite problematic. We conjecture that (4) is competitive
with (1). (b) Productivity of High-Performance Application Programming. The chain (3) leading to XMT
is similar in structure to serial computing (1), unlike the chain to standard parallel computing (2).

algorithm to a parallel programming language such as MPI or OpenMP becomes the main topic. This may
explain why parallel programming is currently considered difficult. However, if parallel computing is ever to
challenge serial computing as a main stream paradigm, we feel that it should not fall behind serial computing
in any aspects and in particular, in the way it is taught to computer science and engineering majors.

Finally, figure 17 gives a bird’s eye view on the productivity of both performance programming and appli-
cation programming (using APIs). By productivity we mean the combination of run time and development
time. For performance programming, we contrast the current methodology, where a serial version of an
application is first considered and parallelism is then extracted from it using the rather involved methodol-
ogy outlined for example by Culler and Singh [CS99], with the PRAM-on-chip approach where the parallel
algorithm is the initial target and the way from it to a parallel program is more a matter of skill than an
inventive step. For application programming, standard serial execution is automatically derived from APIs.
A similar automatic process has already been demonstrated, though much more work needs to be done, for
the PRAM-On-Chip approach.

Acknowledgments Contributions and help by the UMD XMT group at and, in particular, N. Ba, A.
Balkan, F. Keceli, A. Kupershtok, P. Mazzucco, and X. Wen, as well as the UMD Parallel Algorithms class
in 2005 and 2006 are gratefully acknowledged.

References

[AALT95] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The suif compiler for scalable
parallel machines. In Proceedings of the Seventh SIAM Conference on Parallel Processing for
Scientific Computing, 1995.

[ACK87] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs for
parallel execution. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 63–76, New York, NY, USA, 1987. ACM Press.

[AG94] G.S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin Cummings, 1994.

[AU94] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science. W. H. Freeman & Co.,
New York, NY, USA, 1994.

[Baa88] S. Baase. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley, 1988.

31

[BCF05] David A. Bader, Guojing Cong, and John Feo. On the architectural requirements for efficient
execution of graph algorithms. In ICPP ’05: Proceedings of the 2005 International Conference
on Parallel Processing (ICPP’05), pages 547–556, Washington, DC, USA, 2005. IEEE Computer
Society.

[Ble96] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97, 1996.

[BLM+91] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J. Smith, and
Marco Zagha. A comparison of sorting algorithms for the connection machine cm-2. In SPAA
’91: Proceedings of the third annual ACM symposium on Parallel algorithms and architectures,
pages 3–16, New York, NY, USA, 1991. ACM Press.

[BN89] Gianfranco Bilardi and Alexandru Nicolau. Adaptive bitonic sorting: an optimal parallel algo-
rithm for shared-memory machines. SIAM J. Comput., 18(2):216–228, 1989.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–
206, 1974.

[BV06] Aydin O. Balkan and Uzi Vishkin. Programmer’s manual for xmtc language, xmtc compiler and
xmt simulator. Technical Report UMIACS-TR 2005-45, University of Maryland Institute for
Advanced Computer Studies (UMIACS), February 2006.

[CFS99] L. Carter, J. Feo, and A. Snavely. Performance and programming experience on the tera mta.
In Proceedings SIAM Conference on Parallel Processing, 1999.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[CS99] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[CV86] Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. In STOC ’86: Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 206–219, New York, NY, USA, 1986.
ACM Press.

[DCSM96] Andrea C. Dusseau, David E. Culler, Klaus Erik Schauser, and Richard P. Martin. Fast parallel
sorting under logp: Experience with the cm-5. IEEE Trans. Parallel Distrib. Syst., 7(8):791–805,
1996.

[DKP02] Roman Dementiev, Michael Klein, and Wolfgang J. Paul. Performance of mp3d on the sb-
pram prototype (research note). In Euro-Par ’02: Proceedings of the 8th International Euro-Par
Conference on Parallel Processing, pages 132–136, London, UK, 2002. Springer-Verlag.

[DV00] Shlomit Dascal and Uzi Vishkin. Experiments with list ranking for explicit multi-threaded (xmt)
instruction parallelism. J. Exp. Algorithmics, 5:10, 2000. Special issue for the 3rd Workshop on
Algorithms Engineering (WAE’99), London, U.K., July 1999.

[EG88] David Eppstein and Zvi Galil. Parallel algorithmic techniques for combinatorial computation.
Annual review of computer science: vol. 3, 1988, pages 233–283, 1988.

[FHKK05] John Feo, David Harper, Simon Kahan, and Petr Konecny. Eldorado. In CF ’05: Proceedings
of the 2nd conference on Computing frontiers, pages 28–34, New York, NY, USA, 2005. ACM
Press.

[GBIV01] M. J. Garzaran, J. L. Briz, P. Ibanez, and V. Vinals. Hardware prefetching in bus-based multi-
processors: pattern characterization and cost-effective hardware. In Proceedings of the Euromicro
Workshop on Parallel and Distributed Processing, pages 345–354, 2001.

32

[GGK+82] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and Marc
Snir. The nyu ultracomputer: designing a mimd, shared-memory parallel machine (extended
abstract). In ISCA ’82: Proceedings of the 9th annual symposium on Computer Architecture,
pages 27–42, Los Alamitos, CA, USA, 1982. IEEE Computer Society Press.

[GV06] P. Gu and U. Vishkin. Case study of gate-level logic simulation on an extermely fine-grained
chip multiprocessor. Journal of Embedded Computing, Special Issue on Embedded Single-Chip
Multicore Architectures and Related Research - from System Design to Application Support, 2006.
To appear.

[HC83] J.S. Huang and Y.C. Chow. Parallel sorting and data partitioning by sampling. In Proceed-
ings of the IEEE Computer Society’s Seventh International Computer Software and Applications
Conference, pages 627–631, November 1983.

[HJ99] David R. Helman and Joseph JáJá. Designing practical efficient algorithms for symmetric mul-
tiprocessors. In ALENEX ’99: Selected papers from the International Workshop on Algorithm
Engineering and Experimentation, pages 37–56, London, UK, 1999. Springer-Verlag.

[HVGB05] Lorin Hochstein, Uzi Vishkin, John Gilbert, and Victor Basili. An empirical study to compare
the productivity of two parallel programming models. Preprint, 2005.

[JáJ92] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1992.

[KKT00] J. Keller, C. W. Kessler, and J. L. Traff. Practical PRAM Proramming. Wiley, New York, NY,
USA, 2000.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory machines.
Handbook of theoretical computer science (vol. A): algorithms and complexity, pages 869–941,
1990.

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838,
1980.

[Man89] U. Manber. Introduction to Algorithms - A Creative Approach. Addison Wesley, 1989.

[NNTV03] Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin. Towards a first vertical
prototyping of an extremely fine-grained parallel programming approach. In invited Special Issue
for ACM-SPAA’01: TOCS 36,5, pages 521–552, New York, NY, USA, 2003. Springer Verlag.

[PA01] Vijay S. Pai and Sarita V. Adve. Comparing and combining read miss clustering and software
prefetching. In PACT ’01: Proceedings of the 2001 International Conference on Parallel Archi-
tectures and Compilation Techniques, page 292, Washington, DC, USA, 2001. IEEE Computer
Society.

[RV87] John H. Reif and Leslie G. Valiant. A logarithmic time sort for linear size networks. J. ACM,
34(1):60–76, 1987.

[SCB+98] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin, Nick Mitchell,
John Feo, and Brian Koblenz. Multi-processor performance on the tera mta. In Supercomputing
’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), pages 1–8,
Washington, DC, USA, 1998. IEEE Computer Society.

[Sch80] Jacob T. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst., 2(4):484–521, 1980.

[SG04] Viral Shah and John R. Gilbert. Sparse matrices in matlab*p: Design and implementation. In
HiPC, pages 144–155, 2004.

33

[SV82] Yossi Shiloach and Uzi Vishkin. An o(n2logn) parallel max-flow algorithm. J. Algorithms,
3(2):128–146, 1982.

[TKS+05] Xinmin Tian, Rakesh Krishnaiyer, Hideki Saito, Milind Girkar, and Wei Li. Impact of compiler-
based data-prefetching techniques on spec omp application performance. In IPDPS ’05: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
- Papers, page 53.1, Washington, DC, USA, 2005. IEEE Computer Society.

[VDBN98] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman. Explicit multi-threading
(xmt) bridging models for instruction parallelism (extended abstract). In SPAA ’98: Proceedings
of the tenth annual ACM symposium on Parallel algorithms and architectures, pages 140–151,
New York, NY, USA, 1998. ACM Press.

[Vis00] Uzi Vishkin. A no-busy-wait balanced tree parallel algorithmic paradigm. In SPAA ’00: Pro-
ceedings of the twelfth annual ACM symposium on Parallel algorithms and architectures, pages
147–155, New York, NY, USA, 2000. ACM Press.

[Vis02] Uzi Vishkin. Thinking in parallel: Some basic data-parallel algorithms and techniques. In
use as class notes since 1993. http://www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/

classnotes.ps, February 2002.

34

APPENDIX. The XMTC Code is submitted in support of the
paper.

K-ary Summation

/∗
∗ void sum (. . .)
∗
∗ The funct ion computes sums by using a k−ary t re e .
∗ k i s de f ined by the parameter k to the funct ion .
∗
∗ Input :
∗ increment [] − an array of increment va lues
∗ k − the va lue of k to use for the k−ary t re e
∗ s i z e − the s i z e of the increment [] array
∗
∗ Output :
∗ r e s u l t [] − element 0 of the array i s f i l l e d with the sum
∗
∗/

void sum(int increment [] , int r e s u l t [] , int k , int s i z e) {
register int low , high ;
int he ight = 20 ; //note : he igh t should be as l a rg e as l o g k (s i z e)
// in t l a y e r s i z e [he igh t] ; / / number of nodes in laye r i
int base [he ight ∗ s i z e] ; // base of l e a f i s i t s va lue a f t e r PS

// base of in t e rna l node i s the base of i t s l e f tmos t l e a f
int sum [he ight ∗ s i z e] ; // the va lue of sum for a node i s the sum of the va lues of

// increment for a l l i t s l e ave s

int i t e r a t i o n = 0 ; // determines the current he igh t in the t re e

int temp ; //FOR DEBUGGING ONLY, REMOVE LATER
int done ; //a loop contro l var iab l e

int l , // l e v e l where l eave s s t a r t
sb , // index where l eave s would s t a r t i f s i z e i s a power of 2
d , // s i z e − kˆ l
o f f s e t , //how much to o f f s e t due to s i z e not being power of 2
sr , // sb + o f f s e t
over , //number of l e ave s at l e v e l l
under , //number of l e ave s at l e v e l l + 1
sbp1 ; // index of one l e v e l h igher from sb

int f i l l ; //nodes to f i l l in with 0 to make a l l nodes have k ch i l d ren

int l e v e l , s t a r t i ndex , l a y e r s i z e ;

int i ;

/∗
∗ With non−b l ock ing wr i t e s 0 RTM is required to i n i t i a l i z e
∗ the funct ion parameters : k and s i z e
∗ 0 RTM is required to i n i t i a l i z e l o c a l v a r i a b l e s such as he igh t
∗/

//Spec ia l case i f s i z e == 1
i f (s i z e == 1) { // the check has 0 RTM because s i z e i s cached .

r e s u l t [0] = 0 ;
return ;

}

/∗
∗ 18 l i n e s of code above , means computation cost = 18 up to t h i s point .
∗/

// c a l c u l a t e l oca t ion for l eave s in the complete representat ion
l = l og (s i z e) / l og (k) ;

sb = (pow(k , l) − 1) / (k − 1) ; // t h i s i s der ived from geometric s e r i e s
sbp1 = (pow(k , l +1) − 1) / (k − 1) ;

d = s i z e − pow(k , l) ;
o f f s e t = CEIL (((double) d) / (k − 1)) ;
s r = sb + o f f s e t ;
over = pow(k , l) − o f f s e t ;

35

under = s i z e − over ;

/∗
∗ Computation cost = 8
∗/

// p r i n t f (” l = %d , sb = %d , d = %d , o f f s e t = %d ,
// sr = %d , over = %d\n” , l , sb , d , o f f s e t , sr , over) ;

// Copy increment [. . .] to l eave s of sum [. . .]

low = 0;
high = s i z e − 1;
spawn (low , high) {

i f ($ < under) {
sum [$ + sbp1] = increment [$] ; //1 RTM

}
else {

sum [($ − under) + sb + o f f s e t] = increment [$] ; //1 RTM
}

} //1 RTM jo in

/∗
∗ LSRTM = 2
∗ QD = 0
∗ Computation Depth = 5
∗ Computation Work = 2N
∗/

// Make some 0 l eave s at l e v e l l +1 so a l l nodes have exac t l y
// k ch i l d ren

f i l l = (k − (under % k)) % k ;
for (i = 0 ; i < f i l l ; i ++) {

sum [sbp1 + under + i] = 0 ;
}

/∗
∗ Computation Cost = 2k + 1
∗/

// I t e ra t ion 1 : f i l l in a l l nodes at l e v e l l
low = sb ;
high = sb + o f f s e t − 1;
i f (high >= low) {

spawn (low , high) {
int count ;

sum [$] = 0 ;
for (count = 0 ; count < k ; count++) {

sum [$] += sum [k ∗ $ + count + 1] ;
}

}
}

/∗
∗ We w i l l count the above ” I t e ra t ion 1” as 1 i t e r a t i on in
∗ the c l imbing the t re e loop below , for s imp l i c i t y .
∗ This g iv e s an upper bound , s ince the ” I t e ra t ion 1”
∗ se c t ion above does s l i g h t l y l e s s .
∗/

// Climb the t re e
l e v e l = l ;
while (l e v e l > 0) {

l e v e l −−;
s t a r t i ndex = (pow(k , l e v e l) − 1) / (k − 1) ;
l a y e r s i z e = pow(k , l e v e l) ;

low = sta r t i ndex ;
high = sta r t i ndex + l a y e r s i z e − 1;
spawn (low , high) {

int count ;

/∗
∗ Al l the sum[X] elements are read at once
∗ for the below loop using pre fe t ch ing .
∗
∗ RTMs = 1

36

∗ (pre fe t ch) Computation depth = k
∗/

sum [$] = 0 ;
for (count = 0 ; count < k ; count++) {

sum [$] += sum [k ∗ $ + count + 1] ;
}

/∗
∗ Computation Depth = 2k + 1
∗/

}
} // 1 RTM jo in

/∗
∗ For the above stage of c l imbing the t re e :
∗ LSRTM = 2 ∗ logN
∗ Computation Depth = (3k + 9) ∗ logN + 1
∗ Computation Work = (3k + 2) ∗ (N − 1) / (k − 1)
∗
∗ The (N − 1) / (k − 1) fac tor of the work i s the
∗ number of nodes in a k−ary t re e of depth logN − 1
∗ [there i s no work for the l eave s at depth logN]
∗
∗ Computation Work / min(p , p i) =
∗ ((3 k + 2) ∗ (N − min(p , N−1) − 1) / (k − 1)) / p
∗ + (3k + 2) ∗ l o g k (p)
∗
∗ For each l e v e l where number of nodes < p , the denominator i s p i .
∗ Otherwise the denominator i s p . This g iv e s the above formula .
∗/

r e s u l t [0] = sum [0] ;

/∗
∗ For the whole algorithm :
∗
∗ LSRTM = 2 ∗ logN + 1
∗ QD = 0
∗ Computation Depth = (3k + 9) ∗ logN + 2k + 33
∗ Computation Work / min(p , p i) =
∗ ((3 k + 2)(N − min(p , N−1) − 1) / (k − 1) + 2N) / p
∗ + (3k + 2) lo g k (p)
∗/

}

Synchronous K-ary Prefix-Sums

/∗
∗ void kps (. . .)
∗
∗ The funct ion computes pr e f i x sums by using a k−ary t re e .
∗ k i s de f ined by the parameter k to the funct ion .
∗
∗ Input :
∗ increment [] − an array of increment va lues
∗ k − the va lue of k to use for the k−ary t re e
∗ s i z e − the s i z e of the increment [] array
∗
∗ Output :
∗ r e s u l t [] − t h i s array i s f i l l e d with the p r e f i x sum on the va lues
∗ of the array increment []
∗
∗/

void kps (int increment [] , int r e s u l t [] , int k , int s i z e) {
register int low , high ;
int he ight = 20 ; //note : he igh t should be as l a rg e as l o g k (s i z e)
// in t l a y e r s i z e [he igh t] ; / / number of nodes in laye r i
int base [he ight ∗ s i z e] ; // base of l e a f i s i t s va lue a f t e r PS

// base of in t e rna l node i s the base of l e f tmos t l e a f
int sum [he ight ∗ s i z e] ; // the va lue of sum for a node i s the sum of the va lues

// of increment for a l l i t s l e ave s

int i t e r a t i o n = 0 ; // determines the current he igh t in the t re e

int temp ; //FOR DEBUGGING ONLY, REMOVE LATER

37

int done ; //a loop contro l var iab l e

int l , // l e v e l where l eave s s t a r t
sb , // index where l eave s would s t a r t i f s i z e i s a power of 2
d , // s i z e − kˆ l
o f f s e t , //how much to o f f s e t due to s i z e not being power of 2
sr , // sb + o f f s e t
over , //number of l e ave s at l e v e l l
under , //number of l e ave s at l e v e l l + 1
sbp1 ; // index of one l e v e l h igher from sb

int f i l l ; //nodes to f i l l in with 0 to make a l l nodes have k ch i l d ren

int l e v e l , s t a r t i ndex , l a y e r s i z e ;

int i ;

/∗
∗ With non−b l ock ing wr i t e s 0 RTM is required to i n i t i a l i z e
∗ the funct ion parameters : k and s i z e
∗ 0 RTM is required to i n i t i a l i z e l o c a l v a r i a b l e s such as he igh t
∗/

//Spec ia l case i f s i z e == 1
i f (s i z e == 1) { // the check has 0 RTM because s i z e i s cached .

r e s u l t [0] = 0 ;
return ;

}

/∗
∗ 18 l i n e s of code above , means computation cost = 18 up to t h i s point .
∗/

// c a l c u l a t e l oca t ion for l eave s in the complete representat ion
l = l og (s i z e) / l og (k) ;

sb = (pow(k , l) − 1) / (k − 1) ; // t h i s i s der ived from geometric s e r i e s
sbp1 = (pow(k , l +1) − 1) / (k − 1) ;

d = s i z e − pow(k , l) ;
o f f s e t = CEIL (((double) d) / (k − 1)) ;
s r = sb + o f f s e t ;
over = pow(k , l) − o f f s e t ;
under = s i z e − over ;

/∗
∗ Computation cost = 8
∗/

// p r i n t f (” l = %d , sb = %d , d = %d , o f f s e t = %d ,
// sr = %d , over = %d\n” , l , sb , d , o f f s e t , sr , over) ;

// Copy increment [. . .] to l eave s of sum [. . .]

low = 0;
high = s i z e − 1;
spawn (low , high) {

i f ($ < under) {
sum [$ + sbp1] = increment [$] ; //1 RTM

}
else {

sum [($ − under) + sb + o f f s e t] = increment [$] ; //1 RTM
}

} //1 RTM jo in

/∗
∗ LSRTM = 2
∗ QD = 0
∗ Computation Depth = 5
∗ Computation Work = 2N
∗/

// Make some 0 l eave s at l e v e l l +1 so a l l nodes have exac t l y
// k ch i l d ren

f i l l = (k − (under % k)) % k ;
for (i = 0 ; i < f i l l ; i ++) {

sum [sbp1 + under + i] = 0 ;
}

38

/∗
∗ Computation Cost = 2k + 1
∗/

// I t e ra t ion 1 : f i l l in a l l nodes at l e v e l l
low = sb ;
high = sb + o f f s e t − 1;
i f (high >= low) {

spawn (low , high) {
int count ;

sum [$] = 0 ;
for (count = 0 ; count < k ; count++) {

sum [$] += sum [k ∗ $ + count + 1] ;
}

}
}

/∗
∗ We w i l l count the above ” I t e ra t ion 1” as 1 i t e r a t i on in
∗ the c l imbing the t re e loop below , for s imp l i c i t y .
∗ This g iv e s an upper bound , s ince the ” I t e ra t ion 1”
∗ se c t ion above does s l i g h t l y l e s s .
∗/

// Climb the t re e
l e v e l = l ;
while (l e v e l > 0) {

l e v e l −−;
s t a r t i ndex = (pow(k , l e v e l) − 1) / (k − 1) ;
l a y e r s i z e = pow(k , l e v e l) ;

low = sta r t i ndex ;
high = sta r t i ndex + l a y e r s i z e − 1;
spawn (low , high) {

int count ;

/∗
∗ Al l the sum[X] elements are read at once
∗ for the below loop using pre fe t ch ing .
∗
∗ RTMs = 1
∗ (pre fe t ch) Computation Depth = k
∗/

sum [$] = 0 ;
for (count = 0 ; count < k ; count++) {

sum [$] += sum [k ∗ $ + count + 1] ;
}

/∗
∗ Computation Depth of loop = 2k + 1
∗/

}
} // 1 RTM jo in

/∗
∗ For the above stage of c l imbing the t re e :
∗ LSRTM = 2 ∗ logN
∗ Computation Depth = (3k + 9) ∗ logN + 1
∗ Computation Work = (3k + 2) ∗ (N − 1) / (k − 1)
∗
∗ The (N − 1) / (k − 1) fac tor of the work i s the
∗ number of nodes in a k−ary t re e of depth logN − 1
∗ [there i s no work for the l eave s at depth logN]
∗
∗ Computation Work / min(p , p i) =
∗ ((3 k + 2) ∗ (N − min(p , N−1) − 1) / (k − 1)) / p
∗ + (3k + 2) ∗ l o g k (p)
∗
∗ For each l e v e l where number of nodes < p , the denominator i s p i .
∗ Otherwise the denominator i s p . This g iv e s the above formula .
∗/

base [0] = 0 ; // se t root base = 0

// Descend the t re e
s t a r t i ndex = 0;
while (l e v e l < l) {

39

l a y e r s i z e = pow(k , l e v e l) ;

low = sta r t i ndex ;
high = sta r t i ndex + l a y e r s i z e − 1;
spawn (low , high) {

int count , tempbase ;

tempbase = base [$] ;

/∗
∗ Al l the sum[X] elements are read at once
∗ for the below loop using pre fe t ch ing .
∗
∗ RTMs = 1
∗ (pre fe t ch) Computation Depth = k
∗/

for (count = 0 ; count < k ; count++) {
base [k∗$ + count + 1] = tempbase ;
tempbase += sum [k∗$ + count + 1] ;

}

/∗
∗ Computation Depth = 3k ;
∗/

} //1 RTM jo in

s t a r t i ndex += l a y e r s i z e ;
l e v e l ++;

}

// I t e ra t ion h : f i l l in a l l nodes at l e v e l l+1
low = sb ;
high = sb + o f f s e t − 1;
i f (high >= low) {

spawn (low , high) {
int count , tempbase ;

tempbase = base [$] ;

for (count = 0 ; count < k ; count++) {
base [k∗$ + count + 1] = tempbase ;
tempbase += sum [k∗$ + count + 1] ;

}
}

}

/∗
∗ For s imp l i c i t y count ” I t e ra t ion h” as part o f
∗ the loop to descend the t re e . This g iv e s
∗ an upper bound .
∗
∗ For the stage of descending the t re e :
∗ LSRTM = 2 ∗ logN
∗ Computation Depth = (4k + 9) ∗ logN + 2
∗ Computation Work = (4k + 2) ∗ (N − 1) / (k − 1)
∗
∗ The (N − 1) / (k − 1) fac tor of the work i s the
∗ number of nodes in a k−ary t re e of depth logN − 1
∗ [there i s no work for the nodes at depth logN]
∗
∗ Computation Work / min(p , p i) =
∗ ((4 k + 2) ∗ (N − min(p , N−1) − 1) / (k − 1)) / p
∗ + (4k + 2) ∗ l o g k p
∗
∗ For each l e v e l where number of nodes < p , the denominator i s p i .
∗ Otherwise the denominator i s p . This g iv e s the above formula .
∗/

//Copy to r e s u l t matrix
low = 0;
high = s i z e − 1;
spawn (low , high) {

r e s u l t [$] = base [s r + $] ; //1 RTM
}

/∗
∗ For above code :

40

∗ LSRTM = 1
∗ Computation Depth = 4
∗ Computation Work = N
∗/

/∗
∗ For the whole algorithm :
∗
∗ LSRTM = 4 ∗ logN + 3
∗ QD = 0
∗ Computation Depth = (7k + 18) ∗ logN + 2k + 39
∗ Computation Work = 3N + (7k + 4) ∗ (N − 1) / (k − 1)
∗
∗ Computation Work / min(p , p i) =
∗ (3N + (7k + 4) ∗ (N − min(p , p i) − 1) / (k − 1)) / p
∗ + (7k +4) ∗ l o g k p
∗/

}

No-Busy-Wait K-ary Prefix-Sums

/∗
∗ void kps (. . .)
∗
∗ The funct ion computes pr e f i x sums by using a k−ary t re e .
∗ k i s de f ined by the parameter k to the funct ion .
∗
∗ Input :
∗ increment [] − an array of increment va lues
∗ k − the va lue of k to use for the k−ary t re e
∗ s i z e − the s i z e of the increment [] array
∗
∗ Output :
∗ r e s u l t [] − t h i s array i s f i l l e d with the p r e f i x sum on
∗ the va lues of the array increment []
∗
∗/

void kps (int increment [] , int r e s u l t [] , int k , int s i z e) {
register int low , high ;
int he ight = 20 ; //note : he igh t should be as l a rg e as l o g k (s i z e)
// in t l a y e r s i z e [he igh t] ; / / number of nodes in laye r i
int base [he ight ∗ s i z e] ; // base of l e a f i s i t s va lue a f t e r PS,

// base of in t e rna l node i s the base of l e f tmos t l e a f
int sum [he ight ∗ s i z e] ; // the va lue of sum for a node i s the sum

// of the va lues of increment for a l l i t s l e ave s
int i s L ea f [he ight ∗ s i z e] ; // i f a l e a f : 1 ; i f not a l e a f : 0
int passIndex [he ight ∗ s i z e] ; //array for passing index to c h i l d threads

int i t e r a t i o n = 0 ; // determines the current he igh t in the t re e

int temp ; //FOR DEBUGGING ONLY, REMOVE LATER
int done ; //a loop contro l var iab l e

int l , // l e v e l where l eave s s t a r t
sb , // index where l eave s would s t a r t i f s i z e i s a power of 2
d , // s i z e − kˆ l
o f f s e t , //how much to o f f s e t due to s i z e not being power of 2
sr , // sb + o f f s e t
over , //number of l e ave s at l e v e l l
under , //number of l e ave s at l e v e l l + 1
sbp1 ; // index of one l e v e l h igher from sb

int f i l l ; //nodes to f i l l in with 0 to make a l l nodes have k ch i l d ren

int l e v e l , s t a r t i ndex , l a y e r s i z e ;

int i ;

/∗
∗ With non−b l ock ing wr i t e s 0 RTM is required to i n i t i a l i z e
∗ the funct ion parameters : k and s i z e
∗ 0 RTM is required to i n i t i a l i z e l o c a l v a r i a b l e s such as he igh t
∗/

//Spec ia l case i f s i z e == 1
i f (s i z e == 1) { // the check has 0 RTM because s i z e i s cached .

r e s u l t [0] = 0 ;

41

return ;
}

/∗
∗ 21 l i n e s of code above , means computation cost = 21 up to t h i s point .
∗/

// c a l c u l a t e l oca t ion for l eave s in the complete representat ion
l = l og (s i z e) / l og (k) ;

sb = (pow(k , l) − 1) / (k − 1) ; // t h i s i s der ived from geometric s e r i e s
sbp1 = (pow(k , l +1) − 1) / (k − 1) ;

d = s i z e − pow(k , l) ;
o f f s e t = CEIL (((double) d) / (k − 1)) ;
s r = sb + o f f s e t ;
over = pow(k , l) − o f f s e t ;
under = s i z e − over ;

/∗
∗ Computation cost = 8
∗/

// p r i n t f (” l = %d , sb = %d , d = %d , o f f s e t = %d , sr = %d , over = %d\n” , l , sb , d , o f f s e t , sr , over) ;

// Copy increment [. . .] to l eave s of sum [. . .]

low = 0;
high = s i z e − 1;
spawn (low , high) {

i f ($ < under) {
sum [$ + sbp1] = increment [$] ; // 1 RTM
i s L ea f [$ + sbp1] = 1 ;

}
else {

sum [($ − under) + sb + o f f s e t] = increment [$] ; //1 RTM
i s L ea f [($ − under) + sb + o f f s e t] = 1 ;

}
} // 1 RTM jo in

/∗
∗ For code above :
∗
∗ LSRTM = 2
∗ Computation Depth = 6
∗ Computation Work = 3N
∗/

// Make some 0 l eave s at l e v e l l +1 so a l l nodes have exac t l y
// k ch i l d ren

f i l l = (k − (under % k)) % k ;
for (i = 0 ; i < f i l l ; i ++) {

sum [sbp1 + under + i] = 0 ;
}

/∗
∗ Computation Cost = 2k + 1
∗/

//Climb t re e

low = sr ;
high = sr + s i z e + f i l l − 1;
spawn (low , high) {

int gate , count , a l i v e ;
int index= $;
a l i v e = 1;

while (a l i v e) {
index = (index − 1) / k ;

gate = 1;
psm(gate , & gatekeeper [index]) ; //1 RTM

i f (gate == k − 1) {
/∗
∗ Using pre fe tching , the sum[X] elements
∗ in the fo l l owing loop are read a l l at once

42

∗ LSRTM = 1
∗ (pre fe t ch ing) Computation Depth = k
∗/

sum [index] = 0 ;
for (count = 0 ; count < k ; count++) {

sum [index] += sum [k∗ index + count + 1] ;
}

i f (index == 0) {
a l i v e = 0;

}

/∗
∗ Computation Depth = 2k + 3;
∗/

}
else {

a l i v e = 0;
}

}
} // 1 RTM jo in

/∗
∗ For code above :
∗
∗ LSRTM = 2 ∗ logN + 1
∗ QD = k ∗ logN
∗ Computation Depth = (8 + 2k) ∗ (logN + 1) + 6
∗ Computation Work = (8 + 2k) ∗ (N − 1) / (k − 1) + 8N
∗
∗ The (N − 1) / (k − 1) fac tor of the work comes
∗ from counting the t o t a l nodes in a t re e with logN − 1
∗ l e v e l s . Each of the l eave s at l e v e l logN only
∗ executes the f i r s t 8 l i n e s ins ide the spawn b lock
∗ (tha t is , up to the check of the gatekeeper) be fore
∗ most die and only 1 thread per parent continues . This
∗ g iv e s the 8N term .
∗
∗ Computation Work / min(p , p i) =
∗ ((8 + 2 k)∗(N − min(p , N−1) − 1)/(k−1) + 8N) / p
∗ + (8 + 2k) ∗ l o g k p
∗
∗ For each l e v e l where number of nodes < p , the denominator i s p i .
∗ Otherwise the denominator i s p . This g iv e s the above formula .
∗/

base [0] = 0 ; // se t root base = 0

low = 0;
high = 0;
spawn (low , high) {

int count , tempbase ;
int index = $;
int newID ;

i f ($!= 0) {
index = passIndex [$] ;

}

while (i sL e a f [index] == 0) {
tempbase = base [index] ;

/∗
∗ The k − 1 c a l l s to sspawn can be executed with
∗ a s ing l e kspawn ins t ruc t ion .
∗ The elements sum[X] are read a l l at once using
∗ pre fe t ch ing .
∗
∗ LSRTM = 2
∗ (kspawn and pre fe t ch ing) Computation Depth = k +1
∗/

for (count = 0 ; count < k ; count++) {
base [k∗ index + count + 1] = tempbase ;
tempbase += sum [k∗ index + count + 1] ;

i f (count != 0) {
sspawn (newID) {

43

passIndex [newID] = k∗ index + count + 1;
}

}
}

index = k∗ index + 1;

/∗
∗ Computation Depth = 6k + 1
∗/

}
} //1 RTM jo in

/∗
∗ For code above :
∗
∗ LSRTM = 2 ∗ logN + 1
∗ Computation Depth = (3 + 6k) ∗ logN + 9
∗ Computation Work = (3 + 6k) ∗ (N − 1) / (k − 1) + 6N + 6
∗
∗ The (N − 1) / (k − 1) fac tor of the work comes
∗ from counting the t o t a l nodes in a t re e with logN − 1
∗ l e v e l s . Each of the l eave s at l e v e l logN only
∗ executes the f i r s t 6 l i n e s ins ide the spawn b lock
∗ (up to the check of isLeaf) be fore dying . This
∗ g iv e s the 6N term .
∗
∗ Computation Work / min(p , p i) =
∗ ((3 + 6 k)∗(N − min(p , N−1) − 1) / (k−1) + 6N + 6)/p
∗ + (3 + 6k) ∗ l o g k p
∗/

//Copy to r e s u l t matrix
low = 0;
high = s i z e − 1;
spawn (low , high) {

r e s u l t [$] = base [s r + $] ; //1 RTM
} //1 RTM jo in

/∗
∗ LSRTM = 2
∗ Computation Depth = 4
∗ Computation Work = N
∗/

/∗
∗ For the whole algorithm :
∗
∗ LSRTM = 4 ∗ logN + 6
∗ QD = k ∗ logN
∗ Computation Depth = (11 + 8k) ∗ logN + 2k + 55
∗ Computation Work = (11 + 8k) ∗ (N − 1) / (k − 1) + 18N + 6
∗
∗ Computation Work / min(p , p i) =
∗ ((11 + 8 k)∗(N − min(p , N−1) − 1) / (k−1) + 18N + 6) / p
∗ + (11 + 8k)∗ l o g k p
∗/

}

Serial Summation

/∗
∗ void sum (. . .)
∗ Function computes a sum
∗
∗ Input :
∗ increment [] − an array of increment va lues
∗ k − the va lue of k to use for the k−ary t re e
∗ s i z e − the s i z e of the increment [] array
∗
∗ Output :
∗ sum
∗
∗/

void sum(int increment [] , int ∗ sum , int k , int s i z e) {
int i ;

44

∗sum = 0;

for (i = 0 ; i < s i z e ; i ++) {
∗sum += increment [i] ;

}

/∗
∗ LSRTM = 1
∗ At f i r s t , 1 RTM i s needed to read increment . However , l a t e r reads
∗ to increment are accomplished with pre fe t ch .
∗
∗ QD = 0
∗ Computation = 2N
∗/

}

Serial Prefix-Sums

/∗
∗ void kps (. . .)
∗
∗ The funct ion computes pr e f i x sums s e r i a l l y .
∗
∗ Input :
∗ increment [] − an array of increment va lues
∗ k − the va lue of k to use for the k−ary t re e (not used)
∗ s i z e − the s i z e of the increment [] array
∗
∗ Output :
∗ r e s u l t [] − t h i s array i s f i l l e d with the p r e f i x sum on the va lues of the array increment []
∗
∗/

void kps (int increment [] , int r e s u l t [] , int k , int s i z e) {
int i ;
int PS = 0;

for (i = 0 ; i < s i z e ; i ++) {
r e s u l t [i] = PS ;
PS += increment [i] ;

}

/∗
∗ LSRTM = 1
∗ At f i r s t , 1 RTM i s needed to read increment . However , l a t e r reads
∗ to increment are accomplished with pre fe t ch .
∗
∗ QD = 0
∗ Computation = 3N
∗/

}

Flattened BFS Algorithm

/∗ Flat tened BFS implementation
∗/

psBaseReg newLevelGR , notDone ; // g l o ba l r e g i s t e r for ps ()

int ∗ currentLeve lSe t , ∗ newLevelSet , ∗ tmpSet ; // pointers to ve r t e x s e t s

main () {

int cu r r en tLeve l ;
int cu r r en tLeve lS i z e ;
register int low , high ;
int i ;
int n In t e r v a l s ;

/∗ v a r i a b l e s for the edgeSet f i l l i n g algorithm ∗/
int workPerThread ;
int maxDegree , nMax ; // hold in fo about heav ie s t node

/∗ i n i t i a l i z e for f i r s t l e v e l ∗/
cu r r en tLeve l = 0;
cu r r en tLeve lS i z e = 1;

45

cu r r en tLeve lSe t = temp1 ;
newLevelSet = temp2 ;

cu r r en tLeve lSe t [0] = START NODE;
l e v e l [START NODE]=0;
gatekeeper [START NODE]=1 ; // mark s t a r t node v i s i t e d

/∗ Al l o f the above i n i t i a l i z a t i o n s can be done with non−b l ock ing wr i t e s .
∗ using 0 RTM
∗ 7 l i n e s of code above , cost = 9 up to t h i s point
∗/

// 0 RTM, currentLeve lSize in cache
while (cu r r en tLeve lS i z e > 0) { // whi le we have nodes to exp lore

/∗ c l ear the markers array so we know which va lues are u n in i t i a l i z e d
∗/

low = 0;
high = NTCU − 1 ; // 0 RTM, NTCU in cache
spawn (low , high) {

markers [$] = UNINITIALIZED ; // 0 RTM, non−b l ock ing write . UNITIALIZED i s a constant
// the f i n a l non−b l ock ing write i s overlapped with the RTM of the jo in

} // 1 RTM for jo in

/∗ Total for t h i s spawn b lock + i n i t i a l i z a t i o n s t eps be fore :
∗ RTM Time = 1
∗ Computation time = 1
∗ Computation work = NTCU, number of TCUs.
∗/

/∗∗
∗ Step 1 :
∗ Compute p re f i x sums of the degrees of v e r t i c e s in current l e v e l s e t
∗∗/

/∗
∗ We use the k−ary t re e Prefix sums funct ion .
∗ Changes from ” standard ” pre f ix sums :
∗ − a l so computes maximum element . t h i s adds to computation time of
∗ upward t r a v e r s a l o f k−ary t re e
∗/

// f i r s t ge t a l l the degrees in an array
low = 0;
high = cu r r en tLeve lS i ze −1;
spawn (low , high) {

register int LR;
/∗ pre fe t ch c r tLeve lSe t [$]
∗ t h i s can be over laped with the ps below ,
∗ so i t takes 0 RTM and 1 computation
∗/

LR = 1;
ps (LR,GR) ; // 1 RTM
degs [GR] = degree s [c r tLeve lS e t [$]] ;
// 1 RTM to read degrees [c r tLeve lSe t [$]] . using non−b l ock ing write
// l a s t wri te i s overlapped with the RTM of the jo in

} // 1 RTM for jo in

/∗ the above spawn b lock :
∗ RTM Time = 3
∗ Computation Time = 3
∗ Computation Work = 3∗Ni
∗/

kary psums and max (degs , pre f ix sums , k , cu r r en tLeve lS i ze , maxDegree) ;

/∗
∗ t h i s funct ion has :
∗ RTM Time = 4 lo g k (Ni)
∗ Computation Time = (17 + 9k) l o g k (Ni) + 13
∗ Computation Work = (17 + 9k) Ni + 13
∗/

outgo ingEdgesS ize = pre f i x sums [cu r r en tLeve lS i z e + 1] ; // t o t a l sum. 0 RTM (cached)

/∗ compute work per thread and number of edge in t e r v a l s
∗ cost = 3 when problem i s l a rg e enough , cost = 5 otherwise
∗ no RTMs, everyth ing i s in cache and using non−b l ock ing wr i t e s
∗/

n In t e r v a l s = NTCU; // constant

46

workPerThread = outgo ingEdgesS ize / NTCU + 1;
i f (workPerThread < THRESHOLD) {

workPerThread = THRESHOLD;
n I n t e r v a l s = (outgo ingEdgesS ize / workPerThread) + 1 ;

}
/∗ Total Step 1 :
∗ RTM Time : 4 lo g k Ni + 4
∗ Computation Time: (17+9k) l o g k Ni + 23
∗ Computation Work: (19+9k) Ni + 21
∗/

/∗∗
∗ Step 2 :
∗ Apply p a r a l l e l pointer jumping algorithm to f ind a l l marker edges
∗∗/

nMax = maxDegree / workPerThread ; // 0 RTM, a l l in cache

/∗ Step 2 . 1 Pointer jumping − F i l l in one entry per ve r t e x ∗/
low = 0;
// one thread for each node in current l aye r
high = cur r en tLeve lS i z e − 1;
spawn (low , high) {

int c r tVertex ;
int s , deg ;
int ncrossed ;

/∗
∗ pre fe t ch currentLeve lSe t [$] , pre f ix sums [$]
∗ 1 RTM, computation cost = 2
∗/

c r tVertex = cu r r en tLeve lS e t [$] ; // 0 RTM, va lue i s in cache
s = pre f i x sums [$] / workPerThread + 1 ; // 0 RTM, va lues in cache
// how many (i f any) boundaries i t crosses .
ncrossed = (p r e f i x sums [$] + degree s [c r tVertex]) / workPerThread − s ;

// above l i n e has 1 RTM, degrees [] cannot be pre fe tched above , depends on crtVertex
i f (ncrossed >0) { // crosses at l e a s t one boundary

markers [s] = s ∗ workPerThread − pre f i x sums [$] ; // t h i s i s the edge index (o f f s e t)
markerNodes [s] = $; // t h i s i s the ve r t e x

}
// l a s t wri te i s overlapped with the RTM of the jo in

} // 1 RTM for jo in

/∗
∗ Total for the above spawn b lock
∗ RTM Time = 3
∗
∗ Computation Time = 9
∗ Computation Work <= 9 Ni
∗/

/∗ Step 2 .2 Actual pointer jumping ∗/

jump = 1 ; notDone = 1;
while (notDone) { // i s updated in p a ra l l e l mode , 1 RTM to read i t

notDone = 0 ; // re se t
low =0; high = NTCU−1;
spawn (low , high) {

register int LR;
// w i l l be broadcasted : jump , workPerThread , UNINITIALIZED constant
/∗ Prefe tch : markers [$] , markers [$−jump]
∗ 1 RTM, 2 Computation , 1 QD
∗/

i f (markers [$] == UNINITIALIZED) { // 0 RTM, cached
i f (markers [$−jump] != UNINITIALIZED) { // 0 RTM, cached

// found one i n i t i a l i z e d marker
markers [$] = markers [$−jump] + s ∗ workPerThread ;
markerNodes [$] = markerNodes [$−jump] ;

}
else { // marker s t i l l not i n i t i a l i z e d . mark notDone

LR = 1;
ps (LR, notDone) ; // 1 RTM

}
}

} // 1 RTM for jo in
/∗ Total for the above spawn b lock + setup

47

∗ RTM Time = 3
∗ Computation time = 6
∗ Computation work = 6
∗
∗/

jump = jump ∗ 2 ; // non−b l ock ing write
}

/∗ above loop executes at most l og NTCU times
∗ Total :
∗ RTM Time = 4 log NTCU
∗ Computation time = 10 log NTCU (inc lude s s e r i a l code)
∗ Computation work = 6 NTCU
∗/

/∗ Total s tep 2 :
∗ RTM = 4 log NTCU + 3
∗ Computation depth = 10 log NTCU + 9
∗ Computation work . se c t ion 1 : 9Ni , se c t ion 2=10 NTCU
∗/

/∗∗
∗ Step 3 .
∗ One thread per edge in t e r v a l .
∗ Do work for each edge , add i t to new l e v e l i f new
∗∗∗/

low = 0;
high = n In t e r v a l s ; // one thread for each in t e r va l
newLevelGR = 0 ; // empty se t o f nodes
spawn (low , high) {

int crtEdge , freshNode , antiParEdge ;
int crtNode , i 3 ;
int gatekLR ; // l o c a l r e g i s t e r for gatekeeper psm
int newLevelLR ; // l o c a l r e g i s t e r for new l e v e l s i z e

/∗
∗ Prefe tch markerNodes [$] , markers [$]
∗ 1 RTM, computation cost 2
∗/

crtNodeIdx = markerNodes [$] ; // cached , 0 RTM
c r tEdgeOf f se t = markers [$] ; // cached , 0 RTM

/∗ pre fe t ch currentLeve lSe t [crtNodeIdx] ,
v e r t i c e s [currentLeve lSe t [crtNodeIdx]] ,
degrees [currentLeve lSe t [crtNodeIdx]]

∗ 2 RTM, cost = 2
∗/

// workPerThread i s broadcasted , 0 RTM to read i t
for (i 3 =0; i3<workPerThread ; i 3++) {

crtEdge = ve r t i c e s [c u r r en tLeve lSe t [crtNodeIdx]] + crtEdgeOf f se t ; // cached , 0 RTM
// trave r se edge and get new ver t e x
f reshNode = edges [crtEdge] [1] ; // 1 RTM
i f (f reshNode != −1) { // edge could be marked removed

gatekLR = 1;
psm(gatekLR,& gatekeeper [f reshNode]) ; // 1 RTM, queuing for the indegree

i f (gatekLR == 0) { // de s t ina t ion ve r t e x unv i s i t ed
newLevelLR = 1;
// increase s i z e of new l e v e l s e t
ps (newLevelLR , newLevelGR) ; // 1 RTM
// s tore f r e sh node in new l e v e l . next two l i n e s are 0 RTM, non−b l ock ing wr i t e s
newLevelSet [newLevelLR] = freshNode ;
l e v e l [f reshNode] = cu r r en tLeve l + 1;
// now mark an t i p a r a l l e l edge as de l e t ed
antiParEdge = an t i P a r a l l e l [crtEdge] ; // 0 RTM, pre fe tched
edges [antiParEdge] [1] = − 1 ; edges [antiParEdge] [0] = − 1 ; // 0 RTM, non−b l ock ing wr i t e s

} // end i f
} // end i f freshNode

/∗ Previous i f b lock cos t s :
∗ 2 RTM, computation 8 for a ” f re sh ” ve r t e x
∗ or
∗ 1 RTM, computation 2 for a ” v i s i t e d ” ve r t e x
∗/

48

c r tEdgeOf f se t++;
i f (c r tEdgeOf f se t>=degree s [c u r r en tLeve lS e t [crtNodeIdx]]) { // exhausted a l l the edges?

// 0 RTM, va lue i s in cache
crtNodeIdx++;
crtEdgeOf f se t = 0;
/∗ We have new current node . pre fe t ch i t s data

pre fe t ch currentLeve lSe t [crtNodeIdx] ,
∗ ve r t i c e s [currentLeve lSe t [crtNodeIdx]] ,
∗ degrees [currentLeve lSe t [crtNodeIdx]]
∗ 2 RTM, cost = 2
∗/

}

/∗ This i f and ins t ruc t ion be fore i t cost :
∗ 2 RTM, 6 computation for each new marker edge in in t e r v a l
∗ or
∗ 2 computation for a l l other edges
∗/

i f (crtNodeIdx>= cur r en tLeve lS e t)
break ;

// t h i s i f i s 0 RTM, 1 computation .

} // end for

/∗ Previous loop i s executed C = Ei/p times .
∗ We assume Ni nodes are ” f re sh ” , worst case ana lys i s
∗ Total over a l l i t e r a t i on s . AA i s the number of marker edges in i n t e r va l .
∗ WITHOUT PREFETCHING:
∗ RTM: 3∗C + 2 AA
∗ Computation : 11∗C + 4 AA
∗/

// l a s t wri te i s overlapped with the RTM of the jo in
} // 1 RTM for jo in

/∗
∗ Total for above spawn b lock + i n i t i a l i z a t i o n : (C=Ei/p , AA = N/p = # marker edges)
∗ WITHOUT PREFETCHING for mu l t ip l e edges : RTM Time = 3∗C + 3 + 2 AA
∗ WITH PREFETCHING for mu l t ip l e edges : RTM Time = 3 + 3 + 2
∗ Computation Time = 8 + 7∗C + 16 AA
∗ Computation Work = 8p + 7E + 16N
∗/

// move to next l aye r
cu r r en tLeve l++;
cu r r en tLeve lS i z e = newLevelGR ; // from the pre f i x−sums
// ” swap” currentLeve lSe t with newLevelSet
tmpSet = newLevelSet ;
newLevelSet = cu r r en tLeve lS e t ;
c u r r en tLeve lS e t = tmpSet ;

/∗ a l l these above s t eps : 0 RTM, 5 computation ∗/

} // end whi le
/∗
∗ Total for one BFS l e v e l (one i t e r a t i on of above whi le loop) :
∗ W/O PRE: RTM Time = 4 lo g k Ni + 4 |Ei |/ p + 11 + LSRTM of PSUMS
∗ W PRE : RTM Time = 4 lo g k Ni + 4 + 11 + LSRTM of PSUMS
∗ Computation Time =
∗ Comp Work =
∗/

}

Single-Spawn BFS Algorithm

/∗ BFS implementation using s ing l e−spawn operation
∗ for nest ing
∗/

psBaseReg newLevelGR ; // g l o ba l r e g i s t e r for new l e v e l s e t

int ∗ currentLeve lSe t , ∗ newLevelSet , ∗ tmpSet ; // pointers to l e v e l s e t s

main () {

int cu r r en tLeve l ;

49

int cu r r en tLeve lS i z e ;
int low , high ;
int i ;

c u r r en tLeve l = 0;
cu r r en tLeve lS i z e = 1;
cu r r en tLeve lSe t = temp1 ;
newLevelSet = temp2 ;

cu r r en tLeve lSe t [0] = START NODE; // s tore the ve r t e x# th i s thread w i l l handle

/∗
∗ 0 RTMs, 5 computation
∗/

while (cu r r en tLeve lS i z e > 0) { // whi le we have nodes to exp lore
newLevelGR = 0;
low = 0;
high = cu r r en tLeve lS i z e − 1 ; // one thread for each node in current l aye r

spawn (low , high) {
int gatekLR , newLevelLR , newTID ;
int freshNode , antiParEdge ;

/∗
∗ Al l threads need to read t h e i r i n i t i a l i z a t i o n data
∗ nForks [$] and currentEdge [$]
∗/

i f ($ < cu r r en tLeve lS i z e) { // 0 RTM
/∗
∗ ” Orig ina l ” threads read i t e x p l i c i t l y from the graph
∗/

// only s t a r t degree−1 new threads , current thread w i l l handle one edge
nForks [$] = degree s [c u r r en tLeve lS e t [$]] − 1 ; // 2 RTM
// th i s thread w i l l handle f i r s t outgoing edge
currentEdge [$] = v e r t i c e s [c u r r en tLeve lSe t [$]] ; // 1 RTM

}
else {

/∗
∗ Single−spawned threads , need to ” wait ” un t i l i n i t va lues
∗ from the parent are wri t ten
∗/

while (l o ck s [$] ! = 1) ; // busy wait un t i l i t g e t s the s i gna l

} // end i f

/∗ The above i f b lock takes
∗ 3 RTM, 3 computation for ” o r i g i na l ” threads
∗ for c h i l d threads : 1 RTM for synchronizat ion . 2 computation
∗/

while (nForks [$] > 0) { // 1 computation
// t h i s i s executed for each c h i l d thread spawned
sspawn (newTID) { // 1 RTM
/∗
∗ writ ing i n i t i a l i z a t i o n data for c h i l d threads .
∗ ch i l d ren w i l l wait t i l l t h i s data i s commited
∗/
nForks [newTID] = (nForks [$]+1)/2 −1;
nForks [$] = nForks [$] − nForks [newTID]−1;
currentEdge [newTID] = currentEdge [$] + nForks [$]+1;
l o ck s [newTID] = 1 ; // GIVE THE GO SIGNAL!

/∗
∗ 0 RTM
∗ 4 computation
∗/

}
/∗ For each c h i l d thread :
∗ 1 RTM
∗ 5 computation
∗/

} // done with fork ing

/∗
∗ Prefe tch edges [currentEdge [$]] [1] , an t iPa ra l l e l [currentEdge [$]]
∗ 1 RTM, 2 computation
∗/

50

// l e t ’ s handle one edge
f reshNode = edges [currentEdge [$]] [1] ; // 0 RTM, va lue was pre fe tched
i f (f reshNode != −1) { // i f edge hasn ’ t been de l e t ed

gatekLR = 1;
// t e s t gatekeeper
psm(gatekLR,&gatekeeper [f reshNode]) ; // 1 RTM. GQD queuing

i f (gatekLR == 0) { // de s t ina t ion ve r t e x unv i s i t ed !
newLevelLR = 1;
// increase s i z e of new l e v e l s e t
ps (newLevelLR , newLevelGR) ; // 1 RTM
// s tore f r e sh node in new l e v e l
newLevelSet [newLevelLR] = freshNode ;
l e v e l [f reshNode] = cu r r en tLeve l + 1;
// now mark a n t i p a r a l l e l edge as de l e t ed
antiParEdge = an t iP a r a l l e l [currentEdge [$]] ; // 0 RTM, va lue was pre fe tched
edges [antiParEdge] [1] = −1 ;
edges [antiParEdge] [0] = −1 ;

} // end i f
} // end i f

/∗
∗ Previous i f b lock cos t s :
∗ 2 RTM, 10 computation for ” f re sh ” ve r t e x
∗ 0 RTM, 2 computation for v i s i t e d ve r t e x

∗/

/∗
∗ Final wri te i s b lock ing , but the RTM over laps the jo in .
∗/

} // 1 RTM jo in

/∗ Computation for a c h i l d thread tha t s t a r t s one s i ng l e c h i l d : 1 9 ∗/

// move to next l aye r
cu r r en tLeve l++;
cu r r en tLeve lS i z e = newLevelGR ; // from the pre f i x−sums
// ” swap” currentLeve lSe t with newLevelSet
tmpSet = newLevelSet ;
newLevelSet = cu r r en tLeve lS e t ;
c u r r en tLeve lS e t = tmpSet ;

/∗ the above 5 l i n e s of code : 0 RTM, 5 computation ∗/

} // end whi le
}

k-Spawn BFS Algorithm

The only difference between the single-spawn BFS algorithm and the k-spawn is the while loop that is
starting children threads. We’re including only that section of the code here, the rest is identical with the
code in the BFS Single-Spawn implementation.

while (nForks [$] > 0) { // 1 computation
// t h i s i s executed for each c h i l d thread spawned
kspawn (newTID) { // 1 RTM for kSpawn

// newTID i s the lowest o f the k TIDs a l l oca ted by k−spawn .
// The other ones are newTID+1, newTID+2 , . . . , newTID+(k−1)

/∗
∗ writ ing i n i t i a l i z a t i o n data for c h i l d threads .
∗ ch i l d ren w i l l wait t i l l t h i s data i s commited
∗/

s l i c e = nForks [$] / k ;
nForks [$] = nForks [$] − s l i c e ; // sub s t rac t a s l i c e for parent thread

for (ch i l d =0; ch i ld <k ; c h i l d ++) {
// i n i t i a l i z e nForks [newTid + ch i l d] and currentEdge [newTid + ch i l d]
nForks [newTID + ch i l d] = max(s l i c e , nForks [$]) ; // for rounding
currentEdge [newTID] = currentEdge [$] + ch i l d ∗ s l i c e ;
nForks [$] = nForks [$] − nForks [newTID + ch i l d] ;

}
/∗
∗ loop i s executed k times .

51

∗ Each i t e r r a t i on :
∗ 0 RTM
∗ 4 computation
∗/

}
/∗ For each k c h i l d threads :
∗ 1 RTM
∗ 2+4∗k computation
∗/

} // done with fork ing

52

