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Abstract—This paper describes new models for the influence
of rolling-element bearing faults on induction motor stator cur-
rent. Bearing problems are one major cause for drive failures.
Their detection is possible by vibration monitoring of charac-
teristic bearing frequencies. As it is possible to detect other ma-
chine faults by monitoring the stator current, a great interest
exists in applying the same method for bearing fault detection.
After a presentation of the existing fault model, a new detailed
approach is proposed. It is based on two effects of a bearing
fault: the introduction of a particular radial rotor movement
and load torque variations caused by the bearing fault. The
theoretical study results in new expressions for the stator cur-
rent frequency content. Experimental tests with artificial and
realistic bearing damage were conducted by measuring vibra-
tion, torque and stator current. The obtained results by spec-
tral analysis of the measured quantities validate the proposed
theoretical approach.

Index Terms—Induction motor fault diagnosis, bearing dam-
age, motor current signature analysis, airgap eccentricity,
torque variations.

I. I NTRODUCTION

Induction motors are nowadays widely used in all types of
industry applications due to their simple construction, high
reliability and the availability of power converters using ef-
ficient control strategies. A permanent condition monitoring
of the electrical drive can further increase the productivity,
reliability and safety of the entire installation.

Traditionally, motor condition can be supervised by mea-
suring quantities such as noise, vibration and temperature.
The implementation of these measuring systems is expen-
sive and proves only to be economical in the case of large
motors or critical applications. A solution to this problem
can be the use of quantities that are already measured in a
drive system e.g. the machine’s stator current, often required
for command purposes. A general review of monitoring and
fault diagnosis techniques can be found in [1],[2].

Bearing faults are the most frequent faults in induction
machines (41%) according to an IEEE motor reliability study
[3], followed by stator (37%) and rotor faults (10%). R. R.
Schoen has proposed a model for bearing fault detection in
[4] based on the generation of fault related rotating eccen-
tricities. This fault model has been applied in several works
[5],[6].

In the present paper, a more detailed approach will be in-
troduced, taking also into account fault related torque vari-

ations. Firstly, a short overview of bearing fault types is
given in section II, followed by the characteristic vibration
frequencies and the existing fault model developed by R. R.
Schoen. In the following sections III and IV, the theoretical
background for a new model is developed and new expres-
sions for the frequency content of the stator current in case
of bearing faults are obtained. Experimental results with dif-
ferent fault types are given in section V, validating different
aspects of the theoretical approach.

II. E XISTING MODELS FOR BEARING FAULT

DETECTION

A. Bearing Fault Types

This paper considers rolling-element bearings with a ge-
ometry shown in Fig. 1. The bearing consists mainly of the
outer and inner raceway, the balls and the cage which as-
sures equidistance between the balls. The number of balls
is defined asNb, their diameter asDb. The pitch diameter
or diameter of the cage is designatedDc. The point of con-
tact between a ball and the raceway is characterized by the
contact angleβ.

The different faults occurring in a rolling-element bearing
can be classified according to the affected element:
• outer raceway defect
• inner raceway defect
• ball defect

A fault could be imagined as a small hole, a pit or a missing
piece of material on the corresponding element.

The definition of these fault types is somehow ”artificial”
regarding real bearing damages. Nevertheless, this is the only
method of distinguishing the different bearing fault effects on
the machine. In a realistic case, a combination of these three
effects is more likely to be found.

B. Characteristic Frequencies

With each type of bearing fault, a characteristic frequency
fc can be associated. This frequency is equivalent to the pe-
riodicity by which an anomaly appears due to the existence
of the fault. Imagining for example a hole on the outer race-
way: as the rolling elements move over the defect, they are
regularly in contact with the hole which produces an effect
on the machine at a given frequency.

The characteristic frequencies are functions of the bearing
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Fig. 1. Geometry of a rolling-element bearing.

geometry and the mechanical rotor frequencyfr. A detailed
calculation of these frequencies can be found in [7]. Their
expressions for the three considered fault types are given by:

Outer raceway: fo =
Nb

2
fr

(
1− Db

Dc
cosβ

)
(1)

Inner raceway: fi =
Nb

2
fr

(
1 +

Db

Dc
cosβ

)
(2)

Ball: fb =
Dc

Db
fr

(
1− D2

b

D2
c

cos2 β
)

(3)

C. Bearing Fault Detection by Stator Current Analysis

The most often quoted model studying the influence of
bearing damage on the induction machine’s stator current
was proposed by R. R. Schoen et al. in [4]. The author
considers the generation of rotating eccentricities at bearing
fault characteristic frequenciesfc which leads to periodical
changes in the machine inductances. This should produce
additional frequenciesfbf in the stator current given by:

fbf = |fs ± kfc| (4)
wherefs is the electrical stator supply frequency andk =
1, 2, 3, . . . .

We consider this model as being incomplete: On the one
hand, no detailed theoretical development of the fault related
frequency expression is given. On the other hand, it does
not consider torque variations as a consequence of the bear-
ing fault. In the following two sections, the existing model
will be completed and extended by the means of a detailed
theoretical study.

III. T HEORETICAL STUDY I: R ADIAL ROTOR

M OVEMENT

Two physical effects are considered in the theoretical
study when the defect comes into contact with another bear-
ing element:

1. the introduction of a radial movement of the rotor cen-
ter,

2. the apparition of load torque variations.
The method used to study influence of the rotor displace-

ment on the stator current is based on the MMF (magneto-
motive force) and permeance wave approach, traditionally
used when considering static and dynamic eccentricity or ro-
tor and stator slotting [8][9] [10].

Situation at t=k/fo:
rotor centered

Situation at t=k/fo:
rotor center displaced

q

Fig. 2. Radial rotor movement due to an outer bearing raceway
defect.

A. Airgap Length Variations

The first step in the theoretical analysis is the determina-
tion of the airgap lengthg as a function of timet and angu-
lar positionθ in the stator reference frame. The radial rotor
movement causes the airgap length to vary as a function of
the defect, which is always considered as a hole or a point of
missing material in the corresponding bearing element.

Outer Raceway Defect:Without loss of generality, the
outer race defect can be assumed to be located at the angu-
lar positionθ = 0. When there is no contact between a ball
and the defect, the rotor is perfectly centered. In this case,
the airgap lengthg is supposed to take the constant valueg0,
neglecting rotor and stator slotting effects. On the contrary,
everyt = k/fo (with k integer), the contact between a ball
and the defect leads to a small movement of the rotor cen-
ter in the stator reference frame (see Fig. 2). In this case,
the airgap length can be approximated byg0(1 − eo cos θ),
whereeo is the relative degree of eccentricity [11]. In order
to model the fault impact on the airgap length as a function
of time, a series of Dirac generalized functions can then be
used as it is common in vibration analysis [12].

These considerations lead to the following expression for
the airgap length:

go (θ, t) = g0

[
1− eo cos (θ)

+∞∑
k=−∞

δ

(
t− k

fo

)]
(5)

whereeo is the relative degree of eccentricity introduced by
the outer race defect. This equation can be interpreted as a
temporary static eccentricity of the rotor, appearing only at
t = k/fo.

Inner Raceway Defect:In this case, the situation is
slightly different from the outer race defect. The fault oc-
curs at the instantst = k/fi. As the defect is located on the
inner race, the angular position of the minimal airgap length
moves with respect to the stator reference frame as the rotor
turns at the angular frequencyωr (see Fig. 3). Between two
contacts with the defect, the defect itself has moved by an
angle described by:

∆θi = ωr∆t =
ωr

fi
(6)

Hence, equation (5) becomes:

gi (θ, t) = g0

[
1− ei

+∞∑
k=−∞

cos (θ + k∆θi) δ
(
t− k

fi

)]
(7)
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Fig. 3. Radial rotor movement due to an inner bearing raceway
defect.

whereei is the relative degree of eccentricity introduced by
the inner race defect.

This equation can be simplified for further calculations
by extracting the cosine-term of the sum so that the series
of Dirac generalized functions may be later developed into a
Fourier series. One fundamental property of the Dirac gen-
eralized function is given by the following equation [13]:

h (k) · δ
(

t − k

fi

)
= h (tfi) · δ

(
t − k

fi

)
(8)

This formula becomes obvious when one considers that
δ (t− k/fi) always equals 0, except fort = k/fi. After
combining (8), (7) and (6), the airgap length becomes:

gi (θ, t) = g0

[
1− ei cos (θ + ωrt)

+∞∑
k=−∞

δ

(
t− k

fi

)]
(9)

Ball Defect: In presence of a ball defect, the defect loca-
tion moves in a similar way as the inner raceway fault. The
fault causes an anomaly on the airgap length at the instants
t = k/fb. The angular position of minimal airgap length
changes in function of the cage rotational frequency. Actu-
ally, the balls are all fixed in the cage which rotates at the
fundamental cage frequencyωcage, given by [7]:

ωcage =
1
2
ωr

(
1− Db

Dc
cosβ

)
(10)

The angle∆θb by which the fault location has moved be-
tween two fault impacts becomes:

∆θb = ωcage∆t =
ωcage

fb
(11)

By analogy with (9), the expression of airgap length in
presence of a ball defect becomes:

gb (θ, t) = g0

[
1− eb cos (θ + ωcaget)

+∞∑
k=−∞

δ

(
t− k

fb

)]
(12)

whereeb is the relative degree of eccentricity introduced by
the ball defect.

Generalization: In order to simplify the following con-
siderations, equations (5), (9) and (12) can be combined in a
generalized expression for the airgap lengthg in presence of
a bearing fault:

g (θ, t) = g0

[
1− e cos

(
θ + ψ (t)

) +∞∑
k=−∞

δ

(
t− k

fc

)]
(13)

wherefc is the characteristic bearing fault frequency given
by (1), (2) or (3), andψ (t) is defined as follows:

ψ (t) =


0 for an outer race defect
ωrt for an inner race defect
ωcaget for a ball defect

(14)

B. Airgap Permeance

The airgap permeanceΛ is proportional to the inverse of
the airgap lengthg and is defined as follows:

Λ = µ/g (15)
whereµ = µrµ0 is the magnetic permeability of the airgap.
In the case of a bearing fault, the permeance becomes with
(13):

Λ(θ, t) = Λ0
1[

1− e cos
(
θ + ψ (t)

) +∞∑
k=−∞

δ
(
t− k

fc

)]
(16)

whereΛ0 = µ/g0.
Firstly, in order to simplify this expression, the fraction

1/(1− x) is approximated for small airgap variations by the
first order term of its series development:

1/(1− x) ≈ 1 + x (17)
The condition|x| < 1 is always satisfied because the degree
of eccentricity verifies|e| < 1 in order to avoid contact be-
tween rotor and stator.

Secondly, the series of Dirac generalized functions is ex-
pressed as a complex Fourier series development [13]:

+∞∑
k=−∞

δ

(
t− k

fc

)
= fc

+∞∑
k=−∞

e−j2πkfct

= fc + 2fc

+∞∑
k=1

cos (2πkfct)

(18)

Equations (16), (17) and (18) can be combined into a sim-
plified expression for the airgap permeance wave:

Λ(θ, t) ≈ Λ0

{
1 + efc cos

(
θ + ψ (t)

)
+ efc

+∞∑
k=1

cos
(
θ + ψ (t)± kωct

)} (19)

wherecos(a± b) meanscos(a+ b) + cos(a− b).

C. Airgap Flux Density

The flux density in the airgap is determined by multi-
plying the MMF (magnetomotive force) with the permeance
wave. For the sake of clarity, only the fundamental MMF
waves are considered i.e. space and time harmonics are ne-
glected. Rotor and stator fundamental MMFs are waves at
supply frequencyωs = 2πfs with p pole pairs (wherep is
the pole pair number of the machine). The total MMFFtot is
given by their sum and is assumed:

Ftot(θ, t) = F cos(pθ − ωst+ ϕ) (20)
Multiplication of (19) and (20) leads to the expression of

the flux density distributionBtot(θ, t):
Btot (θ, t) = B0 cos (pθ − ωst+ ϕ)

+B1

∞∑
k=0

[
cos

(
(p± 1)θ ± ψ (t)± kωct− ωst+ ϕ

)]
(21)

Equation (21) clearly shows the influence of the rotor dis-
placement caused by the bearing fault on the flux density: In
addition to the fundamental sine wave (termB0), a multi-
tude of fault-related sine waves appear in the airgap. These
supplementary waves havep ± 1 pole pairs and a frequency
contentfecc given by:

fecc =
1
2π

(
±dψ (t)

dt
± kωc − ωs

)
(22)

In terms of signal processing, these supplementary frequen-
cies result from anamplitude modulationof the fundamental
sine wave, caused by the modified airgap length.



D. Stator Current

The additional flux density components according to (21)
are equivalent to an additional magnetic fluxΦ(θ, t). By con-
sidering the realization of the winding and the geometry of
the machine, the additional fluxΦ(t) in each stator phase
can be obtained. With stator voltages imposed, the time vary-
ing flux causes additional components in the machine’s stator
current according to the stator voltage equation for the phase
m:

Vm(t) = RsIm(t) +
dΦm(t)
dt

(23)

The frequency content of the flux in each phase is sup-
posed to be equal to the frequency content of the airgap field
according to (22). Under the hypothesis of imposed stator
voltages, the stator current in each phase is given by the
derivative of the corresponding flux. This leads to the fol-
lowing expression for the stator currentIm(t):

Im(t) =
∞∑

k=0

Ik cos
[
± ψ (t)± kωct− ωst+ ϕm

]
(24)

It becomes thus obvious, that the radial rotor movement
due to the bearing fault results in additional frequencies in
the stator current. For the three fault types, these frequencies
are obtained from (14) and (24):

Outer race defect: fecc or= fs ± kfe (25)

Inner race defect: fecc ir = fs ± fr ± kfi (26)

Ball defect: fecc ball= fs ± fcage ± kfb (27)
wherek = 1, 2, 3, . . . . These expression have not been men-
tioned in former publications.

In terms of signal processing, it can be noticed that the ef-
fect of the fault related rotor movement on the stator current
is an amplitude modulation of the fundamental sine wave,
due to the effect of the modified permeance on the funda-
mental MMF wave.

In the previous calculation of the magnetic airgap field,
only the fundamental MMF has been considered. Bearing in
mind the existence of time harmonics in the MMF, the same
additional frequencies will appear not only around the funda-
mental frequencyfs but also around higher supply frequency
harmonics and even around the rotor slot harmonics.

IV. T HEORETICAL STUDY II: T ORQUE VARIATIONS

In this section, the second considered effect of a bearing
fault on the machine is studied. Imagining for example a
hole in the outer race: each time a ball passes in a hole, a
mechanical resistance will appear when the ball tries to leave
the hole. The consequence is a small increase of the load
torque at each contact between the defect and another bearing
element. The bearing fault related torque variations appear at
the previously mentioned characteristic vibration frequencies
fc (see section II-B) as they are both of same origin: a contact
between the defect and another element.

A. Effect on Rotor MMF

Under a bearing fault, the load torque as a function of time
can be described by a constant componentΓconst and an ad-
ditional component varying at the characteristic frequency

fc. This additional component is approximated by a sinu-
soidally varying function in order to simplify the following
considerations:

Γload(t) = Γconst + Γc cos (ωct) (28)
whereΓc is the amplitude of the bearing fault related torque
variations andωc = 2πfc.

The application of the mechanical equation of the ma-
chine leads to the influence of the torque variations on motor
speedωr:

ωr(t) =
1
J

∫
t

(Γmotor(τ)− Γload(τ)) dτ (29)

whereΓmotor is the electromagnetic torque produced by the
machine,J is the total inertia of the system machine-load.

In steady state, the motor torqueΓmotor is equal to the
constant partΓconst of the load torque. This leads to:

ωr (t) = − 1
J

∫ t

t0

Γc cos (ωcτ) dτ + C

= − Γc

Jωc
sin (ωct) + ωr0

(30)

The mechanical speed consists therefore of a constant com-
ponentωr0 and a sinusoidally varying one.

The next step is the calculation of the mechanical rotor
angleθr which is the integral of the mechanical speed:

θr (t) =
∫ t

t0

ωr (τ) dτ =
Γc

Jω2
c

cos (ωct) + ωr0t (31)

The integration constant has been supposed equal to zero.
The variations of the mechanical rotor angleθr have an in-

fluence on the rotor magnetomotive force. In a normal state,
the rotor MMF in the rotor reference frame(R) is a wave
with p pole pairs and a frequencysfs and is given by:

F (R)
r (θ′, t) = Fr cos (pθ′ − sωst) (32)

whereθ′ is the mechanical angle in the rotor reference frame
ands the slip.

The transformation between the rotor and stator reference
frame is defined byθ = θ′ + θr. Using (31), this leads to:

θ′ = θ − ωr0t−Ac cos (ωct) (33)
whereAc = Γc/(Jω2

c ) is the amplitude of the angle varia-
tions.

Thus, the rotor MMF given in (32) can be transformed to
the stationary stator reference frame using (33):

Fr(θ, t) = Fr cos
(
pθ − ωst− pAc cos (ωct)

)
(34)

It becomes clear from this expression that the torque varia-
tions at frequencyfc lead to aphase modulationof the rotor
MMF in the stator reference frame. This phase modulation
is characterized by the introduction of the termpAc cos(ωct)
in the phase of the MMF wave.

B. Effect on Flux Density and Stator Current

The airgap flux densityB is the product of total MMF and
permeance. The airgap length and the resulting permeance
are supposed constant in a first time. Theadditional fault
related flux density components are obtained by considering
the interaction between the modified rotor MMF and the per-
meance. This leads to:
B (θ, t) = Fr,1Λ0 cos

(
pθ − ωst− pAc cos (ωct)

)
(35)

The phase modulation present on the flux density can con-
secutively also be found on the flux in a machine phase. Con-
sidering equation (23), the stator current in phasem is given
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Fig. 4. Vibration spectrum of unloaded machine with inner raceway
defect.

by the derivation of the flux, leading to the following expres-
sion:

Im(t) = I1 sin
(
ωst+ pAc cos (ωct)

)
± I2 sin

(
ωst+ pAc cos (ωct)± ωct

) (36)

The termI1 conserves the initial phase modulation found
on the rotor MMF, the expressions withI2 result from the
derivation and should be of smaller amplitude.

As the frequency content of a sine-wavex(t) =
A cosϕ (t) is given by the time derivative of its phaseϕ (t)
(in terms of instantaneous frequency, see [14]), the fault re-
lated frequency components in the stator current can be de-
scribed by:

f =
1
2π

dϕ(t)
dt

= fs − pAcfc sin(ωct)± kfc (37)
wherek =0 or 1. The effects of the fault related torque vari-
ations on the motor current are therefore phase modulations,
equivalent to a time varying frequency content.

As in part I of the theoretical study, the time harmon-
ics of rotor MMF and the non-uniform airgap permeance
have not been considered. However, the harmonics of supply
frequencyfs and the rotor slot harmonics will theoretically
show the same phase modulations as the fundamental atfs.

V. EXPERIMENTAL RESULTS

A. Inner Raceway Defect

A test machine has been equipped with a faulty bearing
carrying an inner raceway defect. In a first time, the vibra-
tion signal is analyzed. Assuming a contact angleβ of zero
degrees and motor operating without load (fr = 24.96 Hz),
the characteristic inner raceway frequency is calculated from
(2) to be 135 Hz.

A logarithmic plot of the vibration spectrum with a dam-
aged bearing in comparison with the healthy machine condi-
tion is shown in Fig. 4. The characteristic frequency of the
inner raceway defectfi and its multiples (e.g.2fi) are the
components with the largest magnitude. Multiple tests with
different load levels permitted to observe slight variations of
the characteristic vibration frequency according to equation
(2). Additional components due to other mechanical effects
and a general rise of the vibration level can also be noticed
on the vibration spectrum.
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Fig. 5. Torque spectrum of unloaded machine with inner raceway
defect.
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Fig. 6. Stator current spectrum of unloaded machine with inner
raceway defect.

A spectral analysis of the measured load torque is shown
in Fig. 5. The characteristic fault frequencyfi clearly ap-
pears on the torque spectrum with an amplitude of +15 dB
in comparison to the healthy case. This validates the pro-
posed theoretical approach which assumes torque variations
at the characteristic frequency as a consequence of the bear-
ing fault. Higher harmonics offi can also be observed. In
addition to the mentioned components, other frequencies ap-
pear in the torque spectrum at e.g. 110 and 115 Hz, but they
have no direct link to a predicted characteristic frequency.

The stator current spectrum (see Fig. 6) shows, on the one
hand, a rise of eccentricity related components at5fs+fr and
7fs − fr. These frequency components are already present
in the spectrum of the healthy machine due to an inherent
level of dynamic eccentricity. The fault related eccentric-
ity increases these components according to (26) (with k=0).
The component atfs−fr+2fi does not appear in the healthy
spectrum but in case of the fault as it is consequence of the
particular form of eccentricity introduced by the inner race-
way fault. Another fault related component at2fi can be
noticed.
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B. Realistic Bearing Fault

After the so called ”artificial” bearing faults, tests were
conducted with industrially used bearings that have been
changed due to a problem, i.e. the fault type is not known.

The tested bearing shows only small effects on the vi-
bration spectrum such as a small peak at 33 Hz. Charac-
teristic vibration frequencies could not be clearly identified.
However, the measured machine torque shows considerable
changes in comparison to the healthy case (see Fig. 7). At
nominal load level, torque variations of great amplitude can
be recognized atk · 33 Hz.

These torque variations have a considerable effect on the
stator current. At Fig. 8, the stator current spectrum with
the faulty bearing can be compared to the healthy machine.
Sideband components to the fundamental appear at50±k·33
Hz. This is the characteristic signature on the spectrum of a
phase modulation of the fundamental [15]. The phase modu-
lation is the consequence of the recognized torque variations
as it has been developed in paragraph IV.

VI. C ONCLUSION

This paper has investigated the detection of rolling-
element bearing faults in induction motors by stator current

monitoring. A new fault model has been proposed which
considers fault-related airgap length variations and changes
in the load torque. New, more complete expressions for the
frequency content of the stator current are obtained for the
three major fault types. An experimental study has been con-
ducted on a test rig with several faulty bearings, measuring
quantities such as machine vibrations, torque and stator cur-
rent. The spectral analysis shows that characteristic vibration
frequencies are visible in the torque spectrum as it has been
supposed in the theoretical study. The torque oscillations
lead in consequence to changes in the stator current spec-
trum. Other fault related components are due to a particular
fault-related radial rotor movement.

It has therefore been shown that a detailed analysis of the
bearing fault effects leads to fault-related frequency expres-
sions that have not been identified until now. Monitoring
these frequencies can improve bearing fault detection.
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