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SUMMARY

We consider the problem of modelling count data with excess zeros and review
some possible models. Aspects of model fitting and inference are considered.
An example from horticultural research is used for illustration.

1. Introduction

Poisson regression models provide a standard framework for the analysis of
count data. In practice, however, count data are often overdispersed relative
to the Poisson distribution. One frequent manifestation of overdispersion is
that the incidence of zero counts is greater than expected for the Poisson
distribution and this is of interest because zero counts frequently have special
status. For example, in counting disease lesions on plants, a plant may have
no lesions either because it is resistant to the disease, or simply because no
disease spores have landed on it. This is the distinction between structural
zeros, which are inevitable, and sampling zeros, which occur by chance.
In recent years there has been considerable interest in models for count data
that allow for excess zeros, particularly in the econometric literature. These
models complement more conventional models for overdispersion that con-
centrate on modelling the variance-mean relationship correctly. Application
areas are diverse and have included manufacturing defects (Lambert, 1992),
patent applications (Crepon & Duguet, 1997), road safety (Miaou, 1994),
species abundance (Welsh et al., 1996; Faddy, 1998), medical consultations
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(Gurmu, 1997), use of recreational facilities (Gurmu & Trivedi, 1996; Shon-
kwiler & Shaw, 1996) and sexual behaviour (Heilbron, 1994).
In this paper we review and compare these methods with particular focus
on potential applications in agricultural and horticultural research. Section 2
provides a survey of models that have been proposed. Sections 3 and 4 briefly
discuss some aspects of model fitting and inference and Section 5 looks at
biological examples.

2. A survey of models for count data with excess zeros

We shall consider excess zeros particularly in relation to the Poisson distribu-
tion, but the term may be used in conjunction with any discrete distribution
to indicate that there are more zeros than would be expected on the basis of
the non-zero counts. Of course it is also possible for there to be fewer zero
counts than expected, but this is much less common in practice.
In discussing different models, it is helpful to have a particular example
in mind, and for this we consider the number of roots, Y , produced by a
plant cutting during a period in a propagation environment. We emphasize,
however, that this example is purely illustrative; not all of the mechanisms
that we discuss are intended to be realistic biologically. The baseline model
is Y ∼ Poisson(µ).

2.1 Mixed Poisson distributions

Cuttings vary, for example in their basal diameter and in the position on
the stockplant from which they were taken. When these factors are not
explicitly taken into account, we may expect the Poisson parameter to vary
from cutting to cutting, leading to a mixed Poisson distribution. In particular,
if the Poisson parameter is µV , where V is a random variable with expected
value one and variance α, representing the unobserved heterogeneity, then
E(Y ) = µ and

var(Y ) = µ + αµ2. (1)

Feller (1943) and Mullahy (1997) have shown that the probability of zero
in a mixed Poisson distribution is greater than the probability of zero in an
ordinary Poisson distribution with the same mean.
Mixed Poisson distributions have been used widely to model overdispersed
data; see Hinde & Demétrio (1998) for a recent review. The most commonly
used distribution is the negative binomial but other distributions may be
more appropriate for modelling data with excess zeros, because, unlike the
negative binomial, they can have more than one mode, including a mode at
zero. Examples include the Neyman Type A and Pólya-Aeppli distributions.
In mixed Poisson regression models, covariates are usually introduced via a
log-linear model for µ, as in the standard Poisson model. Extended models can
also be considered that allow the degree of dispersion to depend on covariates
(Hinde & Demétrio, 1998).
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2.2 Zero-modified distributions

An extreme form of mixture distribution arises when a proportion ω of the
cuttings are unable to root, and for the remainder the Poisson parameter takes
the fixed value λ. Then Y has a zero-inflated Poisson (ZIP) distribution, given
by

Pr(Y = y) =




ω + (1− ω) exp(−λ) y = 0

(1− ω) exp(−λ)λy/ y! y > 0
(2)

It is possible for ω in equation (2) to assume negative values, giving a
zero-deflated distribution, although the distribution can no longer arise as
a mixture distribution. Zero-deflated data seldom arise in practice, however,
and we shall assume 0 ≤ ω < 1 in this paper. Zero-inflated forms of other
count distributions, such as the negative binomial, can be defined similarly.
Gupta, Gupta & Tripathi (1996), for example, investigated the zero-inflated
form of the generalized Poisson distribution. For the zero-inflated Poisson
distribution

E(Y ) = (1− ω)λ = µ,

var(Y ) = µ +

 ω

1− ω

 µ2.

The second of these equations has the same form as equation (1).
Mullahy (1986), Heilbron (1989, 1994) and Lambert (1992) pioneered the use
of regression models based on the ZIP distribution. Lambert (1992) considered
models in which

log(λ) = Xβ and log
(

ω

1− ω

)
= Zγ

where X and Z are matrices of covariates and β and γ are vectors of
parameters. The two sets of covariates may or may not coincide. When
they do coincide, more parsimonious models may be developed by supposing
that the two linear predictors are related in some way. Perhaps the simplest
such model, which Lambert refers to as the ZIP(τ ) model, has

log(λ) = Xβ and log
(

ω

1− ω

)
= τXβ

where τ is a scalar parameter. This implies that ω = (1 + λ−τ )
−1

. A great
variety of alternative models can be generated by using different link functions
for λ and/or ω. Greene (1994) gives details of analogous zero-inflated negative
binomial regression models.
Shonkwiler & Shaw (1996) proposed a generalization of the ZIP distribution
in which there is an underlying bivariate Poisson process giving rise to unob-
servable count variables Y ∗ and D, with marginal distributions Poisson(λ+ζ)
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and Poisson(θ + ζ) respectively, where ζ is the covariance between Y ∗ and
D. The observed count, Y , is zero if either Y ∗ or D is zero, and is equal to
Y ∗ otherwise. The distribution of Y reduces to the ZIP distribution, with
ω = exp(−θ), when ζ = 0.
Crepon & Duguet (1997) considered a somewhat similar model in which there
are unobserved variables Y ∗ and C , and again the observed count, Y, is zero
if either Y ∗ is zero or C < 0, and is equal to Y ∗ otherwise. In their model
there are latent variables U and V that are normally distributed with zero
mean, and which may be correlated. Conditional on U = u, Y ∗ has a Poisson
distribution with mean exp(Xβ + u) whereas C = Zγ + V . This reduces to
a standard ZIP model, with probit link function for ω, when the distribution
of U is degenerate with U always taking the value zero.

2.3 Hurdle models

In practice, propagation experiments are often analysed by considering
separately the proportion of cuttings that rooted and the mean number of
roots per rooted cutting. This approach recognises the possibility that the
mechanisms that determine whether or not a cutting roots at all may differ
from the mechanisms that determine how many roots are produced by cuttings
that do root. To develop models in this framework we need to specify

(a) the probability, π0, that a cutting fails to root;

(b) a distribution (defined on the positive integers) for the number of roots
when a cutting does root.

In the econometric literature, this type of model is called a hurdle model
(Mullahy, 1986), where π+ = 1 − π0 is the probability of clearing the
“hurdle” and generating a non-zero count. Another name is two-part model
(Heilbron, 1994). Typically the distribution in part (b) is the zero-truncated
form of a standard discrete distribution such as the Poisson or negative
binomial distribution, though distributions defined directly on the positive
integers, such as the logarithmic distribution could also be considered. If the
truncated Poisson distribution is used then the distribution of Y is

Pr(Y = y) =




π0 y = 0

(1− π0)e
−λλy

(1− e−λ) y!
y > 0

This is just a reparameterisation of the zero-inflated Poisson distribution,
given by equation (2) with π0 = ω + (1 − ω)e−λ. However, in regression
contexts different parameters (π0 or ω) are modelled and the hurdle and zero-
inflated models are no longer equivalent.
When the same covariates affect π0 and λ, it is useful to consider a model
that involves the complementary-log-log link function for π+ and the log link
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function for λ, say

log(λ) = Xβ and log[− log(1− π+)] = Xγ

because this reduces to the standard Poisson model when β = γ. This
model was proposed originally by Mullahy (1986), and is an example of what
Heilbron (1994) calls a compatible model, because the probability of a zero
count is compatible with the distribution of positive counts when the two
linear predictors are equal. Heilbron (1994) and Mullahy (1986) discuss other
compatible models.
Whilst compatible models have the desirable property of reducing to a stan-
dard count data model when the parameters are suitably constrained, other,
non-compatible, models may be more useful empirically. For example, in an
application involving health care utilization, Gurmu (1998) used a generalized
logistic model for the probability of a non-zero count in conjunction with a
zero-truncated negative binomial distribution for the non-zero counts.
Most applications of hurdle models have assumed that the linear predictor
for π+ is unrelated to the linear predictor for µ, and this has computational
advantages which will be discussed in Section 3. However, it seems a rather
restrictive assumption in practice. For example, if only a small proportion
of cuttings succeed in rooting under certain experimental conditions, these
cuttings usually have fewer roots than rooted cuttings from more successful
treatments. Analogously to Lambert’s ZIP(τ ) model, we may consider, for
example, a Poisson hurdle model with

log(λ) = Xβ and log[− log(1− π+)] = τXβ .

2.4 Semi-parametric hurdle models

If a standard Poisson model is fitted to data that are overdispersed, then
under fairly general conditions the parameter estimates remain consistent
and reasonably efficient. Standard errors of parameter estimates will be
underestimated, but use of a simple heterogeneity adjustment (McCullagh
& Nelder, 1989, Section 6.2.3) can correct for this. This is a robust
approach, which, unlike maximum likelihood estimation, does not require
strong distributional assumptions.
Unfortunately, for hurdle models (Gurmu, 1997), as for zero-truncated models
(Grogger & Carson, 1991), misspecification of the underlying distribution
leads to inconsistent parameter estimates. Grogger & Carson (1991), for
example, fitted zero-truncated Poisson models to data simulated from zero-
truncated negative binomial distributions, and found biases of up to 30% in
the estimated parameters. The source of this inconsistency is the fact that
the mean of a zero-truncated distribution depends on the form of the zero
probability. For example, if a Poisson distribution and a negative binomial
distribution with the same mean are truncated at zero, the means of the
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truncated distributions will differ. This is not simply because the variance of
the distributions differs; the same is true of, for example, a negative binomial
distribution and a Neyman Type A distribution that have the same mean and
variance.
To provide a more robust approach, Gurmu (1997), developed a semi-
parametric hurdle model. Consider again a mixed Poisson model in which the
distribution of Y , conditional on V , is Poisson(V µ) and V has a distribution
with probability density function h(v) and E(V ) = 1. Provided that the
distribution of V satisfies some smoothness conditions, the density function
h(v) has an infinite Laguerre series expansion. If the expansion is truncated
after a finite number of terms and re-normalised to give a proper density
function, it is possible to derive a complicated, but explicit, expression for the
distribution of Y , thus allowing maximum likelihood estimation of parameters.
The method is semi-parametric insofar as the choice of the number of terms
at which the expansion is truncated is data-driven, for example using the
Akaike information criterion. Using a single term from the expansion is
equivalent to assuming a gamma distribution for V and hence a negative
binomial distribution for Y . Gurmu (1997) gives an example involving health
care utilization.

2.5 Birth process models

A different approach is to suppose that the emergence of roots during the
propagation period follows a pure birth process with

Pr{Y (t + δt) = y + 1 |Y (t) = y} = λy δt + o(δt).

If λy = λ is independent of y then the distribution of the number of roots
present at the end of the propagation period (which may be taken as time t =
1) is Poisson(λ). Alternatively, if the sequence λy increases linearly with y then
the distribution is negative binomial. More generally, any count distribution
can be obtained by suitable choice of the sequence λy, (Faddy, 1997). In
particular, the sequence

λy =




λ0 y = 0

λ1 y > 0

with λ1 > λ0 may be useful for data with excess zeros. This would imply
that the rate at which new roots are formed increases after the first root has
formed. For regression models, λ0 and λ1 can be related to covariates via
log-linear models.

2.6 Threshold models

When the number of different non-zero observations, say m, is small, Saei et
al. (1996) suggest the use of threshold models. The basic idea is to assume
the existence of a continuous latent variable V such that if V lies in the
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interval (θy−1, θy] then the response Y = y is observed. The cumulative
distribution of Y is given by Pr(Y ≤ y) = G(θy) where G is the cumulative
distribution function of the latent variable V and it is modelled by the
threshold parameters θk, k = −1, 0, . . . , m (with θ−1 = −∞ and θm = ∞).
The model is extended to the regression situation by assuming that the linear
predictor η = Xβ simply moves all thresholds up or down by the same
amount, that is Pr(Y ≤ y) = G(θy−η). This is the standard ordinal regression
model discussed by McCullagh (1980). Various common choices for G are the
normal, logistic or extreme-value cumulative distributions. This model makes
no specific assumption about the form of the probability distribution of the
response Y and so may be particularly useful in situations where the non-zero
part of the data is not easily modelled. The model also has the property that
the covariate effects for the zero and non-zero counts are the same. Saei and
McGilchrist (1997) extend this model to include random effects in the linear
predictor.

3. Model fitting

Most of the models that we have discussed involve a full specification of
the distribution of counts, and maximum likelihood methods are therefore
appropriate for parameter estimation. The EM algorithm is a natural
contender for zero-inflated models (Lambert, 1992) by formulating the model
in terms of an unobserved binary indicator W of whether the observation is a
structural or sampling zero. In the M-step the β parameter vector is estimated
from a weighted fit of the standard distribution for Y and the γ parameter
vector is obtained by fitting a binary regression model to the current estimate
of the indicator W . The E-step simply involves updating the estimate of W
by the expected value of its conditional distribution given Y and the current
estimates for β and γ. Although this is very simple to implement convergence
can be rather slow and direct maximization of the likelihood may be preferred.
Greene (1994) reports that gradient methods work well in practice, and gives
details of the computations. This approach is implemented in the LIMDEP
package (http://www.limdep.com) which has facilities for fitting various types
of zero-inflated Poisson and negative binomial models. GLIM macros and a
Genstat procedure implementing Lambert’s EM algorithm are available from
the third author.
As we noted earlier, most applications of hurdle models have assumed that
the linear predictor for π+ is unrelated to the linear predictor for λ. In this
case the likelihood function factorises and the two sets of parameters can
be estimated from separate analyses of the proportion of non-zero counts
and the positive counts. Zero-truncated Poisson models for the positive
counts are generalized linear models, and Demétrio & Ridout (1994) provide
GLIM macros. Grogger & Carson (1991) discuss the fitting of zero-truncated
negative binomial models. Both types of model can be fitted in LIMDEP, and
also in the free package COUNT (http://gking.harvard.edu/stats.shtml). The
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COUNT package also includes a specific module for fitting hurdle models.
Simple threshold models can be fitted using standard ordinal regression
modelling procedures in, for example, Genstat, GLIM, Minitab, SAS or
LIMDEP. Including random effects in these models leads to a generalized
linear mixed model. Saei and McGilchrist (1997) discuss the fitting of such
models using approximate maximum likelihood, or REML, estimation and
suitable software is available in SAS and Genstat.

4. Inferential aspects

Given a baseline model, score tests can be useful in determining whether a
more complex model is appropriate, without the need to fit the more complex
model. Van den Broek (1995) gives a score test for comparing a standard
Poisson model with a ZIP model. It is assumed that ω, the proportion of
excess zeros in the ZIP model, does not depend on covariates. This test is
discussed also by Mullahy (1986, 1997). We have developed a score test for
comparing a ZIP model with a zero-inflated negative binomial model, the
details of which are too lengthy to give here and will be published elsewhere.
When there are no covariates this is equivalent to a score test for comparing the
zero-truncated Poisson distribution with the zero-truncated negative binomial
distribution (Gurmu, 1991).
Comparisons between alternative models, for example between a zero-inflated
model and a hurdle model, are often comparisons of non-nested models.
Several applications have used the test statistic of Vuong (1989) in this
context, following the suggestion of Greene (1994). Alternatives have included
use of the Akaike information criterion (e.g. Miaou, 1994) and an approach
based on embedding the alternative models in an artificial compound model
(Crepon & Duguet, 1997).

5. Biological examples

Various authors have considered the ZIP distribution as a possible model
for biological count data. A recent entomological example is Desouhant et
al. (1998) who found that the distribution gave a good fit to 25 out of 31 data
sets involving the chestnut weevil. However, there appear to have been few
biological applications of zero-inflated regression models. Exceptions are the
work of Heilbron (1989, 1994) on sexual behaviour in relation to AIDS risk,
and Welsh et al. (1996) who modelled data on the abundance of Leadbeater’s
possum. The possum data were also analysed by Faddy (1998) using various
types of birth process model, including the model discussed in Section 2.5.
Welsh et al. (1996) also used a hurdle model as did Ridout & Demétrio (1992).
Saei & McGilchrist (1997) apply the threshold model with random effects to
data on the use of chemotherapy across the counties of Washington State.
Table 1 provides an additional data set. The data are the number of roots
produced by 270 micropropagated shoots of the columnar apple cultivar
Trajan. During the rooting period, all shoots were maintained under identical



IBC98, Cape Town 9

conditions, but the shoots themselves were cultured on media containing
different concentrations of the cytokinin BAP, in growth cabinets with an
8 or 16 hour photoperiod. The full experimental background is given by
Marin et al. (1993). A striking feature of the data is that although almost
all shoots produced under the 8 hour photoperiod rooted, only about half of
those produced under the 16 hour photoperiod did.

Fitting a sequence of Poisson regression models, with factors for the two
different photoperiods and the four different levels of BAP, there is a very
large photoperiod effect and marginal evidence of a significant interaction.
However, the residual deviance for the full interaction model is 813.0 on 262
df, giving strong evidence of lack of fit or overdispersion. The large numbers
of zeros for the 16 hour photoperiod are an obvious problem for the Poisson fit
and a score test for zero-inflation has a value of 7.54 on 1 df, which is highly
significant when compared with the asymptotic N(0, 1) reference distribution.
From the model fitting results in Table 2 we can obtain an equivalent likelihood
ratio test with a value of 218.9 on 1 df. The large discrepancy between the
square of the score test statistic and the likelihood ratio test statistic is rather
surprising, but may be related to the fact that the score test is against a ZIP
model with constant ω and here the zero-inflation is very different for the two
photoperiods. Van den Broek (1995) notes that the asymptotic distribution
may be a poor approximation to the true distribution of the score test statistic
when the mean count is high and there are few zeros. A score test for negative
binomial overdispersion has a value of 12.22 (the likelihood ratio test has the
value 157.3 on 1 df), which is also highly significant.

Comparing the fitted models in Table 2 we see that we need to take
account of different degrees of overdispersion and zero-inflation over the two
photoperiods, however, there is no evidence that these vary over the hormone
levels. With the full interaction model for λ the best fit (smallest AIC and
BIC) is obtained for the zero-inflated negative binomial with both ω and α
depending on photoperiod. In this model, the parameter estimates of ω and
α are close to zero for the 8 hour photoperiod, although they are not exactly
zero, reflecting the evidence of overdispersion from the low BAP concentration
and zero-inflation from the high BAP concentration. However, a model where
α is constant fits almost as well, showing that once we have taken account of
the zero-inflation there is only a small degree of additional overdispersion.

Using the zero inflated negative binomial model (ZINB) some simplification
of the model for λ is possible. Among the well fitting models (smallest AIC) is
one with a linear trend over the log concentration of BAP with different slopes
for each photoperiod. For the 8 hour photoperiod the linear trend coefficient is
small and positive, 0.064 (s.e. 0.033), while for the 16 hour period it is larger
and negative, -0.119 (s.e. 0.068), indicating a significant difference between
the two photoperiods.

Basing model selection on BIC, we are led to the even simpler model where
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all of the parameters depend only upon photoperiod. Again there is little
evidence that the overdispersion parameter α is different for the two groups.
However, it is clear that there is additional overdisperion from that accounted
for by the simple ZIP model. There is also strong evidence of the photoperiod
effect on both λ and ω. These analyses support the conclusion of Marin et
al. (1993) that in Trajan, as with other columnar apple varieties that have
been tested, there is little effect of BAP concentration. This contrasts with
conventional apple varieties where BAP has a strong deleterious effect.
Because of limitations of space, we have restricted our attention here to zero-
inflated models. A more extensive analyses of these data, using some of the
alternative models discussed in Section 2 will be presented elsewhere.
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Table 1: Frequency distributions of the number of roots produced by 270
shoots of the apple cultivar Trajan, classified by the experimental conditions
(BAP concentration and photoperiod) under which the shoots were reared.
The table shows the number of shoots that produced 0, 1, . . . , 12 roots. Counts
that exceeded 12 are shown individually.

Photoperiod

8 16

BAP (µM) 2.2 4.4 8.8 17.6 2.2 4.4 8.8 17.6

No. of roots

0 0 0 0 2 15 16 12 19

1 3 0 0 0 0 2 3 2

2 2 3 1 0 2 1 2 2

3 3 0 2 2 2 1 1 4

4 6 1 4 2 1 2 2 3

5 3 0 4 5 2 1 2 1

6 2 3 4 5 1 2 3 4

7 2 7 4 4 0 0 1 3

8 3 3 7 8 1 1 0 0

9 1 5 5 3 3 0 2 2

10 2 3 4 4 1 3 0 0

11 1 4 1 4 1 0 1 0

12 0 0 2 0 1 1 1 0

>12 13,17 13 14,14 14

No. of shoots 30 30 40 40 30 30 30 40

Mean 5.8 7.8 7.5 7.2 3.3 2.7 3.1 2.5

Variance 14.1 7.6 8.5 8.8 16.6 14.8 13.5 8.5

Overdispersion index 1.42 -0.03 0.13 0.22 4.06 4.40 3.31 2.47

Overdispersion index = variance - mean
mean
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Table 2: Results of fitting various models to the data from Table 1. The
λ-model is for the parameter of the basic distribution, the ω-model is for
the zero-inflation parameter and the α-model is for the negative binomial
overdispersion parameter as in equation (1). In describing the models P is a
two level factor for photoperiod, H denotes a four level factor for the BAP levels
and Lin(H) is a linear trend over the levels of H, i.e. on the log concentration
scale for BAP.

Models

Description λ ω α −2 logL df AIC BIC

Poisson H*P 0 0 1556.9 262 1572.9 1601.7

P 0 0 1571.9 268 1575.9 1583.1

Neg-Bin H*P 0 const 1399.6 261 1417.6 1450.0

H*P 0 P 1264.6 260 1284.6 1320.6

H*P 0 H*P 1254.8 254 1286.8 1344.4

Lin(H)*P 0 P 1270.1 264 1282.1 1303.7

P 0 P 1272.4 266 1280.4 1294.8

P 0 const 1403.9 267 1409.9 1420.7

ZIP H*P const 0 1338.0 261 1356.0 1388.4

H*P P 0 1244.5 260 1264.5 1300.5

H*P H*P 0 1238.2 254 1270.2 1327.8

Lin(H)*P P 0 1250.2 264 1262.2 1283.8

P P 0 1261.3 266 1269.3 1283.7

P const 0 1355.2 267 1361.2 1372.0

ZINB H*P const const 1324.8 260 1344.8 1380.8

H*P P const 1232.5 259 1254.5 1294.1

H*P P P 1226.3 258 1250.3 1293.5

H*P H*P H*P 1205.6 246 1253.6 1340.0

Lin(H)*P P P 1231.0 262 1247.0 1275.8

P P P 1237.7 264 1249.7 1271.3

P P const 1243.9 265 1253.9 1271.9

P const const 1336.5 266 1344.5 1358.9

const P const 1257.8 266 1265.8 1280.2

AIC = −2 log L + 2 (number of fitted parameters)

BIC = −2 log L + log n (number of fitted parameters)


