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Abstract:

Estimation of evapotranspiration (ET) requires a knowledge of the values of many climatic variables, some of which require
special equipment and careful observations. Although ET is an important component of water balance, the data required for
its accurate estimation are commonly available only at widely spaced measurement stations. The major objective of this study
was to estimate ET using an artificial neural network (ANN) technique and to examine if a trained neural network with limited
input variables can estimate ET efficiently. The results indicate that even with limited climatic variables an ANN can estimate
ET accurately. The paper also outlines a procedure to evaluate the effects of input variables on the output variable using the
weight connections of ANN models. Such an analysis performed on the ANN-ET models developed was able to explain the
reasons for the ANN’s potential in estimating the ET effectively from limited climatic data. Copyright © 2008 John Wiley &

Sons, Ltd.
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INTRODUCTION

Evapotranspiration (ET) is an important component of the
hydrologic cycle. Correct estimation of ET is necessary in
many studies, such as catchment modelling, agricultural
water management, estimating the components of water
balance, assessment of the impact of land use changes
on the hydrologic response of a catchment, etc. In many
watersheds, the return of moisture to the atmosphere
through the process of ET is a large proportion of the
input precipitation.

Despite widespread application of the ET concept,
there has been considerable ambiguity in the use of such
terms as potential ET and reference crop ET. To over-
come this, the Food and Agricultural Organization (FAO)
of the United Nations brought out a report, commonly
referred to as FAO-56 (Allen et al., 1998). Among other
things, it introduced uniformity and standardization in the
interpretation and use of various terms, such as potential
ET and reference crop ET. FAO-56 discourages the use of
the term potential ET because of ambiguities in its defi-
nition. Moreover, FAO recommended that a hypothetical
reference surface ‘closely resembling an extensive sur-
face of green grass of uniform height, actively growing,
completely shading the ground and with adequate water’
(Allen et al., 1998) be adopted as reference surface. In the
FAO approach, the surface characteristics that influence
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ET are quantified in an unambiguous fashion (Itenfisu
et al. 2003).

The ET rate from a reference surface, not short of
water, is called the reference crop ET or reference evap-
otranspiration and is denoted as ET (Allen et al. 1998).
The reference surface is a hypothetical grass reference
crop with specific characteristics. Further, crop ET under
standard conditions (ET,) refers to the evapotranspira-
tion from excellently managed, disease-free, large, well-
watered fields that achieve full production under the given
climatic conditions. Further, due to suboptimal crop man-
agement and environmental constraints that affect crop
growth and limit evapotranspiration, E7, under non-
standard conditions generally requires a correction.

To estimate ET from a well-watered agricultural crop,
reference evapotranspiration from a standard surface
(ET)y) is first estimated. This value is multiplied by an
empirical crop coefficient to obtain the ET from the crop
(ET.). The crop coefficient accounts for the difference
between the standard surface and the crop. Reference ET
is expressed in units of depth time™!, e.g. mm day~'.
It is a climatic parameter expressing the evaporative
power of the atmosphere at the given space and time
coordinates. Crop and soil features are not involved in
its computation.

Evapotranspiration can be measured with a lysimeter or
water balance approach, or estimated from climatological
data. Measurement of ET with a lysimeter is time-
consuming and needs careful planning. Installation and
maintenance of a lysimeter requires skilled manpower,
instruments, and finances. For these reasons, indirect
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methods based on climatological data are frequently used
for estimation of ET.

Numerous reference ET equations have been devel-
oped and are being used, depending upon the availability
of weather data. These equations range in sophisti-
cation from empirical solar radiation- or temperature-
based equations, to complex methods based on physical
processes such as the combination method of Penman
(1948). The combination approach links evaporation
dynamics with the flux of net radiation and aerodynamic
transport characteristics of a natural surface. Based on
the observations that latent heat transfer in plant stems
is influenced not only by these abiotic factors, Mon-
teith (1965) introduced a surface conductance term that
accounted for the response of leaf stomata to its hydro-
logic environment. This modified form of the Penman
equation is widely known as the Penman—Monteith (PM)
equation.

The PM equation is physically based because it
attempts to incorporate the physiological and aerody-
namic characteristics of the reference surface. While the
use of the modified Penman method (Doorenbos and
Pruit, 1977) was recommended by FAO, recent stud-
ies have suggested that this method overestimates ET
(Sudheer et al., 2003). FAO has now recommended the
use of the PM method to compute reference ET from
a grass surface and has specified a grass reference ET
equation (Allen et al. 1998). Recent studies by Allen
et al. (1994, 1998), Ventura et al. (1999), Howell et al.
(2000) and Wright ef al. (2000) have shown that the
reference ET computed using the PM equation yields
estimates that are close to observed reference ET values.

FAO-56 Penman—Monteith Method

As described in the Irrigation and Drainage Paper
56 (Allen et al., 1998), the FAO has adopted the PM
equation (named here FAO56-PM) as the standard tech-
nique to compute reference ET. The FAO56-PM can be
used for hourly or daily time steps. For hourly time steps,
the equation is stated as (Allen ef al., 1998):

3
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where ET is grass reference ET in mm h!, R, is the
net radiation at the grass surface in MJ m~2 h™!, G is
the soil heat flux density in MJ m~2 h™!, T is the mean
hourly air temperature in °C, u; is the mean hourly wind
speed at 2 m height in m s~!, ¢%(T},) is the saturation
vapour pressure in kPa at air temperature T,, e, is the
actual hourly vapour pressure in kPa, A is the slope of
vapour pressure versus temperature curve in kPa °C~!,
and y is the psychrometric constant in kPa °C~'. Allen
et al. (1998) described the procedure and steps for the
application of the PM equation for various time step sizes.

Many scientists have studied the reliability of the PM
method for estimating ET (Allen et al. 1989; De Souza
and Yoder 1994; Chiew et al. 1995). Jensen et al. (1990)
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analysed the performance of 20 different methods against
lysimeter-measured ET for 11 stations located in different
climatic zones around the world. The PM method was
ranked as the best method for all climatic conditions.
Allen et al. (1994) further state that the FAO56-PM
equation should be considered superior to most lysimeter-
measured ET data during calibration of empirical ET
equations.

Computational aspects

An application of the FAO56-PM equation requires
data on solar radiation, wind speed, air temperature,
vapour pressure, and humidity. However, all these input
variables may not be easily available at a given location.
In developing countries in particular, difficulties are often
faced in collecting accurate data on all the necessary
climatic variables, and this can be a serious handicap
in applying the FAO56-PM equation. Among the inputs
needed, temperature data are routinely measured and
solar radiation can be estimated with sufficient accuracy.
But the other variables are generally measured at only a
few locations.

Automatic weather stations (AWS), which are com-
monly used these days in developed countries to measure
climatic variables, are rare in many other countries. Often
there may not be even a single AWS over an area of
thousands of square kilometres. In such circumstances,
one may be forced to use data from the ‘nearest’ station,
which may in fact be far away, often in completely differ-
ent hydrometeorological settings. Experience shows that
extrapolation of wind speed from one site to another is
subject to large errors (Irmak et al., 2003). In addition,
wind speeds measured over non-agricultural, arid terrain
may be much faster than those measured over agricul-
tural crops (Burman et al., 1975). Extrapolation of other
climatic variables is equally questionable because of their
unique behaviour.

In view of the above, it is necessary to develop
techniques that can be employed to estimate accurately
ET for situations where values of some of the potential
influencing variables are not available. An artificial
neural networks (ANN), which is a modern data-driven
technique, may be well suited for this purpose, since
ANNs have proven to be efficient in approximating
functions to an arbitrary degree of accuracy (Sudheer
et al., 2003). So far, this empirical technique has been
applied successfully to a wide range of problems in
hydrology. Here, it is proposed to explore the application
of this technique to the estimation of ET using climatic
data. The objective of this paper is to use ANNs
with various combinations of inputs to compute ET.
The focus of the paper is on the identification of a
combination of inputs that are easily available in a given
situation, and yield a reasonably accurate estimate of
ET. Also examined is the physical process representation
of the input combination in these ANN ET models by
studying the relative importance of the input variables
in estimating the ET. This is achieved with the help of
connection weights of the trained ANN models.
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The paper sectioned as follows. First, a brief review
of the theory of ANNs and relevant applications in
water resources, and ET estimation in particular, is pre-
sented. Following this, a description of the methodology
employed for constructing the input variable combina-
tions and ANN model building is discussed. Results
are presented and discussed in detail in the succeeding
sections.

ARTIFICIAL NEURAL NETWORKS

ANNs are analogous to biological neural networks,
and are highly simplified mathematical models of their
biological counterparts. They include the ability to learn
and generalize from examples to produce meaningful
solutions to problems even when input data contain errors
or are incomplete, and to adapt solutions over time to
compensate for changing circumstances and to process
information rapidly.

A system may be nonlinear and multivariate, and the
variables involved may have complex interrelationships.
ANN:Ss are capable of adapting their complexity, and their
accuracy increases as more and more input data are made
available to them. They are capable of extracting the
relationship between the input and output of a process
without any knowledge of the underlying principles.
Because of the generalizing capabilities of the activation
function, one need not make any assumption about
the relationship (linear or nonlinear) between input and
output.

The ANN approach is faster than to its conventional
counterparts, robust in noisy environments, and flexible
in the range of problems it can solve. An ANN has
the ability to learn from examples, to recognize a
pattern in the data, to adapt solutions, and to process
information rapidly. Owing to these advantages, ANNs
have been used in numerous real-world applications.
All these properties make ANNs an attractive tool for
water resources practitioners. Applications of ANNs to
hydrology are rapidly gaining popularity because of their
power and potential in mapping nonlinear system data.

ANN applications in water resources

In the past decade, and particularly in the past five
years, extensive attention has been focused by scientists
on applying ANNs in such diverse fields as system mod-
elling, system diagnosis and control, medicine, pattern
recognition, forecasting, and water resources.

In the field of water resources, ANNs have been used
for flow predictions, flow/pollution simulation, param-
eter identification, and to model complex nonlinear
input—output time series. Hsu et al. (1995) have shown
that the ANN approach can provide a better representa-
tion of the rainfall—runoff relationship of a medium sized
basin than does the ARMAX approach or the Sacramento
soil moisture model. Recent studies on ANN applications
in the area of hydrology include rainfall-runoff mod-
elling (Cigizoglu, 2003; Wilby et al. 2003; Lin and Chen,
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2004); river stage forecasting (Imrie et al., 2000; Lekkas
et al. 2001; Campolo et al. 2003); reservoir operation
(Jain et al., 1999); land drainage design (Shukla er al.,
1996; Yang et al., 1998); aquifer parameter estimation
(Srinivasa, 1998); describing soil water retention curve
(Jain et al., 2004) and optimization or control problems
(Wen and Lee, 1998; Bhattacharya et al., 2003). Some of
the studies (Zealand et al., 1999; Yang et al., 1996) have
also shown that ANN is more accurate than conventional
methods in flow forecasting and drainage design.

A set of two papers published by the ASCE task
committee on application of ANNs in hydrology (ASCE,
2000a, 2000b) contains a detailed review of the theory
and applications of ANNs in water resources. Maier
and Dandy (2000) have also provided a review of
modelling issues and applications of neural networks
for the prediction and forecasting of water resources
variables. Govindaraju and Rao (2000) have described
many applications of ANNs to water resources.

Evapotranspiration is a complex and nonlinear phe-
nomenon because it depends on several interacting cli-
matological factors, such as temperature, humidity, wind
speed, and radiation. Kumar et al. (2002) found that an
ANN model can be trained to predict lysimeter ET val-
ues better than the standard PM method. Sudheer ef al.
(2002) and Keskin and Terzi (2006) tried to compute
pan evaporation using temperature data with the help of
an ANN. Sudheer et al. (2003) employed a radial-basis
function ANN to compute the daily values of ET for rice
crop. It is evident from the literature that very few studies
have been carried out to utilize the input—output mapping
capability of an ANN in the prediction of ET.

Despite their numerous advantages, such as universal
function approximation, robustness, and ability to learn,
one of the major criticisms of ANN hydrologic models is
that they do not consider/explain the underlying physical
processes in mapping the relationship, resulting in them
being labelled ‘black box’ models. This criticism stems
mainly from the fact that no satisfactory explanation of
their internal behaviour has been offered yet. This is a
significant weakness, for without the ability to produce
comprehensible decisions it is hard to trust the reliability
of networks addressing real-world problems. Extracting
the knowledge embedded within trained ANNSs is still an
active and evolving discipline (Sudheer and Jain, 2004).
In view of this, the current study also aims at interpreting
the physical inference of the trained ANN model in terms
of modelling the ET process.

METHODOLOGY

ANN model development for ET, Estimation

In general, an ANN tries to fit a functional relationship
between the input and output variables. In the case
of estimation of ET, the input (independent) variables
are generally temperature, dew point, sunshine hours,
radiation, wind speed, humidity, etc. The functional form
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of this type of model is:

y=fX" ()

where f is the unknown function mapped by the model
and X" is an n-dimensional input vector consisting
of the variables described above. The main task in
developing any ANN model is to identify the input
vector (independent variables) to the network and to
identify the optimal network architecture so as to produce
the desired output accurately. As stated earlier, the
current investigation is focused mainly on identifying the
minimum combination of variables to estimate ET,. To
achieve this, many combinations of input variables were
presented to the ANN.

Description of data and availability

In the present investigation, hourly data (temperature,
dew point, sunshine radiation, wind speed, humidity) for
a period of two years (1990 and 1991) were used for
estimation of ET(. These data pertain to a few stations
in the Reynolds Creek Experimental Watershed in South-
western Idaho, USA. A description of the watershed and
the data set is available in Slaughter ef al. (2001). The
data were downloaded from the web site of the Agri-
cultural Research Service of US Department of Agri-
culture (ftp.nwrc.ars.usda.gov). Periods of missing data
records were discarded in the current analysis. Using
these observed climatic data, hourly values of ET were
initially computed by using Equation (1) and the steps
recommended by Allen et al. (1998). These computed
ET, values were used to train the ANN models. All the
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ANN models were trained using data for the period 11
February 1990 to 31 December 1990, and validated for
the rest of the data (1 February 1991 to 31 December
1991). The rationale behind this division into training
and validation is that that one full seasonal cycle each
was used for training and testing. This also ensures the
statistical properties of the training and testing data to
be of similar order. As the climatic characteristics of the
watershed are important in assessing the applicability of
the models in general, the variation of different climatic
parameters in the study area are presented in Figure 1.
It is noted that the variation of the climatic parameters
in the study area is similar to that experienced in a typ-
ical catchment. For example, for the data of the study
period, the daily values of temperature ranged from 34 °C
to —28°C, relative humidity varied from 0-98 to 0-50,
radiation ranged between 0-0 and 3-6 W m~2, and the
range of wind speed was from 0-0 to 0-16 m s~!. Hence
any model developed on this data set should have wide
application.

Selection of input variables

The correlation (Box and Jenkins, 1976) matrix
between all the input variables is presented in Table I.
It can be observed from Table I that the linear correla-
tion between radiation and ET, is 0-72, implying that
any model built using radiation will certainly be able
to compute the ET satisfactorily. The model’s accuracy
can be improved by incorporating variables that account
for aerodynamic effects on ET, such as humidity and
dew point temperature in addition to radiation. The sec-
ond highest correlation exists between temperature and
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Figure 1. Variation of climatic parameters and evapotranspiration with time during the training data period: (a) temperature; (b) relative humidity;
(c) solar radiation; and (d) ETy (time index ‘0’ refers to the beginning of the training period)
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Table 1. Correlation matrix between input and output variables

Temperature Humidity Dew point temperature Radiation Wind speed ET,
Temperature 1-00 -0-74 0-39 0-40 0-00 0-46
Humidity —0-74 1-00 0-26 —0-34 0-05 —0-37
Dew point temperature 0-39 0-26 1-00 0-08 0-03 0-10
Radiation 0-40 —0-34 0-08 1-00 0-17 0-72
Wind speed 0-00 0-05 0-03 0-17 1-00 0-13
ET, 0-46 —0-37 0-10 0-72 0-13 1-00

ETy. Note that humidity and temperature are also highly
correlated. So, a combination of radiation and temper-
ature may also provide a good estimate. As dew point
temperature is not well correlated with ET, inclusion of
this variable in the input vector may give little improve-
ment in estimates. However, it is to be noted that these
inferences are based on the linear correlation between the
variables, while the evapotranspiration process is consid-
ered to be highly nonlinear. Hence, these inferences can
be considered only as guidelines for deciding on the input
variable combination. In addition, radiation data may not
be available in many cases and we wanted to examine the
predictive ability of ANN when such data are not avail-
able. Consequently the current study investigated the six
combinations listed in Table II.

ANN Model Construction and Evaluation

A standard back propagation algorithm was employed
to estimate the network parameters (weights and biases).
The data were scaled to fall between O and 1, as the
activation function used in the hidden and output node
is a sigmoid function. This scaling was achieved by
using the maximum and minimum of each variable of
interest. Adaptive learning and momentum rates (Nayak
et al., 2005) were employed for model training. Deter-
mination of an appropriate architecture for a neural net-
work (number of hidden nodes) for a particular problem
is an important issue as the network topology directly
affects its computational complexity and its generaliza-
tion capability. Many studies have revealed that larger-
than-necessary networks tend to over-fit the training
samples and thus have poor generalization performance,
while too-small networks (that is, with very few hidden
neurons) will have difficulty in learning the training data.
Currently there is no established methodology for select-
ing the appropriate network architecture before training
(Coulibaly et al., 2001).

Table II. Combinations of input variables considered in develop-
ing ANN models

Model Input vectors

Model 1 Temperature, Humidity, Dew point, Radiation,
Wind speed

Model 2 Temperature, Humidity, Radiation, Wind speed

Model 3 Temperature, Humidity, Wind speed

Model 4 Temperature, Humidity, Radiation

Model 5 Temperature, Radiation

Model 6 Temperature, Humidity

Copyright © 2008 John Wiley & Sons, Ltd.

In the current study, the number of hidden neurons in
the network was identified by various trials. The trial
and error procedure started with two hidden neurons
initially, and the number of hidden neurons was increased
to 12 with a step size of 1 at each trial. For each set
of hidden neurons, the network was trained in batch
mode to minimize the mean square error at the output
layer. In order to check any over-fitting during training,
cross-validation was performed by keeping track of the
efficiency of the fitted model. Though the available data
was divided into only two sets (training and validation),
10% of the training examples were set aside for cross-
validation, and this set was not employed in training.
The training was stopped when there was no significant
improvement in the efficiency. The model was then
tested for its generalization properties by examining
the computational accuracy of the trained model on
the validation data set. The parsimonious structure that
resulted in minimum error and maximum -efficiency
during training as well as testing was selected as the final
form of the ANN model.

The values of ET( computed by all the models were
analysed statistically using various indices employed for
the performance analysis of models. The goodness-of-
fit statistics considered are the coefficient of correlation
(CORR) between ANN computed and targeted ET and
the model efficiency (Nash and Sutcliffe, 1970). Based on
this analysis, the best architecture for each ANN model
was identified. These selected models were subjected to
further evaluation for their effectiveness in estimating the
ETy, and a comparative analysis was carried out.

RESULTS AND DISCUSSION

Model Architecture Selection

The results, in terms of the performance indices for the
trial and error procedure employed to identify the appro-
priate network architecture for each input combination,
are depicted in Figure 2. It is evident from Figure 2 that
as the number of hidden neurons increases, the model per-
formance also increases, up to a certain level. Thereafter,
any additional neuron in the hidden layer dampens model
performance. It is observed that for Model 1, the cor-
relation and efficiency statistics during training increase
along with the number of hidden neurons. However, the
validation efficiency is found to deteriorate for more than
eight neurons in the hidden layer, suggesting that the

Hydrol. Process. 22, 2225-2234 (2008)
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Figure 2. Variation in performance of different models with number of hidden neurons in the ANN architecture in terms of correlation and efficiency
statistics

model is trying to over-fit the data. Therefore, eight hid-
den neurons were considered to be appropriate for Model
1. In a similar way, the optimal number of hidden neu-
rons was determined for the other models. The number
of hidden neurons identified for the other models was
eight, eight, ten, eight and ten, respectively, for Model 2,
Model 3, Model 4, Model 5, and Model 6.

It is noted from Figure 2 that the performance of
Model 3 and Model 6 was not satisfactory in estimating
the PM ET (plausible reasons for this underperformance
are discussed in later sections). Consequently, Model 3
and Model 6 were not considered for further evaluation.

Performance Evaluation of Models

Figure 3 shows scatter plots of PM-estimated and
ANN-computed ET(, from which it can be observed
that the ANN models compute the PM ET, well at
low values, but fails to preserve its accuracy at higher
values of ETy. It is worth mentioning that the greatest
deviations in ANN-computed ETy from PM-ET, occur
for the hours around 1 pm to 3 pm in the months June
to August, when temperatures are high (usually above
24°C) and the relative humidity is low (generally below
0-15). Note that Irmak er al. (2003) suggest that the
weather measurements need to be taken at a properly

Copyright © 2008 John Wiley & Sons, Ltd.

watered and maintained agricultural setting, otherwise
adjustments to air temperature, humidity, and wind speed
measurements may be necessary when applying the PM
method for ET\ estimation. No such adjustment was
made in this study in the absence of requisite information.
Hence the higher value of PM-ET during this period
(where ANN was not able to map it effectively) requires
further examination, but is beyond the scope of this paper.
However, it may be noted that all the models result in
a coefficient of determination (+2) value of 0-81, despite
different input combinations. It is worth mentioning that
Model 5, which considers temperature and radiation
values as the only input variables, computes a PM-ET
comparable to that of Model 2, which considers most of
the influencing variables. The scatter plot also shows that
the data mostly follow the 45° line but many points are
located above/below the line. The points above the line
are scattered and those below the line seem to follow
another line. Such behaviour could be due to the large
range of the controlling variables (temperature, radiation).

Note that Figure 3 gives only a visual presentation
of the model performance, and the robustness of the
models cannot be clearly assessed. Hence the models
are evaluated using additional evaluation measures, i.e.
sum of squared error (SSE), standard error of estimates
(SEE), average absolute relative error (AARE), noise to

Hydrol. Process. 22, 2225-2234 (2008)
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Figure 3. Scatter plots showing evapotranspiration estimated by Penman—Monteith (PM) method and selected ANN models: (a) Model 1; (b) Model
2; (c) Model 4; and (d) Model 5

signal ratio (NS) and mean absolute error (MAE). The
definitions of these performance measures are given in
Table III.

The values of performance indices for all the models
are presented in Table IV. The SSE value is a measure of
the unexplained variance and is found to be the least for
Model 2. A significant observation is that the unbiased
standard error of estimates (SEE) is comparable for all
the models. The results presented in Table IV suggest
that the ANN models developed can be ranked in terms of
performance as Model 2, Model 1, Model 4, and Model 5
in decreasing order of performance. While Model 2
shows a consistent performance in terms of all indices,
other models are not significantly inferior in performance.
The results suggest that the ANN approach can compute
PM-ET, efficiently from limited climatic data and this
observation is in agreement with Sudheer et al. (2003). It
may be noted that Sudheer et al. (2003) used an ANN to
estimate ET for a particular crop, while here the focus is
on estimation of ET . This observation is significant since
the data requirement to obtain an accurate estimation of
ETg can be considerably reduced.

Since the climatic parameters are highly correlated
with ET(, one obvious question may be: how best is the
linear model compared to the ANN models developed
in this study? Hence, in addition to ANN, a multi-linear
regression (MLR) model was also established to estimate
ET, from the independent variables. Note that a single

Copyright © 2008 John Wiley & Sons, Ltd.

Table III. Definitions of performance criteria

Evaluation criteria Definition

Sum of Squared Errors SSE =3 (v — ¥ )’
(SSE) =1

n

n

> 0r=)

i=1

Standard Error of SEE =

Estimate (SEE)

v
AARE = L > IRE,| in which,

1

Average Absolute
Relative Error (AARE) i

Noise to Signal Ratio =5,
Mean Absolute Error MAE = % S (=)
(MAE) i=1
1 & _ _
L2 =00 =)
Coefficient of correlation r=—=1 5.0,
1<
— 0f = w7’
Nash and Sutcliffe n=1-—=L

efficiency

1 n
=y Gy —wr
n i=1

y{ and yf, respectively are the PM-estimated and ANN-computed ET¢
values at time ¢, v is the number of degrees of freedom, o is the standard
deviation of the PM-estimated and »n is the total number of data points.
A bar over the variable denotes its mean value.
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Table IV. Statistical performance indices of selected models
during calibration and validation

Evaluation criteria Model Calibration Validation
Sum of Squared Model 1 636-79 533-60
Errors (SSE)
Model 2 629-68 524-66
Model 4 642-17 535-42
Model 5 650-12 541-81
MLR* 831-84 672-80
Standard Error of Model 1 0-30 0-26
Estimate (SEE)
Model 2 0-30 0-26
Model 4 0-30 0-26
Model 5 0-30 0-26
MLR 0-34 0-29
Average Absolute Model 1 0-35 0-39
Relative Error
(AARE)
Model 2 0-34 0-34
Model 4 0-48 0-56
Model 5 0-51 0-62
MLR 2-12 1.56
Noise to Signal Model 1 0-60 0-59
Ratio (NS)
Model 2 0-59 0-58
Model 4 0-60 0-59
Model 5 0-60 0-59
MLR 0-68 0-66
Mean Absolute Model 1 0-10 0-09
Error (MAE)
Model 2 0-10 0-09
Model 4 0-11 0-10
Model 5 0-11 0-10
MLR 0-16 0-14

* MLR —Multiple linear regression model

MLR was developed using all the potential influencing
variables. The model had the following form:

ETy = a x Temperature + b x Humidity
+ ¢ x Radiation + d x Wind speed + Constant

The best values of the parameters were estimated by
using the least squares error algorithm and these turned
out to be: a = —0-0596, b = 0-1151, ¢ = —0-0076, d =
0-2469, Constant = 0-0248. The performance of the
MLR model in terms of various statistical indices are also
presented in Table IV. It is evident from Table IV that the
ANN models outperform the MLR and this is an indica-
tion of their ability to capture the nonlinear input—output
relationship.

Physical Interpretation of the ANN ETy Models

It is a common belief that the ANN models of any
physical process are purely black box models as they
do not explain the process being modelled. However, it
must be realized that the data employed for developing
ANN models do contain important information about
the physical process being modelled. Hence, the ANN
models can be interpreted as representing the physical
process by performing analyses such as input variable

Copyright © 2008 John Wiley & Sons, Ltd.
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sensitivity with respect to the output variable. There is
no widely accepted method for extracting knowledge
from the weights of a trained ANN. However, a number
of methods have been proposed for interpreting the
weights of a trained ANN so as to assess the relative
importance of each of the input variables (Garson, 1991;
Olden and Jackson, 2002, Olden et al., 2004). The
relative contributions of ANN inputs in calculating the
output are dependent on the magnitude and direction of
the connection weights. When the sign of the weights
connecting the input-hidden and hidden-output layers are
the same (i.e. either both positive or both negative), the
input will have a positive impact on the output. On the
other hand, if the signs of these connection weights are
opposite, the specific input will have an inhibiting effect
on the output. Further, the overall contribution of the
input on the output will depend on the positive and
inhibiting effect of it through different hidden nodes. In
this study, a connection weight procedure suggested by
Garson (1991) is employed to evaluate the sensitivity
of each climatic variable on PM-ET( with the help of
the parameters of the ANN models. While the physical
process of evapotranspiration is well understood, this
analysis helps explain why an ANN model is able to
accurately compute E7( with limited climatic data.

Garson (1991) advocated the following procedure to
physically interpret the working of ANNs. Consider an
ANN having I, m, n neurons in input, hidden and output
layers, respectively. Let i, j, k represent the index of
neurons in these respective layers. Let W;; and W j
represent the weight parameter between the input-hidden
and hidden-output connections. The algorithm starts by
computing the positive or inhibitive effect (P;;) of each
input variable through each of the hidden nodes on the
kth output:

Pij=W;; xWj for Viand forVj 3)

Then the combined effect of P;; for all input nodes
on each hidden node j(S;) is estimated by arithmetic
summation of P;; for all input nodes connecting to node
j. Thus,

Sj=ZP,»j )

Subsequently, the P;; for each input variable is normal-
ized using the combined effect on every hidden node (S ;)
such that:

P = Pij (5)

The individual contribution by each of the input (S;)

is then calculated by summation of the normalized
contribution of each input to all hidden nodes. That is,

m
Si=> P, (6)
=1
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ET ESTIMATION FROM ANN AND PHYSICAL INTERPRETATION

Table V. Relative importance (%) of input variable for ET,
evaluated from ANN weights

Temperature Humi- Radiation Wind Dew point

dity speed temperature
Model 1 17 25 30 7 21
Model 2 28 20 34 17
Model 3 52 21 26
Model 4 36 17 47
Model 5 58 45
Model 6 55 42

Finally the relative importance of each input variable in
computing the kth output is estimated by:

S;

1
>

i=1

x 100

RI; = (7)

where RI; is the relative importance (expressed in per
cent) of variable at neuron i in the input layer on the
variable at neuron k in the output layer. The whole
computation is repeated for each output neuron (i.e. for
k=1,...,n).

The relative importance of each of the input variables
in all the models computed according to Garson (1991)
is presented in Table V. It can be observed from Table V
that in Model 1, radiation has the maximum influence
(30-10%) on ET, estimation as discussed earlier. Note
that when radiation is not present in the ANN model as
one of the inputs (e.g. Model 3 and Model 6), temperature
data has the greatest influence, which indirectly takes
care of the effect of radiation (temperature is very
well correlated with radiation; Table I). It may also be
noted that in the current data set, temperature is more
strongly correlated with humidity than with radiation
(Table I), implying that temperature may also account
for the vapour pressure deficit. As a result, Model 3 (and
Model 6) appears not to represent the effects of radiation,
and fails to compute ET, effectively. As temperature
can be considered to be an indicator of the vapour
pressure deficit, when it is combined with radiation
data in Model 5, a better estimate of ET is obtained.
Note that while investigating the relative importance
of input variables in computing ET;, ANN models
were developed with a single input that considered
only temperature and only radiation as input variables.
However, the results were not promising and hence, these
models were not investigated further and their results are
not presented here.

SUMMARY AND CONCLUSIONS

This paper discusses a research study conducted to
develop ANN based models to estimate ETy from limited
climatic data. The motivation for the study was the
cumbersome procedure and large data requirement (not
easily available in many situations) for estimating ET

Copyright © 2008 John Wiley & Sons, Ltd.

2233

using the FAO recommended Penman—Monteith method.
The results of the study show that an ANN technique can
be used successfully to estimate ET from climate data.
It is observed that for accurate estimation of ET( using
an ANN, temperature and radiation data are the most
crucial inputs. A sensitivity analysis of the input variables
on ET, performed using the connection weights of the
ANN models confirmed this. The results of the study
indicate that the ANN can estimate ET accurately even
if data for only these two variables are available. An ANN
model whose input consists of temperature and humidity
or temperature, humidity and wind speed cannot provide
a good estimate of ET, because the major predictor
variable (radiation) is not present in the input vector.
Among the input combinations that were examined in
this study, an ANN with inputs of temperature, humidity,
dew point, radiation, and wind speed provides the best
estimate of reference evapotranspiration.
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