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ABSTRACT
Given the ranked lists of documents returned by multiple
search engines in response to a given query, the problem of
metasearch is to combine these lists in a way which optimizes
the performance of the combination. This paper makes three
contributions to the problem of metasearch: (1) We describe
and investigate a metasearch model based on an optimal
democratic voting procedure, the Borda Count; (2) we de-
scribe and investigate a metasearch model based on Bayesian
inference; and (3) we describe and investigate a model for
obtaining upper bounds on the performance of metasearch
algorithms. Our experimental results show that metasearch
algorithms based on the Borda and Bayesian models usu-
ally outperform the best input system and are competitive
with, and often outperform, existing metasearch strategies.
Finally, our initial upper bounds demonstrate that there is
much to learn about the limits of the performance of meta-
search.

1. INTRODUCTION
Numerous search systems have been developed both in

academia [33] and in industry (Google, Alta Vista, Lycos,
HotBot, etc.). In practice, no one system performs “bet-
ter” than each of the others under all circumstances, and
the “best” system for a particular task may not be known
a priori. This being the case, metasearch engines (such as
MetaCrawler, ProFusion, SavvySearch, MetaFerret, InFind,
etc.) have been introduced which query a number of search
engines, merge the returned lists of pages, and present the
resulting ranked list to the user.

This after-the-fact combining of “complete” search en-
gines can be called external metasearch. Alternatively,
metasearch offers a systematic way of internally incorpo-
rating all of the various types of evidence available within
a single search engine. For example, in the context of web
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page retrieval, many sources of information exist: each page
has text, in-links, out-links, images, tags, keywords, and
structural information. For each of these elements, numer-
ous indexing and retrieval algorithms may exist. Metasearch
can be used to easily and automatically take advantage of
the information provided by these disparate retrieval com-
ponents.

Potential benefits of metasearch include:
Improved recall: Recall is the ratio of retrieved relevant
documents to total relevant documents. Fusion can improve
recall as long as the input systems are retrieving different
relevant documents [17].
Improved Precision: Precision is the ratio of retrieved
relevant documents to retrieved documents. Lee [13] argues
that an “unequal overlap property” holds in ranked list fu-
sion: different retrieval algorithms retrieve many of the same
relevant documents, but different irrelevant documents. Ng
and Kantor [17] conclude with Lee that if this is true, any
fusion technique that more heavily weights common doc-
uments should improve precision. Vogt [28] calls this the
“chorus effect.”
Consistency: Selberg and Etzioni [22] show that current
Web search engines often respond to the same query very
differently over time. Inasmuch as fusing is an averaging pro-
cedure, we can expect the idiosyncrasies of any one system
to be smoothed out, providing more reliable behavior [15].
Modular Architecture: From the system design perspec-
tive, metasearch techniques allow a large, monolithic search
engine to be decomposed into smaller, more specialized mod-
ules which can be queried in parallel and then fused.

In short, metasearch holds the promise of obtaining better
results than the best underlying retrieval system.

Current metasearch techniques can be characterized by
the data they require: whether they need relevance scores
or only ranks, and whether they require training data or not.
(See Figure 1.) A number of researchers have attempted to
characterize when metasearch will yield good performance.
The work of Ng and Kantor [17, 16] in this area, as well
as Vogt et al. [31, 28], essentially support the conclusion of
Croft [6]: The systems being combined should (1) have com-
patible outputs (e.g., on the same scale), (2) each produce
accurate estimates of relevance, and (3) be independent of
each other.

In this paper, we describe and investigate two models for
the problem of metasearch, one based on democratic election
strategies and another based on Bayesian inference. Unlike
most existing metasearch algorithms, our techniques require
rank information alone; the relevance scores assigned to re-
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Figure 1: Metasearch techniques may or may not
require relevance scores, and may or may not require
training. We discuss each of the given methods in
the paper.

trieved documents by the underlying retrieval systems are
not required. In many real-world situations, these relevance
scores are not available (consider most search engines on
the World Wide Web). We also describe and investigate a
model for obtaining upper bounds on the performance of
metasearch strategies.

The first model we shall discuss, Borda-fuse, is based on
an optimal voting procedure, the Borda Count. Metasearch
algorithms based on the Borda Count have a number of ad-
vantages: (1) They require no training data; (2) they do not
require relevance scores; and (3) they are surprisingly simple
and efficient. Our experiments with Borda-fuse show that
its performance is competitive with even the best existing
metasearch strategies which typically require access to rele-
vance scores which are not often available. We also describe
a weighted version of this algorithm which requires minimal
training but whose performance improves.

The second model we shall discuss, Bayes-fuse, is based
on a Bayesian analysis of the odds of document relevance.
Metasearch algorithms based on this model require training
data, but they have the following advantages: (1) They do
not require relevance scores; (2) they are based on a rigor-
ous, probabilistic model of the problem; and (3) they can
be implemented in both a simple, naive manner that as-
sumes search engine independence and in a sophisticated
manner that accounts for dependencies. Our experiments
with Bayes-fuse show that its performance is competitive
with even the best existing metasearch strategies which typ-
ically require access to relevance scores and that its perfor-
mance can significantly exceed the best existing strategies
when combining the results of disparate systems.

Finally, we propose a model for obtaining upper bounds
on the performance of metasearch algorithms based on the
idea of a constrained oracle. Given a set of ranked lists to
merge, we assess the performance of an omniscient meta-

search oracle that knows which documents are relevant and
which are not but is constrained in how it may rank these
documents. The constraints are chosen so as to capture
natural limitations of any reasonable metasearch algorithm.
Our experiments reveal a sizable gap between the oracle’s
performance and the performance of current metasearch al-
gorithms.

In the remainder of this work, we first review the rel-
evant literature, noting especially the various metasearch
algorithms that have been proposed in the past. We then
present the Borda-fuse, Bayes-fuse, and upper bound mod-
els, describe a number of implementation issues, and detail
the results of a number of experiments on TREC data. Fi-
nally, we conclude with directions for future research.

2. RELATED WORK
The use of data fusion to combine document retrieval re-

sults has received considerable attention in the past few
years: it has been the subject of a number of doctoral dis-
sertations [2, 16, 28, 23], journal articles [25, 10, 30], and
conference papers [8, 3, 12, 13, 17, 29, 14], being especially
used in the TREC competitions [9, 24, 18]. In this section
we review the results of these publications as they relate to
our work.

2.1 CEO Model
Thompson [25, 26] proposes a Bayesian model that he calls

the Combination of Expert Opinion (CEO) model. It bears
some resemblance to our Bayesian model, but also differs
in a number of ways. CEO is not really a general-purpose
metasearch algorithm, but is a complete search system; it
has two basic search components (each driven by Bayesian
updating of probabilities) that are fused with a Bayesian for-
mula. The fusion algorithm is not based on odds. And, it re-
quires a full probability distribution to be specified for each
document (not simply a probability of relevance). As far as
we know, the CEO system has never been implemented.

2.2 Min, Max, and Sum Models
Fox and Shaw [9] fuse based on the unweighted min, max,

median, or sum of each document’s normalized1 relevance
scores over the constituent systems. Fox and Shaw also try
to more or less heavily weight the number of systems that
returned a given document (nd) by using the formula

rel(d) = nγ
d

∑
i reli(d)

for γ ∈ {−1, 0, 1}. The sum is over the constituent systems.
When γ = −1, the system is equivalent to the average sim-
ilarity over systems that returned d, “CombANZ”. When
γ = 0, the result is the sum of the similarities, “CombSUM”
(assuming, as they do, a similarity of zero for documents
not returned, this is equivalent to the average similarity
over all systems—even those that did not return d). And
when γ = 1, the result is the formula they call “CombMNZ”
(Multiply-by-number-Non-Zero). They found CombSUM to
be slightly more effective than CombMNZ.

Lee [13] performed experiments with Fox and Shaw’s al-
gorithms, arguing that “different runs retrieve similar sets of
relevant documents but retrieve different sets of non-relevant

1In an attempt to make relevance scores from different sys-
tems directly comparable, it is common to map the scores
into the range [0,1].



documents.” He further argues that the CombMNZ combi-
nation rule appropriately takes advantage of this observation
by heavily weighting common documents.

In our own work, we have found that CombMNZ is the
most effective of these schemes, and as it has become some-
thing of a standard, we shall use it as a baseline for experi-
mental comparison.

2.3 Averaging Models
In the context of the filtering problem, Hull et al. [12] try

averaging. The four systems they fuse each output estimates
for the probability of relevance of each document, so they try
both directly averaging these probabilities as well as averag-
ing the log-odds ratios, log p

1−p
, a technique related to our

own log-odds formulation. They find that averaging the log-
odds does yield improvement and in fact works better than
more complicated regression and weighting techniques.

Manmatha et al. [14] also average probabilities of rele-
vance, pointing out that this minimizes the Bayes’ error
if the search engines are viewed as independent classifiers.
Without training data they transform arbitrary relevance
scores into probabilities by fitting a negative exponential
and Gaussian mixture model to the scores, from which they
infer probabilities of relevance.

2.4 Logistic Regression Model
Savoy et al. [21] train a logistic regression model and find

that over one TREC collection (WSJ2), it achieves per-
formance slightly superior to a linear combination fusion
model, improving on the best input system’s performance
by almost 11%.

2.5 Linear Combination Model
Bartell [2], Vogt [31, 30, 28, 29], and others experiment

with linearly combining the normalized relevance scores
given to each document. That is,

rel(d) =
∑

i αireli(d)

where the sum is over the constituent systems. Note that
this fusion model requires both relevance scores and training
data to determine the weight αi given to each input system.

Although good results are achieved in specific cases, this
technique has not yet been shown to produce reliable im-
provement.

3. BORDA-FUSE
In this section, we describe our first model for the meta-

search problem which is based on election strategies. We
begin by describing the corresponding problem of voting.

3.1 A Voting Model
Voting procedures can be considered data fusion algo-

rithms since they combine the preferences of multiple “ex-
perts”. Many voting procedures, including plurality voting,
instant run-off, and approval voting are not directly appli-
cable to the problem of metasearch: they assume a few-
candidates, many-voters scenario. In metasearch we have
the opposite: many candidates and relatively few voters.
The Borda Count voting algorithm, however, is applicable
even when the number of voters is small. Interestingly, it
has recently been shown [20, 7] that the Borda Count is op-
timal in the sense that only the Borda Count satisfies all

of the symmetry properties that one would expect of any
reasonable election strategy.

The Borda Count works as follows. Each voter ranks a
fixed set of c candidates in order of preference. For each
voter, the top ranked candidate is given c points, the second
ranked candidate is given c−1 points, and so on. If there are
some candidates left unranked by the voter, the remaining
points are divided evenly among the unranked candidates.
The candidates are ranked in order of total points, and the
candidate with the most points wins the election.

There is a direct analogy between multi-candidate elec-
tion strategies and the problem of metasearch: the set of
retrieved documents are the “candidates”, and the input re-
trieval systems are “voters” expressing preferential rankings
among these candidates. Applied in this fashion, the Borda
Count can be used to combine the ranked lists returned by
multiple retrieval systems. No relevance scores are required,
no training data is required, and the combination algorithm
is simple and efficient. Furthermore, our experiments de-
tailed below demonstrate that the performance of the Borda
Count is quite good.

Researchers outside the field of Information Retrieval have
also used the Borda Count to combine ranked lists. Van Erp
and Schomaker [27] experiment with the Borda Count and
two variants to combine simulated classifier ranked data for
the field of Handwriting Recognition.

3.1.1 Weighted Borda-fuse
In the case of a democratic election, it is certainly desir-

able that each voter has equal weight. In metasearch, how-
ever, the best performance is often achieved by unequally
weighting the input systems. A simple weighting scheme is
to multiply the points assigned to a candidate by system Si

by a system weight αi. Reasonable weights might include
an overall assessment of the performance of the system such
as its average precision, and we experiment with just such
weights. We know that this need not be the optimal weight-
ing scheme, and in fact Bartell and Vogt report results to
the contrary for their linear combination experiments. We
shall call this strategy Weighted Borda-fuse and leave more
sophisticated weighting techniques for future work. Obtain-
ing performance assessments for an underlying system is a
form of weak training for our metasearch algorithm. In or-
der to test fairly, in all of our experiments (described below)
we train on even TREC topics and test on the odd topics
and then train on odd topics and test on evens, averaging
the two results.

We now report on some preliminary experiments using
Borda-fuse and Weighted Borda-fuse.

3.2 Experiments

3.2.1 Data Sets
We use systems submitted to the annual Text REtrieval

Conference (TREC) as input to our fusion algorithms.
TREC offers large, standard data sets with many ranked
lists for each query, ready to be fused. Also, each system
submits 50 queries, enough to allow training and testing.
Table 1 shows information about the data sets. Note that
in TREC, each system is allowed to return up to 1000 doc-
uments for each query. For the TREC 3 and TREC 5 data,
we used the data submitted to the TREC “adhoc” task. For
TREC 9, the adhoc task had been replaced by the “web”



Data Set TREC No. Avg Precision
Name Topics Sys Min Max Avg St Dev
TREC 3 151–200 40 0.029 0.423 0.257 0.0859
TREC 5 251–300 61 0.004 0.317 0.190 0.0683
Vogt (10 topics) 10 0.225 0.395 0.288 0.0543
TREC 9 451–500 105 0.000 0.352 0.144 0.0779

Table 1: The data sets used in our experiments.

track. Therefore, over that data set we are fusing the results
of World Wide Web search engines. In TREC terminology,
a “topic” is a query; they are numbered consecutively. In
the table, the column labeled “No. Sys” contains the num-
ber of search systems that submitted results to TREC that
year—this is the number of systems available for us to fuse.

The Vogt data set consists of a subset of the TREC 5 data
set as defined by Vogt [29]. In particular, it contains only 10
of the 61 TREC 5 systems, and only 10 of the 50 TREC 5
queries. This subset was chosen by Vogt to highlight the
strengths of the metasearch technique: it contains retrieval
systems chosen to maximize diversity, as measured by nine
similarity criteria. The systems are: CLTHES, DCU961,
anu5aut1, anu5man6, brkly17, colm1, fsclt4, gm96ma1,
mds002, and uwgcx0. The queries were chosen for their large
number of relevant documents: queries 257, 259, 261, 272,
274, 280, 282, 285, 288, and 289. We include this data set
because of its diverse inputs: we expect that it more closely
models the environment of “internal” metasearch than the
other data sets.

The last four columns in the table show performance infor-
mation about each data set: the minimum average precision
obtained by a system in a given data set, the maximum,
the mean, and the standard deviation. Note that the Vogt
data set and the TREC 9 data set are very different: not
only is Vogt small while TREC 9 is large, but Vogt has the
highest average performance, while TREC 9 has the lowest
(only half of Vogt’s 0.288). And, Vogt has low deviation, es-
pecially given its high performance, while TREC 9 has high
deviation, especially given its low performance. Thus the
performances of systems in Vogt are similar to each other
(a situation advantageous for metasearch) while the perfor-
mances of systems in TREC 9 vary widely.

3.2.2 Experimental Setup
We examine the performance of each metasearch strategy

when combining random groups of retrieval systems. Each
data point represents the average value obtained over 200
trials (or as many as are combinatorially possible) performed
as follows. Randomly select a set of n (for n ∈ {2, 4, ...12})
input systems, apply the metasearch algorithm to these sys-
tems, and record the average precision of the metasearch al-
gorithm’s output. (Additionally, we record the average pre-
cision of the best underlying system in order to meaningfully
assess the improvement gained, if any.) This experiment is
designed to test how well a fusion algorithm performs on
average, and to see how the algorithm improves when more
input systems are available. A successful system will con-
sistently improve on the best of its inputs, no matter how
many input systems are available.

3.2.3 Experimental Results
In the experiments, we compare the performance of Borda-

fuse and Weighted Borda-fuse with CombMNZ. Note that
each of the these algorithms requires slightly different infor-
mation (see Figure 1): CombMNZ needs relevance scores,
Weighted Borda-fuse needs training data (albeit of a very
minimal kind), and Borda-fuse needs neither. The experi-
mental results are shown in Figure 2.

From the graphs, first note that for all of the plots, per-
formance usually increases as more systems are added to
the combination. Even when 10 or 12 systems are being
combined, performance gains are usually still available.

Also note that on the Vogt data set, all of the fusion algo-
rithms yield considerable performance increases, while the
TREC 9 data set is much more difficult. We expect this is
due to the already-noted differences in the data sets: Vogt
contains systems that rank documents very differently yet
perform similarly. Thus each input system provides new
information, but also reliable information (relative to the
other input systems). TREC 9 contains systems that per-
form very differently—some systems provide relatively un-
reliable information. We have not studied how similarly
TREC 9 systems rank the documents.

Considering the curves individually, we see that for three
out of the four data sets, Weighted Borda-fuse outperforms
the best input system. Also, Weighted Borda-fuse is always
at least as good as the unweighted Borda-fuse, and some-
times (see TREC 9) dramatically better. This is probably
due to the large differences in performance between input
systems in TREC 9: weights allow the algorithm to concen-
trate on the good advice it receives and somewhat ignore the
bad advice of poor performers. Finally, note that Weighted
Borda-fuse has performance comparable to CombMNZ on
each data set.

4. BAYES-FUSE
In this section, we describe our second model for the meta-

search problem which is based on Bayesian inference.

4.1 The Probabilistic Model
Given the ranked lists of documents returned by n re-

trieval systems, let ri(d) be the rank assigned to document
d by retrieval system i (a rank of ∞ may be used if docu-
ment d is not retrieved by system i). This constitutes the
evidence of relevance provided to the metasearch strategy
concerning document d. For a given document, let

Prel = Pr[rel|r1, r2, . . . , rn] and

Pirr = Pr[irr|r1, r2, . . . , rn]

be the respective probabilities that the given document is
relevant and irrelevant given the rank evidence r1, r2, . . . , rn.
The Bayes optimal decision rule for determining the rel-
evance of a document dictates that a document should be
assumed relevant if and only if Prel/Pirr ≥ τ for some thresh-
old τ chosen so as to optimize the expected loss suffered if
incorrect. Since we are interested in ranking the documents,
we shall compute this odds of relevance

Orel = Prel/Pirr

and rank documents according to this measure. Applying
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Figure 2: Borda-fuse experiments over the four data sets. Without using relevance scores, Weighted Borda-
fuse performs comparably to CombMNZ.

Bayes rule, we obtain

Prel =
Pr[r1, r2, . . . , rn|rel] · Pr[rel]

Pr[r1, r2, . . . , rn]
and

Pirr =
Pr[r1, r2, . . . , rn|irr] · Pr[irr]

Pr[r1, r2, . . . , rn]
.

While the Pr[r1, r2, . . . , rn] term would be difficult to assess
in practice, it is eliminated in the odds formulation

Orel =
Pr[r1, r2, . . . , rn|rel] · Pr[rel]

Pr[r1, r2, . . . , rn|irr] · Pr[irr]
. (1)

By making the common naive Bayes independence assump-
tions2 and taking logs, we arrive at a simple log odds for-
mulation:

Orel =

∏
i Pr[ri|rel] · Pr[rel]∏
i Pr[ri|irr] · Pr[irr]

,

log Orel =
∑

i

log
Pr[ri|rel]
Pr[ri|irr] + log

Pr[rel]

Pr[irr]
.

Finally, since we are solely concerned with ranking the doc-

2While these independence assumptions may not be true
(for example, we are assuming that the ranks assigned to a
given relevant document by two systems are independent),
they are often made in practice.

uments, we may drop the common log(Pr[rel]/ Pr[irr]) term,
obtaining our relevance formula

rel(d) =
∑

i

log
Pr[ri(d)|rel]
Pr[ri(d)|irr] . (2)

Note that Pr[ri|rel] is the probability that a relevant doc-
ument would be ranked at level ri by system i. Similarly,
Pr[ri|irr] is the probability that an irrelevant document
would be ranked at level ri by system i. Thus, to obtain
the relevance of a document for ranking purposes, we sim-
ply sum the log of the ratio of these probabilities over all
systems.

We note that this derivation is similar to other probabilis-
tic models that have been proposed for different problems
in IR (e.g., [4, 5]). Indeed, the combination of evidence via
Bayesian techniques can be applied at the level of system
combination (as in our case) as well as at the level of individ-
ual system construction (as in the combination of evidence
from various features, etc.).

4.2 Implementation
A number of details are left unspecified in this model;

in particular, how should the estimation of Pr[ri(d)|rel] be
computed?
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We use the results of the trec eval program (available
from the TREC website) to obtain the data necessary to
infer the probabilities used in Equation 2. An example of
the output of this program for the best system in the TREC
3 competition, inq102, is given in Figure 3. In particular,
we use the average precisions at the various document levels
together with the average number of relevant documents per
query to estimate the probability that a relevant document
would be ranked, for example, in the range {31, 100}. From
this we obtain Pr[31≤ri(d)≤ 100|rel]. We repeated this pro-
cedure for each rank bucket {{1, 5}, {6, 10}, . . . , {1001, R}},
where R is the total number of relevant documents. Repeat-
ing for irrelevant documents gives us all of the basic proba-
bilities we need for Equation 2. We have experimented with
more sophisticated methods of estimating these basic proba-
bilities, including smoothing and interpolating, but obtained
no performance gains over this simple method.

The relevance judgments used by the trec eval program
were made by human assessors. This technique could also
be used to assess the performance of real-world systems;
automatic techniques could also be employed.

Gathering statistics about a retrieval system is a type
of training for our combination strategy. Therefore, as for
Weighted Borda-fuse, we train on even topics and test on
odd, then train on odd topics and test on even, and average
the two results.

4.3 Experiments
In this section, we describe experimental results compar-

ing the performance of CombMNZ and Bayes. Results are
shown in Figure 4.

Perhaps most impressive is the performance of Bayes-fuse
on the Vogt data set. Here, over a diverse pool of inputs, the
naive Bayes independence assumptions are more valid, and
the performance of Bayes-fuse exceeds that of CombMNZ
(and both Borda-fuse algorithms—compare with Figure 2).

On all of the data sets except TREC 9, Bayes-fuse out-
performs the best input system. On half of the data sets,
Bayes-fuse outperforms CombMNZ.

5. UPPER BOUNDS
We have seen performance curves for different metasearch

algorithms, in some cases showing substantial improvements
over the best input system. But questions remain: how
much improvement can be gained by metasearch? Are ex-
isting techniques approaching a natural limit? To address
these questions, we must find upper bounds on the perfor-
mance of any metasearch algorithm.

5.1 Models
Assume we have an omniscient oracle that is going to

act as a metasearch algorithm. Like other metasearch al-
gorithms, the oracle takes ranked lists as input and must
produce a single ranked list as output. Unlike other meta-
search algorithms, the oracle knows which documents are
relevant. Without any constraints, the oracle’s job is easy:
for each fusion problem, the oracle simply ignores its inputs
and then outputs the relevant documents for the given query
(ranked arbitrarily)—it scores perfectly every time. In or-
der to obtain a meaningful upper bound on the performance
of any real metasearch strategy, we constrain the oracle in
any way which is consistent with a natural constraint im-
posed on any real metasearch strategy. We discuss two such
constraints below.

5.1.1 Naive Bound
The first natural constraint is that the oracle may only

output documents that appear in one of the input ranked
lists. Although the oracle can return all of the relevant doc-
uments in the input and none of the irrelevant, it no longer
scores perfectly since it is not allowed to include all relevant
documents for each query; it is dependent on its input. We
call the performance of this oracle the Naive Bound.

5.1.2 Ordered Pairs Bound
We can further constrain the oracle in a natural way by

insisting that it effectively heed the advice of its inputs. In
particular, if document A is ranked above document B by
all of the input systems, then A must be ranked above B
in the output.3 We call the performance of this oracle the
Ordered-Pairs Bound.

5.2 Implementations
Implementing the oracle for the Naive Bound is straight-

forward. However, implementing the oracle for the Ordered
Pairs Bound is more difficult, due to the computational com-
plexity of finding all consistently ranked pairs and optimally
ranking the documents subject to these constraints. Thus
we have implemented a somewhat weaker constraint as fol-
lows: All relevant documents are assigned a score equal to
the minimum rank given to it by an input system; all ir-
relevant documents are scored according to their maximum
rank. The documents are then sorted in order of increas-
ing score with ties broken in favor of relevant documents.

3Of course, not all fusion algorithms need obey this rule,
and for some input systems it is not even a good idea. For
instance, a perverse input system might always invert it’s
ranked list before giving to the fusion routine. In this case,
a smart fusion routine could notice the inversion and correct
for it, thereby even profiting from the perverse input system
and perhaps outperforming the constrained oracle. Even
so, reasonable fusion algorithms acting on reasonable input
systems will agree with the unanimous advice from their
inputs.



0.32

0.34

0.36

0.38

0.4

0.42

2 4 6 8 10 12

A
vg

 p
re

ci
si

on

Number of random input systems

TREC 3: avg precision over 200 random sets of systems.

Bayes-fuse
CombMNZ

The best input system

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

2 4 6 8 10 12

A
vg

 p
re

ci
si

on

Number of random input systems

TREC 5: avg precision over 200 random sets of systems.

Bayes-fuse
CombMNZ

The best input system

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

A
vg

 p
re

ci
si

on

Number of random input systems

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Bayes-fuse
CombMNZ

The best input system

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

2 4 6 8 10 12

A
vg

 p
re

ci
si

on

Number of random input systems

TREC 9: avg precision over 200 random sets of systems.

Bayes-fuse
CombMNZ

The best input system

Figure 4: Bayes-fuse experiments over the four data sets. Using training data but no relevance scores,
Bayes-fuse outperforms CombMNZ on half of the data sets. It performs especially well on the Vogt subset
of TREC 5, where the diversity of the input systems suits the naive Bayes independence assumptions.

Note that this constraint captures many, though not all,
of the ordered pair constraints between relevant and irrele-
vant documents. We call the performance of this oracle the
Min/Max Bound.

5.3 Experiments
Results of the upper bounds experiments are shown in

Figure 5. Note that in this case each data point represents
only 50 trials.

When combining two systems, the Naive Bound achieves
75% of the performance of an unconstrained oracle (not
shown), and the Min/Max Bound achieves half the perfor-
mance; actual metasearch systems are closer to 25%. Fur-
thermore, the upper bounds approach perfect scores rel-
atively quickly as the number of systems being fused in-
creases. Qualitatively similar results are obtained on other
data sets.

6. CONCLUSIONS
We may summarize our work with Borda-fuse as follows:

(1) The algorithm is simple; (2) it requires only ranks, not
relevance scores; (3) it requires no training; (4) if even the
simplest form of training data is available, its performance
usually exceeds that of the best input system; and (5) with

minimal training, its performance is competitive with that of
standard techniques like CombMNZ which require relevance
scores. The performance of Weighted Borda-fuse will almost
certainly improve through the use of optimized weights.

We may summarize our work with Bayes-fuse as follows:
(1) The probabilistic model is simple and rigorous;
(2) Bayes-fuse requires only ranks, not relevance scores; (3) it
requires training, but only a particularly simple kind (e.g.,
just the gathering of simple statistics about the number of
relevant documents above different ranks); (4) its perfor-
mance usually exceeds that of the best input system; (5) its
performance is robust even when many poor systems are in-
cluded in the fusion; (6) its performance is comparable to
that of standard techniques such as CombMNZ; and (7) its
performance is especially strong over diverse inputs. One
may expect to find this kind of diversity when using meta-
search to combine subsystems within a search engine.

One way in which Bayes-fuse may be improved is in the
(full or partial) elimination of the independence assumptions
used to transition from Equation 1 to Equation 2. These in-
dependence assumptions, while commonly made in practice,
are almost certainly untrue. A more sophisticated evalua-
tion of Equation 1 which accounts for this dependence may
yield improvements in our strategy.
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Figure 5: Upper bounds experiments over the
TREC 5 data set.

Finally, we have proposed the first models for assessing the
limits of the performance of metasearch. The performance
gap between existing metasearch algorithms and our tightest
upper bound suggests that there is much to learn about the
limits of the performance of metasearch and/or the existence
of better metasearch algorithms.
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