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Abstract

We describe two stochastic network interdiction models for thwarting nuclear smuggling.
In the first model, the smuggler travels through a transportation network on a path that
maximizes the probability of evading detection, and the interdictor installs radiation
sensors to minimize that evasion probability. The problem is stochastic because the
smuggler’s origin-destination pair is known only through a probability distribution at
the time when the sensors are installed. In this model, the smuggler knows the locations
of all sensors and the interdictor and the smuggler “agree” on key network parameters,
namely the probabilities the smuggler will be detected while traversing the arcs of the
transportation network. Our second model differs in that the interdictor and smuggler
can have differing perceptions of these network parameters. This model captures the
case in which the smuggler is aware of only a subset of the sensor locations. For
both models, we develop the important special case in which the sensors can only be
installed at border crossings of a single country so that the resulting model is defined
on a bipartite network. In this special case, a class of valid inequalities reduces the
computation time for the identical-perceptions model.

1 Introduction

We develop stochastic network interdiction models designed to locate radiation sensors,

which detect gamma and neutron emissions from nuclear material, at critical border cross-

ings in the Former Soviet Union (FSU). The goal is to locate the sensors on an underlying

transportation network to minimize the probability of a successful smuggling attempt. Our

work supports the Second Line of Defense (SLD) program of the US Department of Energy.
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Smuggling of nuclear material, equipment, and technology has become a greater threat

to international security since the dissolution of the Soviet Union. In the early 1990s, Russia

inherited roughly 600-850 metric tons of highly-enriched uranium and plutonium, enough

material to make over 50,000 explosive devices [12, 18]. The “first line of defense” concerns

nuclear material protection, control and accountability (MPC&A). In short, this involves

securing and inventorying nuclear material at its storage sites in both civilian and defense

facilities.

An International Atomic Energy Agency (IAEA) database includes 540 incidents of traf-

ficking of nuclear and radioactive material from 1993-2003 that have been confirmed by a

country’s government [23]. 205 of these involved nuclear material and 17 involved weapons-

grade uranium or plutonium. With sophisticated technology, non-weapons-grade nuclear

material can be processed to obtain weapons-grade material. With minimal technology it,

or more widely-available radioactive material, can be used with conventional explosives to

build a radiological dispersal device, i.e., a dirty bomb. The majority of the incidents in-

volved smugglers seeking to sell the illicit material. Weapons-grade material has been seized

by authorities in Russia, Germany, the Czech Republic, Lithuania, Bulgaria, Kyrgyzstan,

Georgia, Greece and France, and in the majority of the cases the material was traced to

have originated in Russia or other parts of the FSU [23]. Some incidents involved kilograms

of material. Some others involving smaller quantities actually represented samples of stolen

material or material at risk of being stolen. This clearly points to the vulnerability of Rus-

sia’s first line of defense. US efforts to assist the FSU in improving Russia’s first line of

defense are ongoing [16]. These MPC&A efforts are critically important but by themselves,

insufficient. An accurate inventory of the nuclear material that existed in Russia at the

beginning of the 1990s seems impossible.

The SLD program seeks to reduce the risk of illicit trafficking of nuclear material through

airports, seaports and border crossings in Russia and other key transit states, with the

program’s initial efforts in the FSU [4, 32]. The first SLD sensor installation was at Moscow’s

Sheremetyevo International Airport in September of 1998. Such sensor installations have

two purposes: (i) to deter potential theft and smuggling of nuclear material and (ii) to

detect and therefore prevent actual smuggling attempts.

In this paper, we describe two types of stochastic network interdiction models that can

be used to select the sites to install sensors to minimize the probability a smuggler can travel

through a transportation network undetected. Our two basic models are distinguished with

respect to whether the interdictor and smuggler have the same or differing perceptions
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of key network parameters. Our first model, in which the smuggler and interdictor have

identical perceptions of the network, has been developed in collaboration with the Los

Alamos National Laboratory SLD team and has been implemented for decision-support

for the SLD program. Our second model in which the interdictor and smuggler can have

differing perceptions is an important extension. The primary emphasis in this paper is on

modeling, as opposed to solution techniques and computation. Of course, modeling choices

affect our ability to solve these problems, and so important parts of the development are

devoted to precisely these issues. Furthermore, we describe, and motivate from a modeling

perspective, a class of valid inequalities that strengthen our simplest model. Finally, in

developing our basic model, we provide an outline of some of the techniques that have been

successfully employed to obtain tractable network interdiction models in settings beyond

the specific models of this paper.

While there are earlier references (e.g., [38]), the study of network interdiction in op-

erations research began in earnest in the 1970s. During the Vietnam War, determinis-

tic mathematical programs to disrupt flow of enemy troops and supplies were developed

[20, 30]. The problem of maximizing an adversary’s shortest path is considered in [17, 21].

A closely-related problem concerns maximizing the longest path in an adversary’s PERT

network [10, 35]. When these are linear programs (LPs), the interdictor can continuously

increase the length of an arc, subject to a budget constraint. A discrete version of maximiz-

ing the shortest path removes an interdicted arc from the network, and when the budget

constraint is simply a cardinality constraint, this is called the k-most-vital arcs problem

[5, 13, 29]. Generalizations of the k-most-vital arcs problem are considered in [25]. The

interdiction problem of removing arcs to minimize flow in an adversary’s maximum-flow

network is considered in [38, 40]. See [37] for game-theoretic approaches to related network

interdiction problems, [11] for an interdiction model on a minimum-cost-flow network, and

[24] for interdiction models of more general systems.

The above interdiction models are deterministic in the following senses. First, the arc

lengths in the shortest-path and PERT problems, and the arc capacities in the maximum-

flow problem, are known with certainty. Second, when increasing the length of an arc in the

former problems or when removing or decreasing the capacity of an arc in the latter problem,

these modifications are deterministic, i.e., with certainty. The work of [40] on maximum-

flow network interdiction is generalized in [14] to allow for both random arc capacities and

interdiction successes. An interdiction model with uncertain network topology is developed

in [22]. A stochastic interdiction model in which the adversary’s response is modeled via a
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Markov decision process is considered in [3].

The remainder of this paper is organized as follows. In Section 2, we formulate our

basic model, which we label SNIP, for stochastic network interdiction problem, as a bilevel

stochastic mixed-integer program. This model exhibits a “min-max” structure, which does

not lend itself to computation and so we formulate an equivalent stochastic linear mixed-

integer program (MIP) that can be solved, e.g., by commercial branch-and-bound solvers for

integer programming. We then turn our attention in Section 3 to an important special case

of SNIP that arose in our work on the SLD program, in which sensors can only be installed

at border crossings of a single country, namely Russia. We show the associated MIP can be

simplified in this special case. The resulting model is called BiSNIP, for bipartite stochastic

network interdiction problem, because it may be viewed as an interdiction problem on a

bipartite network. Section 4 generalizes SNIP and BiSNIP to models we call PSNIP and

BiPSNIP, respectively. Here, the addition of “P” to the SNIP and BiSNIP labels indicates

that these are models in which the interdictor and the evader differ in their perceptions of

the network. Our emphasis here is on the simpler BiPSNIP case. In Section 5, we describe

a class of valid inequalities, that we call step inequalities, to tighten the MIP formulation of

BiSNIP, and we present computational results when using these inequalities. We conclude

the paper in Section 6.

2 SNIP on a General Network

We model two adversaries, an interdictor and an evader (we will use the terms “evader”

and “smuggler” interchangeably), and an underlying directed network G(N, A) on which

the evader travels. In the deterministic version of our model, the evader starts at a source

node s ∈ N and wishes to reach a terminal node t ∈ N . The model is deterministic in

that this origin-destination pair is known. The probability that the evader can traverse arc

(i, j) ∈ A undetected is pij if the interdictor has not installed a sensor on arc (i, j), and

this probability is qij < pij if the interdictor has. An evader can be caught by indigenous

law enforcement without radiation detection equipment, and so pij < 1. The events of the

evader being detected on distinct arcs are assumed to be mutually independent. The evader

chooses an s-t path to maximize the probability of traversing the network without being

detected. With limited resources, the interdictor must select arcs on which to install sensors

in order to minimize this evasion probability.

Our stochastic network interdiction problem (SNIP) differs from the above description
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only in that the identity of the evader is unknown when the interdictor installs the sensors.

In our basic SNIP model, an evader’s identify is uniquely specified by an origin-destination

pair, (s, t), which is assumed to be governed by a known probability mass function, pω =

P{(s, t) = (sω, tω)}, ω ∈ Ω. The probability evader ω traverses the network undetected is

then a sum of (conditional) evasion probabilities, each weighted by pω, over the population

of possible evaders indexed by ω ∈ Ω. While our basic model equates evader ω’s identity

with an origin-destination pair, straightforward extensions we describe below allow this

identify to involve further distinguishing characteristics.

The timing of decisions and realizations is as follows: First, the interdictor installs

sensors on a subset of the network’s arcs. Then, a random origin-destination pair is revealed

and evader ω selects an sω-tω path to maximize the probability of avoiding detection. The

evader selects this path with full knowledge of the sensor locations and evasion probabilities.

As indicated above, the model represents sensor installations as occurring on arcs. In

reality, detection equipment (e.g., in the form of radiation sensor portals) is installed at

transportation choke points such as airports, seaports, and international border crossings

for automobiles, railroads and pedestrians. We capture this in our model by splitting the

node associated with such a location into two nodes with an arc representing travel through

the checkpoint.

In SNIP, we assume smugglers are aware of the sensor locations. The initial installation

of SLD equipment in Moscow in 1998 was accompanied by a ribbon-cutting ceremony

[15], and subsequent installations were also reported in the news. The reason for this

publicity is that completely sealing Russia’s 12,500 miles of borders is impractical in today’s

environment. As a result, in addition to catching nuclear smugglers, the SLD program

seeks to deter would-be smugglers. That said, as the program expands beyond Russia these

policies may change. So, in Section 4 we consider variants of SNIP in which the smuggler

has a perception of the network parameters pij and qij that may differ from that of the

interdictor and in which the smuggler is aware of only a subset of the sensor locations. The

notation used in formulating SNIP is summarized below, followed by the formulation.

Network and Sets

G(N, A) directed network with nodes N and arcs A

FS(i) set of arcs leaving node i

RS(i) set of arcs entering node i

AD ⊂ A arcs on which sensors may be placed
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Data

b total budget for installing sensors

cij cost of installing a sensor on arc (i, j) ∈ AD

pij probability evader can traverse (i, j) undetected with no sensor installed

qij probability evader can traverse (i, j) undetected with a sensor installed;
qij < pij

Random Elements

ω ∈ Ω sample point and sample space, indexing evader’s identity

(sω, tω) realization of evader’s origin–destination pair

pω probability mass function
Interdictor’s Decision Variables

xij 1 if a sensor is installed on arc (i, j) and 0 otherwise
Evader’s Decision Variables

yij positive only if evader traverses (i, j) and no sensor is installed

zij positive only if evader traverses (i, j) and a sensor is installed
Boundary Conditions

xij , zij ≡ 0 (i, j) /∈ AD

Formulation

min
x∈X

∑

ω∈Ω

pωh(x, (sω, tω)), (1)

where X = {x :
∑

(i,j)∈AD cijxij ≤ b, xij ∈ {0, 1}, (i, j) ∈ AD}, and where h(x, (sω, tω)) is

the optimal value of

max
y,z

ytω (2a)

s.t.
∑

(sω ,j)∈FS(sω)

(ysωj + zsωj) = 1 : πsω (2b)

∑

(i,j)∈FS(i)

(yij + zij) =
∑

(j,i)∈RS(i)

(pjiyji + qjizji), i ∈ N \ {sω, tω} : πi (2c)

ytω =
∑

(j,tω)∈RS(tω)

(pjtωyjtω + qjtωzjtω) : πtω (2d)

0 ≤ yij ≤ 1 − xij , (i, j) ∈ A : λij (2e)

0 ≤ zij , (i, j) ∈ AD. (2f)

The optimal value of (2) is the conditional probability that the smuggler avoids detection,

given (sω, tω). The objective function in (1) is the expected value of this conditional evasion

probability, where the expectation is taken over all possible origin-destination pairs. Dual

variables πi, i ∈ N , and λij , (i, j) ∈ A, are shown in (2) with their corresponding constraints.
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Each network link on which a sensor can be placed is modeled as two arcs in parallel. If

a sensor is installed, i.e., xij = 1, then flow may occur only on the “sensor” arc, through zij .

Otherwise flow can occur on the “no sensor” arc, via yij . Flow on arc (i, j) is multiplied by

that arc’s gain (either pij or qij). So, if Psω ,tω is a path from sω to tω then

ytω =
∏

(i,j)∈Psω,tω

[pij(1 − xij) + qijxij ] (3)

is the probability that evader ω can travel Psω ,tω without being detected. The evader’s

subproblem finds a path Psω ,tω maximizing ytω by forcing one unit of flow out of sω in (2b),

enforcing flow conservation at all intermediate nodes in (2c), defining the flow that reaches

tω as ytω in (2d) and maximizing that value in (2a). Flow is forced on the appropriate arc,

and incurs the associated gain (actually, loss), by the interdictor’s decision variable xij in

(2e). Note that an upper bound of xij in (2f) is not necessary since qij < pij implies the

smuggler will not use zij in place of yij when xij = 0.

When locating sensors, the interdictor knows: (i) the network topology, (ii) the indige-

nous detection probability on each arc, (iii) the detection probability given the presence of

a sensor, (iv) the budget constraint, (v) the probability distribution governing the random

(s, t) pair, and (vi) the method by which the evader will select a path. After (sω, tω) is

revealed, evader ω selects an sω-tω path that maximizes the evasion probability, knowing

(i), (ii) and (iii) as well as the sensor locations.

In the model’s current form, pij and qij are identical for all possible smugglers, and

scenario ω simply specifies the smuggler’s origin-destination pair, (sω, tω). However, the

above formulation can directly accommodate the case when these are replaced by pω
ij and

qω
ij . In this setting, the smuggler’s identity, ω, specifies the origin-destination pair, (sω, tω),

and the evasion probabilities, pω
ij and qω

ij . Here, the evasion probabilities could differ for

smugglers having the same origin-destination pair because of differences in the nature of the

material being smuggled and how the material is packaged (these affect a sensor’s ability to

detect the material), and could also include other traits of the smuggler, which could affect

the likelihood of detection via indigenous law enforcement. For notational simplicity, we

will not label pij and qij with ω.

SNIP with h defined in (2) is a bilevel stochastic mixed-integer program. In bilevel

programs (e.g., [7, 8, 26]) each player has an objective function, and these can differ because

the players’ motives differ. In our case, the objective function is the same for both players,

but the interdictor is minimizing that function and the evader is maximizing it. The problem

is formulated with a nested “min-max” structure, which is not amenable to solution through
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standard optimization algorithms. There are at least three approaches one might take

to obtain a tractable optimization model from a problem like SNIP, and we label these

decomposition, duality and reformulation.

• Decomposition: The nested min-max structure is not a difficulty if one can employ an

outer-approximation cutting-plane algorithm like Kelley’s cutting-plane method [27], Ben-

ders’ decomposition [9, 19], or the L-Shaped method [36, 39]. Unfortunately, h(x, (sω, tω)),

defined by (2), is a maximization linear program with x appearing on the right-hand side

of (2e). This implies that h(x, (sω, tω)), and hence Eh(x, (sω, tω)), is a concave function

over the convex hull of X. This does not bode well for employing the above cutting-plane

schemes. We note that Laporte and Louveaux [28] have developed variants of the L-Shaped

method that are valid for nonconvex Eh(x, (sω, tω)) but we regard this approach as one of

last resort if our other approaches fail because they require cutting planes that are tight at

a specific (binary) value of x = x̂ and drop to an a priori lower bound at all other (binary)

values of x ∈ X.

• Duality: Another general approach is to take the dual of the inner maximization prob-

lem and then to formulate a single model in which we simultaneously optimize over the

interdictor’s decision variables and the smuggler’s (dual) decision variables. We assume the

network G is such that an sω-tω path exists for all ω ∈ Ω. So, (2) is feasible and has a finite

optimal solution for all ω ∈ Ω. Hence, an equivalent expression of h(x, (sω, tω)) is available

via linear programming duality, i.e., using the dual variables as indicated in (2) we have

h(x, (sω, tω)) = min
π,λ

πsω +
∑

(i,j)∈AD

(1 − xij)λij

s.t. πi − pijπj ≥ 0, (i, j) ∈ A \ AD
πi − pijπj + λij ≥ 0, (i, j) ∈ AD
πi − qijπj ≥ 0, (i, j) ∈ AD
λij ≥ 0, (i, j) ∈ AD
πtω = 1.

(4)

With the expression of h(x, (sω, tω)) in (4), we have a nested “min-min” formulation and

can now form a single optimization problem in which we simultaneously minimize over x

and (πω, λω), ω ∈ Ω. However, the associated objective function includes nonlinear terms
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between x and λω so we first linearize these:

min
π,λ,β

πsω +
∑

(i,j)∈AD

βij

s.t. πi − pijπj ≥ 0, (i, j) ∈ A \ AD

πi − pijπj + λij ≥ 0, (i, j) ∈ AD (5a)

πi − qijπj ≥ 0, (i, j) ∈ AD

βij − λij ≥ −xij , (i, j) ∈ AD (5b)

λij , βij ≥ 0, (i, j) ∈ AD

πtω = 1.

Constraints (5a) and (5b) can replaced by πi − pijπj + βij ≥ −xij , (i, j) ∈ AD, eliminating

variables λij , (i, j) ∈ AD, in the process. Next, it is clear that we can take βij = 0 in an

optimal solution and the model simplifies to

h(x, (sω, tω)) = min
π

πsω

s.t. πi − pijπj ≥ 0, (i, j) ∈ A \ AD
πi − pijπj ≥ −xij , (i, j) ∈ AD
πi − qijπj ≥ 0, (i, j) ∈ AD
πtω = 1.

(6)

Model (6) leads us to a single large-scale linear MIP in which we minimize over x and πω,

ω ∈ Ω. Our above reasoning in linearizing the nonlinear terms in (4)’s objective function

mirrors that of Wood’s [40] application of the duality approach to the interdiction problem

on a maximum-flow network. Below, we arrive at (6) through another, arguably simpler

approach. However, the duality approach is important in interdiction modeling because

it is one way to arrive at a tractable model, and in some cases, such as the shortest-path

interdiction model of [17], the duality approach is the simplest in that it does not give rise

to the types of nonlinear terms we have seen above.

• Reformulation: In [34], we showed a minor variant of the following result: h(x, (sω, tω))

as defined in (2) may be equivalently formulated as

h(x, (sω, tω)) = max
y≥0,z≥0

ytω −
∑

(i,j)∈AD

xijyij

s.t. (2b)-(2d).

(7)

Model (7) differs from (2) in that the upper bound in (2e) has been removed and a penalty

term is now included in the objective function. The intuition behind this reformulation

9



is that while we now allow flow on yij even if a sensor is installed on (i, j), i.e., xij = 1,

in that case, we subtract the associated flow in the objective function. The validity of the

reformulation is based on an exact penalty result from [31]. A proof is also given above in our

application of the duality approach, where we argued h(x, (sω, tω)) is given by (6) because

(7) is (6)’s dual. As mentioned above, the duality approach was applied to maximum-flow

network interdiction in [40]. The reformulation approach we consider here was applied to

(stochastic versions of) the same maximum-flow problem in [14]. The following theorem

tightens the reformulation in (7).

Theorem 1 Assume that G has an sω-tω path ∀ω ∈ Ω, 0 ≤ pij ≤ 1, (i, j) ∈ A, and

0 ≤ qij < pij , (i, j) ∈ AD. Then, for all x ∈ X and ω ∈ Ω, h(x, (sω, tω)) is the optimal

value of the following linear program

min
π

πsω

s.t. πi − pijπj ≥ 0, (i, j) ∈ A \ AD

πi − pijπj ≥ −(pij − qij)xij , (i, j) ∈ AD (8a)

πi − qijπj ≥ 0, (i, j) ∈ AD (8b)

πtω = 1.

Proof: Model (7) has dual (8) except that constraints (8a) are instead

πi − pijπj ≥ −xij , (i, j) ∈ AD. (9)

If xij = 0 then (8a) and (9) are equivalent. On the other hand, if xij = 1 then

πi − qijπj = πi − pijπj + (pij − qij)πjxij ≤ πi − pijπj + (pij − qij)xij ,

where the inequality holds since pij > qij and 0 ≤ πj ≤ 1 in any optimal solution of (7)’s

dual. Thus, when xij = 1 constraint (8a) is redundant given (8b).

The value of Theorem 1 is that SNIP can be expressed as the following large-scale MIP

min
x,π

∑

ω∈Ω

pωπω
sω

s.t. x ∈ X

πω
i − pijπ

ω
j ≥ 0, (i, j) ∈ A \ AD, ω ∈ Ω

πω
i − pijπ

ω
j + (pij − qij)xij ≥ 0, (i, j) ∈ AD, ω ∈ Ω

πω
i − qijπ

ω
j ≥ 0, (i, j) ∈ AD, ω ∈ Ω

πtω = 1, ω ∈ Ω.

(10)
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In summary, the goal of all three techniques (decomposition, duality and reformulation)

is to achieve a computationally-tractable optimization model. In various settings each

technique has proven useful for attaining this goal. In our case, the duality and reformulation

approaches lead to the same model. That said, the reformulation approach may be more

attractive in that it provides an intuitive modeling-based argument for the formulation and

avoids the need to carryout the types of transformations we performed from (4) to (6),

which may not always be so straightforward.

We can now attempt to solve the large-scale MIP (10) via commercially-available integer

programming software. Interestingly, the reformulations (6), (7) and (8) also make our

problem amenable to solution by the L-Shaped decomposition method. As earlier noted,

h(x, (sω, tω)) as defined by (2) is concave over the convex hull of X. However, h(x, (sω, tω))

as defined by (8) is convex over the convex hull of X because it is a minimization linear

program with x in the right-hand side. (Having h be both convex and concave over the

convex hull of X is possible because the optimal values of these linear programs are only

ensured to be equal when x takes on binary values.) The L-Shaped method with a MIP

master program is an attractive solution approach when the number of scenarios |Ω| is large.

To close this section, we comment on one other modeling approach that could prove

valuable in certain settings. In model (2), the smuggler is solving what is called the

maximum-reliability path problem, and it is well known that by taking logarithms of the

objective function as expressed in (3) the model can be solved as a shortest-path problem

(see, e.g., [1, exercise 4.39]). When |Ω| = 1 this approach leads to a linear MIP formu-

lation by first taking logarithms and then using the type of “duality” approach outlined

above. However, when |Ω| > 1 one cannot simply take logarithms of each h term in
∑

ω∈Ω pωh(x, (sω, tω)) and obtain an equivalent objective function. Instead, one can write
∑

ω∈Ω pω exp {ln [h(x, (sω, tω))]}. This leads to a nonlinear MIP, and so we prefer the above

approach which begins with the generalized network flow formulation in (2) and leads to a

linear MIP. Next, we turn to an important special case of SNIP on a bipartite network.

3 BiSNIP: SNIP on a Bipartite Network

The most pressing problem in our initial SLD work concerned smuggling of nuclear material

out of Russia. In this special case of SNIP, potential sensor locations are restricted to

customs checkpoints. With origins (sω) located inside Russia and destinations (tω) located

outside Russia, the key to simplifying the formulation is that on each sω-tω path there is
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exactly one customs checkpoint arc on which the smuggler could encounter a sensor.

Let Pω denote the set of all paths for origin-destination pair (sω, tω). In BiSNIP we

assume that each path in Pω contains exactly one arc in AD, i.e., each path has exactly

one arc that can receive a sensor. Let ADω = {(i, j) : (i, j) ∈ AD, (i, j) ∈ Pω} be all such

checkpoint arcs for ω ∈ Ω. For each ω, we compute the value of the maximum-reliability

path from sω to the tail of each checkpoint arc, and the value of the maximum-reliability

path from the head of each checkpoint arc to tω. (As indicated in the previous section, this

can be done efficiently.) Let the product of these two probabilities be γω
k , k = (i, j) ∈ ADω.

The probability the smuggler can travel from sω to tω via k undetected is γω
k pk if no sensor

is installed at k, and this probability is γω
k qk if a sensor is installed at k. Smuggler ω’s

path-selection decision is now reduced to the decision of choosing a checkpoint k through

which to travel, and that checkpoint is found by solving

h(x, (sω, tω)) = max
k∈ADω

{γω
k pk(1 − xk), γ

ω
k qkxk} .

As a result, we can express BiSNIP as the following stochastic MIP

min
x,θ

∑

ω∈Ω

pωθω

s.t. x ∈ X

θω ≥ γω
k pk(1 − xk), k ∈ ADω, ω ∈ Ω (11a)

θω ≥ γω
k qkxk, k ∈ ADω, ω ∈ Ω. (11b)

The bipartite network on which BiSNIP is defined has node sets Ω and AD = ∪ω∈Ω ADω,

and arcs (ω, k) link each origin-destination pair (sω, tω), ω ∈ Ω, with its possible interme-

diate checkpoints, k ∈ ADω. Figure 1 illustrates the transformation from the underlying

transportation network to the corresponding bipartite network.

Since pk > qk and xk is binary, we can replace the right-hand side of (11b) with γω
k qk,

and hence, replace (11b) with the simple lower bound θω ≥ q̄ω ≡ maxk∈ADω γω
k qk, ω ∈ Ω.

Defining θ̄ω = θω − q̄ω, we transform (11) to a model in which θ̄ω has simple lower bounds

of zero,

min
x,θ̄

∑

ω∈Ω

pω θ̄ω

s.t. x ∈ X (12)

θ̄ω ≥ rω
k (1 − xk), k ∈ ADω, ω ∈ Ω,

where rω
k = (γω

k pk − q̄ω)+ and where (·)+ = max (·, 0). The simplified model (12) is equiv-

alent to (11) in that they have the same set of optimal solutions for locating the sensors,
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Figure 1: (a) The figure shows the result of preprocessing the underlying transportation network
to a network in which one set of arcs connects sources with the tails of bordering-crossing arcs and
another set of arcs connects the heads of bordering-crossing arcs with destinations. (b) The figure
shows the final step of the transformation which yields a bipartite network structure connecting each
scenario’s (sω, tω) pair with its possible border crossings k ∈ ADω.

but their objective functions differ by a constant. We can view this as a transformation to

a model in which the radiation sensors are perfectly reliable, i.e., (12) has the form of (11)

with qk = 0.

4 (Bi)PSNIP: (Bi)SNIP with Differing Perceptions

In the previous two sections we developed SNIP on a general network and then specialized

it to a bipartite network. In SNIP the interdictor and the evader agree upon, i.e., have the

same perception of, the network topology G(N, A), the indigenous detection probability on

each arc, pij , (i, j) ∈ A, and the detection probability given the presence of a sensor, qij ,

(i, j) ∈ AD. This section generalizes SNIP to a model we call PSNIP to handle the case in

which the evader and the interdictor differ in their perceptions of these network parameters

(The network topology remains agreed upon.) and then focus on the special case of PSNIP

in which we are restricted to locating sensors on arcs leaving a single country, i.e., model

BiPSNIP.

Static Stackelberg programs and other bilevel programs deal with asymmetries in play-

ers’ objective functions and information. In a sense, stochastic network interdiction cap-

tures an asymmetry in that the interdictor does not know which evader will appear from

a population of possible evaders. That said, there has been little work in the interdiction

literature on handling other types of asymmetries. One notable exception is recent work on
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shortest-path network interdiction [2].

We redefine and extend the notation of Section 2 to now accommodate two sets of

perceptions.

Data

pij interdictor’s perception of the probability that the evader can traverse
arc (i, j) undetected when no sensor is installed

qij interdictor’s perception of the probability that the evader can traverse
arc (i, j) undetected when a sensor is installed; qij < pij

p2
ij evader’s perception of the probability that the evader can traverse

arc (i, j) undetected when no sensor is installed

q2
ij evader’s perception of the probability that the evader can traverse

arc (i, j) undetected when a sensor is installed; q2
ij ≤ p2

ij

Evader’s Decision Variables

yij , zij analogous to y2
ij and z2

ij below, except that they are used to compute the

interdictor’s perception of the probability the evader avoids detection

y2
ij positive only if evader traverses (i, j) and no sensor is installed

z2
ij positive only if evader traverses (i, j) and a sensor is installed

Boundary Conditions

xij , zij , z
2
ij ≡ 0 (i, j) /∈ AD

In this setting, the interdictor knows both (pij , qij) and (p2
ij , q

2
ij) for all arcs. While the

interdictor views the latter as inferior estimates of these network parameters, the model

implicitly assumes the interdictor knows all the information that the evader will use to

select what the evader perceives to be a maximum-reliability sω-tω path for all ω ∈ Ω.

PSNIP captures the case in which the evader is only aware of a subset of the sensor

locations: If p2
ij > q2

ij then the evader knows whether (i, j) has a sensor, but if p2
ij = q2

ij the

evader is unaware that (i, j) can receive a sensor. The case in which the evader is unaware of

the sensors on all arcs (call it USNIP, for an uninformed evader) is easily handled because the

evader’s path selection has nothing to do with the interdictor’s sensor-installation decisions.

This is captured by a relatively straightforward modification of the SNIP model that we will

not detail here. PSNIP generalizes SNIP in that the original model is recovered if p2
ij = pij

and q2
ij = qij for all arcs, and also includes USNIP as a special case when p2

ij = q2
ij = pij for

all arcs.

PSNIP is formulated as SNIP (1), except that the definition of h from (2) is replaced
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by

h(x, (sω, tω)) = max
y,z,y2,z2

ytω (13a)

s.t. (2b), (2c), (2d), (2e), (2f)

yij ≤ My2
ij , (i, j) ∈ A (13b)

zij ≤ My2
ij + Mz2

ij , (i, j) ∈ AD (13c)

(y2, z2) ∈ Y 2(x, ω). (13d)

Model (13) differs from (2) in that it has two sets of decision variables: the variables

(y2, z2) select the evader’s path under (sω, tω) and are constrained to be in Y 2(x, ω), which

denotes the argmax of the evader’s subproblem, i.e., (2) where p and q are replaced by

the evader’s perceptions p2 and q2. Variables (y, z) are used for “accounting” purposes,

i.e., to compute the interdictor’s perception of the probability that the smuggler evades

detection. Constraints (2e) and (13b) allow yij to take positive flow only if (i, j) has no

sensor and (i, j) is on the evader’s optimal path. Similarly, pij > qij and constraints (13c)

allow zij to be positive in an optimal solution to (13) only if xij = 1 and either y2
ij > 0 or

z2
ij > 0. We state the latter condition in this form because the evader may be unaware of

a potential sensor (p2
ij = q2

ij) and could traverse (i, j) as if it has no sensor. Of course, in

implementation we simply remove z2
ij and q2

ij from the smuggler’s network but the above

approach is notationally simpler.

It is typical that constraints of the form (13d) arise in a bilevel program. We avoided

such constraints in SNIP because there the interdictor’s and evader’s objective functions

were essentially identical, even though the former sought to minimize it and the latter

sought to maximize it. Now, due to differing perceptions the objective functions differ.

The next task in the development is to achieve PSNIP’s analog of (10), i.e., to reformu-

late PSNIP as a large-scale MIP. We only outline how to accomplish this and refer to [33]

where this is carried out in detail. First, we state constraints (13d) in explicit form by: (i)

writing the primal constraints of the evader’s LP subproblem, i.e., constraints of (2) with

(p, q) replaced by (p2, q2) and (y, z) replaced by (y2, z2), (ii) writing the dual constraints

of this evader’s LP subproblem, and (iii) enforcing strong duality of these primal and dual

LPs. As a result, (13) can be stated as an LP (again, x ∈ X is fixed in (13)). Second, to

reformulate the resulting nested “min-max” problem, we use the kind of equivalent penalty-

based reformulation employed in Section 2 and then take the dual of this inner maximizing

LP for each ω ∈ Ω. The result is a single large-scale linear MIP for PSNIP defined on a

general network.
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Instead of detailing the above process for PSNIP we turn to BiPSNIP, the special case of

PSNIP defined on a bipartite network, and we carryout the type of steps outlined above to

obtain a single large-scale MIP formulation for BiPSNIP. In Section 3, we denoted evader ω’s

probability of traveling from sω to tω via checkpoint k undetected as γω
k pk (γω

k qk) without

(with) a sensor installed at k, and for BiPSNIP these now denote the interdictor’s perception

of these probabilities. We add to this notation γ2ω
k , p2

k and q2
k, which represent the evader’s

perception. Let q̄2ω = maxk∈ADω γ2ω
k q2

k, and define AD2ω = {k ∈ ADω : γ2ω
k p2

k ≥ q̄2ω}.

Smuggler ω selects a checkpoint from AD2ω by solving the following model

min
θ2ω

θ2ω

s.t. θ2ω ≥ r2ω
k (1 − xk), k ∈ AD2ω : vk,

(14)

where r2ω
k = γ2ω

k p2
k − q̄2ω and where we have carried out the transformation to a problem

with perfectly reliable detectors (from the smuggler’s perspective) as done in Section 3 for

BiSNIP. Decision variable θ2ω plays the role that θ̄ω played in (12), but here we suppress

the “bar” notation for simplicity. The analog of constraints (13d) under scenario ω for

BiPSNIP are represented by

θ2ω ≥ r2ω
k (1 − xk), k ∈ AD2ω (15a)

∑

k∈AD2ω

vω
k = 1, vω

k ≥ 0, k ∈ AD2ω (15b)

θ2ω =
∑

k∈AD2ω

r2ω
k (1 − xk)v

ω
k . (15c)

Here, the optimality conditions for (14) are represented by primal feasibility (15a), dual

feasibility (15b), and strong duality (15c). For fixed x ∈ X, (15) is a linear system. We

assume that (15) has a unique solution for each x ∈ X, i.e., that the smuggler is not

indifferent between selecting two or more checkpoints. Note that vω
k , k ∈ AD2ω, takes value

one for the checkpoint selected by smuggler ω and is zero otherwise.

We now represent BiPSNIP as

min
x,θ,θ2,v

∑

ω∈Ω

pωθω

s.t. x ∈ X

θω ≥ γω
k pk(1 − xk)v

ω
k , k ∈ AD2ω, ω ∈ Ω (16a)

θω ≥ γω
k qkxkv

ω
k , k ∈ AD2ω, ω ∈ Ω (16b)

(15a), (15b), (15c), ω ∈ Ω.
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BiPSNIP (16) differs from BiSNIP (11) in that for each ω, (16a) and (16b) are now enforced

only at the checkpoint k that evader ω selects via vω
k . (In (11) this is not necessary since

the identical-perceptions assumption leads to (11a) and (11b) being tight at the maximum

of their right-hand-side values for each ω.) Optimality of vω
k with respect to the evader’s

perception is ensured by (15a)-(15c). As stated, (16) is a nonlinear MIP due to the product

of the binary variables xk and vω
k . This is easily linearized as captured in the following

linear MIP:

min
x,θ,θ2,v,y,z

∑

ω∈Ω

pωθω

s.t. x ∈ X

θω ≥ γω
k pky

ω
k , k ∈ AD2ω, ω ∈ Ω (17a)

θω ≥ γω
k qkz

ω
k , k ∈ AD2ω, ω ∈ Ω (17b)

θ2ω ≥ r2ω
k (1 − xk), k ∈ AD2ω, ω ∈ Ω (17c)

∑

k∈AD2ω

vω
k = 1, vω

k ≥ 0, k ∈ AD2ω, ω ∈ Ω (17d)

θ2ω =
∑

k∈AD2ω

r2ω
k yω

k , ω ∈ Ω (17e)

yω
k ≤ vω

k , k ∈ AD2ω, ω ∈ Ω (17f)

0 ≤ yω
k ≤ 1 − xk, k ∈ AD2ω, ω ∈ Ω (17g)

zω
k ≥ vω

k + xk − 1, k ∈ AD2ω, ω ∈ Ω. (17h)

Constraints (17a) and (17b) are equivalent to (16a) and (16b) under the linearization of

(1 − xk)v
ω
k by yω

k via (17f) and (17g) and the linearization of xkv
ω
k by zω

k in (17h). The

optimality conditions from (15a)-(15c) for the smuggler’s behavior are captured in (17c)-

(17e) and again include the linearization of (1 − xk)v
ω
k by yω

k .

We have assumed the evader’s response in BiPSNIP is unique for each x ∈ X, and in

this case there is no ambiguity in how the evader’s behavior is being modeled. However,

consider (17) when this is not the case. Due to the simultaneous minimization over all the

decision variables with respect to the interdictor’s objective function, among the optimal

responses of the evader (separately, for each ω ∈ Ω), the decision most beneficial to the

interdictor is selected. So, when indifferent with respect to two paths (under the evader’s

perception) the evader effectively cooperates with the interdictor. Now, this might happen

assuming the smuggler is unaware of the interdictor’s perception, but even in this case it

is clearly an optimistic assumption from the interdictor’s point of view. An alternative

formulation which involves introducing a nested “minx,θ maxθ2,v,y,z” could be formulated to
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yield the corresponding uncooperative or pessimistic solution, but we do not pursue this

here. This issue is not specific to the interdiction setting, and such methods for dealing

with non-unique responses have been investigated in the bilevel programming literature [6].

5 Step Inequalities for BiSNIP

Our initial attempts to solve BiSNIP (12) using branch-and-bound (B&B) codes indicated

that BiSNIP’s LP relaxation can be loose. Hence, we seek to tighten the formulation with

a class of valid inequalities that we term step inequalities. In this section, we develop the

inequalities and explain them from an intuitive perspective. Then, we describe a separation

procedure that, given a solution to an LP relaxation of BiSNIP, can efficiently identify a

most violated step inequality or prove that there are no violated inequalities. We report our

computational experience on iteratively generating step inequalities using this separation

procedure to help solve BiSNIP.

Consider BiSNIP (12), and let T (ω) = {k1, k2, · · · , kℓ} ⊆ ADω satisfy

rω
k1

≥ rω
k2

≥ · · · ≥ rω
kℓ

> 0. (18)

We define a step inequality on T (ω) as

θ̄ω ≥ rω
k1

− (rω
k1

− rω
k2

)xk1
− · · · − (rω

kℓ
− 0)xkℓ

. (19)

When ℓ = 1, the one-step inequality (19) is simply an existing constraint in (12). In

general, when ℓ ≥ 2 the step inequalities are not redundant, at least when x takes on

fractional values in the convex hull of X. Consider a two-step inequality, i.e., (19) with

ℓ = 2: θ̄ω ≥ rω
k1

− (rω
k1

− rω
k2

)xk1
− (rω

k2
− 0)xk2

. If xk1
= xk2

= 0 then the smuggler

will select k1 and θ̄ω = rω
k1

by the two-step inequality. If xk1
= 1 then the two rω

k1
terms

in the step inequality cancel and θ̄ω “steps down” to the residual term rω
k2

(1 − xk2
) so

that the two-step inequality collapses to a one-step inequality, i.e., an existing constraint

in (12). More generally, the step inequality exploits the ordering among different evasion

paths and effectively reduces the maximal evasion probability one step a time as further

sensors are installed. Of course, the value of the step inequality is that it removes fractional

solutions that are otherwise feasible to the LP relaxation of BiSNIP. This can be viewed by

continuously increasing xk1
from 0 to 1 and then continuously increasing xk2

from 0 to 1

and so on.

There are an exponential number of step inequalities, and adding all possible step in-

equalities to BiSNIP is out of the question. So, we instead iteratively solve the linear
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programming relaxation of BiSNIP and add step inequalities on an as-needed basis. This

procedure is repeated until no violated step inequalities remain. The separation problem

for step inequalities requires that given (xlp, θ̄lp), a feasible solution to the LP relaxation of

(12), we either identify a most violated step inequality for each ω or determine that none

are violated. We restrict the set T (ω) defining the step inequality to include k1, where

rω
k1

= maxk∈ADω rω
k , and to satisfy the ordering condition (18). Then, to maximize the

right-hand side of (19) over such T (ω) ⊂ ADω we solve

νω = min
T (ω)⊂ADω

∑

ki∈T (ω)

(rω
ki
− rω

ki+1
)xlp

ki
, (20)

for each ω ∈ Ω, where rω
kℓ+1

≡ 0. We solve (20) efficiently by solving a shortest-path problem

on an acyclic network G(V, E) in which V = ADω ∪ {k|ADω |+1} with rω
k|ADω |+1

≡ 0. The

edge set E contains a directed arc from node ki to kj only if rω
ki

≤ rω
kj

; the associated arc

length is (rω
kj

− rω
ki

)xlp
kj

. We solve the shortest path problem from node k|ADω |+1 to node

k1 over G(V, E) and obtain optimal value νω. The nodes from V on a shortest path define

T ∗(ω) solving (20). If θ̄ω,lp ≥ rω
k1

− νω then there are no violated step inequalities for ω at

(xlp, θ̄lp). Otherwise, the checkpoints T ∗(ω) define a most violated step inequality for ω.

Cplex B&B With Step Inequalities
b rel. gap. (%) comp. time rel. gap. (%) comp. time no. of ≥ iters.
30 20.2 489 0.02 8 465 5
40 20.9 559 0.00 6 405 4
50 22.8 1913 0.00 11 657 8
60 25.7 7779 0.33 17 651 17
70 27.6 35428 1.02 98 639 7
80 27.7 13251 0.00 10 489 6
90 28.7 10130 0.28 15 530 5
100 29.0 10923 0.34 16 522 6
110 28.0 3215 0.19 13 594 8
120 26.4 256 0.45 14 419 8

Table 1: Computational results for: (i) solving (12) directly using Cplex and (ii) iteratively adding

violated step inequalities to the initial LP relaxation and then proceeding with B&B. “rel. gap (%)”

is 100 ·(zIP −zLP )/zLP , “comp. time” reports total computation time in seconds, “no. of ≥” reports

the number of step inequalities generated and “iters.” reports the total number of major iterations.

Table 1 shows our computational results for a test problem with 85 origins, 263 customs

checkpoints, 9 destinations, and |Ω| = 306 scenarios. We assume cij = 1 for all (i, j) ∈ AD,

so that the budget constraint is simply a cardinality constraint, and we solve our test

problem for various values of the budget b on a 1.7 GHz, Dell Xeon dual-processor machine
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with 2 GB of memory. In our test problem, the average cardinality of ADω is about 20. The

separation procedure for the step inequalities was coded in C++ and the MIP problems

were solved with the Cplex Concert Technology libraries (version 9.0).

All MIPs were solved with a relative tolerance of 0.1%, i.e., the B&B algorithm was

terminated when 100 · (z̄ − z)/z ≤ 0.1. Here, z̄ is the objective function value of the

B&B algorithm’s current incumbent solution, and z is B&B’s current lower bound on the

MIP’s optimal value. We use zIP to denote z̄ when B&B terminates, and we use zLP to

denote the optimal value of the initial LP relaxation, i.e., z at the beginning of B&B. In

Table 1, the zLP values used to compute the “rel. gap” are those of (12)’s LP relaxation

under the “Cplex B&B” heading and those of the same LP relaxation after the addition

of the step inequalities under the “With Step Inequalities” heading. We iteratively added

step inequalities in a sequence of “major iterations” until the maximum violation was less

than 10−6. The computation times reported under “With Step Inequalities” include the

time to generate the step inequalities and the time to solve the resulting MIPs. As Table 1

shows, the use of step inequalities can considerably tighten the optimal value of the initial

LP relaxation, and our results suggest that in turn, this can significantly reduce required

computational effort, particularly on the most challenging instances.

We close this section by noting that in [33], the step inequalities described here have been

extended, with computational success, to the SNIP model on a general network. However,

to do so first requires detailed development of an L-Shaped decomposition method for SNIP,

which is beyond the scope of this paper.

6 Conclusion

We have described two types of stochastic network interdiction models whose solution can

be used to select sites to install sensors for detecting smuggled nuclear material. This work

is motivated by the US Department of Energy’s Second Line of Defense Program. In both

models, our goal is to minimize the probability that a smuggler can successfully travel

through an underlying transportation network undetected. Our two models differ with

respect to whether the interdictor and smuggler have the same (SNIP) or differing (PSNIP)

perceptions of the detection probabilities on the network’s arcs. In SNIP, the smuggler is

aware of the locations of all sensors that have been installed. PSNIP can capture the case

in which the smuggler is aware of only a subset of the sensor locations. For both SNIP and

PSNIP we developed the special case of the model in which sensors can only be installed at
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border crossings of a single country, namely Russia. Our experience with the former special

case, BiSNIP, indicates significant computational benefit from using a new class of valid

inequalities called step inequalities.
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