
PSYCHOMETRIKA--VOL. 66, NO. 3, 389-404 
SEPTEMBER 2001 

MODELS FOR ORDINAL HIERARCHICAL CLASSES ANALYSIS 

IWIN LEENEN, IVEN VAN MECHELEN, AND PAUL DE BOECK 

KATHOLIEKE UNIVERSITEIT LEUVEN 

This paper proposes an ordinal generalization of the hierarchical classes model oriNnally proposed 
by De Boeck and Rosenberg (1998). Any hierarchical classes model implies a decomposition of a two- 
way two-mode binary array M into two component malrices, called bundle matrices, which represent the 
association relation and the set-theoretical relations among 1he elements of both modes in M. Whereas the 
original model restricts the bundle matrices to be binary, lhe ordinal hierarchical classes model assumes 
that the bundles are ordinal variables with a prespedfied number of values. This generalization results 
in a classification model with classes ordered along ordinal dimensions. The ordinal hierarchical classes 
model is shown to subsume Coombs and Kao's (1955) model for nomnetric factor analysis. An algorithm 
is described to fit the model to a given data set and is subsequently evaluated in an extensive simulation 
study. An application of the model to student housing data is discussed. 
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In this paper, a new model for two-way two-mode binary data is presented. The new model is 

a member of the family of hierarchical classes models and will be called the ordinal hierarchical 

classes (ORDCLAS) model. Like the original disjunctive hierarchical classes model (De Boeck & 

Rosenberg, 1988), its conjunctive variant (Van Mechelen, De Boeck, & Rosenberg, 1995) and its 

recently proposed three-way extension (Leenen, Van Mechelen, De Boeck, & Rosenberg, 1999), 

an ORDCLAS model represents three types of structural relations in the reconstructed data: the 

association relation between the modes, an equivalence relation on each mode, yielding a two- 

sided clustering, and a hierarchical (or implication) relation on the clusters at each side. 

The new model also is a disjunctive/conjunctive decomposition model, similar to the dis- 

junctive/conjunctive models of Coombs and Kao (1955). The latter models imply a decompo- 

sition of a two-way two-mode binary data matrix into a number of biorders or Guttman scales 

(Doignon, Ducamp, & Falmagne, 1984; Koppen, 1987 and include a representation of the el- 

ements of both modes in a multidimensional space. The ORDCLAS model will be shown to 

subsume both the (two-way) disjunctive/conjunctive hierarchical classes model and the disjunc- 

tive/conjunctive models of Coombs and Kao as special cases. As a consequence, ORDCLAS can 

be considered a unification of classification models and latent trait models. 

This paper is organized in five main sections: Section 1 presents the theory of the ordinal 

hierarchical classes model. Section 2 describes an algorithm for fitting ORDCLAS models to 

a data set, and section 3 reports the results of a simulation study to evaluate the algorithm's 

performance. In section 4, the new model is illustrated with an application to student housing 

data. Section 5 discusses the links between ORDCLAS and some related models. 

1. Theory 

In this section, we first consider the common core of the different types of hierarchical 

classes models (1.1). Next, the ordinal hierarchical classes model is introduced (1.2), and subse- 

quently a graphical representation for the model is presented (1.3). 
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TABLE 1. 
Hypothetical two-way two-mode binary matrix 

item a item b item c item d item e item f item g 

Child 1 1 0 1 1 1 0 0 

Child 2 1 1 1 0 1 1 1 

Child 3 0 0 0 0 1 1 0 

Child 4 0 0 0 1 1 1 0 

Child 5 0 0 0 0 0 0 0 

Child 6 0 0 0 1 1 1 0 

Child 7 1 0 1 1 1 1 0 

Child 8 0 0 0 1 1 0 0 

1.1. Common Core of  Hierarchical Classes Models 

Two-way hierarchical classes models  are models  for two-way two-mode binary data. A 

hierarchical classes model  of a binary h x n matrix M includes an h x r matrix S and an n x r 

matrix P, which by some assocation rule are combined to produce M. The integer r is called 

the bundle-rank (b-rank) of the model. The r columns of  S (respectively P) are called row (resp. 

column) bundles, and S (resp. P) is called the row (resp. column) bundle matrix. Any hierarchical 

classes model  further requires S and P to represent three types of  structural relations in M: 

association, equivalence, and hierarchy. The hypothetical child by item matrix in Table 1 (with a 

1 in cell i j  iff child i succeeds in item j ,  and a 0 otherwise) will be used as a guiding example to 

illustrate these three types of  relations. 

The association relation is the binary relation between the rows and the columns of  M as 

defined by the one-entries in M (i.e., row i is associated with column j iff mij = 1). In Table 1, 

for example, Child 1 is associated with item a and not with item b. 

Two equivalence relations are defined: one on each mode of  M. Row i is equivalent with 

row i I in M iff they are associated with the same set of  columns in M. Similarly, column j is 

equivalent with column j l  in M iff they are associated with the same set of  rows in M. The 

resulting equivalence classes are called row (resp. column) classes and imply a partition of  the 

rows (resp. columns). In Table 1, for example, Children 4 and 6 constitute a row (child) class as 

they solve the same set of  items. 

Two hierarchical relations are defined separately on the rows and on the columns of  M. Row 

i is hierarchically below row i ~ in M iff the set of columns associated with i is a proper subset 

of  the set of columns associated with i ~. For example, in Table 1, Child 4 is hierarchically below 

Child 7 as the former only succeeds in a subset of  the items the latter succeeds in. Similarly, 

column j is hierarchically below column j~ iff the set of  rows associated with j is a proper 

subset of the set of  rows associated with j~. Item d is below item e as any child that solves d also 

solves e. The relations of  equivalence and hierarchy will further be referred to as set-theoretical 

relations. Row i (resp. column j )  being equivalent or hierarchically below row i I (resp. column 

j~) will  be denoted by i --<Row i ~ (resp. j -<Col j~). 

1.2. The Ordinal Hierarchical Classes Model 

In an ordinal hierarchical classes model, the bundles of S and P are ordinal variables with 

(at most) k (_> 2) possible values, k being theposition-rank (p-rank) of the model. An ORDCLAS 

model  of  b-rank r and p-rank k will be denoted as a k r-ORDCLAS model. It is assumed, without 

loss of  generality, that the bundle values range over the integers from 0 to k - 1. 

Two types of  ORDCLAS models  are considered: a disjunctive and a conjunctive type. Below 

we will explain how the three types of  structural relations are represented by each type. Tables 2 
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TABLE 2. 
Disjunctive ordinal hierarchical classes model for the matrix in Table 1 

Row Bundles Column Bundles 

Row Entries I II Column Entries I II 

Child 1 2 0 item a 1 1 

Child 2 0 2 item b 2 1 

Child 3 0 1 item c 1 1 

Child 4 1 1 item d 0 2 

Child 5 0 0 item e 0 0 

Child 6 1 1 item f 2 0 

Child 7 2 1 item g 2 1 

Child 8 1 0 
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and 3, which  present  a dis junct ive 32-ORDCLAS m o d e l  and a conjunct ive  33-ORDCLAS model ,  

respectively,  for the matr ix  in Table 1, are used as a guiding example.  

The  representat ion o f  the associat ion relat ion in a dis junct ive ordinal  hierarchical  classes 

mode l  is as fol lows:  Row i is associated with co lumn j iff  row i exceeds  co lumn j on at least 

one bundle.  Formally,  for any m w  i and co lumn j :  

mij = 1 iff  3q(1 < q < r)  : sicl > Pjcl. (1) 

For  example,  f rom the m o d e l  in Table 2 one  can derive that Chi ld  1 succeeds on i tem a as (s)he 

exceeds  the i tem on bundle  I. Likewise ,  it can be  der ived that Chi ld  3 does not  succeed on i tem 

d as (s)he does not  exceed  i tem d on any bundle.  In a conjunct ive  model ,  row i is associated 

with co lumn j i f f  row i exceeds  or  equals  co lumn j on each bundle.  Formally,  for any row i and 

co lumn j :  

mij = 1 iff  Vq(1 < q < r)  : sip > !ojq. (2) 

For  example ,  f rom the mode l  in ~Ihble 3, it can be  der ived that Chi ld  1 succeeds on i tem a as 

(s)he exceeds  or  equals  the i tem on any bundle.  Likewise ,  Chi ld  3 does not  succeed  on i tem d as 

(s)he is be low d on bundle II. 

The  set- theoret ical  relat ions o f  equiva lence  and hierarchy are represented ident ical ly  in the 

dis junct ive  and conjunct ive  ORDCLAS models :  S and P are restr icted to be such that for any two 

rows i, it: 

i_~Rowi  t i ff  Y q ( l < q _ < r ) : s i p < _ s i , v ,  (3) 

TAr3 LE 3. 
Conjunctive ordinal hierarchical classes model for the matrix in Table 1 

Row Bundles Column Bundles 

Row Entries I II III Column Entries I II III 

Child 1 1 2 1 item a 1 1 1 

Child 2 2 1 2 item b 2 1 1 

Child 3 0 0 2 item c 1 1 1 

Child 4 0 2 2 item d 0 2 1 

Child 5 0 0 0 item e 0 0 1 

Child 6 0 2 2 item f 0 0 2 

Child 7 1 2 2 item g 2 1 1 

Child 8 0 2 1 



392 PSYCHOMETRIKA 

and for any two columns j ,  j~: 

j ±Col j~ iff Vq(1 _< q _< r) : Pjcl > p j lq .  (4) 

Equation (3) respectively, (4), implies that equivalent rows (resp. columns) have identical values 

on each of the r bundles. For example, Children 4 and 6, which are equivalent (see Table 1), have 

the same values on each bundle in both Tables 2 and 3. Furthermore, (3) implies that the hierar- 

chical relation on the rows is directly represented by S, whereas (4) implies that the hierarchical 

relation on the columns is inversely represented by P. For example, Child 4, being hierarchically 

below Child 7, does not exceed Child 7 on any bundle in the disjunctive and in the conjunctive 

models of Tables 2 and 3; also, item d, being hierarchically below item e, exceeds o1 equals item 

e on each bundle in both models. The rationale for the inverse representation of the item hierar- 

chy can be clarified by interpreting the bundles as requisites: if success on item d implies success 

on item e, the requisites for success on item e can be expected to be we'&er than the requisites 

for success on item d. 

Note that the association rule (1) of the disjunctive model includes a sn-ict inequality, 

whereas the association rule (2) of the conjunctive model includes a nonstrict inequality. As 

a result, the disjunctive and coniunctive kr-ORDCLAS models are dual models for given r and 

k: From rules (1) and (2), it follows that matrices S and P represent a disjunctive kr-ORDCLAS 

model for a matrix M iff S c and pc represent a conjunctive k r -ORDCLAS model for M c, with 

sC~ = (k - 1) - siq, p~q = (k - 1) - pjq and mCj = 1 - mij for any i, j ,  and q. Duality of 

disjunctive and conjunctive models is more generally dealt with by Leenen, Van Mechelen, and 

De Boeck (1999). Incidentally, one may notice that the inequalities in model formulations (1) 

and (2) can easily be reversed by switching the row and column modes. 

From a general proposition (Leenen, Van Mechelen, & De Boeck, 1999) and a general- 

ization of a proof by De Boeck and Rosenberg (1988) it follows that for any given p-rank k 

(> 2) and any binary matrix M, a b-rank r exists such that M can be represented by a (dis- 

junctive/conjunctive) k r-ORDCLAS model. However, it is not generally true that for any given r 

and M, a p-rank k can be tound such that a k r -ORDCLAS model exists for M: For example, a k 1- 

ORDCLAS for M exists iff the data can be represented without error by a Guttman scale (Guttman, 

1944). It may further be noted that, in general, the existence of a disjunctive k r -ORDCLAS model 

for a matrix M is not equivalent with the existence of a conjunctive k r-ORDCLAS model of the 

same matrix M (and vice versa). For example, for the hypothetical data matrix in Table 1, a dis- 

junctive 32-ORDCLAS model exists, whereas a conjunctive 3r-ORDCLAS model exists only for 

r_>3.  

1.3. Graph ica l  Represen ta t i on  

The disjunctive and conjunctive ORDCLAS models can be given a graphical representation 

that accounts for the three types of structural relations in the model. The representation is one in 

an r-dimensional space with each bundle corresponding to a dimension and with the positions 

for the rows and columns being defined by their bundle patterns. As the position-rank k fixes the 

number of different positions on a single dimension, k r corresponds to the number of different 

positions in the r-dimensional space. The latter clarifies the notation k r for a k r -ORDCLAS model. 

Figure 1 shows file graphical representation of the disjunctive model in Table 2, where the 

upper triangle of each position contains the corresponding columns (in this case, items) and the 

lower triangle the corresponding rows (in this case, children). As a consequence, the equivalence 

classes are immediately visible in the representation. Concerning the hierarchical relations, row 

(class) i is hierarchically above row (class) i I iff there exists a path of black arrows from i to il; 

likewise, column (class) j is hierarchically above column (class) j~ iff a path of white arrows 

exists from j to j~. For example, in Figure 1 it can be derived that Child 7 is hierarchically above 

Child 8 and that item e is hierarchically above any other item. With respect to the association 

relation, if the b-rank equals 2, it holds that row i is associated with column j iff column j is 
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FIGURE 1. 

Graphical representation of the disjunctive ORDCLAS model in Table 2. Black and white arrows represent hierarchical 

relations among rows/children (>-Row) and columns/items (>-Col), respectively. 

not northeast of row i. For example, Children 4 and 6 are associated with items d, e and f but 

not with items a, b, c and g. This idea can be straightforwardly generalized if the bundle-rank 

exceeds 2. 

The graphical representation of the conjunctive 33-ORDCLAS model in Table 3, which 

would require a three-dimensional space, will not be given here. A graph of a conjunctive model 

will, however, be presented in the application section. In a conjunctive graph the rows are as- 

signed to the upper triangles and the columns to the lower triangles. The set-theoretical relations 

are read just as in the disjunctive representation. For the association relation, it holds that row i 

is associated with column j iff column j is to the southwest of row i. 

2. Algorithm 

Given a binary h x n matrix D and prespecified values r and k for the b-rank and p-rank, 

respectively, the ORDCLAS algorithm seeks a binary h x n matrix M, which can be represented 

by a conjunctive k r-oRDCLAS model, such that the loss function 

h n 

(5) f(M) = Z Z (dij - mij )2 
i=1 j=l 
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is minimized. As D and M are binary, (5) can be considered both a least-squares and a least- 

absolute deviations loss function (Carroll & Chaturvedi, 1995). Although the ORDCLAS algo- 
rithm primarily fits the conjunctive kr-ORDCLAS model, it may be used to fit the disjunctive 

k r -ORDCLAS model as well, because of  the duality of  disjunctive and conjunctive k"-ORDCLAS 

models. 

The algorithm successively executes two main routines: The first one is a minimization 

routine, which looks for bundle matrices S and P that combine by (2) to produce M for which 

(5) is minimal. The second routine modifies, if necessary, the matrices S and P obtained from the 

first routine so as to represent the set-theoretical relations in M. 

The minimization routine starts from an initial configuration for one of the bundle matrices. 

This initial configuration can be obtained (pseudo-)randomly or rationally by a built-in heuristic 

in the algorithm, or can be supplied by the user. In a random initial configuration for the row (resp. 

column) bundle matrix S (°) (resp. p(0)) the values ~(0) ~iq (resp. p}O)) are independent realizations of  

a discrete variable uniformly distributed on the set {0 . . . . .  k -  1}. (Other discrete distributions can 

be considered, particularly if some prior knowledge is available.) A rational initial configuration 

is constructed by using the final solution for the row (resp. column) bundle matrix obtained in a 

kr-I-ORDCLAS analysis to which some new row (resp. column) bundle is added. In particular, 

the following two steps are executed to obtain an initial row bundle matrix (the procedure for 

obtaining an initial column bundle matrix is similar): In the first step (a), n candidate row bundles 

s(J) (j  = 1, . . . ,  n) are constructed as follows: Regarding bundle s(J), we start from column j in 

D, and initialize 

s ~ j ) = { 0  iff d i j = O  
iff dij 1. 

s(J) induces an ordered partition of  the objects into two subsets So and $1 with Sv = {i I dij = v} 
(v = 0, 1). For k > 2, this ordered partition is subsequently refined to an ordered partition into 3 

subsets by splitting one of tile sets S~. In particular, all partitions of S,, are considered as induced 

by all other columns jz of  D; this procedure yields subsets S(0 = S,~ A {i l d i jl = 0} and 

S{I1 = Sv FI (i I d i j / =  1}. Eventually, among all possible values of v and jz, the split is selected 

for which min(#Sv/0 , #5"(1) (with # denoting cardinality) is largest. (Ties are broken by retaining 

the split that was first evaluated.) Assume, without loss of  generality, that split (S J;,  S f i ) i s  

selected. We then redefine 

i iff dij = 0 and dijz = 0 
s} j) = iff dij = 0 and di f  = 1 

iff dij = 1. 

This process of  refining the ordered partition is repeated until a partition in k sets is reached, 

which implies a bundle s(J) with values oil {0 . . . . .  k - 1}. As a second step (b) in obtaining an 

(o) ( j  = 1, .. , n), are constructed, initial row bundle matrix, n candidate row bundle matrices, Sj 

where the first r - 1 bundles of  S~ )) ( j  = 1 . . . . .  n) are the bundles of  the row bundle matrix of  

the solution in the previous b-rank r - 1 (and p-rank k), and the r-th bundle is the new row bundle 

s(J) constructed in Step (a). Subsequently, the optimal estimate for the column bundle matrix P~) 

is found conditionally upon S(j °) ( j  = 1 . . . . .  n) and, eventually, the r o w  bundle matrix S~  ) is 

selected which, combined with p}0), yields the matrix M with minimal value on (5). 

The minimization routine proceeds with an alternating least-squares procedure. Assuming, 

without loss of  generality, that an initial configuration, S (°), has been obtained lor the row bundle 

matrix, the procedure looks, conditionally upon S (°), for the optimal row bundle matrix p(0) 

that minimizes (5). In the next steps, S (~') is reestimated conditionally upon p(w-1), and p(w) is 

reestimated conditionally upon S (u~) (w = 1, 2 . . . .  ). This alternating procedure continues until 

no further improvement in the loss function (5) is observed. 
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With respect to the minimization itself, an analysis of the loss function shows that this 

function is separable (Chaturvedi & Carroll, 1994): From the association rule (2), it is clear that 

the bundle pattern of row i, si., only affects mi., while mi. only depends on si. (given P). A similar 

relation holds for the bundle pattern pj. and m.j.  Consequently, an optimal estimate of S (resp. P) 

conditionally upon P (resp. S) may be found by a sequential (conditionally optimal) estimation 

of the bundle patterns si. (pj.) of the h rows (resp. n columns). A conditionally optimal estimate 

of a bundle pattern is obtained by a branch-and-bound procedure (similar to the one described 

by Leenen & Van Mechelen, 1998, for variables having 2 rather than k values). The bounding 

is based on the number of false negatives, which never decreases when siq decreases or pjq 

increases (i = 1 . . . . .  h; j = 1 . . . .  , n; q = 1 . . . . .  r). When finding a conditionally optimal row 

bundle pattern, for example, the latter implies that if the number of false negatives associated 

with some bundle pattern si. is known to exceed f(s~i., P), where sl. is the cun'ent best estimate, 

~ for which "~ < (q = 1, .,  r) need not to be considered. then bundle patterns si. ~iq Sicl " " 

The second main routine adds the set-theoretical relations to the S and P that have been 

found in the minimization routine. This task is accomplished by minimizing each entry siq and 

maximizing each entry pjq (within the range 0 to k - 1) under the restriction that S and P do 

not change the association relation in M. For, if i _~Row i ~ for some i and i ~, whereas a bundle q 

exists with siq > S i /c  l ,  then lowering the value of siq to Silo 1 does not affect M while S is changed 

to represent correctly the set-theoretical relation i _<Row i ~. (An analogous statement holds for 

the column bundle matrix P.) 

3. Simulation Study 

The aim of the present simulation study is twofold: First, the ORDCLAS algorithm is evalu- 

ated with respect to both goodness-of-fit and goodness-of-recovery. Second, a heuristic for model 

selection is evaluated, to choose a :model among several ORDCLAS models o:f different b-ranks 

and/or p-ranks. In subsection 3.1, the design of the simulation study is outlined. The results are 

presented in subsection 3.2 (goodness-of-ri0, subsection 3.3 (goodness-of-recovexy), and sub- 

section 3.4 (rank selection). 

3. t. Design and Procedure 

Three different types of binary h x n matrices are to be distinguished in this simulation 

study: a true matrix T, which can be represented by a conjunctive KP-ORDCLAS model (~- and p 

both being integers); a data matrix D, which equals T perturbed with error; and the model matrix 

M produced by the algorithm, which can be represented by a conjunctive k r-oRDCLAS model (k 

and r both being integers). 

Six parameters were systematically varied in a complete six-factorial design: 

1. the Size, h x n, of T, D and M, at 6 levels: 30 x 15, 50 x 15, 250 × 15, 30 x 30, 50 x 30, 

250 x 30; 

2. the True b-rank, p, which is the b-rank of the conjunctive ORDCLAS model for T, at 3 levels: 

1,2,3;  

3. the True p-rank, x, which is the p-rank of the conjunctive ORDCLAS model for T, at 3 levels: 

2 ,3 ,5 ;  

4. the Error level, e, which is the proportion of cells dij differing from t i j ,  al 5 levels: .00, .01, 

.05, .10, .20. 

5. the Analysis b-rank, r, which is the b-rank of the conjunctive ORDCLAS model for M at 4 

levels: 1, 2, 3, 4; 

6. the Analysis p-rank, k, which is the p-rank of the conjunctive ORDCLAS model for M at 5 

levels: 2, 3, 4, 5, 6. 
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Size and Error level are considered random effects, whereas the b-rank and p-rank are considered 

fixed. 

For each combination of  Size h x n, True b-rank p, True p-rank x, and Error level e, 20 

pairs of  an h x p maVix S and an n x p matrix P were generated with 

S/q i . ~ .  B i n ( x  - 1, re) (i  = 1, . . . ,  h; q = 1 . . . . .  p )  

pjq i.i.d. Bin(x - 1, 1 - ~-) ( j  = 1 . . . . .  n; q = 1 . . . . .  p) 

and Jr defined so that Pr(Siq >_ Pjq) = P~5.5. Bin(-, .) denotes the binomial distribution. Subse- 

quently, matrices T were calculated by combining S and P by the conjunctive association rule 

(2). Note that by the proposed value for re, the expected proportion of  one-entries in T equals .5. 

Next, a data matrix D was constructed from each T by altering the value of  a randomly selected 

set of  envies in T, consisting of a proportion ~' of  the total number of  envies. Finally, the OR- 

DCLAS algorithm (with the rational heuristic for the initial configuration) was applied to find 

for each matrix D, 4 (analysis b-ranks) x 5 (analysis p-ranks) = 20 matrices M, which can be 

represented by conjunctive k r-ORDCLAS models (k = 2 . . . . .  6; r = 1 . . . . .  4). As a result of 

this procedure, 20 x 6 (Sizes) x 3 (True b-ranks) x 3 (True p-ranks) x 5 (Error levels) x 4 

(Analysis b-ranks) x 5 (Analysis p-ranks) = 108,000 different triplets (T, D, M) are obtained. 

3.2. Goodness-of-Fit 

For the evaluation of the algorithm with respect to goodness-of-fit and goodness-of- 

recovery, only the 5,400 triplets for which r = p and k = x are retained. True b-rank and 

Analysis b-rank are accordingly abbreviated to b-rank, and True p-rank and Analysis p-rank are 

abbreviated to p-rank. For each triplet, the proportion of  discrepancies between D and M, which 

is a badness-of-fit (BoF) statistic, is used to evaluate the fit of  the ORDCLAS solutions: 

Z j = I (  ij -- mij) 2 (6) B o F  : d 

h x n  

An analysis of  variance with BoF as the dependent variable shows a huge main effect for Error 

Level, the inVaclass correlation fiI (ttaggard, 1958, pp. 44-72; Kirk, 1982, pp. 162-163, 387-  

389) being as large as .97. Mean badness-of-fit values across the 1,080 observations within each 

error level are: .004, .013, .049, .096 and .181 l ) r  ~.' equal to .00, .01, .05,. 10 and .20, respectively. 

These findings imply that the algorithm succeeds in finding models that are about as close to the 

data as the true model is. Note in this respect that, although the global minimum of  BoF for a 

given data set is unknown, the error level ~' (which indicates how close the Vue model is to the 

data) implies an upper bound to the global minimum. 

In an analysis of  the difference between BoF and e, Error level still shows up as the most 

important effect (/51 = .32). This main effect results from the fact that the higher g is, the easier 

it is for the algorithm to find a model that is closer to the data than the true model is to the data. 

Furthermore, the effect is qualified by the interactions of  b-rank x Error level (/~I = .19), Size 

x Error level @I = .12) and p-rank x En'or level @I = .07), resulting from the Error level 

effects being less important for higher b-ranks, matrices with few elements in the smallest mode, 

and higher p-ranks, respectively: Fitting complex models to small data sets results in overfitting, 

with the models being considerably closer to the data than is the true model. Other effects are not 

discussed: In this and the following analyses of  variance, only effects accounting for at least 5% 

of the variance of  the dependent variable are considered (i.e., PI or (52 _> .05). 1 

1For fixed effects, 00 2 is used; for random effects, PI is used (Kirk, 1982, pp. 162-163,387-389). Both statistics 
can be interpreted as proportions of vaxiance accounted for (Hays, 1994, p. 534). 
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TABLE 4. 
Mean badness-of-recovery at levels of size × error, b-rank × error, and p-rank × error 
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En'or Level 

.00 .01 .05 .10 .20 Overall 

Size 30 x 15 .004 .005 .014 .034 .106 .033 

50 × 15 .005 .005 .013 .029 .096 .029 

250 × 15 .004 .(X)3 .010 .026 .078 .024 

30 × 30 .0(.)4 .(X)5 .009 .018 .071 .021 

50 × 30 .005 .()04 .006 .013 .055 .017 

250 × 30 .005 . ~ 3  .()04 .009 .036 .011 

b-rank 1 .(.)04 .000 .001 .004 .026 .006 

2 .(X)7 .005 .0(39 .022 .078 .024 

3 .007 .008 .018 .038 .118 .038 

p-rank 2 .003 .001 .002 .006 .037 .010 

3 .006 .006 .010 .022 .080 .025 

5 .004 .006 .016 .035 .104 .033 

Overall .004 .004 .009 .021 .074 .023 

3.3. Goodness-of-Recovery 

Goodness-of-recovery will be investigated with respect to the association relation, the equiv- 

alence relations, and the hierarchical relations. 

For each triplet (T, D, M) with p = r and x = k, the proportion of  discrepancies between T 

and M was calculated as a measure of the badness-of-recovery (BoR) of the association relation: 

~ h - -  1 Z j = l ( t i j  - -  m i j )  2 

BoR = 

h × n  

The mean BoR across the 5,400 observations equals .023. An analysis of  variance with BoR 

as the dependent variable reveals important main effects of  Error level @I = .44) and b-rank 

(£2 = .06). Badness-of-recovery clearly increases with higher error levels and higher b-ranks 

(also, see Table 4). These main effects are qualified, though, by b-rank × Error level @I = • 17), 

p-rank x Error level @I = .10), and Size x Error level (fii = .06) interactions. The effect of  

Error level considerably increases the higher the b-rank, the higher the p-rank, and the fewer 

the number of  elements in the smallest mode: Fitting complex models (i.e., models with high 

b-rank and p-rank) to error-perturbed data sets often yields a poor recovery also if the underlying 

true model itself is complex. The other effects in the analysis accounted for less than 5% of  the 

variance of  BoR. 

With respect to the recover5, of  the equivalence relation, the corrected Rand index (Hubert 

& Arable, 1985) is used to compare the partition of  the set of  row (resp. column) elements in the 

ORDCLAS model for the matrix T with the partition of  the set of  row (resp. column) elements 

in the ORDCLAS model for the matrix M. This index equals 1 in case the two partitions are 

identical and 0 if the two partitions correspond no more than expected by chance. As the results 

were very similar for the row and the column side, a combined corrected Rand index (c-CRI) was 

calculated by taking the average corrected Rand index for the row and the column equivalence 

relation, weighted by the number of  rows and columns, respectively. 

The mean c-CRI equals .824, implying a high correspondence between the true and recon- 

structed equivalence relations. An analysis of  variance with c-CRI as dependent variable shows 

important main effects of  Error level (fiI = .37), b-rank ((52 = .  14), and p-rank ((52 = .09), the 

c-CRI decreasing with increasing Error level, b-rank and p-rank, respectively (also, see Table 5). 

Additionally, important interactions were l'ound: Error level x b-rank (PI = • 11) and Error level 
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TABLE 5. 
Mean combined corrected Rand index at levels of b-rank × error and p-rank × error 

Error Level 

.00 .01 .05 .10 .20 Overall 

b-rank 1 1.000 .995 .982 .955 .832 .953 

2 .923 .933 .878 .778 .521 .806 

3 .906 .892 .777 .638 .349 .713 

p-rank 2 .972 .985 .975 .940 .793 .932 

3 .925 .925 .873 .785 .544 .810 

5 .931 .910 .794 .646 .367 .730 

OverN1 .943 .940 .879 .790 .568 .824 

x p-rank ( P I  = • 10) which indicate that the decrease rate of c-CRI  as a function of Error level 

is stronger with increasing b-rank and p-rank, respectively. The other effects accounted for less 

than 5% of the variance in c-CRL 

To quantify the goodness-of-recovery of the hierarchical relations, we first define the row 

hierarchy matrix associated with an h x n binary matrix A as the h x h binary matrix U (a) 

.(A) in the n x n with uii/" (A) = 1 iff row i is hierarchically below row i I in A; likewise, an entry v j j/ 

column hierarchy matrix V (A) equals 1 iff column j is hierarchically below column j l  in A. Row 

hierarchy matrices were constructed for T and M; subsequently, they were compared to obtain a 

badness-of-hierarchy-recovery (BoHR) statistic for the rows: 

B o H R  = 
t"ii, - " . , J  

h(h  - 1) 

Similarly, a B o H R  statistic for the columns was defined, and a weighted average of both statistics 

(weighted by the number of elements in each mode), denoted c-BoHR,  was used to evaluate the 

algorithm's performance. 

The mean value on c-BoHR equals .050, which implies that, in general, the reconstructed hi- 

erarchy recovers 95% of the true hierarchy. An analysis of variance with c-BoHR as a dependent 

variable reveals important main effects for Error level @I = .37), b-rank ((52 = .14) and p-rank 

((52 = .07), with the recovery being worse if the error level, b-rank, or p-rank increases. Addi- 

tionally, there are important Error level x b-rank (PI = .13) and Error level x p-rank (PI = .07) 

interactions, which results from Error level having a larger effect at higher b-ranks and higher 

T A B L E 6 .  

M e a n b a d n e s s - o f - N e r a r c h y - r e c o v e r y a t l e v e l s o f b - r a n k  × e r r o r a n d p - r a n k  × e r ror  

Error Level 

.00 .01 .05 .10 .20 Overall 

b-rank 1 .000 .001 .004 .010 .038 .010 

2 .028 .024 .035 .064 .147 .059 

3 .027 .031 .057 .094 .192 .080 

p-rank 2 .011 .005 .009 .017 .066 .022 

3 .027 .027 .038 .064 .141 .060 

5 .018 .023 .049 .086 .170 .069 

OverN1 .018 .018 .032 .056 .126 .050 



I. LEENEN, i. VAN MECHELEN, AND P. DE BOECK 399 

p-ranks (as shown in Table 6). Any other effects in the analysis accounted for less than 5% of the 

variance in c-BoHR. 

3.4. Rank Selection 

As with the number of factors in factor analysis and the number of clusters in cluster anal- 

ysis, in most applications neither the true b-rank nor the true p-rank are ever known. In this 

section, a formal heuristic for rank selection is presented for cases in which several ORDCLAS 

models with varying b-rank and p-rank have been obtained; this heuristic is further evaluated ac- 

cording to the match between file selected model and the true model. The heuristic will be called 

a pseudo-binomial rule, because it is based on a pseudo-binomial test, similar to the pseudo F-  

tests to select the number of clusters in k-means cluster analysis (Hartigan, 1975, pp. 8991 ;  

MacQueen, 1967). This pseudo-binomial test is a generalization of a similar heuristic used for 

rank selection in HICLAS (Leenen & Van Mechelen, 2001). For the HICLAS case, this heuristic 

came up as the best in picking up the true bundle rank and in selecting a model with the highest 

goodness-of-recovery as compared to a number of other selection heuristics (such as, amongst 

others, the well-known scree tes0. 

Assume that an h x n binary matrix D has been subjected to ORDCLAS -analyses with 

b-rank varying from 1 to R and p-rank from 2 to K, yielding matrices Mr, k (r = 1 . . . . .  R, 

k = 2 . . . . .  K). Assume further that for each Mr, k the value of the loss function (5), f(Mr, k), 

and the badness-of-fit index defined in (6), BoFr, k, have been calculated. The pseudo-binomial 

rule first selects for each b-rank r the smallest p-rank k for which f(Mr, k+l) exceeds the first 

percentile of the binomial distribution Bin(hn, BoFr, k). Let k[r] denote the selected p-rank for 

b-rank r. Next, the smallest r is selected tbr which f(Mr+l,k[r+l]) exceeds the first percentile of 

the binomial distribution Bin(hn, BoFr, k*), where k* = max(k[r], k[r + 1]). This number r and 

the associated k[r] are the b-rank respectively p-rank selected by the pseudo-binomial rule. 

In the simulation study, each D was analyzed with b-ranks varying from 1 to 4 and p-ranks 

varying from 2 to 6. The pseudo-binomial rule selects in 50.0% of the cases both the true b-rank 

p and the true p-rank x. The true b-rank in itself is selected in 67.6% of the cases, and the true 

p-rank in 58.1%. The selected b-rank and p-rank are more likely to be correct if (a) the number of 

elements in the smaller mode of D is large and (b) the true b-rank, true p-rank, and the error level 

are small. The goodness-of-fit and the goodness-of-recovery of the k r-oRDCLAS model selected 

by the pseudo-binomial rule are very close to the corresponding values for the true KP-ORDCLAS 

model, with the overall mean BoF-statistics and BoR-statistics differing less than .001 and .005, 

respectively. 

4. Illustrative Application 

Ordinal hierarchical classes models are suitable for the analysis of data that can be assumed 

to result from a disjunctive or conjunctive combination of underlying dimensional mechanisms. 

Relevant possible applications include the analysis of person by task success/failure data (dis- 

junctively modeled with bundles refemng to underlying strategies or conjunctively modeled with 

bundles referring to underlying abilities), student by job like/dislike data (disjunctively mod- 

eled with bundles referring to underlying vocational interests), and consumer by brand satisfac- 

tion/dissatisfaction data (conjunctively modeled with bundles referring to underlying consumer 

needs). 

In this section we present an analysis of person by choice object select/nonselect data (i.e., 

pick any/n data, Coombs, 1964, p. 295), conjunctively modeled with bundles referring to un- 

derlying choice criteria. The data originate from a study on student housing, previously ana- 

lyzed by Van Mechelen and Van Danune (1994) with the conjunctive hierarchical classes model 

(Van Mechelen et al., 1995). 
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TABLE 7. 

Badness-of-fit values for the models for the student 

housing data as a function of the p-rank and b-rank 

b-rank 

1 2 3 4 

p-rank 

2 .30 .22 .18 .15 

3 .25 .17 .13 .10 

4 .23 .14 .11 .08 

5 .22 .13 .10 .08 

In this study, 25 index cards with uniform room descriptions from the Housing Service of 

the University of Leuven were used. Twenty-six second-year psychology students were asked to 

select from the set of room descriptions those which they would decide to visit when looking for 

housing. This task resulted in a binary 25 x 26 room by student matrix D with Dij = 1 if room i 

was selected by student j and 0 otherwise. 

Conjunctive ORDCLAS models with bundle-ranks varying from 1 through 4 and position- 

ranks from 2 through 5 were fitted to the matrix D (using both random and rational initial con- 

figurations). Table 7 shows the badness-of-fit statistics for each of the 16 models. Although the 

pseudo-binomial test recommends a 33-ORDCLAS model, for simplicity's sake the 32-ORDCLAS 

model is retained for further discussion in this section. The selected model had 16.9% discrep- 

ancies. The graphical representation of the model is given in Figure 2. As explained in section 1, 

the (numbers of) rooms (rows) are in the upper triangles, whereas the (numbers of) students 

(columns) are in the lower triangles. Room i is selected by student j iff student j is to the south- 

west of room i (i.e., iff room i "dominates" student j on each bundle/dimension). 

The two dimensions may be conceived as latent choice criteria implicitly applied by the 

students and can further be given a substantive interpretation using the characteristics included in 

the room descriptions. As a result, both latent criteria are found to include elementary comfort as 

a main requisite, with elementary comfort implying the availability of water in the room, and the 

availability of warm water and kitchen facilities in the house. The majority of the rooms that lack 

such elementary facilities were located at the lower end of each dimension. The first dimension 

could further be interpreted according to the quietness of the environment of the student room: 

If rooms in the front of houses on busy streets were rated 0, rooms in the back of houses on 

busy streets or in the front of houses on moderately quiet streets were rated 1, and rooms in 

the back of houses on moderately quiet streets or in houses on quiet streets were rated 2, the 

Spearman rank correlation between these ratings and the positions on the first dimension is .73 

(with the rooms lacking elementary comfort omitted). The second dimension could be interpreted 

according to the magnitude of the rent, with the Spearman rank correlation with price (across the 

rooms having elementary comfort) being .76. Students differ in the way they implicitly weight 

the two latent criteria. For example, the four students at position (0 busy; 2 cheap) do not attach 

great importance to quietness and only care about price, whereas for the four students at position 

(2 quiet; 0 expensive) the opposite holds. The student at the highest position (2 quiet; 2 cheap), 

however, is very demanding as (s)he retains only the single room that is both cheap and quiet. 

5. Relations to Other Models 

The ordinal hierarchical classes model can be shown to be a decomposition model. To clar- 

ify this assertion, we reconsider association rule (1) of the disjunctive ORDCLAS model. A com- 

ponent relation M(q) may be defined for each bundle q (q = 1 . . . . .  r) as follows: 

re(q) ij : 1 iff Siq > p jq .  (7) 
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FIGURE 2. 
Graphical representation of the conjunctive ORDCLAS model for the student housing data. Black and white arrows rep- 
resent hierarchical relations among rows/rooms (>Row) and columns/students (>Col), respectively. 

It then holds that M can be conceived as the disjunctive combination of the component re- 

lations M(q). Similarly, the conjunctive ORDCLAS model may be conceived as a conjunctive 

combination of component relations (the definition of which slightly differs from (7)). As a 

disjunctive/conjunctive decompositkm model, ORDCLAS is a member of a broad class of dis- 

junctive/conjunctive decomposition models described by Leenen, Van Mechelen, and De Boeck 

(1999). The generic model discussed there presents a very broad unification of detern~inistic de- 

composition models for binary data, including models for nonmetric factor analysis (Coombs & 

Kao, 1955), Boolean factor analysis (Mickey, Mundle, & Engelman, 1983), matching relations 

(Doignon & Falmagne, 1984), two-way and three-way hierarchical classes analysis (De Boeck & 

Rosenberg, 1988; Van Mechelen et at., 1995; Leenen, Van Mechelen, De Boeck, & Rosenberg, 

1999), and parallelogram analysis (Leenen & Van Mechelen, 2000), along some very general 

principles. The paper discusses some general theorems and tools concerning existence, duality 

of disjunctive/conjunctive models, mimmal b-rank, and the determination of exact rather than 

approximate decompositions, which can be instantiated for ordinal hierarchical classes models 

as well. 

Furthermore, ORDCLAS is closely related to a number of other members of the class of dis- 

junctive/conjunctive decomposition models: It reduces to the original hierarchical classes model 
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ifk  = 2. In particular, the conjunctive ORDCLAS model with k = 2 is identical to the model pro- 

posed by Van Mechelen et al. (1995); furthermore, though the disjunctive ORDCLAS model with 

k = 2 is not identical to the original disjunctive model as proposed by De Boeck and Rosenberg 

(1988), it is identical to a mathematically equivalent variant of it outlined by Van Mechelen et al. 

(1995). 

For k >_ min(h, n) + 1, (1), respectively (2), is equivalent to the composition axiom of 

the disjunctive (resp. conjunctive) model of nonmetric factor analysis (Coombs, 1964, p. 252; 

Coombs & Kao, 1955) with each of the bundles corresponding to a dimension. Hence, ordi- 

nal hierarchical classes models with k _> rain(h, n) + 1 can be considered Coombs and Kao 

models with the additional requirement of the representation of the set-theoretical relations. The 

latter constitute a unique feature of the ORDCLAS model. The set-theoretical relations may re- 

veal implication relations among elements of the same mode as, for example, extensively used 

in knowledge space theory (Falmagne, Koppen, Vilano, Doignon, & Johannesen, 1990). 

If  k < min(h, n) + 1, ORDCLAS models can still be considered set-theoretical Coombs 

and Kao models, with a restriction, though, on the number of different positions on each di- 

mension. As such, the ORDCLAS model can be considered a bridge between Coombs and Kao's 

(1955) dimensional model and the HICLAS classification model (De Boeck & Rosenberg, 1988, 

Van Mechelen et al., 1995). The lower the p-rank, the closer ORDCLAS comes to a classification 

model; the higher the p-rank, the closer the model comes to a dimensional model. Intermediate 

values result in models that can be considered a combination of dimensional and classification 

models, yielding a number of different classes ordered along a number of dimensions. 

Finally, ORDCLAS as a deterministic model is closely related to a number of probabilistic 

models. As such, the probability matrix decomposition (PMD) models presented by Maris, De 

Boeck, and Van Mechelen (1996) are probabilistic variants of the original hierarchical classes 

model (De Boeck & Rosenberg, 1988; Van Mechelen et al., 1995). Also, several probabilistic 

extensions of the models of nonmetric factor analysis (Coombs & Kao, 1955) have been proposed 

(Maris, 1995, van Leeuwe & Roskam, 1991). As to the latter, it is interesting to note, from an 

ORDCLAS point of view, that the estimation of these models may imply a discretization of the 

ability dimensions into a prespecified number of "nodes" (van Leeuwe & Roskam, 1991). 
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