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Models for Paired Comparison Data:
A Review with Emphasis on
Dependent Data
Manuela Cattelan

Abstract. Thurstonian and Bradley–Terry models are the most commonly
applied models in the analysis of paired comparison data. Since their intro-
duction, numerous developments have been proposed in different areas. This
paper provides an updated overview of these extensions, including how to ac-
count for object- and subject-specific covariates and how to deal with ordinal
paired comparison data. Special emphasis is given to models for dependent
comparisons. Although these models are more realistic, their use is compli-
cated by numerical difficulties. We therefore concentrate on implementation
issues. In particular, a pairwise likelihood approach is explored for models for
dependent paired comparison data, and a simulation study is carried out to
compare the performance of maximum pairwise likelihood with other limited
information estimation methods. The methodology is illustrated throughout
using a real data set about university paired comparisons performed by stu-
dents.

Key words and phrases: Bradley–Terry model, limited information estima-
tion, paired comparisons, pairwise likelihood, Thurstonian models.

1. INTRODUCTION

Paired comparison data originate from the compar-
ison of objects in couples. This type of data arises in
numerous contexts, especially when the judgment of
a person is involved. Indeed, it is easier for people to
compare pairs of objects than ranking a list of items.
There are other situations that may be regarded as com-
parisons from which a winner and a loser can be iden-
tified without the presence of a judge. Both these in-
stances can be analyzed by the techniques described in
this paper.

The objects involved in the paired comparisons
can be beverages, carbon typewriter ribbons, lotter-
ies, players, moral values, physical stimuli and many
more. Here, the elements that are compared are called
objects or sometimes stimuli. The paired comparisons
can be performed by a person, an agent, a consumer,
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a judge, et cetera, so the terms subject or judge will be
employed to denote the person that makes the choice.

The bibliography by Davidson and Farquhar (1976),
which includes more than 350 papers related to paired
comparison data, testifies to the widespread interest in
this type of data. This interest is still present and exten-
sions of models for paired comparison data have been
proposed. This paper focuses on recent extensions of
the two traditional models, the Thurstone (1927) and
the Bradley–Terry (Bradley and Terry, 1952) model,
especially those subsequent to the review by Bradley
(1976) and the monograph by David (1988), including
in particular the work that has been done in the statisti-
cal and the psychometric literature.

Section 2 reviews models for independent data. Af-
ter the introduction of the two classical models for
the analysis of paired comparison data and a survey
of different areas of application, Sections 2.3 and 2.4
review extensions for ordinal paired comparison data
and for inclusion of explanatory variables. Section 3
reviews models that allow for dependence among the
observations and outlines the inferential problems re-
lated to such an extension. Here, a pairwise likelihood

412

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/12-STS396
http://www.imstat.org
mailto:manuela.cattelan@unipd.it
mailto:manuela.cattelan@unipd.it


MODELS FOR PAIRED COMPARISON DATA 413

approach is proposed to estimate these models, and a
simulation study is performed in order to compare the
estimates produced by maximum likelihood, a com-
mon type of limited information estimation and pair-
wise likelihood. Section 4 reviews existing R (R De-
velopment Core Team, 2011) packages for the statisti-
cal analysis of paired comparison data, and Section 5
concludes.

2. INDEPENDENT DATA

2.1 Traditional Models

Let Ysij denote the random variable associated with
the result of the paired comparison between objects i

and j , j > i = 1, . . . , n, made by subject s = 1, . . . , S,
and let Ys = (Ys12, . . . , Ys n−1n) be the vector of the
results of all paired comparisons made by subject s.
When S = 1 or the difference between judges is not
accounted for in the model, then the subscript s will
be dropped. If each possible paired comparison is per-
formed, they number N = n(n − 1)/2, and SN =
Sn(n − 1)/2 in a multiple judgment sampling scheme,
that is, when all paired comparisons are made by all
S subjects. Different sampling schemes are possible.
When each paired comparison is performed by a dif-
ferent subject, the outcomes are independent. In other
instances, a subject performs more than one paired
comparison; in this case, it is conceivable that results
of several paired comparisons performed by the same
subject will not be independent. In Section 2, indepen-
dence among observations is assumed while Section 3
addresses the issue of dependent data, assuming that
each subject performs all N paired comparisons, ex-
cept for Section 3.3 which considers the case of depen-
dence not induced by judges.

Let μi ∈ R, i = 1, . . . , n, denote the notional worth
of the objects. Traditional models were developed as-
suming only two possible outcomes of each compar-
ison, so Yij is a binary random variable, and πij , the
probability that object i is preferred to object j , de-
pends on the difference between the worth of the two
objects

πij = F(μi − μj),(2.1)

where F is the cumulative distribution function of
a zero-symmetric random variable. Such models are
called linear models by David (1988). When F is the
normal cumulative distribution function, formula (2.1)
defines the Thurstone (1927) model, while if F is
the logistic cumulative distribution function, then the

Bradley–Terry model (Bradley and Terry, 1952) is re-
covered. Other specifications are possible; for example,
Stern (1990) suggests modeling the worth parameters
as independent gamma variables with the same shape
parameter and different scale parameter. The Thurstone
model is also known as the Thurstone–Mosteller model
since Mosteller (1951) presented some inferential tech-
niques for the model, while the Bradley–Terry model
was independently proposed also by Zermelo (1929)
and Ford (1957). Model (2.1) is called unstructured
model, and the aim of the analysis is to make inference
on the vector μ = (μ1, . . . ,μn)

′ of worth parameters
which can be used to determine a final ranking of all the
objects compared. Note that the specification of model
(2.1), through all the pairwise differences μi −μj , im-
plies that a constraint is needed in order to identify
the parameters. Various constraints can be specified:
the most common are the sum constraint,

∑n
i=1 μi = 0,

and the reference object constraint, μi = 0 for one ob-
ject i ∈ {1, . . . , n}.

The comparative nature of the data poses inferential
and interpretational problems. Consider two different
studies, for example, about beverages. If subjects were
requested to express an absolute measure of like/dislike
for each drink in a categorical scale, then the data ob-
tained from the two studies might be analyzed all to-
gether. On the contrary, if the subjects express prefer-
ences in paired comparisons, the data can be combined
only if at least one object is common to both studies;
otherwise the data can be analyzed separately, and no
conclusions can be made about relationships between
objects in the two different studies. Indeed, the lack of
origin implies that no absolute statement can be made
about the data and two subjects can provide the same
sets of preferences, but one may dislike all items while
the other may like all of them. The identification of
an origin may be useful for understanding the underly-
ing psychological process, for discriminating between
desirable and undesirable objects and for identifying
the degree of an option desirability in different con-
ditions. However, it is not possible to recover the ori-
gin without further choice experiments and/or further
assumptions (Thurstone and Jones, 1957; Böckenholt,
2004). Despite all their limits, paired comparison data
are widespread because of their ease of performance
and their discriminatory ability since objects that may
be judged in the same like/dislike category may be dif-
ferentiated when compared pairwise.

If the reference object constraint is employed, the
identified worth parameters are differences with re-
spect to the reference object. Hence, inference will typ-
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ically regard differences between estimated worth pa-
rameters with the related statistical problems. For ex-
ample, for testing H0 :μi = μj by means of the Wald
test statistic (μ̂i − μ̂j )/{v̂ar(μ̂i − μ̂j )}1/2, where μ̂i is
the maximum likelihood estimator of μi , the covari-
ance between the estimators of the worth parameters
is needed. In general, the whole covariance matrix of
the worth parameters should be reported in order to al-
low the final users to perform the tests they are inter-
ested in. However, it is very inconvenient to report that
matrix and a useful alternative may be to report quasi-
standard errors (Firth and de Menezes, 2004) instead of
the usual standard errors since they allow approximate
inference on any of the contrasts. Let c be a vector of
zero-sum constants. If the parameters μ were indepen-
dent, then the estimated standard error of c′μ would be
(
∑n

i=1 c2
i v̂i)

1/2, where v̂i denotes the estimated vari-
ance of μ̂i . Quasi-variances are a vector of constants q
such that

var(c′μ) �
n∑

i=1

c2
i qi,

so they have the property that they add over the compo-
nents of μ, and hence can be used to approximate vari-
ances of contrasts of estimated worth parameters as if
they were independent. Let p(qi + qj , v̂ar(μ̂i − μ̂j )),
be a penalty function which depends on the quasi-
variances and the estimated variance of the difference
μ̂i − μ̂j , then quasi-variances are computed through
minimization of the sum of the penalty function for
all contrasts; see Firth and de Menezes (2004, Sec-
tion 2.1).

Further statistical problems arising from the compar-
ative nature of the data are discussed in Section 3.2.2.

EXAMPLE. A program supported by the European
Union offers an international degree in Economics and
Management. Twelve universities take part in this pro-
gram, and in order to receive a degree, a student in
the program must spend a semester at another univer-
sity taking part in the program. Usually, some universi-
ties receive more preferences than others, and this may
cause organizational problems. A study was carried out
among 303 students of the Vienna University of Eco-
nomics who were asked in which university they would
prefer to spend the period abroad, between six univer-
sities situated in Barcelona (Escuela Superior de Admi-
nistracion y Direccion de Empresas), London (London
School of Economics and Political Sciences), Milan
(Università Luigi Bocconi), Paris (Hautes Études Com-
merciales), St. Gallen (Hochschule St. Gallen) and

TABLE 1
Universities paired comparison data. 1 and 2 refer to the number

of choices in favor of the university in the fist and the second
column, respectively, while X denotes the number of no

preferences expressed

1 X 2

London Paris 186 26 91
London Milan 221 26 56
Paris Milan 121 32 59
London St. Gallen 208 22 73
Paris St. Gallen 165 19 119
Milan St. Gallen 135 28 140
London Barcelona 217 19 67
Paris Barcelona 157 37 109
Milan Barcelona 104 67 132
St. Gallen Barcelona 144 25 134
London Stockholm 250 19 34
Paris Stockholm 203 30 70
Milan Stockholm 157 46 100
St. Gallen Stockholm 155 50 98
Barcelona Stockholm 172 41 90

Stockholm (Stockholm School of Economics), com-
pared pairwise. This example will be used through-
out the paper as an illustration. For an exhaustive
analysis of the data refer to Dittrich, Hatzinger and
Katzenbeisser (1998, 2001). The data set is avail-
able in both the prefmod (Hatzinger, 2010) and the
BradleyTerry2 (Turner and Firth, 2010a) R pack-
ages; see Section 4. Table 1 reports the aggregated
data on the 15 paired comparisons. For example, the
first row shows that in the paired comparison between
London and Paris, 186 students prefer London, 91 stu-
dents prefer Paris and 26 students do not have a prefer-
ence between the two universities. Moreover, 91 stu-
dents unintentionally overlooked the comparison be-
tween Paris and Milan which has only 212 answers.
The second column of Table 2 shows the estimate of
the worth parameters for the six universities using the
Thurstone model and adding half of the number of no
preferences to each university in the paired compari-
son. In Section 2.3 a better way to handle no preference
data will be discussed.

The reference object constraint is used, and the
worth parameter of Stockholm is set to zero. All esti-
mates are positive, so we can conclude that Stockholm
is the least preferred university, while London is the
most preferred one, followed by Paris, Barcelona, St.
Gallen and Milan. The estimated probability that Lon-
don is preferred to Paris is �(0.982 − 0.561) = 0.66,
where � denotes the cumulative distribution function
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TABLE 2
Estimates (Est.), standard errors (S.E.) and quasi-standard

errors (Q.S.E.) of the universities worth parameters employing a
two-categorical Thurstone model (Thurstone) and a cumulative
extension of the Thurstone model (cumulative Thurstone)

Thurstone cumulative Thurstone

Est. S.E. Q.S.E. Est. S.E. Q.S.E.

Barcelona 0.333 0.043 0.030 0.332 0.041 0.028
London 0.982 0.045 0.033 0.998 0.043 0.031
Milan 0.240 0.044 0.031 0.241 0.041 0.029
Paris 0.561 0.044 0.031 0.566 0.042 0.030
St. Gallen 0.325 0.043 0.030 0.324 0.040 0.028
Stockholm 0 – 0.031 0 – 0.029
τ2 – – – 0.153 0.007 –

of a standard normal random variable. If it is of interest
to test whether the worth of St. Gallen is significantly
higher than the worth of Milan, the standard error of
the difference between these two worth parameters can
be approximated by means of the quasi-standard errors
as (0.0302 +0.0312)1/2 = 0.043. Quasi-standard errors
are lower than standard errors, thus accounting for the
positive covariance between parameter estimates. The
value of the test statistic is (0.325 − 0.240)/0.043 =
1.98, which yields a p-value of 0.02; hence the hypoth-
esis of equal worth parameters between St. Gallen and
Milan is not supported by the data.

2.2 Applications

There are many different areas in which paired com-
parison data arise. Here, a number of recent applica-
tions are described, and further references can be found
in Bradley (1976), Davidson and Farquhar (1976) and
David (1988).

Despite its simplicity, the basic Bradley–Terry and
Thurstone models have found a wide range of ap-
plications. Choisel and Wickelmaier (2007) analyze
pairwise evaluations of sounds through a standard
Bradley–Terry model, while Bäuml (1994) and Kissler
and Bäuml (2000) present applications involving fa-
cial attractiveness. In Mazzucchi, Linzey and Bruning
(2008) the standard Bradley–Terry model is applied
to a reliability problem. A panel of wiring experts is
asked to state which is the riskier one between differ-
ent scenarios compared pairwise in order to determine
the probability of wire failure as a function of influenc-
ing factors in an aircraft environment. Stigler (1994)
uses the traditional Bradley–Terry model for ranking
scientific journals, and the same model is exploited in
genetics by Sham and Curtis (1995).

Maydeu-Olivares and Böckenholt (2008) list 10 rea-
sons to use Thurstone’s model for analyzing subjective
health outcomes, including the ease for respondents,
the existence of extensions for modeling inconsistent
choices and for including covariates and the possibil-
ity to investigate which aspects influence the choices
of subjects.

In many applications there are more than two pos-
sible outcomes of the comparisons. Henery (1992)
employs a Thurstone model for ranking chess play-
ers and adapts it to three possible results: win, draw
and loss. Böckenholt and Dillon (1997a) consider a
five-response-categories model for applications to taste
testing of beverages and to preferences for brands
of cigarettes. Dittrich, Hatzinger and Katzenbeisser
(2004) consider motives to start a Ph.D. program us-
ing three response categories in the log-linear version
of the Bradley–Terry model.

It is often of interest to investigate whether some co-
variates affect the results of the comparisons.
Ellermeier, Mader and Daniel (2004) employ a
Bradley–Terry model to analyze pairwise evaluations
of sounds and include sound-related covariates, for
example, roughness, sharpness, et cetera, to evaluate
which of them contribute to the unpleasantness of
sounds. Duineveld, Arents and King (2000) use the
log-linear formulation of the Bradley–Terry model to
investigate consumer preference data on orange soft
drinks including an analysis of the factorial design
for the drinks compared, while Francis et al. (2002)
include subject-specific covariates in the analysis of
value orientation of people in different European coun-
tries. Applications of the Bradley–Terry model are
present also in zoological data in order to investi-
gate aspects of animal behavior considering animal-
specific covariates (Stuart-Fox et al., 2006; Whiting
et al., 2006; Head et al., 2008). Agresti [(2002), Chap-
ter 10] extends the Bradley–Terry model to account for
the home advantage effect in baseball data.

Sometimes it is more realistic to include dependence
among observations. Object-specific random effects
can be used to introduce correlation between compar-
isons with common objects, for example, in sports data
(Cattelan, 2009). When all judges perform all paired
comparisons, random effects can introduce correlation
between preferences expressed by the same subject in-
volving a common object as shown in Böckenholt and
Tsai (2007) for the university preference data.

When paired comparisons are performed in pro-
longed time periods, it may be necessary to account



416 M. CATTELAN

for it. McHale and Morton (2011) estimate a Bradley–
Terry model in which tennis matches distant in time
are down-weighted since the aim is to predict the re-
sults of future matches. Further dynamic extensions for
sports data have been proposed by Barry and Hartigan
(1993), Fahrmeir and Tutz (1994), Knorr-Held (2000)
and Cattelan, Varin and Firth (2012). In tournaments it
may happen that a player wins all the comparisons in
which he is involved. In this case a standard Bradley–
Terry or Thurstone model would estimate an infinity
worth parameter for this team. Mease (2003) proposes
a penalization of the likelihood which overcomes this
problem. The method proposed by Firth (1993) to re-
duce the bias of the maximum likelihood estimates is
an alternative technique to obtain finite estimates in this
instance. Finally, the case in which the margin of vic-
tory in sport contests is not discrete, but continuous, is
analyzed in Stern (2011).

In the context of the log-linear specification of the
Bradley–Terry model, Dittrich et al. (2012) account
also for missing responses in a study about the qual-
ities of a good teacher.

2.3 Ordinal Paired Comparisons

Sometimes subjects are requested to express a de-
gree of preference. Suppose that objects i and j are
compared, and the subject can express strong prefer-
ence for i over j , mild preference for i, no preference,
mild preference for j over i or strong preference for j .
If H denotes the number of grades of the scale, then in
this example, H = 5.

Let Yij = 1, . . . ,H , where 1 denotes the least favor-
able response for i, and H is the most favorable re-
sponse for i. Agresti (1992) shows how two models
for the analysis of ordinal data can be adapted to ordi-
nal paired comparison data. The cumulative link mod-
els exploit the latent random variable representation.
Let Zij be a continuous latent random variable, and
let τ1 < τ2 < · · · < τH−1 denote thresholds such that
Yij = h when τh−1 < Zij ≤ τh. Then,

pr(Yij ≤ yij ) = F(τyij
− μi + μj),(2.2)

where −∞ = τ0 < τ1 < · · · < τH−1 < τH = ∞, and
F is the cumulative distribution function of the latent
variable Zij . F is usually assumed to be either the lo-
gistic or the normal distribution function leading to the
cumulative logit or the cumulative probit model, re-
spectively. The symmetry of the model imposes that
τh = −τH−h, h = 1, . . . ,H and τH/2 = 0 when H is
even. When H = 3 there are two threshold parameters,

τ1 and τ2, such that τ1 = −τ2 and model (2.2) corre-
sponds to the extension of the Bradley–Terry model in-
troduced by Rao and Kupper (1967) when a logit link is
considered, and the extension of the Thurstone model
by Glenn and David (1960) when the probit link is em-
ployed.

An alternative model proposed by Agresti (1992) is
the adjacent categories model. In this case the link is
applied to adjacent response probabilities, rather than
cumulative probabilities and reduces to the Bradley–
Terry model when only 2 categories are allowed and
to the model proposed by Davidson (1970) when 3
categories are allowed. The adjacent categories model
is simpler to interpret than cumulative link models
since the odds ratio refers to a given outcome in-
stead of referring to groupings of outcomes (Agresti,
1992). The adjacent categories model, as well as the
Bradley–Terry model, has also a log-linear representa-
tion (Dittrich, Hatzinger and Katzenbeisser, 2004).

An application of the adjacent categories model to
market data is illustrated in Böckenholt and Dillon
(1997b). Böckenholt and Dillon (1997a) note that a
bias may be caused by the usage of the scale be-
cause subjects may use only subsets of all categories.
The threshold parameters τh can account for the selec-
tion bias, for example, in the cumulative probit model
the quantity �(τh) − �(τh−1) gives the category se-
lection bias since it is the probability of selecting
category h when the two stimuli are equal. Different
latent classes of consumers with different threshold
values and worth parameters can be identified. If sub-
jects share the same worth parameters but have differ-
ent thresholds, it is possible to let thresholds depend
on subject-specific covariates and to have a random
part (Böckenholt, 2001b). It is also possible to define
thresholds that depend on the objects compared, as in
Henery (1992).

EXAMPLE. In the paired comparisons of universi-
ties, students were allowed to express no preference
between two universities. Therefore, the data should
be analyzed by means of a model for ordinal data.
Columns 5–7 in Table 2 show the estimates of a cu-
mulative probit extension of the Thurstone model for
the university data. The estimated threshold parame-
ter τ̂2 = 0.153 is highly significant. In this particular
case, the estimates of the worth parameters and their
standard errors are very similar to those of the model
with two categories, and the ranking of universities re-
mains the same, but in general, especially when the
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number of no preferences is large, results can be dif-
ferent. Moreover, in this case it is possible to esti-
mate the probability of no preference between Lon-
don and Paris which is �(0.153 − 0.998 + 0.566) −
�(−0.153 − 0.998 + 0.566) = 0.11, and the estimated
probability that London is preferred to Paris reduces to
1 − �(0.153 − 0.998 + 0.566) = 0.61; hence the esti-
mated probability that Paris is preferred to London is
0.28. There is no much difference from the previous
result in the test of equality of worth parameters for
universities in St. Gallen and Milan.

2.4 Explanatory Variables

In many instances, it is of interest to investigate
whether some explanatory variables affect the results
of the comparisons. Explanatory variables can be re-
lated to the objects compared, to the subjects per-
forming the comparisons or they can be comparison-
specific.

Let xi = (xi1, . . . , xiP )′ be a vector of P explanatory
variables related to object i and β = (β1, . . . , βP ) be a
P -dimensional parameter vector. Then, in the context
of the Bradley–Terry model, Springall (1973) proposes
to describe the worth parameters as the linear combi-
nation

μi = xi1β1 + · · · + xiP βP , i = 1, . . . , n.(2.3)

A paired comparison model with explanatory variables
is called a structured model. The same extension can
be applied to the Thurstone model. Note that since only
the differences μi − μj = (xi − xj )

′β enter the linear
predictor, an intercept cannot be identified. In some in-
stances, both worth parameters of objects and further
object-specific covariates are included, hence the lin-
ear predictor assumes the form μi − μj + (xi − xj )

′β;
see Stern (2011).

Model (2.3) has been extended to more flexible mod-
els, such as additive combinations of spline smoothers
(De Soete and Winsberg, 1993); however large data
sets may be necessary to estimate nonlinearities reli-
ably, even though there is no investigation about this
issue.

In case worth parameters are specified as in (2.3),
standard errors for the worth parameters can be com-
puted through the delta method, while when both the
worth parameters and covariates are included in the lin-
ear predictor, quasi-standard errors can be computed
for the worth parameters.

The results of the comparisons can be influenced
also by characteristics of the subject that performs the
paired comparisons. In the log-linear representation

of the Bradley–Terry model, Dittrich, Hatzinger and
Katzenbeisser (1998) show how to include categorical
subject specific covariates, while Francis et al. (2002)
tackle the problem of continuous subject-specific co-
variates and consider also the case in which some of
these covariates have a smooth nonlinear relationship.

Dillon, Kumar and De Borrero (1993) consider a
marketing application and divide subjects in latent
classes to which they belong with a probability that de-
pends on their explanatory variables.

Covariates can be added in the linear predictor (2.3)
if they are subject-object interaction effects. For ex-
ample, the knowledge of a foreign language may in-
fluence the preference for a university. An interaction
effect can account for whether the student knows, for
example, Spanish and one object in the comparison is
the university in Barcelona. Unfortunately, subject co-
variates that do not interact with objects, such as age of
respondents, cannot be included.

A semiparametric approach which accounts for
subject-specific covariates is proposed by Strobl, Wick-
elmaier and Zeileis (2011) who suggest a methodology
to partition recursively the subjects that perform the
paired comparisons on the basis of their covariates. The
procedure tests whether structural changes in the pa-
rameters occur for subjects with different values of the
covariates. Subjects are split according to the test and
a different unstructured Bradley–Terry model is fitted
for each subgroup. The method allows us to identify
which covariates influence the worth parameters with-
out the need to assume a model for them and finds the
best cut point in case of continuous covariates. More-
over, it is possible to include subject-specific covari-
ates, not only interaction effects. Attention is needed
in setting the minimum number of subjects per class
and in setting the significance level of the test in order
to avoid overfitting for large data sets. Differently from
the usual latent class models, the method allows to di-
vide subjects on the basis of their covariates; however,
if some important subject-specific covariates are not
available, it may be expected that the usual latent class
model will perform better. In Strobl, Wickelmaier and
Zeileis (2011) an unstructured Bradley–Terry model is
estimated for each subgroup, but it seems possible to
extend the method also to structured models.

Finally, there may be also comparison-specific co-
variates which are related to the objects, but change
from comparison to comparison. An example of a
comparison-specific covariate is the home advantage
effect in sport tournaments since it depends on whether
one of the players competes in the home field. This
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effect may be accounted for by adding a further term
in the linear predictor (2.3). Another example is the
experience effect in contests between animals which,
in Stuart-Fox et al. (2006), is accounted for through a
covariate that counts the number of previous contests
fought by animals.

EXAMPLE. In the universities paired comparisons,
it may be of interest to assess whether some object-
specific covariates influence the results of the compar-
isons. The universities in London and Milan specialize
in economics, the universities in Paris and Barcellona
specialize in management science and the remaining
two in finance. This aspect may influence the decisions
of students. Another element that may affect the com-
parisons is the location of the universities, in this re-
spect they can be divided in universities in Latin coun-
tries (Italy, France and Spain) and universities in other
countries.

Some features of the students that performed the
universities paired comparisons were collected, too.
In particular, it is known whether students have good
knowledge of English, Italian, Spanish and French and
which is the main topic of their studies. It is conceiv-
able that, for example, students with a good knowledge
of French are more inclined to prefer the university
in Paris. Table 3 shows the estimates of a model with
a linear predictor that includes object specific covari-
ates and subject-object interaction effects. Universities
in non-Latin countries are preferred to those in Latin
countries, and universities that specialize in finance
seem less appealing to students. The good knowledge
of a foreign language induces students to choose the
university situated in the country where that foreign
language is spoken. Consider a student with a good
knowledge of both English and French and whose main

TABLE 3
Estimates (Est.) and standard errors (S.E.) of universities data

with subject- and object-specific covariates

Est. S.E.

Economics 0.757 0.066
Management 0.789 0.080
Latin country −0.835 0.071
Discipline:Management 0.238 0.054
English:London 0.141 0.075
French:Paris 0.652 0.049
Italian:Milan 1.004 0.094
Spanish:Barcelona 0.831 0.095
τ2 0.160 0.007

discipline of study is management, then the estimated
probability that this student prefers London to Paris
is 1 − �{0.160 − (0.141 + 0.757 − 0.652 − 0.789 +
0.835 − 0.238)} = 0.46, while the estimated probabil-
ities of no preference and preference for Paris are 0.13
and 0.41, respectively. If this student’s main discipline
of study was not management, which is the subject in
which Paris specializes, then the above estimated prob-
abilities of preferring London, no preference and pre-
ferring Paris would become 0.55, 0.12 and 0.33, re-
spectively.

3. MODELS FOR DEPENDENT DATA

3.1 Intransitive Preferences

The models presented so far are estimated assum-
ing independence among all observations. The in-
clusion of a dependence structure is not only more
realistic, but also has an impact on the transitivity prop-
erties of the model. Intransitive choices occur when
object i is preferred to j , and object j is preferred to
k, but in the paired comparison between i and k, the
latter is preferred. These are also called circular triads.
Paired comparison models can present different transi-
tivity properties. Assume that πij ≥ 0.5 and πjk ≥ 0.5,
then a model satisfies:

• weak stochastic transitivity if πik ≥ 0.5;
• moderate stochastic transitivity if πik ≥ min(πij ,

πjk);
• strong stochastic transitivity if πik ≥ max(πij ,πjk).

The Bradley–Terry and Thurstone models as presented
so far satisfy strong stochastic transitivity. This prop-
erty may be desirable sometimes, for example, when
asking wiring experts which is the riskier situation be-
tween different scenarios in an aircraft environment. In
this case it is desirable that choices are consistent, so
Mazzucchi, Linzey and Bruning (2008) use transitivity
to check the level of reliability of experts. However, in
some situations choices can be systematically intran-
sitive, for example, when the same objects have more
than one aspect of interest, and different aspects prevail
in different comparisons.

Causeur and Husson (2005) propose a two-dimen-
sional Bradley–Terry model in which the worth pa-
rameter of each object is bidimensional and can thus
be represented on a plane. A further multidimensional
extension is proposed by Usami (2010). However, this
methodology does not provide a final ranking of all ob-
jects.
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A different method that allows the inclusion in the
model even of systematic intransitive comparisons
while yielding a ranking of all the objects consists
of modeling the dependence structure among compar-
isons. The development of inferential techniques for
dependent data has recently allowed an investigation
of models for dependent observations.

3.2 Multiple Judgment Sampling

The assumption of independence is questioned in the
case of the multiple judgment sampling, that is, when
S people make all the N paired comparisons. It seems
more realistic to assume that the comparisons made
by the same person are dependent. This aspect has re-
ceived much attention in the literature during the last
decade.

3.2.1 Thurstonian models. The original model pro-
posed by Thurstone (1927) includes correlation among
the observations. The model was developed for ana-
lyzing sensorial discrimination and assumes that the
stimuli T = (T1, . . . , Tn)

′ compared in a paired com-
parison experiment follow a normal distribution, T ∼
N(μ,�T ), with mean μ = (μ1, . . . ,μn)

′ and variance
�T . Thurstone (1927) proposes different models with
different covariance matrices of the stimuli, so the set
of models which assume a normal distribution of the
stimuli are called Thurstonian models. The single re-
alization ti of the stimulus Ti can vary, and the result
of the paired comparison between the same two stim-
uli can be different in different occasions. Assume that
only either a preference for i or a preference for j can
be expressed, so then in a paired comparison when
Ti > Tj object i is preferred, or alternatively, when
the latent random variable Zij = Ti − Tj is positive,
a win for i is observed; otherwise a win for j occurs.
In the context of multiple judgment sampling, Takane
(1989) proposes to include a vector of pair specific er-
rors. Let Zs = (Zs12, . . . ,Zs n−1n)

′ be the vector of all
latent continuous random variables pertaining to sub-
ject s, then

Zs = AT + es,(3.1)

where es = (es12, es13, . . . , es n−1n)
′ is the vector of

pair-specific errors which has zero mean, covariance
� and is independent of T and of es′ for any other
subject s′ 	= s, and A is the design matrix of paired
comparisons whose rows identify the paired com-
parisons and columns correspond to the objects. For
example, if n = 4, and the paired comparisons are

(1,2), (1,3), (1,4), (2,3), (2,4) and (3,4), then

A =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

A similar model is employed by Böckenholt and Tsai
(2001), who assume that εs ∼ N(0,ω2IN). The more
general analysis of covariance structure proposed by
Takane (1989) can accommodate both the wandering
vector and the wandering ideal point models (Carroll
and De Soete, 1991), which are models with different
assumptions about the mechanism originating the data.
The wandering vector and wandering ideal point mod-
els do not impose the number of dimensions which is
determined from the data alone, so they are powerful
models to analyze human choice behavior and infer-
ring perceptual dimensions.

The model thus specified is over-parametrized. To
reduce the number of parameters, Thurstone (1927)
proposes different restrictions on the covariance ma-
trix �T , while Takane (1989) proposes a factor model.
Nonetheless, these models with a reduced number of
parameters need further identification restrictions; see
Section 3.2.2.

A further extension of model (3.1) is proposed by
Tsai and Böckenholt (2008) who unify Tsai and Böck-
enholt (2006) with Takane (1989) to obtain a general
class of models that can account simultaneously for
transitive choice behavior and systematic deviations
from it. In this case the latent variable is

Zs = AT + BVs,(3.2)

where Vs = (Vs1(2), Vs1(3), . . . , Vs2(1), Vs2(3), . . . ,

Vs n (n−1))
′ is a vector of zero mean random effects

designed so as to capture the random variation in
judging an object when compared to another specific
object, and B is a matrix with rows corresponding
to the paired comparisons and columns correspond-
ing to the elements of Vs , so, for example, if n = 3,
Vs = (Vs1(2), Vs1(3), Vs2(1), Vs2(3), Vs3(1), Vs3(2))

′ and

B =
⎛⎝ 1 0 −1 0 0 0

0 1 0 0 −1 0
0 0 0 1 0 −1

⎞⎠ .

It is assumed that Vs , the within-judge variability, is
normally distributed with mean 0 and covariance �V

so that Zs ∼ N(Aμ,A�T A′ + B�V B′).
In the remaining it will be assumed that there are

only two possible outcomes of the comparisons, but it
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is easy to extend this model for ordinal data through
the introduction of threshold parameters with a specifi-
cation analogous to (2.2).

3.2.2 Identification. Psychometricians are interest-
ed in understanding the relations between stimuli;
hence they are primarily interested in the unstruc-
tured and unrestricted Thurstonian models. Unfortu-
nately, due to the comparative nature of the data,
some identification restrictions on the covariance ma-
trix are needed. The necessary identification restric-
tions to estimate model (3.1) are discussed in Maydeu-
Olivares (2001, 2003), Tsai and Böckenholt (2002)
and Tsai (2003). Consider the covariance matrix �Z =
Cov(Zs) = A�T A′ + �, where �T is an unrestricted
covariance matrix. Because of the difference structure
of the judgments �T and �T + d1′ + 1d′ where 1
is a vector of n ones and d is an n-dimensional vec-
tor of constants such that the matrix remains positive
definite, are not distinguishable (Tsai, 2000). Indeed,
let K = [In−1|−1] be an identity matrix of dimension
n − 1 to which a column of elements equal to −1 is
added, then only Kμ and K�T K′ are identifiable. For
example the matrices

�T ,1 =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ ,

�T ,2 =
⎛⎝ 0.750 0.125 0

0.125 1.5 0.375
0 0.375 1.250

⎞⎠
are not distinguishable because K�T ,1K′ = K ·
�T ,2K′ = (2

1
1
2

)
, where the second matrix is obtained

from the first one by setting d = (−1/8,1/4,1/8).
This consideration remains valid for any generic ma-
trix of contrasts that may be used instead of K. The
specifications of the covariance matrix �T with a re-
duced number of parameters proposed by Thurstone
(1927) cannot be recovered from the data and only co-
variance classes can be considered.

Tsai (2003) shows that n + 2 constraints are needed
in order to identify model (3.1), including the con-
straint on the worth parameters. As for the mean pa-
rameters, many different constraints can be imposed
on the covariance matrix. For example, Böckenholt and
Tsai (2001), Tsai and Böckenholt (2002) and Maydeu-
Olivares (2003) set all the diagonal elements of �T

equal to 1 and either one of the diagonal elements of
� to 1 or one of the nondiagonal elements of �T equal
to zero. However, if �T is fixed to be a correlation ma-
trix, the set of matrixes that produce the same sets of

probabilities is limited. Maydeu-Olivares and Böcken-
holt (2005) set all the covariances involving the last
latent utility to zero, which corresponds to assuming
independence between the last stimulus and the oth-
ers, and the variance of the first and last item to one.
Maydeu-Olivares and Hernández (2007) suggest to set
all diagonal elements of �T equal to one and the sum
of the correlations between the first and the other latent
variables to one. With these constraints positive entries
in the correlation matrix imply that strong preference
for one stimulus is associated with strong preference
for the other stimulus, while negative entries indicate
that strong preference for one stimulus is associated
with weak preference for the other stimulus. Thus, it
is not necessary to fix any element in the matrix �,
since the constraint ω = 1 in � = ω2IN could lead to
a nonpositive definite matrix �T . After estimation it
is possible to recover the class of covariance matrixes
that produce the same probabilities (Maydeu-Olivares
and Hernández, 2007). However, the initial identifica-
tion constraints pose limits on the set of covariance ma-
trixes that identify the same model.

There is no discussion or results about the identifi-
cation restrictions necessary to estimate model (3.2).
In order not to incur identification problems, Tsai and
Böckenholt (2008) assume that the matrix �V depends
on very few parameters.

3.2.3 Models with logit link. The dependence be-
tween evaluations made by the same judge has been
introduced also in models employing logit link func-
tions. Different specifications have been used for this
purpose.

A first inclusion of dependence in logit models is
proposed by Lancaster and Quade (1983), who con-
sider multiple judgments by the same person and intro-
duce correlation in the Bradley–Terry model assuming
that the worth parameters are random variables follow-
ing a beta distribution with shape parameters aij and
bij . The Bradley–Terry model is imposed on the means
of the beta distributions, that is, E(πij ) = aij /(aij +
bij ) = πi/(πi + πj ), but such a model introduces cor-
relation only between comparisons of the same judge
on the same pair of objects, while the other compar-
isons remain independent. The same limit presents the
extension by Matthews and Morris (1995) who con-
sider three possible response categories.

Two different methods have been used for introduc-
ing dependence among comparisons made by the same
person involving one common object in logit models.
The first method exploits the usual association mea-
sure for binary data: the odds ratio. Böckenholt and
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Dillon (1997a) consider the adjacent categories model
for preference data with H categories and suggest a
parametrisation in terms of log-odds ratios to account
for dependence between observations, while Dittrich,
Hatzinger and Katzenbeisser (2002) adopt a similar ap-
proach in a two-categorical model using the log-linear
formulation of the Bradley–Terry model. This speci-
fication is convenient because it allows one to esti-
mate the model through standard software developed
for log-linear models, but the number of added parame-
ters can be quite large (Dittrich, Hatzinger and Katzen-
beisser, 2002).

Another method used for introducing dependence
among observations is the inclusion of random effects
in the linear predictor. Böckenholt (2001a) describes
the worth of object i for subject s as

μsi = μi +
P∑

p=1

βipxip + Usi,

where Usi is a random component, and xi is a vector of
P subject-specific (and possibly item specific) covari-
ates. Böckenholt (2001a) employs a logit link function
and assumes that Us = (Us1, . . . ,Usn)

′ follows a mul-
tivariate normal distribution with mean 0 and covari-
ance �U .

Francis, Dittrich and Hatzinger (2010) consider the
log-linear representation of the Bradley–Terry model
and introduce random effects for each respondent in
order to account for residual heterogeneity that is not
included in subject-specific covariates. The inclusion
of random effects in the linear predictor introduces dif-
ficulties in the estimation of the model.

3.2.4 Choice models. The work by Thurstone has
great importance in the development of models for an-
alyzing discrete choices, not only from a psychomet-
ric point of view, but also in economic choice theory.
When the idea that choices may be random and not
fixed started to develop, the use of the model proposed
by Thurstone was suggested (Marschak, 1960). As the
Nobel laureate McFadden (2001) states, “when the per-
ceived stimuli are interpreted as levels of satisfaction,
or utility, this can be interpreted as a model for eco-
nomic choice.”

According to the economic theory, models for dis-
crete choice are required to satisfy the utility maxi-
mization assumption which states that subjects maxi-
mize their utility when making decisions. Let ϒsi de-
note the utility of subject s from alternative i which
can be decomposed as ϒsi = Msi + εsi , where Msi de-
notes a function which relates a set of alternative at-
tributes and subject attributes to the utility gain and εsi

denotes factors that affect utility, but are not included in
Msi . The probability that subject s chooses alternative
i is equal to the probability that the utility gained from
i is higher than the utility from every other object in
the choice set: pr(ϒsi > ϒsj ,∀i 	= j) = pr(εsi − εsj <

Msi − Msj ,∀i 	= j). These models are called random
utility models. For each person, a choice is described as
n − 1 paired comparisons between the preferred alter-
native and all other options. Note that paired compar-
isons do not really occur, so inconsistent choices can-
not be observed.

From the above specification, different models have
been developed depending on the assumptions about
the distribution of the errors and the formulation of the
mean term Msi . If the εsi’s are independent and follow
a Gumbel distribution the choice model is a logit model
and, when Msi = x′

siβ , it corresponds to the structured
Bradley–Terry model. A particular concern is caused
by the independence from irrelevant alternatives (Luce,
1959) property which characterizes the Bradley–Terry
model. Indeed, in the Bradley–Terry model the ratio
between probabilities of choosing one option over an-
other is independent from the other available alterna-
tives. Often, this property is not satisfied in real data.
This limit is somehow overcome by assuming a type of
generalized extreme value distribution for the errors.
In the resulting nested logistic model, independence
from irrelevant alternatives holds for sets of alterna-
tives within a same subset and not for alternatives in
different subsets (Train, 2009). The advantage of these
specifications is that models can be estimated easily,
but they cannot account for random taste variation or
unobserved factors correlated over time.

A further proposal is to assume a multivariate normal
distribution for the errors εsi . This model is very flexi-
ble since it allows for random taste variation and, when
necessary, for temporally correlated errors, but its esti-
mation is not straightforward. The resulting model is a
multivariate probit model, like the Thurstone model. In
economic choice models it is of interest to consider the
influence on decisions of covariates that are included in
the mean term Msi . Explanatory variables can be con-
sidered also in psychometric models (Tsai and Böck-
enholt, 2002), even though interest is focused on the
parameters μ which are always included in the linear
predictor.

Other extensions include further random elements in
the mean term Msi , so as to allow flexible disturbances
or to account for different attitudes and perceptions of
different people. All these elements add difficulties in
the estimation of the model.



422 M. CATTELAN

An important aspect in choice theory is the dis-
tinction between stated and revealed preferences. This
problem has not received much attention in the psy-
chometric literature, but there may be differences be-
tween what people say they would choose in a ques-
tionnaire survey and what they really choose. The for-
mer are called stated preferences and the latter revealed
preferences. If both types of preferences are available,
it may be useful to analyze them all together. Walker
and Ben-Akiva (2002) propose a model that incorpo-
rates many of the above extensions; however, care is
needed when specifying the model because it may be
difficult to understand which parameters can be identi-
fied. Moreover, the inclusion of additional disturbances
and unobserved covariates requires the approximation
of integrals whose dimension can be high.

Random utility models are very useful and widely
spread; however, some doubts have been raised about
their basic assumption that people act as to maximize
their utility since sometimes consumers do not make
rational choices (Böckenholt, 2006).

3.3 Object-Related Dependencies

In the multiple judgment sampling the dependence
among observations derives from repeated compar-
isons made by the same person, usually involving a
common object. In case paired comparisons are not
performed by a judge, the correlation may arise from
the fact that the same object is involved in multi-
ple paired comparisons. For example, when contests
among animals are analyzed, it is realistic to assume
that comparisons involving the same animal are corre-
lated. In this perspective, Firth (2005) suggests to set

μi = x′
iβ + Ui,(3.3)

where Ui is a zero mean object-specific random effect.
This approach is investigated in Cattelan (2009). The
results of comparisons are related to observed charac-
teristics of the animal and to unobserved quantities that
are captured by the random effect Ui .

In this case, the latent random variable can be written
as

Z = AXβ + AU + η,

where U = (U1, . . . ,Un) is the vector of all object-
specific random effects, X is the matrix of covari-
ates with columns xi , η are independent normally dis-
tributed errors with mean 0 and variance 1 while the
matrix A is the design matrix of the paired comparisons
with rows that describe which comparisons are ob-
served, not necessarily all possible paired comparisons.

If it is assumed that U is multivariate normal with mean
0 and covariance Inσ

2, then Z ∼ N(AXβ, σ 2AAT +
Id), where d is the number of paired comparisons
observed. Again, this model is a multivariate probit
model. However, this type of data presents some dif-
ferent features with respect to multiple judgment sam-
pling. While in pshychometric applications n is not
very large because it is unlikely that a person will make
all the paired comparisons when n > 10, this will typi-
cally happen in sport tournaments or in paired compar-
ison data about animal behavior. Moreover, in the mul-
tiple judgment sampling scheme S independent repli-
cations of all the comparisons are available, but in other
contexts this does not occur, adding further difficulties.

3.4 Inference

3.4.1 Estimation. In this section, the multiple judg-
ment sampling scheme is mainly investigated, and only
some comments are made about the case of object-
related dependencies. There are different methods for
estimating models for dependent paired comparison
data. A first approach to the computation of the like-
lihood function requires to integrate out the latent vari-
ables T from the joint distribution of Y and T. This in-
tegral has dimension n, the number of items, but rewrit-
ing it in terms of differences Ti − Tn, i = 1, . . . , n − 1,
the dimension can be reduced to n− 1, which nonethe-
less may still be quite large when methods such as the
Gauss–Hermite quadrature are employed.

Alternatively, it is possible to represent the joint
distribution of the observations as a multivariate pro-
bit model. Let Z∗

s = D(Zs − Aμ) be the standard-
ized version of the latent variable Zs , where D =
[diag(�Z)]−1/2 and �Z denotes the covariance ma-
trix of Zs expressed as in model (3.1) or in model
(3.2). Then, Z∗

s follows a multivariate normal distribu-
tion with mean 0 and correlation matrix �Z∗ = D�ZD.
Object i is preferred to object j when z∗

sij ≥ τ ∗
ij , where

the vector of the thresholds is given by τ∗ = −DAμ.
The likelihood function is the product of the probabil-
ity of the observations for each judge

L(ψ;Y) =
S∏

s=1

Ls(ψ;Ys),

where

Ls(ψ;Ys) =
∫
Rs12

· · ·
∫
Rsn−1n

φN(z∗
s ;�Z∗)dz∗

s ,

φN(·;�Z∗) denotes the density function of an N -
dimensional normal random variable with mean 0 and
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correlation matrix �Z∗ and

Rsij =
{

(−∞, τ ∗
ij ) if Ysij = 1,

(τ ∗
ij ,∞) if Ysij = 2.

Note that this approach requires the approximation of
S integrals whose dimension is equal to N = n(n −
1)/2, the number of paired comparisons, so its growth
is quadratic with the increase in the number of ob-
jects. However, there is a large literature about meth-
ods for approximate inference in multivariate probit
models. The algorithm proposed by Genz and Bretz
(2002) to approximate multivariate normal probabili-
ties is based on quasi-Monte Carlo methods, and Craig
(2008) warns against the randomness of this method
for likelihood evaluation. A deterministic approxima-
tion is developed by Miwa, Hayter and Kuriki (2003),
but it is available only for integrals of dimension up
to 20 since even for such a dimension its computation
is very slow. Approximations based on Monte Carlo
methods can be used (Chib and Greenberg, 1998),
but they may be computationally expensive if the di-
mension of the integral is very large. Böckenholt and
Tsai (2001) use an EM algorithm, while in economet-
ric theory a maximum simulated likelihood approach
in which multivariate normal probabilities are simu-
lated through the Geweke–Hajivassiliou–Keane algo-
rithm is employed (Train, 2009). A further approach
may be based on data cloning (Lele, Nadeem and
Schmuland, 2010). When integrals are very large, and
the approximation is computationally demanding and
time-consuming, it is possible to resort to limited infor-
mation estimation methods, which are estimation pro-
cedures based on low dimensional margins. Here, we
compare two different methods. The first one is widely
applied in the context of multiple judgment sampling
(Maydeu-Olivares, 2001, 2002; Maydeu-Olivares and
Böckenholt, 2005) and will be called limited informa-
tion estimation; the second is proposed in the context
of object-specific dependencies in Cattelan (2009) and
is called pairwise likelihood.

The limited information estimation procedure con-
sidered here consists of three stages. In the first stage
the threshold parameters τ ∗ are estimated exploiting
the empirical univariate proportions of wins. In the sec-
ond stage the elements of �Z∗ , which are tetrachoric
correlations, are estimated employing the bivariate pro-
portions of wins. Finally, in the third stage the model
parameters ψ are estimated by minimizing the function

G = {κ̃ − κ(ψ)}′Ŵ{κ̃ − κ(ψ)},(3.4)

where κ̃ denotes the thresholds, and tetrachoric corre-
lations, estimated in the first and second stages, κ(ψ)

denotes the thresholds, and tetrachoric correlations un-
der the restrictions imposed on those parameters by the
model parameters ψ and Ŵ is a nonnegative definite
matrix. Let 
 denote the asymptotic covariance ma-

trix of κ̃ . Then it is possible to use Ŵ = 
̂
−1

(Muthén,
1978), Ŵ = [diag(
̂)]−1 (Muthén, Du Toit and Spisic,
1997) or Ŵ = I (Muthén, 1993). The last two options
seem more stable in data sets with a small number of
objects (Maydeu-Olivares, 2001). This method is very
fast, and Maydeu-Olivares (2001) states that it may
have an edge over full information methods because
it uses only the one and two-dimensional marginals of
a large and sparse contingency table.

Pairwise likelihood (Le Cessie and Van Houwelin-
gen, 1994) is a special case of the broader class of
composite likelihoods (Lindsay, 1988; Varin, Reid and
Firth, 2011). The pairwise likelihood of all the observa-
tions is the product of the pairwise likelihoods relative
to the single judges Lpair(ψ;Y) = ∏S

s=1 Ls
pair(ψ;Ys),

where

Ls
pair(ψ;Ys)

=
n−2∏
i=1

n−1∏
j=i+1

n−1∏
k=i

n∏
l=j+1

pr(Ysij = ysij , Yskl = yskl).

Let �s
pair(ψ;Ys) = log Ls

pair(ψ;Ys) denote the log-
arithm of the pairwise likelihood for subject s and
�pair(ψ;Y) = ∑S

s=1 �s
pair(ψ;Ys) be the whole pairwise

log-likelihood. Under usual regularity conditions on
the log-likelihood of univariate and bivariate margins,
the maximum pairwise likelihood estimator is con-
sistent and asymptotically normally distributed with
mean ψ and covariance matrix H(ψ)−1J(ψ)H(ψ)−1,
where J(ψ) = var{∇�pair(ψ;Y)} and H(ψ) =
E{−∇2�pair(ψ;Y)} (Molenberghs and Verbeke, 2005;
Varin, Reid and Firth, 2011). Unfortunately, the anal-
ogous of the likelihood ratio test based on pairwise
likelihood does not follow the usual chi-square dis-
tribution (Kent, 1982). In the multiple judgment sam-
pling context, it is natural to consider asymptotic prop-
erties of pairwise likelihood estimators computed as
the number of subjects increases, that is, as S → ∞.
When the number of paired comparisons per subject is
bounded, the above properties are satisfied (Zhao and
Joe, 2005). Pairwise likelihood reduces noticeably the
computational effort since it requires only the com-
putation of bivariate normal probabilities. The stan-
dard errors can be computed straightforwardly by ex-
ploiting the independence between the observations
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TABLE 4
Average (Mn) and median (Md) simulated estimates, average model-based standard errors (s.e.) and simulation standard deviations

(s.d.) of parameters estimated by maximum likelihood (ML), limited information estimation (LI) and pairwise likelihood (PL)

True
value

ML LI PL

Mn s.e. s.d. Mn Md s.e. s.d. Mn Md s.e. s.d.

μ1 0.5 0.51 0.13 0.13 0.51 0.50 0.13 0.13 0.50 0.50 0.13 0.13
μ2 0 0.01 0.12 0.13 0.01 0.01 0.12 0.13 0.01 0.01 0.12 0.13
μ3 −0.5 −0.49 0.15 0.15 −0.50 −0.48 0.15 0.15 −0.49 −0.48 0.15 0.15
σ12 0.8 0.80 0.12 0.14 0.78 0.80 0.13 0.14 0.79 0.80 0.13 0.15
σ13 0.7 0.70 0.17 0.17 0.69 0.71 0.17 0.17 0.69 0.71 0.18 0.18
σ14 0.8 0.79 0.13 0.14 0.78 0.79 0.13 0.14 0.78 0.80 0.14 0.15
σ23 0.6 0.58 0.19 0.20 0.57 0.60 0.19 0.20 0.57 0.60 0.19 0.20
σ24 0.7 0.68 0.16 0.16 0.66 0.67 0.16 0.17 0.67 0.68 0.16 0.17
σ34 0.6 0.58 0.21 0.20 0.57 0.60 0.20 0.20 0.57 0.60 0.20 0.20

of different judges. In fact, H(ψ) can be estimated
by the Hessian matrix computed at the maximum
pairwise likelihood estimate, while the cross-product∑S

s=1 ∇�s
pair(ψ̂;Ys)∇�s

pair(ψ̂;Ys)
′ can be used to esti-

mate J(ψ).
The case of object-related dependencies is not con-

sidered in the following simulation study; however,
note that some different difficulties arise. As already
pointed out, in this context there is a large n and small
S, so the limited information estimation method can-
not be applied, but pairwise likelihood can still be em-
ployed (Cattelan, 2009). However, it is more problem-
atic to consider the asymptotic behavior of the max-
imum pairwise likelihood estimator when data are a
long sequence of dependent observations; see, for ex-
ample, Cox and Reid (2004). In the context of paired
comparison data, results of simulations for increasing
n when all possible paired comparisons are performed
are encouraging (Cattelan, 2009); however, theoretical
results for this instance are still lacking.

3.4.2 Simulation studies. Simulation studies were
performed considering models (3.1) and (3.2). It is as-
sumed that n = 4; hence also a full likelihood approach
based on the algorithm by Miwa, Hayter and Kuriki
(2003) can be used since the integral has dimension 6.

The first simulation setting is the same as that pro-
posed in Maydeu-Olivares (2001), where the model
Zs = AT + es is assumed with

μ =

⎛⎜⎜⎝
0.5
0

−0.5
0

⎞⎟⎟⎠ , �T =

⎛⎜⎜⎝
1

0.8 1
0.7 0.6 1
0.8 0.7 0.6 1

⎞⎟⎟⎠
and the covariance matrix of e is � = ω2I6. For iden-
tification purposes the diagonal elements of �T are set

equal to 1, μ4 = 0 and ω2 = 1. Hence, in this case
�T is actually a correlation matrix. Table 4 shows the
mean and medians of the simulated estimates on 1000
data sets assuming S = 100 judges. Moreover, the aver-
age of model-based standard errors and the simulation
standard deviations are reported. In limited information
estimation, the matrix Ŵ = I is employed. In this set-
ting all the methods seem to perform comparably well.
Table 5 shows the empirical coverages of confidence
intervals based on the normal approximation.

The second simulation setting considers model (3.2)
proposed by Tsai and Böckenholt (2008). Here, we
consider differences with a reference object, so we
compute means and variances of the differences T̃i =
Ti − Tn for i = 1, . . . , n − 1. The assumed worth pa-
rameters of these differences are μ̃ = (−0.2,1,−1.5)

TABLE 5
Empirical coverage of confidence intervals for model parameters

of limited information estimator (LI) and pairwise likelihood
estimator (PL) at nominal levels 95%, 97.5% and 99%

0.950 0.975 0.990

LI PL LI PL LI PL

μ1 0.947 0.958 0.982 0.978 0.992 0.992
μ2 0.960 0.964 0.978 0.976 0.988 0.988
μ3 0.941 0.930 0.969 0.972 0.995 0.991
σ12 0.959 0.985 0.975 0.997 0.989 1.000
σ13 0.934 0.939 0.961 0.967 0.968 0.985
σ14 0.941 0.968 0.967 0.996 0.988 1.000
σ23 0.965 0.970 0.973 0.980 0.987 0.995
σ24 0.943 0.933 0.951 0.959 0.967 0.973
σ34 0.953 0.946 0.969 0.966 0.977 0.989
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TABLE 6
Average (Mn) and median (Md) simulated estimates, average model-based standard errors (s.e.) and simulation standard deviations

(s.d.) of parameters estimated by maximum likelihood (ML), limited information estimation (LI) and pairwise likelihood (PL)

True
value

ML LI PL

Mn s.e. s.d. Mn Md s.e. s.d. Mn Md s.e. s.d.

μ̃1 −0.2 −0.21 0.19 0.18 −0.23 −0.21 0.21 0.22 −0.22 −0.20 0.19 0.19
μ̃2 1 1.00 0.30 0.31 1.07 1.07 0.42 0.47 1.03 1.00 0.33 0.33
μ̃3 −1.5 −1.51 0.31 0.32 −1.59 −1.59 0.49 0.51 −1.54 −1.51 0.36 0.35

σ̃ 2
1 1.5 1.53 0.83 0.81 2.06 1.58 1.97 1.64 1.70 1.44 1.05 0.95

σ̃ 2
2 4 3.98 1.73 1.75 5.34 4.37 4.42 4.48 4.45 3.92 2.42 2.15

σ̃ 2
3 3 3.01 1.41 1.42 3.91 3.19 3.17 3.25 3.32 3.04 1.93 1.73

σ̃12 1 0.98 0.70 0.64 1.34 1.06 1.44 1.30 1.12 0.97 0.87 0.77
σ̃13 1.3 1.29 0.73 0.71 1.72 1.39 1.48 1.49 1.43 1.27 0.95 0.84
σ̃23 2.5 2.49 1.09 1.09 3.35 2.72 2.67 2.77 2.77 2.48 1.53 1.33
b 0.5 0.53 0.41 0.39 0.72 0.58 0.82 0.98 0.58 0.50 0.50 0.51

while the covariance matrix is⎛⎝ 1.5 1 1.3
1 4 2.5

1.3 2.5 3

⎞⎠ ,

and σ̃ij is used to denote the element in row i and col-
umn j of the above reduced matrix. Differently from
the previous setting, this specification of the model al-
lows one to estimate also the variance of the differences
Ti − Tn and to check whether they are different for the
various objects. Tsai and Böckenholt (2008) propose a
specification of the matrix B which depends only on
one parameter b whose value is set equal to 0.5.

Table 6 presents the results of the simulations. Max-
imum likelihood based on numerical integration is
the method that performs best; however, maximiza-
tion of the likelihood was not always straightforward,
and sometimes the optimization algorithms employed
stopped at a point where the Hessian matrix was not
negative definite.

Pairwise likelihood estimation seems to perform
quite well, especially if compared to limited informa-
tion estimation, which seems not satisfactory in this
case with S = 100, as already noticed in Tsai and
Böckenholt (2008). Estimating the parameters of the
covariance matrix appears more problematic than the
estimation of the worth parameters, and the average
of the simulated estimates is particularly influenced by
some large values, but the median shows a better per-
formance. In particular, while the average simulated
estimates for limited information estimation shows a
maximum percentage bias equal to 44.1%, for the me-
dian it reduces to 15.4%. The maximum bias for the

mean of the simulated estimates using pairwise likeli-
hood is 16.1%, while for the median it is 4%. In both
cases, pairwise likelihood shows lower bias. The stan-
dard errors of pairwise likelihood estimates are lower,
thus yielding shorter confidence intervals. Table 7 re-
ports the empirical coverage of Wald-type confidence
intervals for the estimated limited information estima-
tion and pairwise likelihood. The coverage rates of the
two methods are very similar, and in both cases the ac-
tual coverage for parameters of the covariance matrix
appears systematically lower than the nominal levels.
In order to obtain accurate coverage probabilities, we
may need to resort to a bootstrap procedure for detect-
ing the distribution of the statistic, while with pairwise

TABLE 7
Empirical coverage of confidence intervals for model parameters

of limited information estimator (LI) and pairwise likelihood
estimator (PL) at nominal levels 95%, 97.5% and 99%

0.950 0.975 0.990

LI PL LI PL LI PL

μ̃1 0.955 0.935 0.981 0.965 0.994 0.983
μ̃2 0.962 0.960 0.973 0.974 0.986 0.986
μ̃3 0.920 0.938 0.941 0.960 0.961 0.977
σ̃ 2

1 0.932 0.922 0.947 0.936 0.959 0.966

σ̃ 2
2 0.932 0.924 0.949 0.945 0.964 0.961

σ̃ 2
3 0.936 0.937 0.949 0.953 0.963 0.964

σ̃12 0.932 0.937 0.951 0.956 0.966 0.970
σ̃13 0.915 0.912 0.929 0.933 0.939 0.945
σ̃23 0.922 0.920 0.941 0.937 0.953 0.951
b 0.936 0.936 0.946 0.953 0.963 0.963
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TABLE 8
Estimates and standard errors (in brackets) of mean and correlation parameters of model (3.1) for universities data using constraints

proposed by Maydeu-Olivares and Hernández (2007). In italics the estimates and standard errors of a model with fixed correlation
between Paris and St. Gallen

Barcelona London Milan Paris St. Gallen Stockholm μ

Barcelona 1 −0.064 0.688 0.063 −0.472 0.265 0.405
(fixed) (0.183) (0.085) (0.158) (0.146) (0.145) (0.073)

London 0.058 1 0.079 −0.069 −0.287 0.227 1.346
(0.084) (fixed) (0.185) (0.224) (0.147) (0.154) (0.087)

Milan 0.724 0.185 1 0.244 −0.466 0.253 0.308
(0.062) (0.097) (fixed) (0.174) (0.137) (0.160) (0.074)

Paris 0.171 0.054 0.331 1 −0.690 0.033 0.748
(0.094) (0.117) (0.113) (fixed) (fixed) (0.267) (0.086)

St. Gallen −0.303 −0.139 −0.298 −0.496 1 0.194 0.371
(0.113) (0.139) (0.144) (0.157) (fixed) (0.135) (0.081)

Stockholm 0.350 0.316 0.339 0.144 0.287 1 0
(0.079) (0.091) (0.097) (0.113) (0.130) (fixed) (fixed)

likelihood it may be possible to obtain intervals based
on the pairwise likelihood function.

EXAMPLE. We fit model (3.1) to universities’ data
by means of pairwise likelihood. A full likelihood ap-
proach based on numeric approximation implies com-
puting 303 integrals of dimension 5, in case a univer-
sity is used as reference object, both for the mean and
covariance structure, but methods such as the Gauss–
Hermite quadrature are affected by the curse of di-
mensionality. A multivariate probit approach would re-
quire a very slow computation because the algorithm
by Miwa would take very long to approximate 303 in-
tegrals of dimension 15. It is assumed that � = ω2I15.
Table 8 displays the results of the estimates, employ-
ing two different sets of constraints. The lower tri-
angle of the covariance matrix shown in Table 8 re-
ports the estimates obtained using the constraints pro-
posed in Maydeu-Olivares and Hernández (2007); see
Section 3.2.2. The estimate of the threshold parameter
(with standard error in brackets) is τ̂2 = 0.205 (0.018)

while the variance parameter is ω̂2 = 0.180 (0.026).
A high correlation is estimated between Barcelona and
Milan, so strong preference for Barcelona is associated
with strong preference for Milan. Even though some
correlations do not seem significant, it appears that a
strong preference for St. Gallen is associated with a
weak preference for all the other universities but Stock-
holm. The worth parameters denote the same ranking
of all universities as the one arising from Table 2. How-
ever, note that the estimated worth parameters can-
not be considered as absolute measures of worth of

items; indeed, it is possible to obtain alternative solu-
tions that give an equivalent fitting. The mean parame-
ters that can be identified in the model are standardized
differences, that is, (μi − μ6)/

√
σ 2

i + σ 2
6 − 2σi6 + ω2,

i = 1, . . . ,5, where μ6 and σ 2
6 are the mean and vari-

ance of the latent variable referring to Stockholm, the
reference university. From the identified parameters,
different covariance matrixes of the universities can be
recovered. For example, in this instance where the ma-
trix �T can be interpreted as a correlation matrix, it
is shown that the worth parameters

√
cμ, the correla-

tion matrix c�T + (1 − c)11′ and the covariance ma-
trix of the pair-specific errors c� produce the same fit-
ting of the model for a positive constant c such that the
correlation matrix remains positive definite (Maydeu-
Olivares and Hernández, 2007). It is possible to set one
of the parameters of the correlation matrix according
to some assumption, for example we may presume that
a strong preference for Paris is associated with a weak
preference for St. Gallen, and determine the value of c

which minimizes the correlation between the two uni-
versities while yielding a positive definite correlation
matrix. The value is c = 1.13 which produces a corre-
lation between Paris and St. Gallen equal to −0.690.
The estimates of the correlation matrix with this fixed
value of correlation between Paris and St. Gallen are
shown in the upper triangle of the matrix in Table 8.
The worth parameters can be computed by multiplying
the estimates shown in Table 8 by

√
1.13. The fitting of

the two models is equal, but in the second case estima-
tion is based on some previous theory about correlation
between a certain couple of universities.
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This analysis has only an illustrative purpose, in par-
ticular Böckenholt (2001b) finds that a model with
thresholds that vary among subjects performs better
than a model with a constant threshold parameter.

3.4.3 Model selection and goodness of fit. Paired
comparison data can be arranged in a contingency ta-
ble. In case of multiple judgment sampling the data can
be arranged in a table of dimension 2N when there are
two possible outcomes and HN when the outcomes are
H -categorical. As a result, the contingency table will
typically be very sparse, especially if covariates are in-
cluded so that paired comparisons are observed con-
ditional on the values of the covariates. In this situa-
tion the likelihood ratio statistic and the Pearson statis-
tic do not follow a χ2 distribution, nevertheless these
statistics are often employed to assess the model and
for model selection. Differences between observed and
expected frequencies for subsets of the data, as the
2 × 2 subtables or triplets of comparisons, are some-
times considered in order to identify where the fitting
of the model is not good. In Dittrich et al. (2007) the
deviance is used for selection between nested models,
but the test of goodness of fit cannot be based on the
asymptotic χ2 distribution so a Monte Carlo procedure
is employed.

Since the goodness of fit of the model cannot be
assessed through the usual statistics and Monte Carlo
procedures are computationally expensive, some statis-
tics based on lower dimensional marginals of the con-
tingency table have been proposed. In general the
statistics proposed are quadratic forms of the residuals

{pr − π r (ψ̂)}′C{pr − π r (ψ̂)},(3.5)

where C is a weight matrix, pr denotes the sample
marginal proportions and r denotes a set of lower order
marginals.

Maydeu-Olivares (2001) considers the statistic G as
in (3.4) employed for estimation, which corresponds
to setting C = W in (3.5) and r denoting univari-
ate and bivariate marginal probabilities. The statistic
SĜ is analyzed in order to test H0 :κ = κ(ψ). When

Ŵ = 
̂
−1

, then SĜ
d→ χ2

d where d = N(N +1)/2−q

and q is the number of model parameters. However,
when Ŵ = [diag(
̂)]−1 or Ŵ = I , the asymptotic dis-
tribution of the statistic is a weighted sum of d chi-
square random variables with one degree of freedom.
Maydeu-Olivares (2001) proposes to rescale the test
statistic in order to match the asymptotic chi-square
distribution. The same procedure is followed in the
proposal for testing H0 :π2 = π2(ψ), where π2 is the

vector of all univariate and bivariate marginal proba-
bilities. Maydeu-Olivares (2006) considers the testing
of further hypotheses but the issue of the asymptotic
distribution being a weighted sum of chi-square distri-
butions remains.

Maydeu-Olivares and Joe (2005) consider testing the
hypothesis H0 : π̃ = π̃(ψ) in a multidimensional con-
tingency table, where π̃ is the 2N -dimensional vec-
tor of joint probabilities. Again, the use of marginal
residuals up to order r is considered. Let π denote
a vector which stacks all the marginal probabilities:
univariate, bivariate, trivariate and so on. There is a
one-to-one correspondence between π̃ and π so that
for a particular matrix � of 0’s and 1’s π = �π̃ . If
only marginal probabilities up to order r are consid-
ered, then π r = �r π̃ for a sub-matrix �r of �. Let
 = ∂π̃/∂ψ and � = E − π̃ π̃ ′, where E = diag(π̃).
Maydeu-Olivares and Joe (2005) propose the statistic

Mr = S{pr − π r (ψ̂)}′Cr (ψ̂){pr − π r (ψ̂)},(3.6)

where Cr (ψ) = F−1
r − F−1

r r (
′
rF−1

r r )
−1′

rF−1
r ,

Fr = �r��′
r and r = �r. Mr is asymptotically

distributed as a χ2
l−q random variable where l is the

length of pr . The Mr statistic asymptotically follows
a chi-square distribution not only when ψ̂ is the max-
imum likelihood estimator, but also when it is a

√
S-

consistent estimate, such as the limited information es-
timator and the pairwise likelihood estimator presented
in Section 3.4.1. Since the marginals should not be
sparse, Maydeu-Olivares and Joe (2005) suggest to use
M2 when the model is identified using only univari-
ate and bivariate information, also because only up to
bivariate sample moments and four-way model proba-
bilities are involved in the computation of M2. As the
number of cells gets larger, the dimension of the matri-
ces involved in (3.6) increases noticeably, and tricks
may be necessary to do the computations. Analysis
and extensions of this type of test are considered in
Maydeu-Olivares and Joe (2006), Reiser (2008) and
Joe and Maydeu-Olivares (2010). All applications con-
sidered regard item response theory, so an investigation
of their performance in paired comparison data is nec-
essary to understand the sample size needed for obtain-
ing accurate Type I errors using M2.

4. SOFTWARE

Fitting models to paired comparison data is facili-
tated by some R packages which allow fitting of the
classical models and, in some cases, also fitting of
more complicated models.



428 M. CATTELAN

The eba package (Wickelmaier and Schmid, 2004)
fits elimination by aspects models (Tversky, 1972) to
paired comparison data. The elimination by aspects
model assumes that different objects present various
aspects. The worth of each object is the sum of the
worth associated with each aspect possessed by the ob-
ject. When all objects possess only one relevant aspect,
then the elimination by aspects model reduces to the
Bradley–Terry model. Therefore, in case only one as-
pect per object is specified, the function eba can be
used to fit model (2.1) with logit link, while when the
link is probit the function thurstone can be used.
The function strans checks how many violations of
weak, moderate and strong stochastic transitivity are
present in the data.

The prefmod package (Hatzinger, 2010) fits
Bradley–Terry models exploiting their log-linear rep-
resentation. Ordinal paired comparisons are allowed,
but the software reduces the total number of categories
to three or two, depending on whether there is a no
preference category or not.

There are three different functions for estimating
models for paired comparison data: the llbt.fit
function which estimates the log-linear version of
the Bradley–Terry model through the estimation algo-
rithm described in Hatzinger and Francis (2004), the
llbtPC.fit function that estimates the log-linear
model exploiting the gnm (Turner and Firth, 2010b)
function for fitting generalized nonlinear models and
the pattPC.fit function, which fits paired com-
parison data using a pattern design, that is, all pos-
sible patterns of paired comparisons. The latter func-
tion handles also some cases in which the responses
are missing not at random; see Section 5. A difficulty
of this approach is that the response table grows dra-
matically with the number of objects since, in case
of only two possible outcomes, the number of pat-
terns is 2N , so no more than six objects can be in-
cluded with two response categories, and not more than
five with three response categories. Finally, the func-
tion pattnpml.fit fits a mixture model to overdis-
persed paired comparison data using nonparametric
maximum likelihood.

The BradleyTerry2 package (Turner and Firth,
2010a) expands the previous BradleyTerry (Firth,
2008) package and allows one to fit the unstructured
model (2.1) and extension (2.3) with logit, probit
and cauchit link functions, including also comparison-
specific covariates. Model fitting is either by maximum
likelihood, penalized quasi-likelihood or bias-reduced
maximum likelihood (Firth, 1993). In case of object

specific random effects, as in model (3.3), penalized
quasi-likelihood (Breslow and Clayton, 1993) is used,
while when an object wins or loses all the paired com-
parisons in which it is involved and its estimate worth
parameter is infinite, then the bias-reduced maximum
likelihood produces finite estimates. If there are miss-
ing explanatory variables, an additional worth parame-
ter for the object with missing covariates is estimated.
Order effects and more general comparison-specific
covariates can be included, but only win-loss responses
are allowed.

The package psychotree (Strobl, Wickelmaier
and Zeileis, 2011) implements the method for recur-
sive partitioning of the subjects on the basis of their
explanatory variables and estimates an unstructured
Bradley–Terry model for each of the final subgroups
of subjects; see Section 2.4.

Although the available packages have many use-
ful features, a combination of those provided by
the different packages and also some additional fea-
tures could be of practical help. The prefmod and
BradleyTerry2 packages were built with the aim
of analyzing multiple judgment data and tournament-
like data, respectively. This is reflected in the differ-
ent characteristics of the packages. A function that can
handle data with at least three-categorical results, thus
allowing for the “no preference” category, include dif-
ferent link functions, and an easy implementation of
object-, subject- and comparison-specific covariates in
a linear model framework would be useful. The avail-
able methods for including dependencies between ob-
servations are only in a log-linear framework through
the introduction of further parameters in the predic-
tor or including object-related random effects, which
are estimated by means of penalized quasi likelihood,
a method that does not perform well with binary data.
At present, there are no available packages for the anal-
ysis of paired comparison data that allow the fitting
of models as those presented in Section 3.2.1. How-
ever, implementation of pairwise likelihood estimation
for those models is straightforward since it implies
only the computation of bivariate normal probabili-
ties.

5. CONCLUSIONS

This paper reviews some of the extensions pro-
posed in the literature to the two most commonly ap-
plied models for paired comparison data, namely the
Bradley–Terry and the Thurstone models. However,
not every aspect could be considered here, and among
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issues that have not been treated, there are the devel-
opment of models for multi-dimensional data when
objects are evaluated with respect to multiple aspects
(Böckenholt, 1988; Dittrich et al., 2006), the temporal
extension for comparisons repeated in time (Fahrmeir
and Tutz, 1994, Glickman, 2001, Böckenholt, 2002,
Dittrich, Francis and Katzenbeisser, 2008), the estima-
tion of abilities of individuals belonging to a team that
performs the paired comparisons (Huang, Weng and
Lin, 2006; Menke and Martinez, 2008) and many more.
Another important issue concerns the optimal design
of the experiment. Graßhoff et al. (2004) show that the
minimum sample size required for maximizing the de-
terminant of the information matrix in an unstructured
Bradley–Terry model requires that every comparison
is performed once. When objects are specified using
factors with a certain number of levels, the required
sample size grows exponentially, while the number of
parameters grows linearly as the number of factors in-
creases. Some designs, in order to reduce the number
of required comparisons, are investigated in Graßhoff
et al. (2004). In Graßhoff and Schwabe (2008) a char-
acterization of the locally optimal design in case of
two factors design in a Bradley–Terry model is given,
but for more complex situations it seems difficult to
give general results. Goos and Grossmann (2011) con-
sider also the problem when within-pair order effects
are present. It seems that investigation of these issues
in other models are not present in the literature.

The methods for independent data are well estab-
lished, and a lot of literature has been published about
them. The problem of the asymptotic behavior of the
maximum likelihood estimator has been tackled. The
case of a fixed number of objects and increasing num-
ber of comparisons per couple does not seem to pose
particular difficulties for standard arguments, while
more problematic appears the instance of a fixed num-
ber of comparisons per couple and increasing number
of items. In the context of the unstructured Bradley–
Terry model, Simons and Yao (1999) find a condition
on the growth rate of the largest ratio between item
worth parameters which assures that the maximum
likelihood estimator is consistent and asymptotically
normally distributed. Yan, Yang and Xu (2012) inves-
tigate the case in which the number of comparisons per
couple is not fixed, and some comparisons may also
be missing, and find a condition that assures normal-
ity of the maximum likelihood estimator. We are not
acquainted with any other investigation of asymptotic
behavior of estimators in models different from the un-
structured, independent Bradley–Terry model.

Particular attention has been focused on models for
dependent data. Thurstonian models appear particu-
larly suitable to account for dependence between ob-
servations. However, the problems posed by the iden-
tification restrictions are noticeable. The estimated
model has to be interpreted with reference to a class
of covariance matrices, and different identification re-
strictions may lead to different class of matrices. It is
possible to rotate the matrix according to a predefined
hypothesis about the covariance between certain items
(Maydeu-Olivares and Hernández, 2007), but the es-
timated standard errors vary depending on the fixed
parameters and the significance of the other estimated
parameters changes.

In the multiple judgment sampling scheme it is of-
ten stated that if a judge does not perform all paired
comparisons, then it suffices to define subject-specific
matrices As (see Section 3.2.1) with rows correspond-
ing only to the comparisons performed by judge s.
However, it is expected that this may be problematic
for estimation by means of limited information estima-
tion, and there are no studies about the consequences
of missing data in this estimation method.

Missing observations cause problems also for test-
ing the goodness of fit since quadratic statistics as (3.5)
assume that all comparisons are performed by all sub-
jects.

Missing data may derive from the design of the ex-
periment, for example when n is very large, and only a
subset of all comparisons is presented to each subject.
Otherwise, if many comparisons are performed by the
same subject it may be necessary to account for the fa-
tigue of subjects and/or for the passing of time when
comparisons take long in order to be accomplished.

Dittrich et al. (2012) consider the problem of miss-
ing data in the context of the log-linear representation
of the Bradley–Terry model since the study of the miss-
ing mechanism may shed light on the psychological
process. It is assumed that the probability that a com-
parison is missing follows a logistic distribution since
this facilitates the fitting of the model. However, the
likelihood for such models is not easy to compute, and
the function in the prefmod package allows one to
compute it only for data with up to six objects. It is not
easy to discriminate between different types of missing
mechanisms, and a very large number of observations
may be needed in order to discriminate between a miss-
ing completely at random and missing not at random
situation.

The economic theory points out some problems in
choice data that have not been considered yet. The
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main aspects which may need to be incorporated in
models include the influence that subjects can have on
each other, the influence of one particular subject, that
may be some sort of leader, over all the other judges
and the dependence on choices caused by the social
and cultural context. Inclusions of these aspects will
inevitably lead to even more complicated models for
paired comparison data.

Finally, methods for object-related dependencies
present many open problems. Most of the issues are
connected to the dependence among all comparisons
which is typically present in this context. Moreover,
the scheme of paired comparisons is often much less
balanced than in psychometric experiments. Asymp-
totic theory in models for dependent data when the
number of items compared increases has not been de-
veloped yet. Maximum pairwise likelihood estimation
provided encouraging results, but more extensive stud-
ies seem necessary. In this case, computation of stan-
dard errors is problematic since there are no indepen-
dent replications of the data, so a viable alternative lies
in parametric bootstrap. Methods for model selection
and goodness of fit described in Section 3.4.3 require
independent replication of all comparisons; hence they
cannot be employed in this setting.
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