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Abstract

Road sections with high degree of roughness are of special interest, since these have a significant
impact on vehicle’s fatigue life. The study is focused on statistical description and analysis of road
surface irregularities essential for heavy vehicle fatigue assessment. The Laplace moving average pro-
cess is proposed to model the surface. It is compared with themodel proposed in [6] that models a
road surface as a homogenous Gaussian process with MIRA spectrum with added randomly placed and
shaped irregularities. A hybrid model that combines the twomodels is also given. The models are fitted
to 8 measured road surfaces. The accuracy of the models is discussed.

Keywords: Road surface irregularity, damage variability, Laplace moving averages, MIRA spectrum.

1 Introduction

This paper presents comparison between different means to model the roughness of road surface. The
methods are compared on eight measured roads of total lengthabout 230 km. The measured roads are
of varying quality, ranging from rough gravel and asphalt roads from the north of Sweden to smooth
asphalt roads from the south of Sweden. The signals have different lengths and are scaled to have
variance one and zero mean. Models are intended to be used in fatigue damage prediction of vehicle
components and hence the most important property of the model is its capacity to describe variability
of stresses in a vehicle. This is evaluated by employing a “fatigue filter” to the measured/simulated
road surfaces; i.e. by estimating a response of a simple model for a truck and comparing the rainflow
damage, see [14], of the responses.

Fatigue damage is assessed by studying a quarter-vehicle model traveling at constant velocity on
road profiles, see Figure 1. This very simple model cannot be expected to predict loads on a physical
vehicle exactly, but it will high-light the most important road characteristics as far as fatigue damage
accumulation is concerned. The parameters in the model are set to mimic heavy vehicle dynamics. The
response is the total force acting on the sprung mass is denotedY (t).

Neglecting the possible "jumps", i.e. that a vehicle can loose constant with the road surface, the
response can be estimated by means of linear filtering of the encountered road surface. The filter has
the following transfer function

H(ω) =
msω

2(kt + iωct)

kt − (ks+iωcs)ω2ms

−msω2+ks+iωcs

− muω2 + iωct

(
1 +

msω
2

ks − msω2 + iωcs

)
. (1)

Assuming that the road is stationary with power spectral density SZ(f), wheref is the wave number
having units m−1, then the responseY , for a vehicle at speedv [m/s], has power spectral density given
by

SY (ω) =
1

v
|H(ω)|2SZ (ω/(2πv)) .
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Symbol Value Unit
ms 3400 kg
ks 270 000 N/m
cs 6000 Ns/m
mu 350 kg
kt 950000 N/m
ct 300 Ns/m

Figure 1: Quarter vehicle model

The vertical road variability consists of slowly changing landscape and the road surface irregularity
(roughness). Often one assumes that energy ofSZ(f) for frequenciesf < 0.01 m−1 (wavelengths
above 100 meters) represents landscape variability which does not affect the vehicle dynamics and
hence can be removed from the spectrumSZ(f). Similarly high frequenciesf > 10 m−1 (wavelengths
below 10 cm) are filtered out by tire and also are removed from the spectrum.

Commonly, stochastic models are used to describe the randomness of measured road profiles. Vehi-
cle models traveling on road profiles modeled as stationary Gaussian processes have been extensively
studied (see for example [15] and [12] for some recent studies). However, measured profiles are not
accurately described by a stationary Gaussian model. The reason is that the actual roads contain short
sections with above-average irregularity. As shown in [6] such irregularities cause most of the vehicle
fatigue damage.

In this paper three models will be compared. The first one is a non-homogenous Gaussian process,
proposed in [6], the second is a homogenous Laplace Moving Average (LMA) process and the third
one is a combination of the Gaussian and LMA processes which we will call the hybrid model. For
visual comparison, a sample from each model is presented in Figure 2 and compared with the actual
road record. The models are presented in the following threesections. In the last section they will be
applied to describe variability observed in 8 measured roadsurfaces of total length of about 230 km.
Accuracy of the models is discussed in that section as well.

2 Non-homogenous Gaussian model

In the model that was first presented in [6], one assumes in theroad records two types of waves:
short ones with wavelengths between 5 and 0.1 meters and longones with wavelengths between 100
and 5 meters. The main variability in the road is described byhomogenous independent Gaussian
processes:Z(1)

0 (t) for long waves andZ(2)
0 (t) for short waves. Their corresponding spectra for long

wavesS(1)
0 (f) = 10a0 (f/f0)

−w1 , f ∈ [0.01, 0.20], and for short wavesS(2)
0 (f) = 10a0 (f/f0)

−w2 ,
f ∈ [0.2, 10], wheref is the wave number having units m−1. These spectra when put together give the
so called MIRA spectrum, see [9], viz.

S0(f) =






10a0

(
f
f0

)
−w1

, f ∈ [0.01, 0.20],

10a0

(
f
f0

)
−w2

, f ∈ [0.20, 10],

0, otherwise,

, (2)

wheref0 = 0.2. Here, as suggested in [8],10a0 is the basic roughness coefficient. The exponentw1

describe energy distribution between components of wavelengths between 100 and 5 meters, whilew2,
wavelengths between 5 and 0.1 meters describes state of roaddeterioration.

As mentioned above measured road tracks contain short sections with above-average irregularity
which cause most of the vehicle fatigue damage. It was found that these irregularities occur both for
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Figure 2: An actual record taken from2km road section (Top) and the model generated samples from
fits to this record: Non-homogenous Gaussian (second top), Laplace moving average (third top), and
the hybrid model (bottom).

long and short waves. In [8] it is noted that “As a road’s stateof repair deteriorates, a decrease in the
exponentw2 is to be anticipated”, i.e. short wave irregularities are created or change their shapes. In
the non-homogenous Gaussian model the irregularities are accounted by adding to Gaussian processes
Z

(1)
0 (x) andZ

(2)
0 (x) long and short wave irregularitiesZ(1)

i (x), Z
(2)
i (x), i > 0, of random shape,

length and location. The road with superimposed irregularities is denoted byZ(x) and given by

Z(x) =

N1∑

i=0

Z
(1)
i (x) +

N2∑

i=0

Z
(2)
i (x), (3)

whereN1, N2 are (random) number depending on the length of the road whilethe processesZ(1)
i (x),

Z
(2)
i (x), i = 0, 1, . . ., are mutually independent.

To avoid discontinuities at the start and end of the rough sections, the added irregularities starts
and ends with zero slope and zero level, see [5] for more details. Furthermore, the location and length
of the sections with added roughness are random. More precisely, the distance between the end of
an irregularity and the start of the next is exponentially distributed. The irregularity length is also
exponentially distributed. The long waves and short waves irregularities are added independently. The
model requires knowledge of 9 parameters. For illustration, a 500 m long road is simulated and plotted
in Figure 3. Some details of the simulation algorithm and form of Z(k)

i ’s are given in the appendix.
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Figure 3: A synthetic (computer simulated) road profileZ(x), defined by (3), lowest plot, the same as
in Figure 2-second top. The first plot is the Gaussian processZ0(x), the second presents a sum of five
long wave irregularities while the third a sum of short wave irregularities.

3 Laplace moving average model

Roughly speaking a moving average process is a convolution of a kernel functionf(x), say with, a
infinitesimal “white noise” process having varianced x. Through the rest of the paper we assume that
the kernelf is normalized so that its square integrates to one. For example, the Gaussian moving
average (GMA) with mean zero and variance one can be written as

Z(x) =

∫
f(x − u) dB(u) ≈

∑
f(x − xi)Zi

√
d x, (4)

whereB(x) is Brownian motion,Zi are independent standard Gaussian variables, whiled x is the
discretization step, i.e.∆B(xi) = B(xi + d x) − B(xi) =

√
d xZi, whereZi’s are standard normal

variables. IfdB(u) or Zi are no longer required to be normally distributed, one obtains moving average
processes with non-Gaussian distributions. In this work, we are interested in the case whenZi

√
dx is

replaced byZi

√
νΓi whereΓi is a gamma distributed with shape parameteredx/ν and scale one, so

that V
[
Zi

√
νΓi

]
= dx. In this model the increments are Laplace distributed and thus leading to a

Laplace moving average (LMA) given by

Z(x) =

∫
f(x − u) d Λ(u), (5)

whereΛ(x) is the Laplace motion, cf. [1].
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The processZ(x) is symmetric around zero and the excess of kurtosis isκ = 3ν
∫

f4(x) dx. The
parameterν in Laplace motionΛ(x) can be effectively estimated using the method of moments that is
discussed in detail in [11]. Namely, if̂κ is the sample excess kurtosis, then ifκ̂ > 0:

ν̂ =
κ̂

3
∫

f4(x) dx
, (6)

and zero otherwise. Note thatκ = ν = 0 corresponds to the limiting case of Gaussian moving average
process, since asν tends to zeroZ(x) becomes a GMA process.

A LMA (5) normalized so that it has mean zero and variance one is defined by its fourth moment
and the kernel functionf . Estimation of the kernel is not an easy task in general but for symmetric
kernels it reduces to estimation of the covariance functionor spectrum of the process. Namely, if the
kernel is symmetricf(−x) = f(x), i.e. the road profile characteristics do not depend on the direction
one is driving on a road, then the spectrumSZ(ω) of Z(x) defines uniquely the kernelf since

SZ(ω) =
1

2π
|Ff(ω)|2,

whereF stands the Fourier transform, and for symmetric kernels their Fourier transform is given by

Ff(ω) =
√

2π SZ(ω). (7)

The simplest and most straightforward way of simulating a LMA is to first simulate the increments
of the Laplace motion over an equally spaced grid and then to convolve them with the kernelf(·) as
described next.

Increment based convolution algorithm for simulation of LMA
1. Pickm, anddx so thatf(·) is well approximated by its values on

−m dx < . . . < −dx < 0 < dx < · · · < m dx.

2. Pickn ≫ 2m + 1 in order to simulate then − 2m values of the LMA processZ at frequency
dx−1.

3. Simulaten identically and independently distributed (i.i.d.)Γ(dx/ν, 1) random variables and
store them in a vectorG = [Gi].

4. Simulaten i.i.d. zero mean standard normal random variables and storethem in a vectorX .

5. ComputeY = f ∗ (
√

ν G · X), where
√

ν G · X = [
√

ν Gi · Xi], where∗ denotes the operation
of convolution and the simulatedn − 2m values of

∫
f(x − u) d Λ(u) are obtained fromY by

discarding its first and lastm values.

4 The hybrid model

In practice Gaussian modeling is often used to model “undamaged” road surface to which one is adding
potholes and other type irregularities. Since such an approach is physically appealing, we propose to
alter the LMA model so that it will resemble this general scheme.

More precisely, the normalized (mean zero, variance one) road profileZ(x) is written in the form

Z(x) = pZ0(x) +

N∑

i=1

Zi(x), p ∈ [0, 1], (8)

whereZ0(x) is the zero mean variance one Gaussian process having spectrum SZ , while Zi(x)’s are
taken from a jump process representation of LMA described inthe Appendix, Eq. (12).
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Figure 4: Top:Gaussian componentpZ0(x), p = 0.75, of the hybrid model;Middle: “irregular”
component

∑N
i=1 Zi(x); Bottom:the hybrid model which is the sum of the two – this is the same asin

Figure 2 bottom.

The kernel functionf used inZi(x), i ≥ 1 is computed using (7), whileSZ used inZ0(x) is
chosen to be MIRA spectrum (2), defined by three parametersw1, w2 anda0. One can interpretw1

as the long wave irregularity of the road whilew2 reflects the state of deterioration of the road sur-
face. The parametera0 is chosen in such a way that the zero order spectral moment ofSZ is one, i.e.
2π

∫
∞

0 SZ(f) df = 1.

The parameterp in (8) can be used to defineN . Namely, from the Appendix, Eq. (13) we have

V

[
N∑

i=1

Zi(x)

]
≈ 1 − e−Nν/L.

Hence

N ≈ −2
L

ν
ln p.

The “added” irregularities has the shape of the kernel function f which which contains both long-
and short- wave component. The locations of irregularitiesare uniformly distributed over the inter-
val [0, L]. The amplitude is random. Note that 4 parameters are needed to define the hybrid model
(not counting the mean and standard deviation that have to beused for normalization), while the non-
homogenous Gaussian model, presented in Section 2, requires 9 parameters. In Figure 4, a simulation
of the hybrid method withp = 0.75 is shown. The algorithm that has been used for this purpose is
presented next.
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Convolution algorithm for simulation of
∑N

i=1 Zi(x) in (8).
1. Pickdx so thatf(·) is well approximated by its values on

−mdx < . . . < −dx < 0 < dx < · · · < m dx.

2. Pickn ≫ 2m + 1 in order to simulate then − 2m values of the LMA processZ at the points at
frequencydx−1.

3. PickN ≪ n and simulateN identically and independently distributed variablesWi, Gi. Com-
puteγi =

∑i
j=1 Gj and store variables in two vectors vectorγ = [γi], W = [Wi].

4. SimulateN independent standard normal random variablesXi and store them in a vectorX .

5. Compute a vectorR =
√

ν X ·
(
e−νγ/LW

)1/2
, whereRi =

√
ν Xi ·

(
e−νγi/LWi

)1/2
.

6. Choose at randomN indexes1 ≤ ki ≤ n and define a vectorQ of lengthn, such thatQki
= Ri)

and zero otherwise.

7. ComputeY = f∗Q, where∗ denotes convolution and the simulatedn−2m values of
∑N

i=1 Zi(x)
are obtained fromY by discarding its first and lastm values.

5 Comparisons of the models

In this section we shall employ the three models to estimate the pseudo-damage of the responseY . The
estimation procedure is based on eight measured road surfaces with the total length is about 230 km.
Once the models are fitted to the data the damages they induce are evaluated. These damages relative
to the damage inflicted by the actual road record will be used to compare the accuracy of the proposed
models.

As discussed in the work [3] one needs more than 100 km of homogenous record to have the
statistical uncertainty of the estimated damage to be negligible. The measurements are about 29 km
long in average and hence statistical errors in the damage estimation are not negligible. However long
records are often non homogenous which introduces bias (modeling error). Therefore the choice of the
record length is the trade off between the size of the statistical uncertainties in the estimated parameters
and the possible modeling errors. The life length of components is of order105 km. It is strongly
correlated to the sum of the pseudo damages accumulated during the usage of a vehicle hence it is
desirable that the estimation of the damages is unbiased. This is because the coefficient of variation of
the accumulated damage decreases as the inverse square rootof the driven distance and often can be
neglected relatively to the other sources of uncertainties, e.g. the driver behavior, material properties,
geometry of components. Consequently the accumulated damage can be approximated by the expected
damage which is proper as long as the latter is not heavily biased, see e.g. [3] for more detailed
discussion.

Our approach to bias reduction is through considering shorter fragments of roads for which it maybe
reasonable to assume homogeneity (constant values of parameters) of the models. Then the models are
fitted for each fragment separately. Two different record lengths will be used. First we just consider
the original eight measured records. Obviously shorter records are always possible to define by simply
dividing measurements into shorter blocks. We create the second set of blocks by dividing the eight
records into 5 km long road segments. In this case there will be 44 shorter records in total and the three
models are fitted to each of them.

5.1 Estimation of relative damage

For a measured or simulated road surfaceZ the responseY (t) is computed by means of filtering the
signalsZ(v t), v is the vehicle speed, using the filter with transfer functionH(ω) given in (1). In

7



0 5 10 15 20
0.5

1

1.5

2

2.5

3
k=5

0 5 10 15 20
0.5

1

1.5
k=3

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
k=5

0 5 10 15 20
0.5

1

1.5
k=3

Figure 5: Twenty simulated relative damages (9) for 230 km long road profile, the vehicle speed is 15
m/s; starsDhybr

k , crossesDLMA
k and dotsDnG

k . Left: k = 3; Right: k = 5. Top: The three models
were fitted to the eight measured road blocks;Bottom:The three models were fitted to 44 (each 5 km
long) measured road fragments.

the examplev = 15, and10 m/s. The response of quarter vehicleY (t) is a solution of an 4th order
ordinary differential equation. Since the initial conditions of the system att = 0 are unknown the
Hanning window has been used to make the start and the end of the ride smooth. This is necessary or
otherwise the first oscillation of the response may cause alldamage – the car is hitting a wall. Responses
for measured and simulated roads are then computed using theFFT algorithm. Rainflow rangeshrfc

i

in the signal have been found has been found and the pseudo damage computed according to

Dk(Z) =
∑

(hrfc
i )k,

see [13] for details of this approach. Two values ofk, 3 and 5, has been used. The damageDk for
higher exponent valuek = 5 depends mostly on proportion and size of large cycles, whiledamage for
k = 3, corresponding to crack growth process, depends on sizes ofboth large and moderately large
cycles.

The pseudo-damage is computed for the observed road surfaceZobs, and simulated;ZnG for non-
Gaussian model,ZLMA for symmetrical LMA road andZhybr for the hybrid model. The three relative
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damages are defined by

DnG
k =

D(ZnG)

D(Zobs)
, DLMA

k =
D(ZLMA)

D(Zobs)
, Dhybr

k =
D(Zhybr)

D(Zobs)
. (9)

A model is rejected if the relative damage values are significantly different from the value one.

5.2 Results

In this example about 230 km long measured road surface is used to compare the three proposed models.
First we are using the eight consecutive measurements of different lengths. Since some of the roads are
quite rough the speedv of 15 m/s could be considered as a rather high one. For the eight responsesY the
damages were computed and summed to give the total damage accumulated for the 230 km long drive.
Twenty independent simulations of the total damages have been computed and the relative damages (9)
evaluated for two values of fatigue exponentk = 3 andk = 5. The results are presented in Figure 5,
where stars denoteDhybr

k , crossesDLMA
k and dotsDnG

k . One can see that the the data does not lead
to rejection of the models. The LMA and hybrid model seems to give equivalent results. The most
important statistical characteristics of the relative damages are given in Table 5.2(Left), where means
and coefficients of variation are given. We note that the non-homogenous Gaussian model is closest to
the observed damages. The model requires 9 parameters and some of them are not easy to estimate and
require long measuring records. On the other hand, longer records are more non-homogenous in the
parameters. Thus it may be harder to fit it with a single LMA or hybrid model.

Consequently, shorter records of 5 km, leading to 44 models have also been used. The resulting
relative damage is presented in Figure 5(Bottom). Now one can see that non-homogenous Gaussian
model give significantly too small damages, see also Table 5.2 (Right), while both the LMA and hybrid
model fits damages excellently.

Finally, since for some road surfaces the speedv = 15 m/s is rather high we give for completeness
plots of the accumulated damages for a lower speed of 10 m/s. The plots in Figure 5 and Figure 6
are very similar. These indicate that the LMA and hybrid models perform similarly for a range of
speed. Both are slightly conservative when only 8 longer records are used for estimation and work
exceptionally well when 44 shorter records were used for model estimation.

6 Conclusions

Three models for vertical surface irregularity have been proposed. Comparing to actual road surface
data all three models give satisfactory predictions of relative damages. The non-homogenous Gaussian
model seems to work very well when enough data is available for estimation. The estimation employs
quite complex algorithm described in [6]. The LMA and hybridmodels are equivalent, although the
LMA model uses empirical spectrum while the hybrid model uses the MIRA spectrum. Both models
are somewhat conservative, which is advantageous but requires the accurate estimate of the spectrum

k=3 k=5

method mean c.v. mean c.v.

DLMA
k 1.10 0.07 1.63 0.25

DnG
k 0.91 0.10 1.15 0.36

Dhybr
k 1.14 0.05 1.66 0.21

k=3 k=5

method mean c.v. mean c.v.

DLMA
k 0.95 0.05 1.03 0.23

DnG
k 0.63 0.63 0.7 0.27

Dhybr
k 0.99 0.05 0.96 0.37

Table 1: Mean and coefficient of variation for the relative damages estimated using twenty simulated
data presented in: Figure 5(Top) – the left hand side table; Figure 5(Bottom)– the right hand side
table.

9



0 5 10 15 20

0.7

0.8

0.9

1

1.1

1.2

1.3

k=3

0 5 10 15 20
0

1

2

3

4

5
k=5

0 5 10 15 20
0

1

2

3

4

5

6
k=5

0 5 10 15 20

0.6

0.8

1

1.2

1.4

1.6
k=3

Figure 6: Twenty simulated relative damages (9) for 230 km long road profile; starsDhybr
k , crosses

DLMA
k and dotsDnG

k . The vehicle speed is 10 m/s.Left: k = 3; Right: k = 5. Top: The three models
were fitted to the eight measured road blocks;Bottom: The three models were fitted to the 44 each 5
km long measured road blocks.

to evaluate the kernel function. Finally, the hybrid model seems to work very well when fitted to short
(homogenous) records. It requires only estimates of five parameters (essentially four since the last one,
p or N , can be arbitrarily set to some low, large value, respectively, e.g. in examplesp = 0.75 were
used) which is convenient when one needs to describe the damage variability for longer road records.
The local damage accumulated during 5 to 10 km computed by means of the hybrid model can then be
averaged using long term distributions of parameters.
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Appendix:

Non-homogenous Gaussian model

In the measured road profile sections rougher than normal parts are identified. The parts are classified
as long wave and short wave irregularities. The parameters used for description of the long- short-
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wave irregularity will bei = 1, 2, respectively. From the two sequences (long-, short-irregularities)
two spectrums are estimated

S1(f) =

{
(10a1 − 10a0)

(
f
f0

)
−w1

, f ∈ [0.01, 0.20],

0, otherwise,
, (10)

S2(f) =

{
(10a2 − 10a0)

(
f
f0

)
−w2

, f ∈ [0.20, 10],

0, otherwise,
. (11)

Next for the spectrums the corresponding covariance functionsr1(x), r2(x), say, are computed.
The expected lengthsθi, i = 1, 2, of rougher parts are estimated and the average distances between the
end of an irregularity and the beginning of the nextµi are found. Here the average distance between the
irregularities isµi + θi. We turn next to simulation algorithm of the non-homogenousGaussian road
roughness model.

Simulation of non-homogenous Gaussian profile of lengthL
1. Simulate a homogenous Gaussian processZ0(x), 0 ≤ x ≤ L, with spectrumS0.

2. Simulaten1 independent exponentially distributed variablesUi, Vi having average valuesµ1, θ1,
respectively, and evaluateXi =

∑i
j=1 Uj + Vj . The numbern1 ≥ 0 is define by relation

Xn1
− Vn1

< L ≤ Xn1
or Xn1

< L ≤ Xn1
+ Vn1+1.

3. If n1 > 0 thenith irregularityZ
(1)
i (x), 0 ≤ x ≤ L, is set to be zero forx outside the interval

[Xi−Vi, Xi]. Forx in the interval[Xi−Vi, Xi], the irregularityZ(1)
i (x) is a zero mean Gaussian

process. The covariancer(x, y) betweenZ(1)
i (x) andZ

(1)
i (y) is defined by

r(x, y) = r1(y − x) − R(x)Σ−1R(y)T

whereR(z) = [r1(z + Vi − Xi + dx), r1(z + Vi − Xi), r1(z − Xi), r1(z − Xi − dx)] while

Σ =





r1(0) r1(dx) r1(Vi + dx) r1(Vi + 2dx)
r1(dx) r1(0) r1(Vi) r1(Vi + dx)

r1(Vi + dx) r1(Vi) r1(0) r1(dx)
r1(Vi + 2dx) r1(Vi + dx) r1(dx) r1(0)



 .

4. The short wave irregularitiesZ(2)
i (x) are simulated independently using the steps given above

with µ1, θ1 andr1 replaced byµ2, θ2 andr2, respectively.

5. EvaluateZ(x) = Z0(x) +
∑n1

i=1 Z
(1)
i (x) +

∑n2

i=1 Z
(2)
i (x) if n1 = 0 or n2 = 0 the sums are

omitted.

LMA as a jump process

It is well known that the Laplace motion is a pure jump process, i.e. its increments are sums accumu-
lating jump values only. Therefore, a LMA essentially represents the effects of shocks (impulses) due
to these jumps filtered by the kernel function. Indeed the series expansion of a standard Laplace motion
with parameterν is given by

Λ(x) =

∞∑

i=1

√
νZi

(
e−νγi/LWi

)1/2

1(0,x](Ui), 0 ≤ x ≤ L,

whereWi are i.i.d. standard exponential variables independent of{γi} and{Ui}, Zi’s are independent
standard Gaussian variables,γi is a location of thei-th point in a Poisson process, i.e.γi =

∑i
j=1 Gj ,
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whereGj are independent standard exponential distributed random variables. FinallyUi are indepen-
dent uniformly on[0, L] distributed random variables, cf. [7], [1].

Consequently, the LMAZ(x) in (5) is given by the following series expansion

Z(x) ≈
∫ L

0

f(x − u) dΛ(u) =
∞∑

i=1

√
ν Xi

(
e−νγi/LWi

)1/2

f(x − Ui) =
∞∑

i=1

Zi(x). (12)

Note that in average the termsZi(t) are decreasing withi and the variances form a geometric series

V [Zi(x)] =
ν

L

(
L

L + ν

)i ∫ L

0

f2(x − u) du.

From this we observe that

V

[
∞∑

i=1

Zi(x)

]
=

∞∑

i=1

V [Zi] =

∫ L

0

f2(x − u) du ≈ 1,

where approximation is valid ifx is not in the proximity of either 0 orL. Moreover,

V

[
∞∑

i=N+1

Zi(x)

]
=

∫ L

0

f2(x − u) du
ν

L

∞∑

i=N+1

(
L

L + ν

)i

=

∫ L

0

f2(x − u) du

(
1 − ν

L + ν

)N

≈ e−νN/L,

(13)

where the approximation is forL andN large andx is not in the proximity of either 0 orL.
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