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Abstract

Road sections with high degree of roughness are of spediiest, since these have a significant
impact on vehicle’s fatigue life. The study is focused ortisti@al description and analysis of road
surface irregularities essential for heavy vehicle fatigesessment. The Laplace moving average pro-
cess is proposed to model the surface. It is compared witimthgel proposed in [6] that models a
road surface as a homogenous Gaussian process with MIR&wspeerith added randomly placed and
shaped irregularities. A hybrid model that combines thernvealels is also given. The models are fitted
to 8 measured road surfaces. The accuracy of the modelsissdisd.

Keywords: Road surface irregularity, damage variability, Laplacesing averages, MIRA spectrum.

1 Introduction

This paper presents comparison between different meansdelrthe roughness of road surface. The
methods are compared on eight measured roads of total labgtit 230 km. The measured roads are
of varying quality, ranging from rough gravel and aspha#ide from the north of Sweden to smooth
asphalt roads from the south of Sweden. The signals haverdiff lengths and are scaled to have
variance one and zero mean. Models are intended to be usatignd damage prediction of vehicle
components and hence the most important property of the Ineie capacity to describe variability
of stresses in a vehicle. This is evaluated by employing tigtia filter” to the measured/simulated
road surfaces; i.e. by estimating a response of a simple Infimide truck and comparing the rainflow
damage, see [14], of the responses.

Fatigue damage is assessed by studying a quarter-vehidelitnaveling at constant velocity on
road profiles, see Figure 1. This very simple model cannoixpedaed to predict loads on a physical
vehicle exactly, but it will high-light the most importardad characteristics as far as fatigue damage
accumulation is concerned. The parameters in the mode¢ate siimic heavy vehicle dynamics. The
response is the total force acting on the sprung mass is elg¢Fdt).

Neglecting the possible "jumps", i.e. that a vehicle carséooonstant with the road surface, the
response can be estimated by means of linear filtering ofrtbeuntered road surface. The filter has
the following transfer function
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Assuming that the road is stationary with power spectrabdgb (f), wheref is the wave number
having units nT!, then the responsg, for a vehicle at speed[m/s], has power spectral density given

by
Sy () = L H@)S7 (w/(2m0)).



Symbol Value Unit

sprung mass me 3400 kg
ks 270000 N/m
b “ cs 6000  Ns/m
unsprung mass My 350 kg
ky 950000 N/m
ki ¢ ¢ 300 Ns/m

__——~_ _~road profile

Figure 1: Quarter vehicle model

The vertical road variability consists of slowly changiagdiscape and the road surface irregularity
(roughness). Often one assumes that energyff) for frequenciesf < 0.01 m~! (wavelengths
above 100 meters) represents landscape variability whoes ahot affect the vehicle dynamics and
hence can be removed from the spectiint f). Similarly high frequencieg > 10 m~! (wavelengths
below 10 cm) are filtered out by tire and also are removed ftogrspectrum.

Commonly, stochastic models are used to describe the ramekmof measured road profiles. Vehi-
cle models traveling on road profiles modeled as stationays&ian processes have been extensively
studied (see for example [15] and [12] for some recent st)diglowever, measured profiles are not
accurately described by a stationary Gaussian model. Hs®nes that the actual roads contain short
sections with above-average irregularity. As shown in [&]fsirregularities cause most of the vehicle
fatigue damage.

In this paper three models will be compared. The first one isrelomogenous Gaussian process,
proposed in [6], the second is a homogenous Laplace Moviregaye (LMA) process and the third
one is a combination of the Gaussian and LMA processes whekvill call the hybrid model. For
visual comparison, a sample from each model is presentejird-2 and compared with the actual
road record. The models are presented in the following theedons. In the last section they will be
applied to describe variability observed in 8 measured suathces of total length of about 230 km.
Accuracy of the models is discussed in that section as well.

2 Non-homogenous Gaussian model

In the model that was first presented in [6], one assumes indheé records two types of waves:
short ones with wavelengths between 5 and 0.1 meters andloegywith wavelengths between 100
and 5 meters. The main variability in the road is describedhdyogenous independent Gaussian
processesZél)(t) for long waves aniéz)(t) for short waves. Their corresponding spectra for long
WavesSél)(f) = 10% (f/fo)" ", f € [0.01,0.20], and for short WaveS(()Q)(f) = 10% (f/fo)" "7,

f €1[0.2,10], wheref is the wave number having unitsth These spectra when put together give the
so called MIRA spectrum, see [9], viz.

1070 (f_fo)* ' fe[0.01,0.20],

W)= Yo (£) 7, rep20, @
0, otherwise,

wheref, = 0.2. Here, as suggested in [8])?° is the basic roughness coefficient. The exponent
describe energy distribution between components of wagéhs between 100 and 5 meters, whilg
wavelengths between 5 and 0.1 meters describes state odeteribration.

As mentioned above measured road tracks contain shorbseaiiith above-average irregularity
which cause most of the vehicle fatigue damage. It was fohatthese irregularities occur both for
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Figure 2: An actual record taken fro2dm road sectionTop) and the model generated samples from
fits to this record: Non-homogenous Gaussisecpnd top Laplace moving averagéhfrd top), and
the hybrid modelljottom).

long and short waves. In [8] it is noted that “As a road’s st#teepair deteriorates, a decrease in the
exponentu, is to be anticipated”, i.e. short wave irregularities areated or change their shapes. In
the non-homogenous Gaussian model the irregularitiescauated by adding to Gaussian processes
Zél)(:r) and ZSQ)(x) long and short wave irregulariti@f”(z), Zfz) (x), ¢ > 0, of random shape,
length and location. The road with superimposed irregiideris denoted by (z) and given by

N, N2
Z(x) =Yz (@) + > 2 (@), 3)
1=0 1=0

whereNy, N; are (random) number depending on the length of the road \Aﬁél(processegfl)(x),
Zi(z)(:r), i=0,1,..., are mutually independent.

To avoid discontinuities at the start and end of the rouglices, the added irregularities starts
and ends with zero slope and zero level, see [5] for moreldetairthermore, the location and length
of the sections with added roughness are random. More pigcibe distance between the end of
an irregularity and the start of the next is exponentiallstribbuted. The irregularity length is also
exponentially distributed. The long waves and short wanregularities are added independently. The
model requires knowledge of 9 parameters. For illustragds00 m long road is simulated and plotted
in Figure 3. Some details of the simulation algorithm andrfarf Zi(k)’s are given in the appendix.
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Figure 3: A synthetic (computer simulated) road proffle:), defined by (3), lowest plot, the same as
in Figure 2second topThe first plot is the Gaussian procesg x), the second presents a sum of five
long wave irregularities while the third a sum of short wawvegularities.

3 Laplace moving average model

Roughly speaking a moving average process is a convolufiankernel functionf (x), say with, a
infinitesimal “white noise” process having varianée. Through the rest of the paper we assume that
the kernelf is normalized so that its square integrates to one. For ebertipe Gaussian moving
average (GMA) with mean zero and variance one can be wrigen a

Z(x) = / f( —wydBw) =~ S f(o - 2) 2 Vdz, )

where B(z) is Brownian motion,Z; are independent standard Gaussian variables, whilés the
discretization step, i.eAB(z;) = B(x; + dx) — B(x;) = VdxZ;, whereZ,’s are standard normal
variables. Ifd B(u) or Z; are no longer required to be normally distributed, one olstaioving average
processes with non-Gaussian distributions. In this wokkane interested in the case wi dz is
replaced byZ;+/vT'; wherel'; is a gamma distributed with shape parametérér and scale one, so
thatV [Zz\/y_l“z] = dz. In this model the increments are Laplace distributed and teading to a
Laplace moving average (LMA) given by

Z(x) = / f(& —u) dAw), (5)

whereA(z) is the Laplace motion, cf. [1].



The proces¥ (z) is symmetric around zero and the excess of kurtosisds3v [ f*(z) dz. The
parameter in Laplace motiom\(x) can be effectively estimated using the method of momentsstha
discussed in detail in [11]. Namely, ifis the sample excess kurtosis, theRr it 0:

o~

V= 3 [ fA(x)da’ ©)

and zero otherwise. Note that= v = 0 corresponds to the limiting case of Gaussian moving average
process, since astends to zerdZ(x) becomes a GMA process.

A LMA (5) normalized so that it has mean zero and variance sraefined by its fourth moment
and the kernel functiorf. Estimation of the kernel is not an easy task in general busymmetric
kernels it reduces to estimation of the covariance funatiospectrum of the process. Namely, if the
kernel is symmetri¢f(—z) = f(z), i.e. the road profile characteristics do not depend on tteetibn
one is driving on a road, then the spectrdm(w) of Z(z) defines uniquely the kernglsince

S2w) = o | FF )P,

whereF stands the Fourier transform, and for symmetric kerneis Hwaurier transform is given by
Ff(w) =+/278Sz(w). @)

The simplest and most straightforward way of simulating aALid to first simulate the increments
of the Laplace motion over an equally spaced grid and thewealve them with the kernef(-) as
described next.

Increment based convolution algorithm for simulation of LMA
1. Pickm, anddz so thatf(-) is well approximated by its values on

—-mdzr<...< —dz<0<dzr<--- <mdz.
2. Pickn > 2m + 1 in order to simulate the — 2m values of the LMA proces& at frequency
dz— 1.

3. Simulaten identically and independently distributed (i.i.dl[)(dz/v, 1) random variables and
store them in a vectaF = [G,].

4. Simulaten i.i.d. zero mean standard normal random variables and gtere in a vectorX .

5. Computey = f x (Vv G- X), wherevv G - X = [\/v G, - X;], wherex denotes the operation
of convolution and the simulated — 2m values of[ f(z — u) d A(u) are obtained fronY” by
discarding its first and last values.

4 The hybrid model

In practice Gaussian modeling is often used to model “undgaiaroad surface to which one is adding
potholes and other type irregularities. Since such an a@mprcs physically appealing, we propose to
alter the LMA model so that it will resemble this general stlee

More precisely, the normalized (mean zero, variance ore) profileZ () is written in the form

Z(x) = pZo(x +Zz ),p €[0,1], (8)

whereZy(z) is the zero mean variance one Gaussian process havingwspets, while Z;(z)'s are
taken from a jump process representation of LMA describedemppendix, Eq. (12).
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Figure 4: Top:Gaussian componeptZy(x), p = 0.75, of the hybrid model;Middle: “irregular”
componenEf.V:1 Z;(x); Bottom:the hybrid model which is the sum of the two — this is the samia as
Figure 2 bottom.

The kernel functionf used inZ;(z), ¢« > 1 is computed using (7), whil&z used inZy(x) is
chosen to be MIRA spectrum (2), defined by three parameiers, andag. One can interprei,
as the long wave irregularity of the road whilg reflects the state of deterioration of the road sur-
face. The parametet, is chosen in such a way that the zero order spectral momesy g one, i.e.
27 [ Sz (f) df =1.

The parametep in (8) can be used to defing. Namely, from the Appendix, Eq. (13) we have

N

> Zi(x)

i=1

~1— efNV/L

\Y,

Hence I
N~ —-2—Inp.
14

The “added” irregularities has the shape of the kernel fonct which which contains both long-
and short- wave component. The locations of irregulariies uniformly distributed over the inter-
val [0, L]. The amplitude is random. Note that 4 parameters are needaefine the hybrid model
(not counting the mean and standard deviation that have tsée for normalization), while the non-
homogenous Gaussian model, presented in Section 2, reQuparameters. In Figure 4, a simulation
of the hybrid method witlp = 0.75 is shown. The algorithm that has been used for this purpose is
presented next.



Convolution algorithm for simulation of Zf;l Z;(x) in (8).
1. Pickdz so thatf(-) is well approximated by its values on

—mdr<...< —de<0<dz<---<mdz.

N

. Pickn > 2m + 1 in order to simulate the — 2m values of the LMA procesg at the points at
frequencydz 1.

3. Pick N < n and simulateV identically and independently distributed variabl&’s, ;. Com-
putey; = Z;Zl G, and store variables in two vectors vector= [y;], W = [W;].

4. SimulateN independent standard normal random variaBleand store them in a vectdf.

5. Compute a vectaR = /v X - (e—”V/LW)l/Q, whereR; = /v X - (e"’%/LWi)l/Q.
6. Choose atrandom¥ indexesl < k; < n and define a vectdp of lengthn, such that),, = R;)
and zero otherwise.

7. Comput&” = fx(Q, wherex denotes convolution and the simulated2m values onfvzl Zi(x)
are obtained fronY” by discarding its first and last values.

5 Comparisons of the models

In this section we shall employ the three models to estinfe@seudo-damage of the respohiselhe
estimation procedure is based on eight measured road sanfiéth the total length is about 230 km.
Once the models are fitted to the data the damages they indeieeauated. These damages relative
to the damage inflicted by the actual road record will be usaxpare the accuracy of the proposed
models.

As discussed in the work [3] one needs more than 100 km of hemags record to have the
statistical uncertainty of the estimated damage to be giéigi. The measurements are about 29 km
long in average and hence statistical errors in the damaipesgi®n are not negligible. However long
records are often non homogenous which introduces biaséglingcerror). Therefore the choice of the
record length is the trade off between the size of the sizdisincertainties in the estimated parameters
and the possible modeling errors. The life length of comptsés of order10° km. It is strongly
correlated to the sum of the pseudo damages accumulatathdhe usage of a vehicle hence it is
desirable that the estimation of the damages is unbiasesd iSTbecause the coefficient of variation of
the accumulated damage decreases as the inverse squaoé ttumtdriven distance and often can be
neglected relatively to the other sources of uncertainéies the driver behavior, material properties,
geometry of components. Consequently the accumulatedgkacaa be approximated by the expected
damage which is proper as long as the latter is not heavilyebiasee e.g. [3] for more detailed
discussion.

Our approach to bias reduction is through considering shirdgments of roads for which it maybe
reasonable to assume homogeneity (constant values of ptmeaof the models. Then the models are
fitted for each fragment separately. Two different recordjths will be used. First we just consider
the original eight measured records. Obviously shortesndscare always possible to define by simply
dividing measurements into shorter blocks. We create thergbset of blocks by dividing the eight
records into 5 km long road segments. In this case there eilldshorter records in total and the three
models are fitted to each of them.

5.1 Estimation of relative damage

For a measured or simulated road surfacthe respons&’ (¢) is computed by means of filtering the
signalsZ(vt), v is the vehicle speed, using the filter with transfer functiéfw) given in (1). In
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Figure 5: Twenty simulated relative damages (9) for 230 knglmad profile, the vehicle speed is 15
m/s; starsD*"", crossesD-M4 and dotsD}C. Left: k = 3; Right: k = 5. Top: The three models
were fitted to the eight measured road blodgsttom: The three models were fitted to 44 (each 5 km
long) measured road fragments.

the exampley = 15, and10 m/s. The response of quarter vehidiét) is a solution of an 4th order
ordinary differential equation. Since the initial condiis of the system at = 0 are unknown the
Hanning window has been used to make the start and the end dfithsmooth. This is necessary or
otherwise the first oscillation of the response may caustaatiage — the car is hitting a wall. Responses
for measured and simulated roads are then computed usirki-thalgorithm. Rainflow rangelsff"’

in the signal have been found has been found and the pseudmdaromputed according to

Dir(2) =Y (hI7)F,

see [13] for details of this approach. Two valueskof3 and 5, has been used. The damayefor
higher exponent valuk = 5 depends mostly on proportion and size of large cycles, wi@teage for
k = 3, corresponding to crack growth process, depends on siziestbflarge and moderately large
cycles.

The pseudo-damage is computed for the observed road sufateand simulatedZ™“ for non-
Gaussian model, “*4 for symmetrical LMA road and"¥’" for the hybrid model. The three relative



damages are defined by

D(ZnG) LMA __ D(ZLJMA) hybr __ D(Zhbe)

DnG _Z\Z J D e
k k D(Zobs) ’ k D(Zobs)

D(Zobs) ’ (9)

A model is rejected if the relative damage values are signifly different from the value one.

5.2 Results

In this example about 230 km long measured road surfacedstas®mpare the three proposed models.
First we are using the eight consecutive measurementsfefeift lengths. Since some of the roads are
quite rough the speadof 15 m/s could be considered as a rather high one. For thereigiionse¥” the
damages were computed and summed to give the total damagewaeted for the 230 km long drive.
Twenty independent simulations of the total damages hage bemputed and the relative damages (9)
evaluated for two values of fatigue exponént 3 andk = 5. The results are presented in Figure 5,
where stars denot@},jy’”', crossesDEMA and dotsDP“. One can see that the the data does not lead
to rejection of the models. The LMA and hybrid model seemsite gquivalent results. The most
important statistical characteristics of the relative dges are given in Table 5(Reft), where means
and coefficients of variation are given. We note that the homogenous Gaussian model is closest to
the observed damages. The model requires 9 parametersrapd§them are not easy to estimate and
require long measuring records. On the other hand, longerds are more non-homogenous in the
parameters. Thus it may be harder to fit it with a single LMA gibtid model.

Consequently, shorter records of 5 km, leading to 44 models lalso been used. The resulting
relative damage is presented in FiguréB®ttom) Now one can see that non-homogenous Gaussian
model give significantly too small damages, see also TaBlgght), while both the LMA and hybrid
model fits damages excellently.

Finally, since for some road surfaces the speed 15 m/s is rather high we give for completeness
plots of the accumulated damages for a lower speed of 10 niis. plots in Figure 5 and Figure 6
are very similar. These indicate that the LMA and hybrid megeerform similarly for a range of
speed. Both are slightly conservative when only 8 longeongx are used for estimation and work
exceptionally well when 44 shorter records were used forehestimation.

6 Conclusions

Three models for vertical surface irregularity have beeppsed. Comparing to actual road surface
data all three models give satisfactory predictions oftredadamages. The non-homogenous Gaussian
model seems to work very well when enough data is availallestimation. The estimation employs
quite complex algorithm described in [6]. The LMA and hybnisbdels are equivalent, although the
LMA model uses empirical spectrum while the hybrid modelsue MIRA spectrum. Both models
are somewhat conservative, which is advantageous butresgihie accurate estimate of the spectrum

k=3 k=5 k=3 k=5
method| mean| c.v. | mean| c.v. method| mean| c.v. | mean| c.v.
DEMA | 110 | 0.07| 1.63 | 0.25 DEMA | 095 | 0.05| 1.03 | 0.23
Dp¢© 0.91 | 0.10| 1.15| 0.36 D¢ 0.63 | 0.63| 0.7 | 0.27
D' | 114 | 0.05| 1.66 | 0.21 D" | 0.99 | 0.05| 0.96 | 0.37

Table 1: Mean and coefficient of variation for the relativend@es estimated using twenty simulated
data presented in: Figure(3op)— the left hand side table; Figure(Bottom)— the right hand side
table.
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Figure 6: Twenty simulated relative damages (9) for 230 knglooad profile; starsDZbe, crosses

DEMA and dotsD}“. The vehicle speed is 10 miseft: k = 3; Right: k = 5. Top: The three models
were fitted to the eight measured road blodgsttom: The three models were fitted to the 44 each 5
km long measured road blocks.

to evaluate the kernel function. Finally, the hybrid modsdms to work very well when fitted to short
(homogenous) records. It requires only estimates of fivarpaters (essentially four since the last one,
p or N, can be arbitrarily set to some low, large value, respelgtieeg. in examplep = 0.75 were
used) which is convenient when one needs to describe thegtavaaiability for longer road records.
The local damage accumulated during 5 to 10 km computed bysrafahe hybrid model can then be
averaged using long term distributions of parameters.
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Appendix:

Non-homogenous Gaussian model

In the measured road profile sections rougher than normtd per identified. The parts are classified
as long wave and short wave irregularities. The parametard tor description of the long- short-
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wave irregularity will bei = 1,2, respectively. From the two sequences (long-, short-ileeifies)
two spectrums are estimated

Si(f) = (1oa_1oao)<f_fl)_“”, f € [0.01,0.20], (10)
0, otherwise,

S(f) = (1oa2f1oao)<f_fl)_“’2, f€10.20,10], 1)
0, otherwise,

Next for the spectrums the corresponding covariance fonsti, (z), r2(z), say, are computed.
The expected lengthts, i = 1, 2, of rougher parts are estimated and the average distantvesdrethe
end of an irregularity and the beginning of the ngxare found. Here the average distance between the
irregularities isu; + 6;. We turn next to simulation algorithm of the non-homogen@asissian road
roughness model.

Simulation of non-homogenous Gaussian profile of lengtih
1. Simulate a homogenous Gaussian proégss), 0 < x < L, with spectrumsS.

2. Simulaten; independent exponentially distributed varialllgsV; having average valugs, 01,
respectively, and evaluat¥; = Z;’:l U; + V;. The numbem; > 0 is define by relation
Xp, =V, < L< X, 0r X, <L<X, +Vni1.

3. If ny > 0thenith irregularityZi(l)(x), 0 <z < L, is set to be zero for outside the interval
[X;—V;, X;]. Forz inthe interval X; — V;, X,], the irregularityZi(l)(:z:) is a zero mean Gaussian
process. The covarianeér, y) betweenZi(l)(x) andel)(y) is defined by

r(z,y) =r(y—x) — R@) S 'R(y)"

whereR(z) = [r(z+ Vi — X; + dz), 11 (2 + V; — X;),r1(z — X;),r1(z — X; — dx)] while

r1(0) r1(dx) (Vi +dz) r1(Vi 4 2dx)

5 r1(dz) r1(0) r1 (Vi) r1(V; + dz)
r1(V; + dz) r1(V;) r1(0) r1(dx)
r1(Vi +2dz) 7 (V; + dz) r1(dx) r1(0)

4. The short wave irregularitiegi(z)(x) are simulated independently using the steps given above
with i1, 61 andr; replaced byus, 85 andry, respectively.

5. EvaluateZ(z) = Zo(z) + 31, 21 (z) + 312, 22 (2) if ny = 0 or ny = 0 the sums are
omitted.
LMA as a jump process

It is well known that the Laplace motion is a pure jump pro¢ess its increments are sums accumu-
lating jump values only. Therefore, a LMA essentially regenats the effects of shocks (impulses) due
to these jumps filtered by the kernel function. Indeed thies@xpansion of a standard Laplace motion
with parametevr is given by

0 =S vz (e w1, 0<a<L
=1

wherelV; are i.i.d. standard exponential variables independefydfand{U;}, Z;'s are independent
standard Gaussian variablegjs a location of the-th point in a Poisson process, i®. = Z;Zl Gj,

12



whereG; are independent standard exponential distributed randoiables. FinallyU; are indepen-
dent uniformly on[0, L] distributed random variables, cf. [7], [1].

Consequently, the LMAZ(z) in (5) is given by the following series expansion
L ° 1/2 0
Z(z) ~ / fla—u)dA(u) =Y VU X, (e*w/LWi) fa-U)=Y Z). (12
0 i=1 i=1

Note that in average the terns(t) are decreasing withand the variances form a geometric series

ViZi) = < (Liy)i/oLfQ(x—u) du.

From this we observe that

where approximation is valid if is not in the proximity of either O of.. Moreover,

V

oo L )
=i_21vm1=/0 Ao —u) dum 1,

oo Lo L > I \!
V Zi(x)| = T —u)du—
3 7 | a-u Li_;ﬂ(ﬂv)
L ) y N (13)
:/0 f(x—u)du(l—L+V)
—vN/L

~e

where the approximation is fdr and NV large andx is not in the proximity of either O of..
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