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Abstract 

 
Shape memory alloys (SMA) have been known for over five decades and modeling of their response has attracted 

much attention over the last two decades. Recent increase in the range of applications of these materials has lead to an 
increased focus on modeling their thermomechanical response. Various approaches ranging from macroscopic 
phenomenology to microscopic lattice based methods are being pursued to model SMA behavior. Models ranging from 
simple tools as design aids to complex thermodynamic based models to understand the characteristic martensitic 
transformation responsible for the shape memory and superelastic response exist. In this report, following a brief 
introduction to the SMA behavior and the underlying martensitic transformation, an overview of models for SMAs is 
provided. This is aimed at providing an understanding of the state of the art and also to identify possible future 
directions. In this review, models are classified both on the basis of the approach and the level (scale) of continuum they 
address.  General methodology of each type of approach is presented briefly followed by a review of the models that 
fall under that category. Certain liberties are taken in classifying these models to facilitate understanding and thus the 
present classification is by no means either unique or completely rigorous. Also, while an attempt is made to cover most 
of the approaches, review of all the models that exist in literature is practically impossible. Finally, summarizing the 
literature on models for SMAs, several interesting and relevant problems are identified for possible future developments. 

 
1 Introduction 

 
Shape memory alloys (SMAs) exhibit two fascinating characteristic behaviors, viz., shape memory (SME) and 

superelasticity (SE) or pseudoelasticity (PE).  Hence, they are also classified as “smart materials’ or ‘intelligent 
materials’ or ‘active materials’.  Two broad classes of SMAs exist, viz., thermally activated and magnetically activated. 
The focus of the present review is on the more prevalent thermally activated SMAs. The key characteristic of SMAs is 
the martensitic phase transformation, brought about by temperature change and/or by application of stress. In SMAs, 
Martensitic Transformation (MT), is between a high-symmetric, usually cubic, austenitic phase (A) and a low-
symmetric martensitic phase (M), such as their monoclinic variants. This reversible phase change can be brought about 
by much smaller temperature change compared to conventional phase transformation like solidification. MT is usually 
accompanied by significant changes in mechanical, electrical and thermal properties that render them as prime 
candidates for the development of smart structures and devices. Typical examples of SMAs are NiTi (commonly 
referred to as nitinol), NiTiCu, CuAlZn and CuAlNi. Extensive literature exists that explains the phase transformation 
and associated SME and SE behavior in these materials (Duerig et al (1990), Birman (1997) and Otsuka and Wayman 
(1998), Otsuka and Kakeshita (2002), Friend (2001), Bernardini and Pence (2002a), Ortin and Planes (2005)). SMAs, 
being smart materials, their modeling and applications, in general, require a multidisciplinary expertise involving 
material science, mechanical engineering and electronics.  

In order to facilitate the discussion on constitutive models that attempt to explain the phenomena, it is useful to 
understand the characteristic features of the material behavior. A brief introduction to the material behavior is provided 
here highlighting the SME and SE and the underlying MT.  Different phase transformations that occur are schematically 
illustrated in Figure 1. Depending on the nature of loading, different types or variants of martensites form leading to 
SME and SE. Generally, SMAs exist in a stable high symmetry Austenitic phase ‘A’ above a certain temperature, 
Martensitic start (Ms). Under certain conditions of temperature and stress (to be elaborated later), a transforms to M 
with lower symmetry either in a single step or through and intermediate Rhombohedral phase (R-phase). 
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Abbreviations 

A Austenite 

BVP Boundary Value Problem 

DSC Differential Scanning Calorimetry 

LPM Lumped Parameter Model 

M Martensite 

MT Martensitic transformation 

SE Superelasticity or superelastic 

SIM Stress induced martensite 

SMA Shape Memory alloy 

SME Shape memory effect 

TWSME Two-way shape memory effect 

Mf Martensitic finish transformation temperature 

Ms Martensitic start transformation temperature 

Af Austenitic finish transformation temperature 

As Austenitic start transformation temperature 

 
This transformation is fully reversible and several interesting relevant features of this transformation are discussed 

in next section. A brief overview of the macroscopic features in SMA response viz., the shape memory and 
superelasticity is discussed below. 
 
1.1 Shape Memory Effect 
 

 
Figure 1: Schematic of phase transformation in SMAs; (a)-(b)-(c) is a typical shape memory cycle.  

(a)-(c) under stress cycling represents superelastic cycle; (a)-(c) under thermal cycling represents another shape memory path. 

 
On cooling, below a critical temperature called Martensitic start (Ms), in the absence of applied stresses, austenite 

starts transforming to several variants of the martensitic phase. This crystallographic transformation occurs in a self-
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accommodating manner through twinning, resulting in no observable macroscopic shape change (path a-b in Figure 1). 
The transformation is complete upon reaching a critical temperature, Martensite finish (Mf). Application of stress at this 
stage causes different self-accommodated twins to detwin (path b-c) into more stress preferred variants leading to 
significant macroscopic inelastic strains. For instance, upon tensile loading beyond a relatively small elastic regime, the 
‘M-‘ layers flip into ‘M+’ phase leading to considerable elongation or shape change (typically about 6% macroscopic 
strain). Upon unloading, only a small fraction of this strain is recovered leaving a large residual inelastic strain. Unlike 
plastic strains in conventional materials, this strain can be easily recovered. This is achieved by heating the material to a 
higher temperature (>As) wherein the low-symmetry martensitic phase starts to reconvert to A (path c-a), and the 
inelastic strain is thus recovered (usually almost completely) upon reaching Af. This transformation results in recovery 
of original shape and is responsible for the SME. The ‘memory’ here is referred to the ability of the material to 
remember a high temperature shape and to return to that shape upon heating after subjected to large inelastic 
deformation in low temperature martensitic phase. This is illustrated in Figure 2. The differences in the forward and 
reverse transformation temperatures lead to a hysteretic response. If the strain recovery is constrained, significant 
recovery stresses develop, typically in excess of 200-300 MPa.  Another associated phenomenon is the two-way shape 
memory effect wherein in addition to remembering a high temperature shape, a low temperature shape is also 
remembered and it is possible to cycle the material between these two states without any stress. However, most of the 
applications of shape memory effect involve only the one-way (high temperature) shape memory.  

 
Figure 2:  Shape memory cycle; (a) load path on stress-temperature diagram, A-B-C-D-A show stress-free recovery while F-C-F shows constrained 

recovery (b) stress-strain-temperature response for free recovery cycle. 

 
1.2 Superelasticity  
 

Pure mechanical loading can induce MT when the material is in the austenitic phase. Figure SE1 schematically 
illustrates this effect. Upon loading Stress Induced Martensite (SIM) is directly produced from A leading to large 
macroscopic strains which are recovered by unloading when the temperature is above Af. This is referred to as 
Superelastic or Pseudoelastic effect and is illustrated in Figure 3. Critical stresses at which the forward and reverse 
transformation occurs again illustrate the associated hysteretic behavior. Most of the bio-medical and damping 
applications of shape memory materials exploit this effect. 

 
Figure 3: Superelasticity effect; (a) load path a-b-c-d-e-a on stress-temperature diagram; (b) stress-strain hysteresis response. 
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1.3 Two-way Memory Effect 
 

An associated phenomenon is the Two-Way SME (TWSME) wherein, in addition to a high temperature shape, a 
low temperature shape is also remembered and it is possible to cycle the material between these two states without any 
stress (Perkins (1974)). This is schematically illustrated in Figure 4.  However, most of the applications of shape 
memory effect involve only the one-way (high temperature) shape memory. It may be noted that at times, two-way 
memory is also attributed to the case of constant stress recovery. However, the authors feel that the distinguishing 
features in two-way is the presence of martensite either in a partially or completely detwinned state due to 
internal/residual stresses and not due to the application of (external) stress.  

In order to better understand the mechanisms and associated theoretical aspects that lead to the SME and SE 
phenomena a brief overview of the MT along with the underlying mechanisms and driving forces is provided here.  

 
Figure 4:  Schematic of two-way memory due to partial detwinning caused by internal stresses 

 

2 Characteristics of the Martensitic Transformation in Shape Memory Alloys 
 

Martensitic transformation (MT) which has several fascinating features has been investigated extensively in the 
context of both single and polycrystalline SMAs. Even after nearly four decades of effort, several unresolved and 
challenging aspects in MT make it still an open problem for active research. Thus, various disciplines in materials 
research ranging from molecular dynamics to continuum irreversible thermodynamics at macroscale are being 
employed. A brief discussion on several relevant aspects of MT in SMAs is presented here to facilitate better 
understanding of modeling approaches for SMA response.  
 
2.1 Crystallographic Aspects in MT 

As noted earlier, MT is a diffusionless reversible solid-solid phase transformation occurring by activation and/or 
nucleation and growth of the martensitic phase from a parent austenitic phase. Discussion on several important 
crystallographic features of MT is available in literature (Bhattacharya (2003), Otsuka and Ren (2005), James (1986), 
Otsuka and Wayman, Duerig et al (1990)). For brevity, only an outline of salient aspects is provided here. Generally 
inelastic shear or distortion associated with the crystal lattice is the dominant deformation mechanism with only 
cooperative and collective motion of atoms on distances smaller than the lattice parameters. The characteristic size of 
martensitic plates is very small, typically of the order of few microns. The deformation mode is twinning rather than 
slip (occurring during conventional plastic deformation) of the crystallographic planes which gives it the reversible 
nature. A lattice invariant strain-free plane, also called ‘habit plane’ exists at the interface between the product and 
parent phases. Depending on the alloy, the lattice vectors of the two phases possess well defined mutual orientation 
relationships (the Bain correspondences). 

 

 
 Figure 5:  Different martensitic transformation pathways in NiTi based alloys 
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These bring out the coherency aspects of the two different microstructures and play a critical role in the kinetics and 
morphology of phase transformation process. The absence of diffusion makes MT almost instantaneous and also 
athermal or thermoelastic. Theoretically, the transformation occurs at the speed of sound in the material. However, in 
polycrystalline materials, it is possible that under certain conditions, the transformation occurs at much slower rates 
(Shaw and Kyriakides (1995)).  

Crystallographically several different MT are possible, and in NiTi based SMAs; three different pathways are 
possible as illustrated in Figure 5 (Otsuka and Ren (2002)). Because of differences in crystal structure of the phases, the 
transformation strain(s) also varies. Generally monoclinic B19’ yields maximum transformation strain, followed by 
orthorhombic (B19) with least transformation strain seen in trigonal (Rhombohedral- R) phase. The number of variants 
of the lower symmetry structure that can form from the parent cubic structure is determined by the nature of symmetry 
of the parent structure and the product structure. Hence, even in a single crystal parent, when there is transformation, the 
product is polycrystalline. For instance, in NiTi, 24 monoclinic variants can form from the parent cubic phase. One of 
the important aspects in MT is the arrangement of these multiple variants and the product and parent phases. In the 
absence of stress, these variants form ‘twins’ wherein the lattice strain is self-accommodated such that no macroscopic 
or long-range strain occurs. For instance, pure thermal cycling of SMA under no stress would lead to cyclic 
transformation between the parent austenite and twinned martensites. However, stress biases the type of variant that 
forms (detwins and/or reorients the variant) giving rise to net transformation strain. This is responsible for the SME and 
SE described above. In a single crystal, the transformation strains can be really large (>>10%). However, in 
polycrystalline SMAs, presence of grain boundaries, defects, precipitates etc., influence the morphology of the evolving 
phase leading to higher complexity and heterogeneity. Thus, the reversible macroscopic strains are much less (typically 
5-6% for NiTi). One of the important aspects in SMAs is the dependence of the phase morphology on the deformation 
history of the material; this will be discussed later in this section. This is microscopically related to the ‘memory’ or 
path dependency in the response of material giving rise to hysteretic response. In this context, in polycrystalline SMAs, 
the texture or the orientation of the grains in the material plays an important role in the transformation characteristics 
and hence in SE and SME. Concomitant to MT are significant changes in some of the material properties like modulii, 
specific heat, thermal conductivity, electrical resistivity, which influence the thermomechanical response. 

Issues of compatibility of microstructure (Ball and James (1987)), strain energy associated with lattice distortion, 
transformation strain and the stress that arises due to incoherency and heterogeneity play a vital role in determining the 
evolution of the MT.  Since MT is treated as a first order transformation, notion of order parameter associated with 
breaking of symmetry is used to describe or characterize the transformation. Evolution of the phase can be related to 
‘evolution’ of the order parameter and hence evolution of the inelastic strain associated with the transformation. 
Another aspect that influences MT is the generation, growth and stabilization of dislocations and/or defects in the 
material during transformation. These introduce complexities in the microstructure evolution and influence the 
macroscopic response. The crystallographic aspects outlined above give a brief sketch of the kinematics of MT and 
factors influencing it. In the following, thermodynamics of MT which governs the kinetics and associated aspects is 
briefly discussed. 

 
2.2  Thermodynamics of MT 

 
From the above discussion it is clear that both thermal and elastic energies play a vital role in phase transformation 

in SMAs. Further, there is a strong interaction or coupling between these two energies manifesting as a highly non-
linear and coupled thermomechanical behavior. For instance, even when MT is purely stress induced, it is accompanied 
by exchange of latent heat of transformation. The forward (A M) transformation is exothermic while the reverse 
transformation is endothermic. The amount of latent heat involved depends on the alloy composition and processing 
history. In addition, MT is dissipative in nature involving inelastic deformation. Hence, thermodynamics plays a critical 
role in describing MT and a good amount of literature on this exists (Wollants et al (1993), Shaw and Kyriakides (1995), 
Huo and Müller (1995), Müller and Seelecke (1999), Rajagopal and Srinivasa (1999), Ortin and Planes (2005), Chang 
et al (2006)). Though MT is essentially thermodynamically irreversible (dissipative), both equilibrium (reversible) 
thermodynamics and irreversible thermodynamics are used to investigate MT. A brief outline of some important 
thermodynamic aspects is provided here to facilitate the discussion on modeling of SMAs.  

Kinetics of phase evolution in terms of conditions for onset, direction of transformation (forward A M or reverse 
M A), depending on the nature of loading and the amount of phase evolution for a given load increment is central to 
understanding of MT. In this context, several thermodynamic concepts like free-energy, dissipation potential, entropy 
production and driving force are used extensively to describe MT. Usually, Helmholtz or Gibb’s form of free energy is 
used to explain MT in terms of the relative stability of the parent and product phases. The temperature at which the 
chemical parts of free energies of the two phases are equal is termed as equilibrium temperature (T0). In a defect free 
single crystal, the transformation occurs instantaneously at T0, the direction of which is determined by the sign of ΔT. 
This unstable transformation at the microscopic level manifests as jump in the stress-strain response. The slope of the 
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stress-strain curve during transformation is associated with the interaction between the parent and product phases and 
the thermal equilibrium due to latent heat (Bernardini and Pence (2002b), Chang et al (2006)).  

 
Figure 6:  Potential for A and M phases as a function of temperature. To is the equilibrium temperature.  

Due to friction and other internal factors, additional energy is needed to initiate transformation (undercooling to Ms or superheating to As). 

 
However, presence of defects, grain boundaries etc., alters the transformation temperature requiring either 

undercooling or superheating (Figure 6). Once initiated, the transformation is not self-sustaining (as in an initiation 
controlled process) and additional driving force is necessary for further transformation (propagation controlled process) 
(Rajagopal and Srinivasa (1995)). Additional driving force is needed to overcome friction and other dissipative forces 
that exist due to interaction energy. From a macroscopic perspective, MT is assumed to occur through a sequence of 
metastable states associated with athermal nature of kinetics. Minimization of free energy is used as the criterion to 
determine the state of SMA. For example, cubic austenite transforms into several energetically equivalent, yet 
crystallographically different variants of martensite. This fact is used to construct free energy forms applicable at 
different scales of continuum to model SMA response. For instance Falk (1985) constructed Landau’s form of Gibbs 
and Helmholtz free energies as a polynomial of the order parameter.  

Figure 7 shows the influence of stress on Landau’s free energy parameter (based on Gibb’s free energy). It shows 
two symmetric low energy wells corresponding to the two variants of martensite considered. Instead of the initial 
symmetry in the free energy structure corresponding to different self-accommodating variants (under a stress free 
condition) the direction of applied stress biases the free energy wells leading to the formation of martensites with 
specific orientations tthereby accumulating large macroscopic strain. The isothermal stress-strain response shows two 
stable branches corresponding to the pure phases (A and M). During transformation, equilibrium of the phase mixture 
line gives a line with negative slope (corresponding to fully reversible and dissipation less transformation). Unstable 
branches at different temperatures are identified based on the free energy structure as a function of temperature and 
order parameter (in this case, the strain).  

Thermodynamically, MT in SMAs is classified as either a weak first order or a second order transformation 
(Ehrenfest’s criterion). First order transition requires only continuity of free energy of individual phases at the 

 
Figure 7  Schematic of free energy as a function of strain (order parameter) for a two variant martensite and austenite transformation. 
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equilibrium temperature (T0) whereas the second order transformation additionally requires continuity in gradient of 
free energy at T0. In a regular first order phase transformation like solidification, there is a sharp change in the energy 
parameter with respect to a state variable like temperature. Also, there is long range movement of atoms (diffusion). 
However, in SMAs, though there is no diffusion, significant strains result in sharp change in the gradient of the energy 
parameter. Thus, the transformation in SMAs is displacive in nature and is a weak first-order or second order 
transformation. The transformation usually occurs over a temperature range (Mf < Af) and the start and end 
temperatures are affected by the stress. Generally, the transformation temperatures increase almost proportionately with 
stress. Further, the difference between the start and the end temperatures of martensitic and austenitic phases are 
approximately same. The interdependence of transformation temperature and stress is usually expressed using the 
Clausius-Clapeyron relation, in this context given by, 

0 0 0

d H

dT T

σ η
ε υ ε

−Δ −Δ
= =

Δ
 

where, σ is the stress, ΔH, the change in enthalpy due to transformation and ε0, the total inelastic strain, υ0 is the molar 
volume, Δη, the change in entropy due to transformation. Usually the stress-transformation temperature relationship is 
obtained by conducting physical experiments.  

The athermal aspect of kinetics in MT implies that, in general, the process depends on the instantaneous temperature 
(or stress) and not on the sweep rates of these driving parameters. This implies a certain rate-independence in MT. 
Apparent rate effects seen in macroscopic response like changes in shape of hysteresis due to rate of the loading 
parameter is more due to the latent heat effects associated with phase transformation. Due to unstable (metastable) 
nature of transformation, thermodynamic formulation based on equilibrium approach is useful only in bringing out 
some essential aspects of transformation. Heat transfer, diffusion and propagation effects that are not accounted for in 
the equilibrium approach are to be considered in order to fully describe the thermoelastic behavior.  

 
2.3 Memory in MT 

Path dependency in MT is attributed to the (rate of) entropy production in these materials. A suitable notion of 
‘memory’ or information about the evolution for the load history within that transformation zone is essential while 
defining the kinetics under arbitrary loading. Ideally, due to history dependency, to predict the instantaneous state of the 
material during transformation, the information about the entire load-deformation history is essential. In order to capture 
the history dependency, suitable state variables are introduced into the free energy function. However, under arbitrary 
thermodynamic loading, definition of memory poses a significant challenge. Another aspect adding to the complexity is 
that the nature of memory changes during transformation history over many cycles. The response for arbitrary 
thermomechanical loading manifests as: 

• Shakedown or training or stabilization of material (stability in the hysteretic response) 
• Incomplete transformation (partial and inner hysteresis loops). 

 
2.4 Stability in Material Response 

An important aspect that governs the hysteretic response is the stabilization of the material behavior under cyclic 
thermomechanical loading. Under repeated loading, the material behavior is said to be stable, if the hysteresis for each 
load cycle is stable (shows no drift). Else, the behavior is said to be non-stabilized and this could typically manifest as 
remnant strain and/or stress at the end of each cycle, which could accumulate during subsequent cycles (ratcheting 
response). This leads to non-closure of hysteresis loops. Stability is desirable from a device or an application 
perspective and hence special thermomechanical treatments are imparted to the material to achieve the same. For 
instance, dislocations and defects are deliberately introduced and grown through thermomechanical process (Lin et 
al,.1991; Liu and Tan, 2000; Otsuka and Ren, 2005; Feng and Sun, 2007) to obtain desired levels and repeatability of 
SME and SE. Factors influencing stabilization are the load levels, history and number of cycles at the given load level. 
Due to history dependency of the material response, stability is observed only under loads ‘not greater’ than the 
previous maximum load levels. For higher loads, a certain number of additional cycles are necessary before 
stabilization occurs. Such transformation behavior can be interpreted as ‘imperfect memory’ which needs multiple 
cycles to become ‘perfect’.  

 
2.5 Partial and Inner Loops 

Load reversals before complete transformation lead to partial and internal or sub loops. These are complex hysteresis 
phenomenon that affects not only the material behavior but also the functional or device level behavior. Unlike MT 
associated with complete transformation, partial cycles have not been investigated in detail and several open issues 
relating to them exist; for instance, the nature of these loops (shape of these loops with respect to the outer or major 
loop). Aspects like MT with regard to return point memory and sink point memory (Huo and Müller (1993)) depicted in 
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Figure 8 is yet to be clearly understood (Seelecke and Müller (1999), Ortin and Planes (2005), Matsuzaki et al (2002), 
and Kishorekumar et al (2007)).  

 
Figure 8:  Different inner or partial loop behavior; (a) return point memory behavior in a commercially available NiTi;  

(b) Schematic sink point behavior. 

 
Another aspect discussed below to facilitate discussion on modeling is the essential characterization of SMAs. 

While extensive literature exists on this aspect (Shaw and Kyriakides, Sittner et al (2000), Duerig et al (1990)), only 
essential aspects of this are briefly presented here. 

 
2.6 Macroscopic Characterization of SMAs 
 
2.6.1 Differential Scanning Calorimetry   

Differential Scanning Calorimetry (DSC) is a thermo-analytical technique that is often used to characterize 
thermally induced stress-free transformation in SMAs. ASTM F2004 provides a standard procedure to conduct the tests 
and report the results. In DSC, essentially, the difference in the amount of heat required to increase the temperature of a 
small quantity of the sample (about 10 mg) and the reference are measured as a function of temperature. Both the 
sample and reference are maintained at nearly the same temperature during thermal cycling over the entire 
transformation temperature range at a typical rate of 10 oC/min. A typical output from DSC test on SMA with and 
without R-Phase in terms of  heat flow rate versus temperature is shown in Figure 9. From these, the transition 
temperatures and the enthalpy of transformation (∆H) associated with M A (heating) and A M (cooling) 
transformations are determined. ∆H is measured as the area under the transformation peaks during the heating and 
cooling cycles.  A more sophisticated test is the modulated DSC that can differentiate both the reversible and 
irreversible components of heat flow (Brantley et al (2002)). This is useful to resolve multimode transformations or 
other second order effects. 

 
Figure 9:  Heat flow vs temperature trace in DSC for SMAs (a) without R-phase and (b) with R-phase. Transformation temperatures are identified by 

drawing tangents as shown. 
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2.6.2 Stress-strain-temperature tests 
 
Although DSC is an excellent experimental technique to obtain the SMA transition temperatures, it is suitable only 

under stress free condition. In order to characterize the thermomechanical hysteresis of SMAs, an experimental 
technique to study the material behavior under heating and cooling under a constant stress is required. Generally, two 
types of tests are frequently employed for this purpose.  

1. Constant stress thermal cycling (iso-baric test) 
2. Constant temperature mechanical cycling (isothermal test) 

Several important material parameters like moduli, total transformation strain (both one-way and two-way), and 
Clausius-Clapeyron relation are estimated from these tests. This information is used to obtain the phase diagram 
(discussed in detail in next section). 

 
2.6.2.1 Isobaric tests 

 
On either the tensile coupons or wires, constant stress is applied and the SMA is thermally cycled between the 

martensite and austenite conditions. This experiment is usually conducted with SMA under a dead weight or in a UTM 
under constant force mode. The rate of heating and cooling is kept sufficiently low (order of 5 oC/min). In this case, 
SMA shows a hysteretic strain-temperature (ε-T) response. A typical ε-T hysteresis response is plotted for a given stress 
level as shown in Figure 10. It is not always easy to identify the transformation temperatures from this plot. For 
engineering purposes, usually, tangents are drawn to the heating and cooling segments (Figure 10) to obtain the 
transformation temperatures (Ms, Mf, As and Af). More analytical methods such as numerical differentiation of the curve 
can be used to identify change in slope or curvatures and associate them with the critical temperature. Another 
parameter that is obtained from this test is the amount of transformation strain.  

 

 
Figure 10:  Strain-temperature hysteresis at 100 MPa stress for a commercially available NiTi. 

 
2.6.2.2 Isothermal tests 

 
Tensile tests involving complete load-unload cycle covering the range of SIM and its reverse transformation are 

often performed to characterize SMA response. The tests have been done in a controlled thermal environment at 
different constant temperatures; the range depending on the transformation temperatures. The strain rates are typically 
small to obtain quasistatic response (order of 0.001 /s). Typical stress-strain curves at a few temperatures are given in 
Figure 11. Critical transformation stresses for both forward and reverse transformation are obtained from this test as 
shown in Figure 11. The transformation strain can also be determined from this test. 
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Figure 11:  Stress-strain response and tangents drawn to determine critical transformation stresses for a commercially available NiTi. 

 
The above discussion briefly introduced salient aspects underlying SMA response to motivate the need to model 

them. It is clear that MT, with its characteristic microscopic features is responsible for the macroscopically observed 
SME, SE and other related effects. This poses a challenge in terms of bridging the continuum scale between the 
microstructure and the bulk form of SMA that is exploited in several different applications. Different continuum scales 
that are of interest are schematically illustrated in Figure 12. However, from an application development perspective, 1-
D form of SMA like bar, rod and more prominently wire are the preferred forms of SMA (Duerig et al 1990). Hence, 
most of the model development also focuses on the 1-D behavior. A broad overview of the modeling literature on 
SMAs is provided here. Recognizing the vastness of literature on SMAs in general and on modeling them in particular, 
this review is by no means exhaustive and is aimed at giving a perspective of the development of models for SMAs at 
different continuum scales. At the outset, it may be mentioned that since the focus here is on thermomechanical 
behavior of SMAs, several aspects related to MT in SMA like the R-phase and changes in resistivity are not covered. 
Further, for convenience, discussion is made based on the development of modeling approaches by groups (wherever 
possible). This is preferred over the chronological basis. A snapshot of both macroscopic and microscopic approaches is 
provided in tabular form for quick comparative assessment. 

 

Figure 12:  Schematic of continuum scales for investigating SMAs 

Macroscale 

Mesoscale

Microscale 
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3. Models for SMA Behavior 
 
A survey of existing models for SMA behavior yields a rich amount of information pertaining to the models aimed 

at capturing the essential hysteretic response in SMAs. As can be readily recognized, it is an uphill task to cover the 
entire gamut of available models for SMAs. A quick glance at these models suggests that a plethora of approaches exist. 
Birman (1994), Bernardini and Pence (2002a) and Paiva and Savi (2005), Smith (2005) and Lagoudas (2008) have 
reviewed models for SMA. Noting the increasing attention of research community over the last decade, a brief review 
of modeling approaches and models for SMA response is attempted here. To facilitate this, some liberties are taken in 
classifying these approaches wherein the classification is made to facilitate understanding, albeit compromising 
scientific rigor. A classification of the models in terms of the scale of the continuum that is of primary focus is 
presented in Figure 13. A broad classification of some of the salient approaches to modeling SMA response is given in 
Figure 14.  

Figure 13: Classification of types of models for SMAs 

 
At this juncture, it may be useful to note that modeling of SMAs is attempted for a variety of purposes and in particular, 
for the following. 

1. Understanding of the underlying physics and mechanisms that cause the observed effects; helps in explaining 
the observed phenomena 

2. Identify the material properties or processing parameters that can yield desired effects in terms of SME, SE, 
TWSME etc., - helps in material development 

3. Predict the material response in conjunction with the smart device or a system that is under investigation- helps 
in application development 

Figure 14: Classification of types of modeling approaches 

Models For SMA 

Continuum Hysteresis

(Length Scale of interest) (input-output)

Microscale Mesoscale Macroscale Multiscale

LPM BVP LPM BVP LPM BVP LPM BVP

I Macroscopic Approach

A Phenomenology 1) Phase diagram 

2) Plasticity

3) Hysteresis

B Free energy 1) Phenomenology i) Phase diagram 

ii) Plasticity

iii) Dissipation Potential

2) Order parameter (Ferroelastic)

3) Nucleation & propogation 

(Sharp or diffuse)

4) Phase field 

II Microscopic Approach

A Free energy

B Micromechanics

C Crystal plasticity

D Lattice dynamics
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Further, different modeling approaches are suited for different purposes. Hence, depending on the objective(s), 
selection of a suitable modeling approach(es) is made. For instance, macroscopic thermodynamic based models are 
suitable for capturing several macroscopic effects and explain the underlying physics. Microscale or lattice scale models 
are suitable for identifying the underlying mechanisms. This also facilitates tailoring the material and/or process 
parameters to arrive at a suitable material composition and processing that yield SMA with desired characteristics. 
However, it may be noted that such a modeling approach could be mathematically quite rigorous and computationally 
intensive. Alternatively, empirical or phenomenological models are relatively much simple and serve as design aids in 
the development of smart devices and systems. However they may not be able to adequately capture all the associated 
effects. In the following review these aspects are highlighted. 

Following the classification in Figure 14, a brief discussion on the macroscopic approach and some of the existing 
models based this approach are presented. 

 
4.  Macroscopic Modeling Approaches 

 
Macroscopic models, as the name suggests, attempt to capture the SMA response at a macroscopic scale (typically 

>100 microns). Suitable assumptions and approximations are made to account for its macroscopic effects. The nature of 
assumptions and the approximations usually characterize a given model.  Most of these approaches use phenomenology. 
The extent and the nature of phenomenology they use form the basis of their classification here. Another important 
aspect is the use of thermodynamic principles. While some models possess such a thermodynamic framework, others 
rely significantly on phenomenology, assuming that the thermodynamic laws are satisfied a priori. In the following, 
models which draw heavily on phenomenology are termed phenomenological models, while those with a significant 
amount of thermodynamic framework are classified as free-energy based models. Another class of models attempts to 
capture the hysteretic input-output response without explicitly accounting for underlying physics. These models use 
different types of hysteresis operators to predict specific stress-strain-temperature response. Macroscopic approaches 
and models based on them are discussed briefly in the following. 
 
4.1  Phenomenological Models 

 
Simplicity, coupled with a fair degree of success in capturing the macroscopic SMA response, at least in a 1-D 

setting, has resulted in large number of phenomenological models. Commonly used phenomenological descriptions are 
discussed herein. Phenomenological models separate out the two aspects of modeling mentioned below.  

• Constitutive stress-strain-temperature relationship due to elastic forces, thermal expansion and phase 
transformation; 

• The driving forces and the evolution (kinetics) of the phase transformation in terms of onset and completion of 
transformation and the rate of evolution of internal variables or phase fractions. 

In general, most of the salient differences in approaches stem from the choice of internal variables and the 
description of their evolution in terms of the thermomechanical driving forces. Some of the frequently encountered 
approaches are discussed below. 
 

Phase diagram based models 
 
Several models for evolution kinetics in SMAs use a σ-T phase diagram to identify appropriate transformation 

(active) and dead zones. A typical phase diagram and its construction was discussed earlier (Secn. 2). The phase 
diagram illustrated in Figure 15 is representative of the equilibrium or quasistatic response in SMAs and that the start 
and finish transformation lines are rate-independent. In each active zone appropriate evolution functions are defined to 
compute the extent of phase transformation. The functions commonly used are linear, cosine or exponential, describing 
either the evolution of martensitic fraction ξ or its rate form (ξ ). Time is only notional since these models describe rate 

independent (quasistatic) evolution. Subsequently, a constitutive relationship that uses the phase fraction describes the 
thermomechanical behavior. Depending on the nature of the phenomena being modeled, the model can have multiple 
internal variables representing, schematically, different martensitic fractions that are of interest. This approach is also 
classified in literature as an internal variable based approach. While most of these models are 1-D in terms of 
uniaxiality of stress and strain, some 3-D models exist that accounts for multi-axial stress using a suitable equivalent 1-
D driving function. It may be noted that the Cauchy stress is used in the construction of phase diagram. This approach 
leads to simplified models facilitating their use as design tools.  

Anaka (1990) was among the first to use this approach for SMA to study superelasticity with stress induced 
martensitic fraction (ξS) as an internal variable. Analogous to the exponential Koistinen-Marbuger relation, an evolution 
law is deduced in terms of stress and temperature. Further, using strain and temperature as the control variables, a 
constitutive relation was derived for constant material functions.  



 

 

 

Khandelwal et al. / Models for SMA Behavior – An overview of modeling approaches 123

 
Figure 15: Idealized phase diagram for typical NiTi SMA material under uniaxial stress condition showing the dependence of transformation 
temperature on stress and regions with different phase mixtures. L is the load path, [A]- Austenite, [t] – twinned martensite; [d] – detwinned 

martensite. The shaded region represents the region where transformation is said to occur.  

 
To obtain a better fit to the experimental data, Liang and Rogers (1990) modified the phase kinetics to a cosine 

based function. Both Tanaka (1996) and, Liang and Rogers (1990) were successful in capturing the superelastic 
behavior. Based on the broad framework of Tanaka (1990) and Liang and Rogers (1990), Brinson (1993) proposed a 
modified model to also account for the shape memory effect. The distinguishing feature in Brinson (1993) model is 
splitting the martensitic phase fraction into two parts, viz., temperature induced twinned fraction (ξT) and stress induced 
detwinned fraction (ξS). This differentiation of the phase fractions is used to capture recovery stress/strain. One of the 
important simplifying assumption is that the twinned martensite does not contribute to the recovery stress. A phase 
diagram was constructed to describe phase transformation involving austenite and the two martensite variants. To 
describe the constitutive behavior, the constitutive model with Voigt type non-constant material functions are used. 
Prahlad and Chopra (2001) and Brinson and Huang (1996) provide a comparative assessment of these models. In these 
models the kinetics is given in the piecewise integrated (or algebraic) form for the phase fraction(s). Wang et al (2006) 
proposed a model for materials wherein the detwinning transformation boundaries also has non-zero slopes (negative 
slope for T< Ms). They modified the kinetics proposed by Brinson (1993) to capture the temperature dependence of the 
detwinning stress. It may be mentioned that Brinson (1993) model has been used widely for modeling SMAs. Further, 
Buravalla and Khandelwal (2007) proposed modified material definitions which yield consistent rate form of 
constitutive equation for the Brinson (1993) model. The kinetics for the co-evolution zone (Figure 15) where austenite 
transforms into both twinned and detwinned martensites as given by Brinson (1993) needed appropriate constraints to 
obtain physically admissible volume fractions. This is addressed independently in Chung et al (2007), Gao et al (2007) 
and Khandelwal and Buravalla (2008). Buravalla and Khandewal (2008) show that the rate form of kinetics inherently 
has appropriate constraints that cater to co-evolution zones. The rate form of kinetics for SMAs follows from the 
analogy of flow-rule in rate independent plasticity. Models that follow this approach are described below. 
 
4.1.1 Plasticity based models using phase diagram  

 
A more consistent thermodynamic description relates the rate of entropy production to ξ rather than to ξ. Thus, it 

may be more suitable to assume a functional form ofξ . In conjunction with the phase diagram, the notion of flow rule 

in rate independent plasticity is generalized to describe the kinetics in the rate form (ξ ). Lubliner and Auricchio (1996) 

present a generalized plasticity based model for single variant MT, capable of simulating SE. Auricchio and Lubliner, 
(1997) extended this by considering two internal variables representing multi-variant (similar to twinned martensite) 
and single variant (similar to stress-induced) martensite. In order to consider multi-axial state of stress, a Drucker-
Prager type of loading function is employed by Auricchio et al (1997). They present an algorithm to solve the 3-D BVP 
involving momentum balance equation and illustrate the effect of stress multiaxiality through several case studies for 
superelastic response. However, this algorithm is limited to the stress-induced single variant transformation and hence is 
not suitable for SME. To facilitate the implementation of this constitutive model in a displacement based finite-element 
approach, Auricchio and Sacco (1999) give a strain based flow-rule with linear kinetics.  
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Table 1. Summary of macroscopic phenomenological models 

Evolution kinetics 

Representation Model 
Model for 

Elastic 
Modulus Form Nature 

Functional 
description 

Inner/partial 
loops 

Twin / 
Detwin 

distinction 

Tanaka (1985) 
E=EA=EM 

 
Algebraic Global Exponential No No 

Liang and Rogers (1990) 
E=EA=EM 

 
Algebraic Global Cosine 

Compression 
model 

No 

Brinson (1993) Voigt Algebraic Global Cosine 
Compression 

model 
Yes 

Ivshin and Pence (1994) Reuss Rate Global 
General  

tanh 
Compression No 

Boyd and Lagoudas (1994) Voigt Rate Global Exponential No No 

Bekker and Brinson (1998) Voigt Algebraic Local Cosine Yes No 

Govindjee and Kasper (1999) Voigt Algebraic Global Linear Yes No 

Aurrichio and Lubliner 
(1997) 

Aurrichio and Sacco (1999) 

Voigt and 
Reuss 

Rate Global Exponential Yes Yes 

Wu and Pence (1998) Reuss Algebraic Local Cosine Yes Yes 

Chenchiah and Sivakumar 
(1999) 

Voigt Algebraic Local exponential No No 

Matsuzaki  ( et. al. 2002 Reuss Algebraic Global Polynomial Priesach Yes 

Ikeda et. al. 2004 Reuss Algebraic Global Exponential 
Shift-skip 

Model 
Yes 

 
An iterative scheme is necessary to translate a given temperature and strain increment into the equivalent stress-

temperature loading that is used with the stress-temperature phase diagram. Auricchio (2001) proposed a robust return 
mapping algorithm incorporating finite strains in a single variant MT. This is implemented in a finite element 
framework to study SE. Typical SE applications like orthodontic wires are modeled using this approach. Auricchio et al 
(2003), modeled the effects of training and TWSME by introducing an additional empirical variable called, addition 
irreversible residual martensite. This is defined as a material parameter, representing the ability of the material to be 
trained and is used to scale the transformation strain during cycling (shakedown) and to capture the evolution of two-
way strain.  

Several enhancements to the phase diagram based approach exist. For instance, the phase diagram shown in Figure 
15 can also be extended to consider compressive stress (Gao et al (2001)). Further, to account for stress multi-axiality, 
Brocca and Brinson (2002) proposed a model based on the habit plane or microplane theory. Using the notion of 
microplanes at a macroscopic level, they deduce a form for macroscopic transformation strain due to 3-D loading 
employing a modified 3-D transformation onset criteria. As a summary, some of the salient aspects of 
phenomenological models are listed in Table 1. 

 
4.1.2  Phase diagram based models for arbitrary loading  

 
Most of the models reviewed above are applicable to cases wherein the transformation is monotonic and complete. 

In cases where the loads are arbitrary, partial and/or inner hysteresis loops may occur and hence suitable memory 
parameters are necessary to capture them. Bekker and Brinson (1997) recognize the need for models capable of 
predicting SMA response under arbitrary thermomechanical loading. They introduce the notion of switching points to 
incorporate memory into the transformation kinetics. Defining different types of switching points, a given load path is 
discretized into segments where either the transformation occurs (active) or not (dead). They additionally associate the 
concept of distance of a point on the load path from a reference point (called the base-point) to determine the extent of 
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transformation. For each active segment, local kinetics are defined to describe evolution of ξ. A scheme to construct 
global kinetics for loading involving different regions of phase-diagram using the local kinetics is presented. Bekker 
and Brinson (1998) later extend this model and present three different algorithms viz., Y-Algorithm, Z-Algorithm and 
YF-Algorithm, based on different ways in which the distance information is used to determine the transformation. They 
have studied a few specific types of arbitrary load cases and have highlighted several effects that could be predicted 
using their model. It may be mentioned that for certain types of cyclic loading the model predicts unlimited ratcheting 
(refer Figures. 8 and 13 in Bekker and Brinson, 1998). This is not usually seen in many polycrystalline SMAs which 
exhibit either a limited (non-stabilized) or non-ratcheting (stabilized) response. Recently, Gao et al. (2007) used the Z-
Algorithm to obtain a finite element implementation of the Bekker and Brinson (1998) model.  

Govindjee and Kasper (1999) introduced a memory parameter in terms of the extremum value of ξ already achieved 
in the current active zone. The choice of maximum or minimum is made depending upon the transformation zone. The 
memory is ‘erased’ when the path enters the reverse transformation zone. This is adequate only for a single variable 
(either only stress or only temperature) loading and linear kinetics. If the kinetics is nonlinear, additional memory 
parameter(s) like the associated values of (σ, T), corresponding to extremum of ξ for the load history within the 
transformation zone becomes necessary. This would then be like a ‘Restart’ switching point in Bekker and Brinson 
(1998) model. The rate based kinetics proposed by Auricchio and Lubliner (1997) is more suitable and simple to 
implement and can be used for predicting response under arbitrary loading. The concept of switching points is implicit 
in the rate form of kinetics. However, even this model can predict unlimited ratcheting for certain certain types of 
loading such as repeated excursions between active and dead zones. 

Recently, a simple distance based algorithm for describing kinetics for arbitrary loading in a phase diagram setting 
is proposed by Buravalla and Khandelwal (2008). In this work, discussing the importance of appropriate memory in the 
kinetics, they introduce suitable memory parameter, defined as the distance of a point on the load path inside the 
transformation zone from the finish boundary, to capture the extent of transformation under load excursions. This 
information is used to stipulate additional transformation conditions which prevent spurious evolution. The notion of 
fading memory (Coleman (1964)) is used to alter the memory parameter during stabilization. Limited validation of this 
approach is provided for stress induced transformation under arbitrary mechanical loading. The approach presented 
above is shown to involve reduced ‘book-keeping’ compared to other existing phase diagram based models for arbitrary 
loading.  

Depending on the alloy composition, processing and load-deformation history, SMA exhibits different types of 
hysteresis that lead to different types of phase diagrams.  One of the characteristic features in phase diagram based 
models is the nature of Clausius-Clapeyron relation, given by the slope of the transformation boundaries. It may be 
noted that usually the slopes of the start and finish boundaries (Figure 15) are assumed to be same, though they are 
different for martensite (CM) and austenite formation (CA). In a polycrystalline case, apart from the stored elastic energy, 
the interaction energy plays a significant role in determining the onset of transformation. The interaction energy, rate of 
dissipation, and the thermal balance associated with the latent heat of transformation determine the nature of hardening 
and hence the finish transformation boundary. In principle, for polycrystalline SMAs, depending on the nature of 
interaction energy and dissipation rate, the slopes of start and finish boundaries could be different. Further, even if 
Ms<As for some range of stress, beyond a certain stress, it is possible that Ms>As which reflects as intersection of Ms 
and As lines. Such a phase diagram represents drastically different shapes of hysteresis in the response. Models for such 
complex phase diagrams do not exist in literature. Extension of the existing phase diagram models to such cases could 
be one of directions for further research. 

 
4.1.3 Hysteresis models 

 
Broadly two types of approaches exist in literature that model the complex hysteresis response in SMAs without 

necessarily going into the underlying physics. They are similar to input-output models wherein a suitable transfer 
function is constructed that captures the observed hysteresis between a forcing function and the response variable. Such 
models are commonly used in modeling magnetic and ferroelectric materials and are frequent in control literature. 
Noting several similarities in the SMA response, attempts are made to adopt them for modeling SMAs.  Smith (2005) 
gives a detailed discussion on this approach for modeling SMAs. There are two main types of hysteresis models viz., 

1. Preisach type models 
2. Duhem-Madelung models.  

These models differ in terms of the nature of the hysteresis operator that is used to track the response through a 
series of relays.  

Preisach models follow an integration of the response of individual relays that switch between two fixed states, each 
representing in this case, the type of transformation. Critical driving forces are prescribed for switching in both the 
directions. Though the traditional Preisach models do not have interaction between individual relays, a suitable form of 
interaction between the neighboring relay elements can be prescribed that yields the observed response, v(t) . The multi-
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valued response is captured using the information from the response history. Ortin (1992), Ortin and Delaey (2002) 
have used this approach to capture the SE and SME hysteresis in SMAs. One of the advantages in this approach is the 
facility to model inner loops and return point memory. The Preisach operator P[w] is defined as follows using a linear 
superposition of relay operators. 

∫ ∫
∞ ∞

∞−

+−ℜ=
0

, ,)]([),()( dsdrtvsrwtw rsrs

       (1)

 

where ww((rr,,ss)) is a density function, assumed to vanish for large values of r and s. Rs-r,s+r , is the relay operator, with 
initial values of -1 for s<0 and +1, otherwise. It may be noted that Preisach models cannot account for dead zones in the 
hysteresis models and hence need suitable modifications. Matsuzaki et al (2002) used this approach to model inner 
loops in the SMA response. This is later adopted by Ikeda et al (2004) along with a suitable thermodynamic 
transformation energy barrier concept to develop a shift-skip model.  

Unlike the Priesach operator, Duhem-Madelung models capture the hysteresis using differential equations. In 
general, two differential operators, one for the loading segment and the other for the unloading segment of the load path 
are used to capture the response in an incremental manner. For ferromagnetic type hysteresis three rules exist, viz (refer. 
Figure 16.), 

1. Any curve Г1 emanating from a turning point A of the input-output graph (Figure 16) is uniquely determined 
by the coordinates of A. 

2. If any point B on the curve Г1 becomes a new turning point, then the curve Г2 originating at B leads back to 
point A 

3. If the curve Г2 is continued beyond the point A, then it coincides with the continuation of the curve Г which led 
to the point A before the Г1- Г2 cycle was traversed. 

These rules are used to capture the SMA response. Ivshin and Pence (1994) used this approach to capture the 
hysteresis in SMAs. Using this model they show that the stabilization in hysteresis due to cyclic loading can be captured.  
It may be noted that the YF Algorithm proposed by Bekker and Brinson (1998) is an integrated form of the Duhem-
Madelung model. 

Due to its simplicity, this approach is used in real time control of SMA devices and also to predict inner-loop 
response. However, the approach becomes tedious when effects like TWSME, changes in hysteresis and multiple 
variants are considered. This approach is not amenable to design the material or a system since they do not provide 
sufficient insight into the phase transformation process in the material. Moreover, for materials with more complex 
hysteresis, significant tailoring of the operator may be needed. Lack of physical basis makes this tailoring a challenging 
task. 

Figure:  (HOP) Branching from an arbitrary path showing rejoining after a partial 

loop;(b): Relay R a1,a2 operator 
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Figure 16:  Hysteresis  showing (a) different branches; (b) Relay operator  
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4.2  Macroscopic free energy based models 
 
As briefly discussed in Section 2, MT can be defined using appropriate free-energy function and additional 

thermodynamic notions for dissipative processes. In this approach, a more consistent attempt is made to identify a 
suitable form of free energy or potential that represents the state of the system and introduce the phase transformation 
related effects through either the changes in free energy itself or through generalized constitutive function like 
dissipation potential. The choice of field or state variables determines the type of free energy like, Gibbs, Helmholtz, or 
phenomenological Landau-Devonshire forms.  It may be noted that it is possible to interchange the Gibbs and 
Helmholtz forms using appropriate Legendre’s transforms. In the Landau form, internal variables like an order 
parameter(s) or phase fraction(s) are introduced. Since MT is considered a first order transformation, generally order 
parameters can be directly associated with the transformation strain either at the level of crystal or at the macroscale 
(Falk 1980, Ortin and Planes 2005). To account for the non-local effects like phase fronts, gradient terms are introduced 
either as state variables or used to modify the form of free energy. Table 2 lists the types of free energies that are 
commonly used and associated formalism. In general, the free energy takes the form: 

);,,,( ,
PT
x

PTThMech μμμμφφ =                     (2) 

where, μMech is a set of mechanical state variables (like stress or strain), μTh is temperature, μPT is a set of internal 
variables and μ,xPT is the set of spatial derivatives of the internal variables. 

The fundamental form of free energy is then given by: 

PT
x

PT
x

PTPTThThMechMech dFdFdFdFd ,μμμμφ +++=                                                         (3) 

where, F represents the corresponding generalized forces or work conjugates associated with each of the state variables. 
Necessary restrictions on the choice of constitutive functions using second law of thermodynamics in the form of 
Clausius-Duhem (C-D) inequality are imposed. In the strong form, each of the four terms in the RHS of Eq. 3 is 
assumed to independently satisfy the C-D inequality. Further, due to the dissipative nature of the phase transformation, 
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           (4)

 

In the absence of any phase transformation, the inequality in Eq. (4) reduces to the equality condition (as in 
thermoelasticity). 

The kinetics which tracks the dissipation through the evolution of internal variable(s) during the transformation 
process may be captured in two ways. A simple way is to independently assume a functional form for the rate of 
evolution of internal variables (i.e., μ ) or the evolution of the internal variable itself (μ) such that Eq. (4) is satisfied. 

Alternatively, another potential that dictates the dissipative process in the material called dissipation potential is 
assumed (Huo and Müller (1993), Rajagopal and Srinivasa (1999), Bernardini and Pence (2002b)). Clausius-Clapeyron 
relation is implicit in this potential.  The total derivative of this potential is used to derive the functional form of kinetics. 
For instance, neglecting the second expression in Eq. (4),  

0=Π−PTF            (5) 

where, Π is the critical driving force which will decide the onset or occurrence of phase transformation. The rate form 
in Eq.(4) provide the evolution kinetics. It may be noted that Π could be a function of state variables. In the case of 
Ginzburg-Landau formalism (Levitas and Preston (2005)), the kinetics is derived using the following relation. 

  ;2 PTPTPT BAF μμ ∇+=
            (6) 

where, A and B are material functions. During simultaneous evolution of multiple variants, appropriate constraints 
like conservation of mass and self consistency or St.Venant compatibility are used to fully describe the evolution 
process. 

Several different forms or decomposition of free energy is used in literature. One way of decomposition is through 
the assumption of suitable energy well structure in terms of the internal variables (for instance Falk (1980)). 
Alternatively, a more mechanistic decomposition like that proposed by Fred and Gurtin (1994) and Rajagopal and 
Srinivasa (1999), shown schematically in Figure 17 can be adopted. 
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Figure 17: Schematic of free energy decomposition 

 
The interaction energy or the exchange energy is a function of volume fraction and it usually determines the nature 

of kinetics through dissipation potential. In general, this includes both the bulk form and the surface or interfacial form 
due to inhomogeneities between different phases. Since martensite variants are assumed to have the same modulii, 
usually, the interaction between individual variants of martensite is ignored and only the interaction between martensite 
and austenite is considered. The interaction energy also determines the nature of hysteresis and memory in the material 
response. In realistic polycrystalline materials, the interaction energy could vary with load or deformation history due to 
creation, growth and stabilization of dislocations etc.. Thus, making a suitable choice on the nature of interaction energy 
becomes a daunting task. 

 
Different ways of mechanistic decomposition of free energy lead to different modeling approaches and an overview 

of these is attempted here. The classification given in Figure 14 is used here. A brief discussion on some of the literature 
on macroscopic free energy based models is given below. Table 2 presents a snapshot of the salient aspects of the 
features in these models. 

 
4.2.1 Order parameter based models 

 
As discussed briefly in Section 2.2, Falk (1980) proposed one of the first free energy based model for SMA using 

shear strain in a reference crystallographic plane [110] as an order parameter. Several parallels are drawn between 
comparing MT with ferroelasticity. The observed stress-strain response with stable and unstable branches was used to 
construct a free energy function. A sixth degree polynomial with even powers of strain is used to represent Helmholtz 
free energy as a function of strain and temperature. The choice of even degree polynomial is motivated by the symmetry 
in the crystal structure considered. The stable and unstable branches in stress-strain response are explained in terms of 
the energy wells and condition for stability. Both stress induced and temperature induced transformations are discussed. 
The stress-free transformation temperatures are predicted for a defect-free single crystal. A generalized free energy 
function is presented in terms of non-dimensional parameters (as a special material) and an experimental procedure to 
obtain the material parameters is discussed. A comparison for Au23Cu30 Zn47 SMA is also provided. It may be noted that 
this model does not show hysteresis in the conventional sense.  

 
Levitas and Preston ((2002a), (2002b) and (2003)) have used generalized Landau theory to model SMAs. As a first 

step, a 3-D theory for reversible SIM transformation is presented which is then extended to the transformations between 
the martensitic variants viz., detwinning and reorientation. To model the kinetics, gradients of the order parameter are 
introduced into the free energy to account for interfacial effects (Ref. Eq. 6). The free energy structure is similar to Falk 
(1980).  In addition to the entropy and enthalpy, the activation barrier concept is used to deduce the constitutive 
coefficients in the free-energy polynomial. The curvature of the free energy well is used to stipulate the onset criterion. 
Full 3-D stress-strain tensor is used in the model and the transformation strain tensor has a general nonlinear 
relationship with the order parameters. They discuss the contribution of the linear and nonlinear terms in order 
parameter relating them to the ‘proper’ and ‘improper’ MT. When extending this model to cover transformation 
between the variants, they introduce additional interaction potentials. A cubic to tetragonal transformation is considered 
for investigating thermally induced transformations. An equilibrium phase diagram in terms of deviatoric stresses is 
constructed to illustrate the transformation process. Inclusion of the interactions results in a dead zone in the phase 
diagram. In Part III they explicitly investigate certain microstructural effects like grain size and dislocations using an 
additional potential called alternative potential. They discuss the curvature of the wells in different forms of free energy 
with respect to the stability and grain growth. However, as noted by them, this model does not capture the 
transformation from austenite to twinned martensite. It may be noted that this can be achieved by suitably coupling the 
transformation of twin variants while describing their kinetics. 
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Table 2. Summary of macroscopic free energy based models 
Onset Criterion 

Model 
Form of free 

Energy 
State variables 

Product 
phase 

Variants 

Type of 
Kinetics Nature Derivation 

Falk (1980) 
Landau, Gibbs 

(Explicit) 
(ε, T)  Not specified Fixed G′′ 

Achenbach  and 
Müller (1985) 

Landau (ε, ξ, T) { ξs } Jump condition Fixed G′′ 

Abeyratne and 
Knowles (1993) 

Gibbs and 
Helmholtz 

(σ , ξ , T) 
Or 

(ε  , ξ , T) 
{ ξs } 

Thermally 
activated phase 

transitions 
Fixed 

Driving 
force 

M0 Gibbs (σ , ξ , T) 
{ξi all 

variants} 
Crystallographi

c 
Fixed 

Crystallogr
aphic 

M1 Gibbs (σ , ξ , T) { ξs , ξT } Driving Force 
Varyi

ng 
Dissipation 

potential 

Boyd and 
Lagoudas 

(1994) 
M2 Gibbs (σ , ξ , T) { ξs } Driving Force 

Varyi
ng 

Dissipation 
potential 

Leclercq and 
Lexcellent (1996) 
Lexcellent et al 

(2000) 

Helmholtz 
(notional) 

(ε  , ξ , T) { ξs , ξT } Independent 
Varyi

ng 
Yield 

function 

Bekker and Brinson 
(1997) 

Gibbs (explicit) (σ , ξ , T) { ξs, ξT  } Independent Fixed 
Phase 

diagram 

Bo and Lagoudas 
(1999) 

Gibbs (notional) 
(σ , ξ , etr,η , α , 

T) 

η and  α are 
back and 

drag stress 
respectively. 

Single 
variant of 
martensite 

Independent 

Fixed 
and 

Varyi
ng 

Dissipation 
potential 

Rajagopal and 
Srinivas (1999) 

Gibbs (Explicit) (σ , ξ , T) { ξs } Driving Force 
Varyi

ng 
Dissipation 

potential 
Qidwai and 

Lagoudas (2000) 
Gibbs (explicit) (σ , ξ , T) { ξs } Independent Fixed 

Yield 
function 

Govindjee and Hall 
(2000) 

Helmholtz (ε, ξ, T) 
{ξi all 

variants} 
Crystallographi

c 
Fixed 

KT 
condition 
on Yield 
function 

Govindjee and 
Miehe (2001) 

Helmholtz (ε, ξ, T) 
{ξi all 

variants} 
Driving Force Fixed 

Dissipation 
potential 

Müller and Seelecke 
(2001) 

Helmholtz 
(notional) 

(ε  , ξ , T) { ξs } Driving Force Fixed 
Dissipation 

potential 

Levitas and Preston 
(2002) 

Landau 
(explicit) 

(σ , η , T) 

{ ηi  are 
order 

parameters 
representing  
all possible 
variants  } 

Ginzburg 
Landau 

Fixed G′′ 

M0 Fixed 
Zero 

dissipation 

M1 
Varyi

ng 
Constant 

dissipation 

Bernardini 
and 

Pence(200
2) 

M2 

 
 

Helmholtz 
(Explicit) 

 
 

(ε  , ξ , T) 

 
 

{ ξs } 

 
 

Driving Force 
Varyi

ng 
Varying 

dissipation 
Shaw  (2002) 

 
Hemlholtz 
(Explicit) 

(ε , ε,x  , ξ , T) { ξs } Independent Fixed 
Clausius 

Clapeyron 

Chang  et al. (2006) 
Helmholtz 
(Explicit) 

(ε , ε,x  , ξ , T) { ξ+, ξ- } Independent Fixed 
Clausius 

Clapeyron 

Savi et. al. (2002) 
Helmholtz 
(notional) 

(ε , εp,ξ+, ξ- , T) { ξ+, ξ-, ξA} Independent Fixed 
Yield 

function 

Helm and Haupt 
(2003) 

Helmholtz 
(notional) 

(ε  , ξ , T) { ξs } Driving Force 
Varyi

ng 

Dissipation 
potential 
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Matsuzaki and Naito 
(2004) 

Helmholtz 
(explicit) 

(ε, ξ, T) { ξs } Curve fitting 
Varyi

ng 
Dissipation 

potential 

Aurrichio and Petrini 
(2004) 

Helmholtz 
(notional) 

(ε  ,etr , T) { etr } 
Associative 

evolution law 
Fixed 

Driving 
force/ yield 

function 

Vedantam (2006) 
Phase field 
(Explicit) 

(ε, ξ, ξ,x  , T) { ξs } 
Micro-force 

balance 
Varyi

ng 

Micro-
force 

balance 

Zaki and Moumni. 
(2007) 

Lagrangian (ε, ξ, T) { ξs } Driving force 
Varyi

ng 
Yield 

function 
Panico and Brinson 

(2007) 
Helmholtz 
(notional) 

(ε  , ξ , T) { ξs } Driving Force 
Varyi

ng 
Dissipation 

potential 
       

Popov and Lagoudas 
(2007) 

Helmholtz 
(notional) 

(ε  , ξ , T) { ξs, ξT  } 
Independent 

(Linear) 
Fixed 

Yield 
function 

Kishore Kumar et al 
(2007) 

Helmholtz 
(notional) 

(ε  , ξ , T) { ξs } Driving force 
Varyi

ng 
Dissipation 

potential 

 
 

4.2.2 Mechanistic decomposition based models 
 
Models that use mechanistic decomposition of free energy (Figure 17) are referred to herein as mechanistic 

decomposition based models. They are classified here based on the methodology of arriving at the kinetics. 
4.2.2.1 Dissipation potential based Models 

 
Huo and Müller (1993) were one of the first to discuss the importance of dissipative processes and use the notion of 

dissipation potential to describe the kinetics in SMAs. Hence an irreversible thermodynamic framework is used to 
obtain a macroscopic model for SMAs. The Helmholtz free energy is expressed in terms of the free energies of A and 
single variant M and an additional term related to coherence energy associated with the strain mismatch between the 
phases at the interface. Both SE and SME are modeled including partial and inner hysteresis loops. The notion of 
dissipation-less transformation in single crystals is used to arrive at suitable memory through the introduction of 
additional interaction terms. The phase transformation is obtained by solving the governing equation for isothermal 
process. The Clausius-Clapeyron relation is linear due to the assumption of constant entropy production. In this model, 
the modulus of A and M phases is same, thus leading to a simplified form of interaction energy. Earlier, Achenbach 
(1989) had derived a form for free energy based on the probabilistic argument that the surface energy attains a 
maximum half-way through the transformation. Thus, for the case of single variant transformation, the interaction term 
is taken to be proportional to the product ξ(1-ξ). Several interesting experiments on single crystals of CuZnAl are 
reported in Huo and Müller (1993) showing the nature of partial transformation (partial hysteresis loops). 

Building on the work of Achenbach (1989) and Huo and Müller (1993), Müller and Seelecke (2001) postulate that 
the interfacial energy arising out of coherency mismatch is responsible for the hysteresis. They introduce a form of 
interaction energy using coherency of interfaces and number of interfaces. Using a shear parameter they construct 
Helmholtz free energy for individual phases (A, M+ and M-). Statistical considerations are used to determine the 
number of particles in a given state which gives the extent of phase evolution. The curvature of the free energy well is 
used to discuss the relative stability of phases and kinetics. Apart from the complete transformation under SE and SME, 
they also discuss response involving inner and partial loops. They show that in their model the Clausius-Clapeyron 
relation is, in general, depends on the phase fraction suggesting non-static phase boundaries. They construct phase 
diagrams to explain the hysteresis behavior under different conditions. Postulating different types of equilibrium 
scenarios they describe the plausible equilibrium configurations and associated energy landscape. Both single step 
(unstable) and multiple step (metastable) transformations are discussed. They show that the observed behavior shows 
both metastability associated with the dynamic equilibrium of individual phases and unconstrained phase equilibrium. 
Influence of coherency condition on the forms of the energy landscape is highlighted. The intermediate states between 
the stable A and M branches on the stress-strain response are unstable and could trigger the further phase evolution. 
Treating the evolution as an activated process, they also discuss the non-equilibrium aspects of phase transformation. In 
this context they provide the rate laws for evolution of phase fraction in terms of transition probabilities for the jumps to 
occur on the energy wells. This is also referred to as Eyring model for first order transitions under thermomechanical 
loading. Rajagopal and Srinivasa (1999) extended discussion on the importance of dissipative processes by Huo and 
Müller (1993). They used the concept of multiple natural configurations to describe the kinematics of transformation. 
Each possible lattice structure (that the material is capable of exhibiting) is associated with a natural configuration and 
the material response depends upon the deformation from all these configurations. For a single variant transformation, 
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the macroscopic kinematic response is derived by scaling the maximum deformation gradient with the amount of 
product phase. The transformation conditions are obtained using the notion of driving force for the rate of entropy 
production derived from the dissipation potential. An explicit constitutive equation is provided for the rate at which the 
input power is converted into heat by dissipative mechanisms. The displacement and temperature fields are obtained 
from the momentum balance and the rate of entropy production, respectively. As a special case, they discuss the 
dissipation-less transformation and obtain the ‘trilinear’ stress-strain response. Both complete and partial hysteresis 
loops are discussed. Use of non-dissipative transformation path as a feature that dictates the memory for partial and 
inner loops is illustrated. They state that from a thermodynamic perspective, the memory in the material can be linked to 
a single scalar (like the volume fraction), when the driving force for transformation is zero. They show that the history 
dependency or memory does not affect the free energy (Helmholtz potential) but influences only the rate of dissipation. 
Extraction of model and material parameters from test data is discussed using the experimental data from Huo and 
Müller (1993). Kishore Kumar et. al. (2007) have extended this model to study the behavior of partial transformation 
cycles. Bernardini and Pence (2002b) extended the above approach and proposed  a free energy function which neglects 
the thermal strains and also assumes identical elastic moduli and specific heats for the A and M phases. Hence, for a 
single variant transformation, the interaction energy is taken as a function of the product ξ(1-ξ). Further, the dissipation 
potential / driving force for transformation is obtained using Ziegler-Green-Naghdi approach. Three types of models are 
formulated: 

a) dissipation-free model (model M0) 
b) dissipation function independent of phase fraction (model M1)  
c) dissipation function varying linearly with  ξ (model M2) 

Three types of phase transforming processes are considered: 
(i) prescribed temperature under constant stress,  
(ii) prescribed stress under constant temperature,  
(iii) Prescribed stress in non-isothermal conditions, including adiabatic and convective environments. 

Closed form solutions for these processes using these three models are obtained. The effect of rate of 
thermomechanical loading is discussed in terms of changes to the nature of process and hence on the shape of hysteresis. 
In this paper, attention is paid to the comparison among the various models with respect to the determination of explicit 
expressions for transformation stresses and temperatures, the stress–temperature phase diagram, transformational 
heating, adiabatic temperature change and material parameter identification. 

Boyd and Lagoudas (1996) develop a thermodynamic framework using certain concepts from micromechanics. 
They propose three models for SMA behavior with varying degree of felicity. At the outset, they propose a microscopic 
continuum model with for multi-variant transformation motivated by micromechanics of in-homogenous inclusions. 
Though this model is essentially a microscopic model, it serves as a basis for the development of two simplified models 
for macroscale behavior. The Gibbs free energy is decomposed into the contributions from pure species and the mixture. 
The Eigenstresses and Eigenstrains due to inhomogeneous inclusions contribute to the free-energy due to mixing. 
Treating the transformation between the variants as chemical reactions and using the stoichiometric considerations for 
the rate of these reactions, the kinetics for the evolution of the phases are written. Appropriate constraints like 
conservation of mass are imposed. Following Patoor (1993)1, the kinematics of these reactions is written to obtain the 
transformation strain. Using thermodynamics, the constitutive expressions are deduced. Edelen’s Maximum dissipation 
formalism (Edelen, 1994) is used to define a dissipation potential for the total entropy production due to phase 
transformation and heat conduction. Using the C-D inequality, an expression for rate of entropy production is derived. 
Defining a material parameter representing the threshold driving force, the kinetics for individual phase evolution is 
provided using Lagrange multiplier method. For stable reactions, Kuhn-Tucker conditions serve to maximize the 
dissipation in a rate-independent transformation. Quadratic form of dissipation potential is assumed for each reaction to 
obtain explicit relations for phase fractions.  Using the above framework developed for microscopic scale, two 
simplified models (similar to Huo and Müller (1993)) with three and two species are derived. Assuming constant 
driving force which corresponds to linear kinematic hardening in plasticity, the macroscopic response in SMAs is 
simulated. Isothermal and adiabatic stress-strain response and constant stress thermal cycle response are simulated. This 
approach is extended to model SMA composites.  

 
4.2.2.2 Plasticity based models 

 
Using the “maximum dissipation postulate” of classical plasticity, an analogy between the dissipation potential and 

the rate-independent yield function can be established. Macroscopic free energy models inspired from plasticity utilize 
this fact. Boyd and Lagoudas (1994a, 1994b), Bo and Lagoudas(1999 a-c), Qidwai and Lagoudas (2000) were one of 
the first to propose and utilize this idea. 

                                                 
1 This work is discussed in the next section on microscopic modeling approaches. 
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Lagoudas and Bo (1999) and Bo and Lagoudas (1999a-c) utilized this approach to study SMA response under cyclic 
loading. Effects like stabilization, TWSME and inner loops are modeled and the model is compared with experiments.  
Over a Representative Volume Element (RVE) of a polycrystalline SMA, they decompose the Gibbs free energy into 
elastic and chemical parts. The strain is decomposed into four components, viz., elastic, thermoelastic, transformation 
and the plastic strain. The plastic strain generation and accumulation is due to cyclic loads. Though the plastic strain 
does accumulate over cycles, within each cycle, they assume it to be much smaller than the transformation and elastic 
counterparts and hence are treated to be essentially a constant. The internal stresses due to this plastic deformation 
contribute to strain hardening affecting in turn the transformation driving forces. This is accounted for by introducing 
additional internal variables in the form of back and drag stress. The internal variables in the model are the stress, 
temperature, transformation strain, volume fraction, back stress and drag stress. Explicit expressions for changes in 
Gibbs free energy due to incremental evolution of martensite are derived. Assuming proportional loading and ignoring 
reorientation effects, they parameterize the rate of evolution of all internal variables into single martensitic fraction as 
pseudo-time. For uniform stress and temperature field within the RVE they write a general form of evolution kinetics 
for the rate of evolution of martensitic fraction. This is used to provide the incremental change in free energy as a 
function of incremental change in phase fraction. The interaction energy or mixture energy is expressed as functions of 
back and drag stresses, transformation strain and martensitic phase fraction. The expressions for back and drag stresses 
are first derived for proportional loading and then generalized for non-proportional thermomechanical loading.  
Defining a dissipation potential and using C-D inequality, they derive the driving forces and explicit kinetics for 
martensitic fraction following the procedure used in Boyd and Lagoudas (1996a). The model can account for residual 
stresses due to heterogeneity arising from processing and thermomechanical history by suitably specifying the back and 
drag stress. Further, the contributions to the back and drag stress due to the transformation induced heterogeneity is also 
included. This is decomposed into the strain incoherency due to martensitic variants at the grain boundary and the 
stresses due to transformation Eigen strains. This model is extended for cyclic loading and to include partial and inner 
hysteresis loops. 

Qidwai and Lagoudas (2000) modified the Gibbs free energy structure in the above model by changing the internal 
variables in the model to account for only a single variant of martensite; i.e., the back and drag stresses are not included 
as internal variables. A quadratic asymmetric hardening function for forward and reverse transformation as a function of 
martensitic fraction is given. They investigated several aspects of numerical implementation comparing two different 
algorithms viz., convex cutting plane and close-point projection algorithms. To study multiaxial state of stress, they 
solve BVP for momentum balance in an isothermal setting. Both SE and SME are investigated. Popov and Lagoudas 
(2007) consider two-variant martensite transformation. Motivated by experimental observations, they stipulate different 
transformation temperatures for austenite formation from twinned and detwinned martensite. They extend this to 
modify the phase diagram for five different types of transformation. Following the framework of Boyd and Lagoudas 
(1996a), they provide a free energy structure and a set of generalized yield functions (transformation surfaces) akin to 
Leclercq and Lexcellant (1996)2. Two practically relevant cases involving BVP with simultaneous thermomechanical 
loading are investigated. Initially, constrained cooling of a solid SMA is investigated followed by SMA plate with a 
hole under plane strain conditions are studied to show the efficacy of this model.  

Leclercq and Lexcellent (1996), using the framework of irreversible thermodynamics, propose a macroscopic model 
with two internal variables representing self accommodating and oriented martensite. The inelastic strain due to phase 
transformation is linearly scaled with the stress induced or oriented martensite fraction. Helmholtz free energy with 
these two internal variables, strain and temperature is decomposed into free energy of phases and that due to mixing. 
The interaction energy due to mixing is conceptually similar to configurational energy (Raniecki et al 1992). The yield 
function is derived using the continuity criterion for the free energy, which is also called as method of Lagrange 
multiplier. Further, they stipulate five yield functions, one for each type of phase transformation. Linear kinetic 
equations are then obtained through the consistency condition. Further, kinetics for inner loops is provided based on the 
dissipation-less transformation condition. They extend the model for a nonlinear kinetic description. The predictions 
based on exponential form of kinetics compare well with the experiments. Lexcellent et al (2000) extended this 
approach to model TWSME in SMAs by introducing a term dependent on the thermomechanical training. This 
additional term in the free energy requires additional thermodynamic state variable, conjugate of which represents stress 
due to cycling. Experiments are used to estimate the material parameters and the results compare well with experiments. 

Differing from the above discussed work, Souza et al. (1998) used transformation strain as a state variable instead of 
martensitic fraction and proposed a 3-D macroscopic model using generalized standard material formalism. The state 
variables are elastic strain, transformation strain and temperature. Helmholtz free energy function contains a quadratic 
function of transformation strain, equivalent to the energy associated with configuration and also the work done by 
thermal Maxwell stress (representing the entropy change during phase transformation). An additional indicator function 
which signifies the occurrence of transformation is introduced to track the evolution of transformation strain. Keeping 

                                                 
2 Described under macroscopic models 
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only the transformation strain as the state variable is equivalent to considering single martensite phase fraction. Based 
on the C-D inequality, the driving force is given here in terms of the transformation stress. This is equivalent to a 
generalized thermomechanical yield function. The associated consistency condition provides the flow rule. In this 
model, the Young’s modulus is treated as invariant.  

Auricchio and Petrini (2004a) have used the above thermodynamic formulation and the resulting constitutive 
equation to solve stress and thermal induced phase transformation in SMAs. This approach is different from their earlier 
generalized plasticity based approach discussed earlier. A generalized solution algorithm for thermomechanically 
coupled BVP is proposed. Three dimensional finite element simulations are performed with uniaxial and biaxial state of 
stress and non-proportional loading. Auricchio and Petrini (2004b) have further extended this approach to solve a 
coupled thermomechanical problem on SMA based hybrid composites. 

Panico and Brinson (2007) have used the approach of irreversible thermodynamics to propose a three dimensional 
model which can take into account non-proportional loading. The model is based on the work of Leclercq and 
Lexcellant (1996) and is extended for general non-proportional loads. This is achieved by distinguishing the 
transformation into two types, viz., detwinning and reorientation of martensite along the loading direction. The inelastic 
strain has contributions from the detwinning as well from reorientation, whereas the volume fraction of martensite is 
linked only to the transformation (detwinning) component. An important aspect in this work is the derivation of the 
parameters involved in phenomenological phase diagram from the free energy based thermomechanical yield functions. 
Due to the logarithmic nature of the yield function, complete reorientation is not achieved. Numerical simulations using 
these models show good agreement with the experimental results. It may be noted that derivation of some of the 
parameters associated with the yield function are not explicitly provided. 

Zaki and Moumni (2007a, b) propose a 3-D model introducing two state variables to describe several effects 
exhibited by SMAs. Standard quadratic form of interaction energy is assumed while constructing the Lagrangian for the 
system. Extremum principles are used to derive the state equations. Using the notion of yield surface and flow-rule, they 
describe the kinetics. Orientation effects of the martensitic variants and the kinematic hardening arising due to their 
interaction is shown to influence the slope of the stress-strain response during transformation. They extend this model to 
discuss training or shakedown due to cyclic SE loading by introducing an additional variable to track the irreversible 
martensitic fraction that accrues due to cycling. A SE stent is modeled to discuss the 3-D effects. 

Govindjee and Hall (2000) proposed a macroscopic model using the Helmholtz free energy structure developed by 
Lagoudas and Bo (1998) for three species viz., M+, M- and A. Following Müller and Achenbach (1995), statistical 
methods are used to specify independent kinetics. The phase front velocity is explicitly modeled to incorporate rate 
effects. A BVP with momentum balance equation is solved using predictor-corrector method. Several interesting 
structural problems involving SMAs are solved. Hall and Govindjee (2002) proposed a model for macroscopic behavior 
using Lagrange potential. The interaction energy is used to define the partially relaxed free energy and optimizing this 
over the space of possible volume fractions gives the approximate quasistatic free energy. Crystallographic Bain strain 
is used to obtain macroscopic transformation strain. Kuhn-Tucker (KT) conditions are used to derive the condition for 
onset of transformation. The model includes complete stress and strain tensors and hence has 3-D capability. 

 
4.2.2.3 Phase diagram based models 

 
As noted earlier, Bekker and Brinson (1997) extended the Brinson (1993) model to investigate the influence of 

arbitrary loading on the nature of memory and kinetics. To solve a nonlinear BVP in SMAs using the proposed kinetics 
it is necessary to have a free energy structure. Hence they derive a Gibbs free energy form using heuristics. Coupled 
non-stationary energy balance and quasi-stationary momentum balance equations are solved to obtain the SMA 
response. Three finite difference based numerical schemes using total enthalpy are proposed for the solution of mixed 
BVP. An interesting case wherein a tapered SMA rod is heated via a convective medium with cold isothermal end 
conditions is solved. The varying cross section introduces stress variation which is reflected in non-homogenous 
martensitic distribution. This aspect can be used to investigate propagation of martensitic fronts. Incompressibility 
conditions are assumed to incorporate changes in radial dimensions. Importance of spatial and temporal discretizations 
on the performance of the algorithm is discussed.  

 
 

4.2.3 Dynamic phase transition models 

 
4.2.2.4 Sharp interface model 

 
One of the most cited works on modeling of SMAs is Abeyaratne and Knowles (1993). They were one of the first to 

investigate explicitly the nucleation of a phase and its propagation in SMAs. They introduce the displacement gradient 
as a field and construct Helmholtz free energy function based on trilinear stress-strain relation at fixed temperature. The 
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trilinear stress-strain function is integrated to obtain stress varying part of Helmholtz function. Since strain is used as an 
independent variable, the temperature dependence of strain is brought through specific identity of thermodynamics 
which is equivalent to the Clausius-Clapeyron relation. Nucleation criterion is expressed as a jump or discontinuity in 
the Gibbs free energy. This manifests as a generally non-zero traction or driving force across the interface.  Driving 
traction equation is obtained using the stability criterion similar to C-D inequality. Explicit kinetic relation and 
nucleation criterion are developed. Kinetics developed here has form ś =V(f,θ), based on classical notion of thermally 
activated phase transitions. The velocity ś of the phase boundary is the macroscopic measure of the net rate at which the 
atoms change from the low-strain phase to the high-strain phase and is taken to be the difference betwen the average 
rates associated with the two atomic transitions. This kinetics takes the form of product of error functions and 
hyperbolic sine. This implies that the rate has monotonic increasing nature, unlike that obtained from cosine kinetics for 
the phase fraction. Exploiting the smallness of driving traction due to the quasistatic and reversible nature of the process, 
the kinetics is then linearized in temperature.  The nucleation criterion is derived from Gibbs free energy and the sign of 
the latent heat is used to distinguish the forward and reverse transformation direction. They also discuss how the model 
parameters concerning nucleation can be derived from Ms and As. Finish of transformation depends upon the process. 
They investigate both SE and SME at constant stress. They also show the relationship between the phase boundary 
velocity and driving traction at various temperatures.  

Abeyaratne and Knowles (1997) extended this approach to solve a BVP wherein a CuAlNi SMA single crystal is 
subjected to impact loading.  This is posed as a Riemann problem, which consists of a conservation law together with a 
piecewise constant field having a single discontinuity. It may be noted that the Riemann problem is useful in 
investigating hyperbolic partial differential equations because properties like shocks and rarefaction waves appear as 
characteristics in the solution. It also yields an exact solution to complicated, non-linear equations like the Euler 
equation. They show the relationship between the impact velocity and the phase front velocity for different values of 
impact angles representing different tangential and longitudinal velocities. Abeyaratne and Kim (1997) generalized this 
approach to include effects due to cyclic loading. An additional internal variable is introduced to track the changes due 
to defects that get precipitated during cycling. These defects are shown to ease formation of transformation fronts. 

A time discrete Ginzburg-Landau formalism is used by Wang and Kachaturyan (1996) to build 3-D stochastic 
kinetic field model of ‘improper’ martensitic transformations which explicitly takes into account the transformation-
induced elastic strain. The model is able to predict the major structural characteristics of martensite during the entire 
MT process including nucleation, growth and eventually formation of internally twinned plates. Numerical simulations 
are performed for a generic cubic-tetragonal martensitic transformation in a single crystal ZrO2 which is elastically 
isotropic and homogeneous. The simulation results are in good agreement with experimental observations. This work 
has led to the development of several models for the dynamics of MT in SMAs. 

 
4.2.2.5 Diffuse interface model 

 
Models with sharp interface have computational difficulties in tracking multiple moving interfaces. Hence as an 

alternative, diffuse interface theories are used to investigate the propagation characteristics. As the name suggests the 
sharp jump like interfaces are treated in a weaker set-up wherein the changes in properties are assumed to vary in a 
more continuous and diffuse manner across the phase boundaries. Hence, theories like phase field theory are used. 
Vedantam (2006) proposes a diffuse interface theory for SMA based on the formalism proposed by Fried and Gurtin 
(1994) using an order parameter field which has rapid, but continuous change across phase boundary. Evolution of this 
order parameter is specified through an equivalent Ginzburg-Landau equation. In addition to the strain energy, latent 
energy and exchange energy, the free energy includes gradient energy due to the phase jump. Gradient energy penalizes 
the presence of interfaces. An additional material parameter is introduced as constant of proportionality in the gradient 
energy term, which needs experimental evaluation. Exchange energy reflects the energetic preference for each phases. 
One of the key aspects of this approach is the notion of micro-force which can be treated as generalized force at the 
microscale with following characteristics.  

 
1. Micro-force balance supplements the usual balance laws of linear and angular momentum 
2. Micro-forces are distinct from classical Newtonian forces and perform work against changes in order 

parameters 
3. Micro-force balance supplied with an appropriate constitutive equation provides an evolution equation for the 

order parameter.  
 
For a 1-D SMA rod, momentum balance equation and micro-force balance are coupled and cast as a system of 

nonlinear partial differential equations which is solved using finite difference scheme. The model is able to capture the 
nucleation peak in the stress-strain response. Also, the model can capture effects due to the rate of elongation. However, 
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this model is valid for modeling the pseudoelastic effect only since temperature is only a parameter. Numerical 
simulation for tracking dynamics of phase transition is investigated giving relevant details. 

Shaw and coworkers (Shaw (2000), Iadicola and Shaw (2002) and Chang et al (2006)) have studied the effects of 
nucleation and propagation of transformation fronts. Both experiments and numerical investigations are performed. To 
capture the diffuse interface in polycrystalline SMA wires, a 1-D model with strain gradient as an additional state 
variable is developed. The model is especially aimed capturing the Lüder like transformation bands or propagation 
effects seen in SMAs. Helmholtz free energy is adopted since the experiments are in displacement (strain) control mode. 
The rate of evolution of the phase fractions has been independently assumed. A 1-D coupled BVP in terms of both 
thermal and momentum balance equations are formulated and solved to elicit the SMA response. They discuss several 
aspects that govern the response in terms isothermal and adiabatic effects that alters the nature of hardening. They also 
discuss the influence of nature of interaction energy on the stability. They state that the nucleation in the macroscale 
manifests due to loss of stability in the microstructure. Elaborate experiments on wires are used to show the thermal and 
strain gradients that exist due to transformation and the influence of loading rate on the number and nature of 
transformation fronts. The complexities observed regarding the nucleation and propagation of transformation fronts 
even at relatively low strain rates are discussed. 

A snapshot of the models discussed is presented in Table 2 that summarizes the key aspects in these models. From 
this discussion it is seen that a large variety of approaches exist for modeling macroscopic response in SMAs. Some of 
the models are simple and capable of capturing essential response like SME and SE and are suitable to be used to design 
and analyze specific device-level behavior. 

The models covered in this subsection do not cater to several important aspects of MT in sufficient detail to make 
them flexible for application in wide range of scenarios. For instance predicting the amount of two-way, shakedown and 
partial loops require more sophisticated models. Some of the free energy based models described earlier are suitable for 
such cases. Another way to obtain better description of MT is to model the behavior at the microstructure level. Several 
approaches that attempt to accomplish this are discussed below. 

 
 
 

5 Microscopic Modeling Approaches 
 
As mentioned in Section 2, the length scale of martensitic plates is typically of the order of few microns. Several 

modeling approaches to capture the phenomena at this and slightly higher scales (mesoscale of the order of 10-100 
microns) exist in literature. A brief overview of these approaches is presented here. The reader is reminded that the 
following classification of approaches is only illustrative and not necessarily rigorous or unique. Most of the 
microscopic models have a notion of unit cell or Representative Volume Element (RVE). Suitable assumptions are 
made regarding the nature of transformation (in terms of number of martensitic variants) and suitable volume averaging 
schemes are introduced to capture the overall effect. It may be noted that the martensitic variants introduced into the 
model could be either notional or actual crystallographic variants. Another aspect is that generally, multiple true 
crystallographic variants are considered in the microscale and after analysis, an equivalent single or multiple (reduced) 
variant macroscopic description of the phenomena is provided. This serves as a basis for more meaningful macroscale 
description of the underlying microscale effects, which can lead to a hierarchical framework for model development. 
From a mechanics perspective, usually the two phase mixture is treated as inclusion of the product phase in the parent 
matrix. Further, this inclusion can be treated either simply as a homogeneous inclusion or otherwise. Effective 
constitutive properties are determined using suitable Eshelby-Kroner or Mori-Tanaka approach and solving a BVP.  

Another important aspect is the choice of internal variables and the kinetics for their evolution. Typically, internal 
variables represent some measure of strain at the micro-level in the form of either Bain strains or order parameters. In 
order to determine the strain due to the MT at the microstructure level, kinematics of crystallographic transformation 
like those proposed by Bhattacharya and Kohn (1996) is used. Assuming defect free and small strain conditions, self 
consistency or an equivalent principle like St. Venant condition given below is applied to establish the strain for a single 
crystal as 

;0)( =×∇×∇ Tε  

where, ε is the small strain tensor. The influence of stress is considered in the preferential growth of variant(s).  
A third aspect in the microscale modeling is arriving at suitable free energy structure to derive appropriate state 

equations. Ball and James (1987) have systematically studied the energetics of MT at the microstructure level and the 
methodology proposed by them is usually adopted. To a large extent, the microstructure evolution is governed by the 
nature of interaction between the parent and the product phases like self-accommodation or the lack of it. Models for 
microscale response for SMAs differ due to the differences in the aspects briefly discussed above, like the choice of 
internal variables and the form of interaction energy that is assumed. This also provides a link to the modeling of 
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macroscopic response. An overview of some of the salient models for microscale response of SMA follows. One of the 
key features in the microscale models is that important aspects like texture, defects and locked or irreversible phase 
pockets can be incorporated to investigate their effects on the SMA response at both the micro and macro scales. It may 
be noted that due to strong history dependency, these effects play a significant role in TWSME, shakedown and 
functional degradation. 

 
5.1  Micromechanics Based Models 

 
This class of models considers true crystallographic variants of martensites as compared to schematic or idealized 

variants considered in most of the other class of models. Micromechanics is used extensively to account for the 
behavior of the mixture of phases in terms of inclusions in an elastic matrix. This serves to define the form of 
interaction energy for macroscopic description. 

Patoor et al (1988) proposed a model using transformation strain of a single crystal based on crystallography 
parameters. Instead of using the Eshelby-Kroner approach, a simplified interaction matrix was used to formulate the 
interaction energy. An averaging scheme was subsequently invoked to model the polycrystalline behavior. This model 
can describe SE; however, the simplistic form of interaction energy chosen prevents it from modeling temperature 
induced transformation. This work has lead to development of several microscopic models. 

Following Patoor et al. (1988), Goo and Lexcellent (1997) proposed micromechanics-based Helmholtz free energy. 
Using the framework of irreversible thermodynamics, kinetics and criteria for nucleation and reorientation of 
martensitic variants are obtained. These relationships are applicable for 3-D proportional or non-proportional 
mechanical loading or a combination of mechanical and thermal loading. TWSME is simulated based on the assumption 
that mechanical dissipation of active variants decreases during cycling (training). Simulation results are compared with 
experimental results. A set of general equations are obtained which are used to explain some of the phenomenon. These 
equations are quite complex and no general solution methodology for these equations is proposed. Lu and Weng (1997) 
developed a model similar to that of Goo and Lexcellent (1997) with only one active variant of martensite. Exponential 
form of interaction energy is used which is also used to describe the kinetics. The phenomenological description of 
interaction energy shows some interesting facts about the phase diagram like the nonlinearity in Clausius-Clapeyron 
relation. Relaxing the traditional assumption of constant entropy change during phase transformation, a linear 
dependence of entropy on temperature contributing to the chemical free energy is introduced. They also show that the 
onset transformation stresses could depend on the amount of source phase availability.  

Nicleays et al (2002) have formulated a form for interaction energy for 24 habit plane variants of martensites in Cu 
based SMAs. Presence of self-accommodating variants requires modifications to the form of coefficients of the 
interaction terms between different variants. A detailed discussion of this is given in this paper. 

Sun and Hwang (1993a,b) and Sun et al (1991) proposed a model based on Mori-Tanaka theory. Multiple 
martensitic inclusions are treated as a single variant, ignoring relative orientations. The effective transformation strain is 
derived using concepts from transformation plasticity wherein suitable relation between the local transformation strain 
and an average stress is introduced. The model can account for SE and SME. Reorientation effects are captured by 
introducing another internal variable. It may be noted that local transformation strain is not strictly the crystallographic 
strain and the model is not adequate for complex loadings which combine transformation and reorientation. 

Huang and Brinson (1998) proposed a micromechanics based model for single crystal NiTi SMA. They assumed 
that each martensite plate is formed by a single variant and the resulting wedge like microstructure. Similar to Patoor et 
al (1987), for a RVE with random distribution of variants treated as spherical inclusions, they derive a form of chemical 
part of free energy. Using Eshelby-Kroner approach they derive the interaction energy for multiple variants. The 
interaction energy is taken to be zero for self accommodating variants. The two-variant version of this model is capable 
of capturing both stress and temperature driven transformations. Tension-compression asymmetry is also captured. 
Influence of loading axis on the transformation response is also predicted. Gao et al (2000a,b) extended the above 
model for other SMAs and for penny shape inclusions. Also, all the 24 habit plane variants are considered in CuZnAl. 
They examine both Type-1 and Type-2 twins. If the twin plane normal and the twinning direction are parallel, the twin 
is set to be a compound twin. Type-1 twin is a twin wherein the twin-plane normal is rational and not the twinning 
(loading) direction. Type-2 twin is the case wherein the twinning direction is rational and not the twinning plane. 
Several aspects of crystallographic differences between different variants are discussed. Effects of polycrystallinity are 
investigated by homogenizing the assembly of non-textured spherical grains using self-consistent method. 

Zhang and McCormick (2000a) considered the asymmetric change in free energy between the forward and reverse 
transformation. The change in free energy contains an irreversible component incurred during phase transformation 
associated with plastic deformation. This is included through Eshelby's macroscopic elastic analysis by defining a net 
transformation strain equal to the difference between the crystallographic transformation strain and the associated 
plastic strain. The remnant plastic strain due to cyclic mechanical loading results in a residual stress field. The 
associated residual strain influences subsequent transformation behaviour and provide the driving force for TWSME. It 
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is shown that linking the plastic and elastic component of strain (and associated energy) leads to a self consistent model 
for two variants which can capture SE, SME and TWSME.  This approach is extended to include thermal loading in 
Zhang and McCormick (2000b) by introducing self accommodating variants. Numerical simulations show several 
aspects of shakedown due to cyclic loading like the built up of residual stresses, TWSME and decrease of critical 
transformation stresses. 

Bernardini (2001) used a variational approach to formulate the free energy for SMA with inhomogeneous inclusion. 
On the basis of variational formulation of the problem of behaviour of a linear elastic heterogeneous material with 
prescribed Eigenstrains, macroscopic free energies for SMA are derived. The general structure and the dependence on 
the macroscopic state variables of such functions are discussed and formal expressions in terms of concentration tensors 
are given. In the case of an underlying two-phase microstructure, exact connections between the quantities (Young’s 
modulus) that determine the free energies (macroscopic transformation strain, interaction energy, effective thermal 
expansion tensor) and the effective elastic compliance are derived. Estimates of the SMA macroscopic free energies 
based on Reuss, Voigt and Hashin-Shtrikman bounds for the effective elastic moduli are explicitly calculated and 
compared in the specific case of a NiTi alloy. 

Vedantam and Abeyaratne (2005) used a quartic term in the irreducible Lagrangian strain polynomial in terms of the 
invariant of strain components to formulate Helmholtz free energy for CuAlNi. The strain invariants are like order 
parameters. The continuum kinematics is used to describe of crystal structure change in CuAlNi involving variants of 
the orthorhombic martensite and cubic austenite. This is used along with Cauchy-Born hypothesis to obtain continuum 
free energy. Experiments are used to evaluate the temperature dependent coefficients of the free energy polynomial. 
They also derive the parameterized expression for strain to describe the location of multiple wells in the free energy. 
The stress-strain relation obtained from the free energy is used to investigate the shear in twinning direction. Also, they 
propose a way to obtain appropriate constitutive model for macroscopic SMA behavior. 

Mahapatra and Melnik (2006) proposed a methodology to combine the continuum description of the kinematics of 
microstructure change with the Landau theory. The free energy proposed by Levitas and Preston (2002a,b) is 
augmented with an additional term G0 to take the deformation/ processing history into account. The notion of activation 
barrier is used to arrive at a polynomial structure for free energy in terms of the order parameter. This is derived for the 
case of cubic to tetragonal phase transformation for NiAl. In order to avoid the computational difficulties associated 
with minimization of quasi-convex nature of energy, additional constraints in terms of the compatibility condition for 
microstructure evolution are stipulated. The concept of non-equilibrium thermodynamics and a consistent variational 
approach is used to develop a 3-D finite element procedure which couples the following three governing equations; 

a) Dynamics of phase transition through Ginzburg –Landau kinetics. This includes thermal fluctuations due to 
phonon-contribution. 

b) Energy balance: The Cattaneo-Vernotte equation for energy balance considering thermal inertia. 
c) Momentum balance: Cauchy stress obtained using Cauchy-Born hypothesis 

This mixed variational formulation can be seen as a multi-scale technique since it bridges the information from 
microscale to the macroscale behavior. Numerical case studies are carried out to elucidate both stress and temperature 
induced transformation. Also, the critical transformation temperatures and stresses are evaluated by solving a 3-D BVP. 
The benefit of this approach lies in modeling effects of rate dependent material behavior, initial microstructure and non 
proportional three dimensional loading. 

Guthikonda et al (2007) proposed a sequential laminate type microscopic approach at crystal level which is suitably 
bridged with smeared microscopic model. Stress induced martensite transformation for CuAlNi single crystal is 
numerically simulated. It is shown that different types of martensitic plates form for different loading axis. The shift in 
the preference of martensite plate formation is explained by ‘criss-crossing’ of critical stresses for different plates as the 
transformation progresses. Further, a homogenization technique like Taylor model or Sach’s model is used to predict 
macroscopic polycrystalline SMA behavior. It has been shown that stress induced MT in polycrystalline SMA leads to a 
continuous stress-strain behaviour rather than a piecewise continuous behavior as obtained in some macroscopic models.  
This feature is explained with the major and minor loop formation in hysteretic stress-strain response. 

From the above discussion, it is seen that a distinguishing feature among these models is the way the microstructure 
is modeled viz., true microstructure or an equivalent description based on macroscopic response. Crystal plasticity 
based approach attempts to describe MT using notion of habit plane variants and plastic deformation (or flow) along 
them. Some of the models based on this is discussed in the following. 
 
5.2  Crystal Plasticity Based Models 
 

As the name suggests, these models are based on observed phenomena of plasticity in crystals wherein the 
deformation of a single crystal is determined in terms of possible deformation modes like the number of slip systems 
that exist for the given crystal. In the case of SMAs, due to the nature of MT, the slip systems are replaced with either 
the actual number of habit planes or a reduced number of habit planes that are of interest. This class of models assumes 
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‘n’ number of martensite natural systems corresponding to habit plane variants that may be favored depending on the 
nature of deformation under a particular loading. The evolution kinetics for crystal mechanics based model from the 
following expression for the inelastic deformation rate Lin: 

ii
T

i

iin naL ⊗=∑ γξ  

where ni is normal to the interface plane between austenite and ith martensite (habit plane), ξi is the martensitic fraction 
of the ith variant and ai, the polarization/slip direction which denotes the average transformation direction. In SMAs γT is 
assumed to be constant for all habit plane variants.  Using the second law of thermodynamics, the driving force for 
evolution is associated with the dissipation at the crystal level.  

Gall and Sehitoglu (1999) used crystal plasticity based approach to investigate the effect of texture in SMA sheets. 
They provide a methodology of associating the Bain strain with the transformation strain by providing an expression in 
terms of ai and ni.  Also, they tabulate the interaction coefficients between the 24 correspondent variant pairs (habit 
plane variants) for NiTi required to evaluate the critical transformation stress. The micromechanical model predicted the 
critical transformation stresses and is seen to be in good accord with experiments. The phase transformation is 
correlated with Luder’s type deformation in their experiments.  The initiation of transformation is favoured under 
tension in the direction which has majority of grains oriented. They show the importance of texture in tension-
compression asymmetry in the SMA sheets. Sehitoglu et al (2001) have used this approach to study the strain-
temperature behavior for NiTiCu single crystal. Also, they discuss the changes in crystallographic structure due to 
addition of Cu in NiTiCu as compared to NiTi. They show that in NiTiCu, a two-stage transformation with different 
crystallographic transformation strains occurs under certain circumstances, which is reflected in the macroscopic 
transformation strain response. 

Thamburaja and Anand (2001, 2002 and 2003) investigated MT in NiTi using crystal plasticity. They assumed a 
constant dissipation function and the interaction between the parent and product interfaces as well as that amongst the 
product interfaces is neglected. A crystal mechanics based finite element procedure is developed in order to model an 
initially textured material. One element in their FE model represents one crystal. The single crystal model using the 24 
habit plane variants of martensite is used to capture the pseudoelastic response of a polycrystalline aggregate with 
random initial crystallographic texture. They also give a methodology to discretize the FE mesh of an aggregate based 
on the pole figure for SMA sheets obtained through texture measurements. A good accord between the experiments and 
their model is shown for SE test under uniaxial and multiaxial loading such as simple tension, simple compression and 
tubular torsion. Also, they discuss the engineering simplification of their model by using the homogenization technique 
called as Taylor’s approach.  Further, they  conducted some experiments on different types of tension and torsion 
loading on a tubular SMA structure and have shown the efficacy of their model under such non-proportional loading 
scenario. Subsequently they have extended the FE algorithm to include the energy balance equation in order to come up 
with a thermomechanically coupled FE algorithm. This algorithm is used to predict the SE as well as SME for initially 
textured SMA sheets. The thermomechanically coupled analysis strategy enables capturing the resulting inhomogenous 
deformation associated with the nucleation and propagation of transformation fronts. This is also the ‘apparent 
hardening’ of the nominal stress-strain curves observed in the experiments due to non-isothermal conditions. 

Anand and Gurtin (2003) have provided free energy structure to the model developed by Thamburaja and Anand 
(2001) using the axioms of continuum thermomechanics. In their generalization, they associate the free energy 
formulation for single and polycrystalline SMA with the phase field model. Further, the flow rule or onset of evolution 
is derived from the microforce imbalance or the flag inequalities rendering the approach consistent with the laws of 
thermodynamics. They extend the methodology to consider non-isothermal loading in the SMA material in order to 
study thermal effects. Numerical studies show the development of martensite-austenite phases due to mechanical and 
thermal loading. This model facilitates tracking of the inhomogeneities in the microstructure during phase 
transformation. Qualitatively, they match the experimentally observed results of Shaw and Kyriakides (1997). 

Thamburaja (2005) has extended their crystal mechanics approach to model the reorientation and detwinning. This 
is done by introducing an additional flow rule for the reorientation strain. This is made consistent with the flow of 
evolution of martensitic variants. The approach is experimentally validated with that of initially textured SMA sheets as 
shown by Thamburaja et al (2005). Pan et al (2007) have extended this approach to model the isotropic plasticity like 
phenomenon observed in SMA behavior. In this work they also numerically simulate BVP of practical relevance, like 
bio-medical arterial stent section and SMA based micro gripper. 

From the above discussion on models that use crystal plasticity approach, it is seen that it offers flexibility to 
incorporate several important aspects related to SMA microstructure like true crystallographic variants and texture into 
the model and assess their impact on the SMA response.  It may be noted that in order to describe the dynamics of twin 
boundary motion during the phase transformation discrete models are more suitable as compared to continuum based 
models. In the following one such approach is discussed. 
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5.3 Lattice Dynamics Based Models  
 
One of the key aspects of lattice based models is that mechanics of SMA crystal lattice forms the basis to determine 

the type of structure that evolves during transformation. Either a suitable atomic potential or a continuum free energy is 
used to investigate several aspects of MT. Müller and Achenbach (1985) (discussed here under the macroscale models) 
use the lattice cell mechanics while formulating the free energy and the kinetics based on probability and the relative 
stability of phases. However, lattice cell concept used by them is more notional than the lattice of a single or 
polycrystalline SMA material. A lattice dynamical model is proposed by Abeyaratne and Vedantam (2003) to obtain 
macroscopic kinetic law for Cu-Al-Ni shape memory alloy. This model is intended to capture the dynamics of twin 
boundary motion (at a microscale) due to detwinning of multiple self accommodating variants of martensite into a 
macroscopic single stress preferred variant. They also describe different types of twin formation viz. compound, type 1 
and type 2 twins. The model is developed for compound and type-1 twins. To describe the lattice scale dynamics a 
Frenkel–Kontorowa type inter-atomic potential is used,  which helps in  deriving the governing multiple well energy 
structure. Further, a quasi-continuum approximation is used to determine the continuum-scale kinetics.  This leads to a 
governing partial differential equation in terms of displacement field, the roots of which gives the multiple well 
locations of free energy. With suitable analytical approximation they correlate the propagation speed of twin boundary 
with the critical stresses for both compound and type 1 twin and are found to be in good agreement with the 
experimental results. 

A snapshot of various microscopic models discussed here is provided in Table 3. From the above discussion it is 
clear that in spite of several differences that exist in modeling MT at microscopic level, these approaches have achieved 
a fair amount of success in capturing salient aspects of MT. However, there is significant scope to enhance the modeling 
capability at the microstructure level, like modeling the effects of defects and dislocations on MT. As in many other 
instances of material modeling, advances in computing power and numerical and statistical techniques have led to 
incorporation of nanoscale effects and build up the level of complexity in material response. One of the critical aspects 
in modeling at micron or sub-micron level is to have experimental techniques standardized to obtain relevant material 
data for both model development and validation. In the case of SMAs, currently standard procedures are available only 
for a few types of tests, that too for macroscopic characterization.  

 
6.  Summary and Possible Future Research Directions 

 
An overview of the models that capture the SMA response and the underlying MT was presented. The models were 

classified based on the scale of continuum under consideration and the approach. It is seen that from a former 
consideration, the range of interest is from submicroscopic range lattice dynamics to macroscale (bulk) form. From the 
latter perspective, a wide variety of modeling approaches ranging from atomistic potential to macroscale 
thermodynamics are used to capture the essence of MT. While most of the approaches discussed herein have achieved a 
fair amount of success in modeling SMAs, several unresolved issues still exist that attracts further interest. One of the 
foremost challenges yet to be resolved is the bridging of scales of continuum that are involved in modeling SMAs. One 
of the critical issues here is the reduction of the number of martensitic variants into those that are significant under 
given circumstances (1-D or 2-D or 3-D behavior). Reorientation effects between these variants also play an important 
role in transformation behavior. These aspects were highlighted at several places in this review. A few other important 
aspects, particularly relevant to application development and fundamental understanding of the response at a macroscale 
are listed here. 

 
Complexity in phase diagram:  
 
The stress dependence for each of the four transformation temperatures can be different (and nonlinear), as shown 

schematically in Figure 18. This could be due to significant amount of remnant cold work or thermomechanical history 
(seen in actuator materials). From a phase diagram based modeling perspective, more model parameters are necessary 
to capture this, even to a limited extent. From a thermodynamic perspective, this suggests a more complex form of 
interaction energy that needs to be identified. One of the aspects seen in such cases is the asymmetric hysteresis. In 
addition, more rigorous ways of constructing phase diagrams, especially under multivariant transformation are needed. 
This is so since the phase diagram obtained from isobaric tests may not always match with that obtained from 
isothermal tests due to lack of consistent definition of critical temperatures and stresses.  

Role of texture: Another aspect that alters the interaction energy or the nature of response is the texture (initial 
microstructure due to processing). For instance, in the wire form, the grains could be deformed significantly in the 
longitudinal direction and thus alter the transformation strain in different directions, leading to different macroscopic 
transformation strain. Crystal plasticity based models have addresses this issue to a certain extent. 
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Table 3. Summary of microscopic models 

Models 
Approac

h 
Formulation 

Evolution 
kinetics 

Interaction energy 
Type of 
crystal 
struct. 

Materi
al 

Scalability 
to 

macrolevel 

Patoor et al 
(1988) 

Microm
echanics 

Crystallographic 
theory 

Selfconsist-
ent approach 

Interfacial operator 
method by Hill 

Poly NiTi 

Suitable 
(Computati

onally 
expensive) 

Fischer and 
Tanaka (1992) 

Microm
echanics 

Thermodynamic
s 

Dissipation 
potential 

Assumed exponential 
kinetics 

Single 
and poly 

Generi
c 

Non-
suitable 

Raniecki et al 
(1992) 

Microm
echanics 

Thermodynamic
s 

Crystallograp
hic 

 Poly 
Generi

c 
Non-

suitable 

Sun and Hwang 
(1993) 

Microm
echanics 

Microstructural 
physical 

mechanism 

Dissipation 
based 

Mori-Tanaka 
inclusion 

Poly 
Generi

c 
Suitable 

Lu and Weng 
(1997) 

Microm
echanics 

Irreversible 
thermodynamics 

Dissipation 
potential 

Exponential 
interaction 

Single 
Ti(49.
8%,Ni 

Suitable 

Goo and 
Lexcellent 

(1997) 

Microm
echanics 

Thermodynamic 
(Helmholtz free 

energy) 

Irreversible 
thermodynami

cs 

Surface energy on the 
interface 

 
Single 

CuZn
Al 

Non-
suitable 

Huang and 
Brinson  (1998) 

Microm
echanics 

Thermodynamic 
(Gibbs free 

energy) 

Jump 
condition 

Eshelby Kroner 
approach 

Single NiTi 
Non-

Suitable 

Gao et al (2000) 
Microm
echanics 

Thermodynamic 
(Gibbs free 

energy) 

Dissipation 
potential 

Self accommodating 
group hypothesis 

Poly NiTi 

Suitable 
(Computati

onally 
expensive) 

Zhang and 
McCormick 

(2000) 

Microm
echanics 

Thermodynamic Linear 
Modified Eshelby 
theory of inclusion 

Poly 
Generi

c 
Suitable 

Bernardini 
(2001) 

Microm
echanics 

Variational 
energy approach 

Dissipation 
potential 

Eshelby theory of 
inclusion 

Poly 
Generi

c 
Suitable 

Thamburaja and 
Anand (2001, 
2002, 2003) 

Crystal 
mechani
cs based 

Finite element 
Phenoemen-

ological 
Phenomenological Poly NiTi Suitable 

Anand and 
Gurtin (2003) 

Continu
um 

crystal 
plasticit

y 

Continuum 
thermomechanic

s 

Micro 
instability 

Quadratic interaction 
through asymmetric 

interaction coefficient 
Poly NiTi Suitable 

Hall and 
Govindjee 

(2002) 

Microm
echanics 

Lagrangian 
potential 

KT condition Quadratic interaction Poly NiTi Suitable 

Levitas and 
Prestion (2002 b) 

Microm
echanics 

Modified Gibbs 
free energy 

Second 
derivative of 
free energy 

Quadratic interaction 
through asymmetric 

interaction coefficient 
Poly NiAl Suitable 

Abeyaratne and 
Vedantam 

(2003) 

Lattice 
dynamic

s 

Effective 
interatomic 

potential 
(Frenkel–

Kontorowa 
type) 

Suitable 
derivative 

Not considered single 
CuAl

Ni 

Suitable(qu
asi-

continuum 
approximati

on) 

Vedantam and 
Abeyaratne 

(2005) 

Microm
echanics 

Thermodynamic 
(Helmholtz free 

energy) 
Not modeled Not modeled Single 

CuAl
Ni 

Non-
suitable 

Mahapatra and 
Melnik (2006) 

Microm
echanics 

Non-
equilibrium 

thermodynamics 

Second 
derivative of 
free energy 

Quadratic interaction 
through symmetric 

interaction coefficient 
Poly NiAl 

Suitable 
(Bridging 
technique) 

Guthikonda et al 
(2007) 

Microm
echanics 

of 
crystal 

Thermodynamic 
(Helmholtz free 

energy) 

Dissipation 
potential 

Quadratic interaction 
Single 

and 
Poly 

CuAl
Ni 

Suitable 
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Figure 18:  Schematic of phase diagram with different stress dependence for all the four transformation temperatures. 

 
Modeling of shakedown or stabilization of hysteresis is another area that has not attracted sufficient attention 

compared to experimental investigations. Stabilization has several important implications like reliability of SMA 
applications and hence modeling tools that can capture it can be quite useful. Additional internal variables are necessary 
to account for the ‘residual’ martensite that reduces the amount of austenite available for further transformation. It may 
be noted that part of this martensite can be recovered if heated to a much higher temperature. This aspect is also alluded 
to as ‘healing’ in SMA literature. Figure19 shows a SE elastic shakedown in a commercially available NiTi with a 
complex phase diagram and asymmetric hysteresis.  

Partial and internal loops: The nature of memory that is responsible for the characteristics of partial or inner loops is 
still an open topic of research. While return point memory (RPM) is seen in most of the materials, sink-point memory is 
also observed in some cases (Figure 8). The reasons behind this are not clearly understood and models that adequately 
explain the underlying phenomena are not yet available. 

 

 
Figure 19:  Shakedown seen in stress cycling of a commercially available NiTi; (a) First 5 cycles showing large strain accumulation; (b) Stable but 

drastically narrow hysteresis between cycles 20-25 cycles. Asymmetry in forward and reverse transformation paths is also evident. 

 
Thermal Arrest Memory Effect (TAME):  A fascinating feature seen in SMAs when the transformation is 

interrupted due to partial thermal cycling is the Thermal arrest memory (also called as Stepped Martensitic 
transformation (SMART). Significant amount of experiments has been done investigating this effect (Madangopal 
(1994, 2005), Wang et al (2006)). However, several questions remain in terms of the cause of such a behavior and the 
role of interaction energy in TAME. Development of models that capture this satisfactorily is still an open area. 

R-phase related effects: Though the presence of R-phase is well investigated, it has not attracted much attention by 
the modeling community. This might be attributed to the lack of applications or minimal SME and SE due to low 
transformation strains (typically less than 1 %) associated with R phase. Further, the presence of R-phase at higher 
stresses is diminished, if not completely absent. However, the electrical resistivity of R-phase is much higher than the 
martensite and austenite and hence, when present, R-Phase plays a crucial role in changes in resistivity during 
transformation. This aspect needs further investigations. Coupled electro-thermomechanical field problems arise when 
SMAs are heated resistively (Joule heating). Hence, models that captures the changes in resistivity due to R-phase may 
be useful in development of SMA based applications. 
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SMA composites: Embedding SMA in either wire or ribbon form into a suitable matrix to obtain SMA composite 
offers several advantages in terms of directionality of actuation force and strain, structural conformity of SMA wires 
etc.. However, they also pose several limitations in terms of the amount of transformation strain that is recoverable due 
to reduced flexibility of the matrix material. Issues related to the interface of SMA and matrix assumes importance in 
developing good SMA composites. Modeling the SMA composite has been attempted by Berman and White (1986) and 
Gao et al (2005). Much work still needs to be done to model them and facilitate development of realizable SMA 
composites for applications. 

 
Effect of defects: An important aspect of processing history and stabilization is the presence of defects in the 

material. Some of these defects become ‘dead materials’ since they do not undergo transformation. However, apart from 
the well known effects of stress and/or strain concentrations that they introduce, they significantly influence the nature 
of MT, like biasing the growth of variants. Use of micromechanics to determine their effect on transformation and 
relating this effect suitably to the macroscopic response is an important area that can be pursued. 

 
Functional and Mechanical fatigue in SMAs: Loss in shape memory or superelasticity (extent of phase 

transformation) due to thermomechanical cycling leads to functional degradation. From an application perspective, 
though the material may not have failed by conventional fatigue, functional fatigue is undesirable since it affects 
reliability. Recently this has attracted attention of researchers to investigate critical issues like causes of degradation and 
role of nature of thermomechanical loading on loss of SME and SE. In this context, modeling functional degradation 
attains importance. Another aspect is related to the mechanical failure or fracture due to cyclic loading. Understanding 
of the mechanisms, both at microscopic and macroscopic level, that cause fatigue damage under thermomechanical 
loads is still inadequate. This is attributed to the complexities associated with microstructural changes due to the 
repeated microstructural transformation leading to defect generation and growth.   

 
 

Table 4. Summary of models with solution  to boundary value problem 

Models Type 
State of 
stress 

Temperature 
field 

Nature of BVP solved 
 

Purpose 
Abeyratne and 

Knowles (1993) 
Macroscopic 1-D 1-D 

Coupled non stationary momentum 
and energy balance 

Sharp interface 

Bekker and Brinson 
(1997) 

Macroscopic 1-D 1-D 
Quasistationary momentum balance 
and non-stationary energy balance 

 

Aurrichio and 
Taylor (1997) 

Macroscopic 3-D 
As a 

parameter 
Non-stationary momentum balance  

Amalraj et al (2000) Macroscopic 
Not 

considered 
1-D Non-stationary energy balance  

Qidwai and 
Lagoudas (2000) 

Macroscopic 3-D 
As a 

parameter 
Non-stationary momentum balance  

Zlolkowski (2001) Macroscopic 1-D 1-D 
Coupled non stationary momentum 

and energy balance 
Wave front 
propagation 

Hall and Govindjee 
(2002) 

Microscopic 3-D 
As a 

parameter 
Non-stationary momentum balance  

Thamburaja and 
Anand (2001) 

Microscopic 3-D 
As a 

parameter 
Non-stationary momentum balance 

Finite element 
based crystal 
mechanics 

Shaw (2002) Macroscopic 1-D 1-D 
Coupled non stationary momentum 

and energy balance 

Nucleation and 
Wave front 
propagation 

Sadek et al (2003) Macroscopic 1-D 1-D 
Non-stationary energy balance with 

constant state of stress 
 

Liew et al (2004) Macroscopic 3-D 1-D Momentum balance  
Aurrichio and 
Petrini (2004) 

Macroscopic 3-D 1-D 
Coupled non stationary momentum 

and energy balance 
 

Thamburaja (2005) Macroscopic 3-D 
As a 

parameter 
Non-stationary momentum balance  

Kloucek and 
Reynolds (2006) 

Macroscopic 1-D 1-D 
Coupled non stationary momentum 

and energy balance 
 

Mahapatra and 
Melnik (2006) 

Microscale 3-D 3-D 
Non-stationary energy and 

momentum balance 

Multiscale 
bridging 
approach 
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Solution of coupled BVP for realistic actuator scenarios: From an application perspective, solution of a coupled 
BVP involving a combination of energy, momentum and mass balance with appropriate boundary and initial conditions 
is extremely useful to analyze the performance of the SMA device. Formulation and numerical solution of such mixed 
field problems with reasonably realistic boundary and initial conditions is still a challenging task. A quick assessment 
from the view point of solution of BVP can be obtained from Table 4. For instance, contact conditions of SMA, 
especially in wire form, wherein the attachments like crimps introduce complex state of stress and transformation is still 
not well understood. Possible failure modes that occur due to such conditions is another aspect that needs detailed 
investigations. 

In this work an overview of the various approaches to modeling SMAs was attempted. An extensive review of large 
number of models that exist in open literature was presented. The authors wish to repeat their earlier remark that this 
review is not exhaustive and that the classification of models provided here is not necessarily scientifically rigorous. 
The authors hope that this work has provided a useful overview of the plethora of approaches to modeling SMAs and 
that any further work in this direction would benefit from this review. 
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