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SUMMARY 

This paper examines a class of maximum-likelihood regression estimators for count data from truncated 
samples. Estimators for the truncated Poisson and negative binomial distributions are illustrated. 
Simulation results are given to illustrate the magnitude of the bias that may result from the failure to  
account for overdispersion in truncated samples. An empirical application based upon the number of 
recreational fishing trips taken by a sample of 4laskan fishermen is provided. 

1. INTRODUCTION 

The estimation and application of count regression models is receiving much attention from 
econometricians. (Gourieroux, Monfort, and Trognon, 1984b; Hausman, Hall, and Griliches, 
1984; Lee, 1986). These models have seen increasing use in the analysis of outcomes naturally 
measured as non-negative integers; applications include studies of firms' patenting behaviour 
(Hausman, Hall, and Griliches, 1984), doctor and hospital visits (Cameron and Trivedi, 1986; 
Cameron et al., 1988), daily beverage consumption (Mullahy, 1986), incidents of pollution- 
induced illness (Portney and Mullahy, 1986), and daily homicide counts (Grogger, 1990). 

In many cases, however, the analyst does not observe the entire distribution of counts. In 
particular the zeros often are not observed. Consider an example of such a situation. A public 
transit authority sends out interviewers to administer surveys on different buses asking about 
the number of bus trips taken per week and other variables which might be related to that 
behaviour, such as attitudinal and demographic variables. Given these data we seek to 
construct a model of the number of weekly bus trips taken as a function of various exogenous 
variables, some of which are under the control of the public transit authority. Due to the 
choice-based sampling scheme employed, no observations are made of individuals making zero 
bus trips, since a criterion for sample inclusion is that at least one bus trip be made. The 
dependent variable in our model, the number of bus trips taken that week, is truncated at zero, 
taking on only positive values. 

More generally, two common types of sampling schemes are likely to give rise to samples of 
truncated counts: surveys which ask 'participants' about the number of 'participation 
occasions' and samples drawn from administrative records where inclusion in such a database 
is predicated on having engaged in the activity of interest. Examples of the first type include 
on-site sampling plans, surveys of owners of a particular home appliance (e.g. from warranty 
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cards or catalogue purchase records) about use patterns and surveys of individuals in mall 
intercept marketing surveys about number of shopping trips. Data sets of the second type are 
common in work on employment, health, and crime. The underlying statistical similarity 
between both types of samples is that the observational apparatus potentially becomes active 
only with the occurrence of some specified (typically one) number of events (Johnson and 
Kotz, 1969). 

Recently, Shaw (1988) has proposed normal and Poisson regression models for the analysis 
of truncated samples of count data. In this paper we extend the analysis of Shaw in several 
directions. In Section 2 we introduce some notation and two count regression models for 
nontruncated samples. In Section 3 we propose estimators based on the truncated negative 
binomial distribution as well as the Poisson. The choice of models is shown to be important 
in analyzing truncated samples: application of the truncated Poisson model to data which fail 
to meet its stringent moment restrictions may result in seriously biased and inconsistent 
parameter estimates. In Section 4 we provide an interpretation for the parameters and other 
statistics estimated from these models. The fifth section contains a small Monte-Carlo 
experiment which examines the finite sample properties of the estimators. In Section 6 we give 
an empirical example based on the prediction of the number of recreational fishing trips taken 
in Alaska. Section 7 contains some concluding remarks. 

2. STANDARD COUNT DATA ESTIMATORS 

A number of discrete probability distributions satisfy our requirement of generating 
nonnegative integers. The simplest one is the one-parameter Poisson distribution. Since many 
other possible count data distributions represent generalizations of the Poisson, we take it up 
first. 

The basic Poisson model can be written as 

where there are i = 1,2, ...,n observations, Yi is the ith observation on the count variable of 
interest, j = 0, 1,2, ... are the possible values of Yi (i.e. the set of nonnegative integers), and 
X is the Poisson parameter to be estimated. This model can be extended to a regression setting 
most easily by allowing for different Xi which vary according to 

which extends (1) to the regression case where Xi is a 1 by h vector of observed covariates and 
/3 is an h by 1 vector of unknown parameters to be estimated. The exponential specification 
is used to restrict Xi to be positive as is required for a proper distribution. 

The log-likelihood of this model, 

is globally concave. The conditional mean of Yi is given by: 

E( Yi I Xi) = Xi = exp(Xi/3). (4) 

We see that the exponential regression function serves to constrain predicted values to be 
positive. Furthermore, the coefficients can be interpreted as average proportionate changes in 
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E(Yi I Xi) for a unit change in Xi, since 

aE( Yi ( Xi) 
= PhE( Y; I Xi).aX i h  

Elasticities evaluated at the data means therefore take the particularly simple form of 
Erph= P ~ h z h .  

Another property of this model is that the conditional variance equals the conditional mean. 
This mean-variance equality has proven problematic in applied work since real data frequently 
exhibit 'overdispersion'; that is, conditional variation greater than the mean. The conditional 
mean is consistently estimated using the Poisson model in the presence of overdispersion 
(Gourieroux, Monfort, and Trognon, 1984b), but the standard errors of /3 are biased 
downward (Cameron and Trivedi, 1986). ' Several specification tests for overdispersion in the 
Poisson regression model have been proposed (Hausman, Hall, and Griliches, 1984; Lee, 1986; 
Grogger, 1987). 

The generalization of the Poisson distribution which is often used to model such over- 
dispersed counts is the negative binomial probability distribution (Johnson and Kotz, 1969; 
Hausman, Hall and Griliches, 1984; Cameron and Trivedi, 1986). This probability distribution 
can be written as: 

where a > 0 is a nuisance parameter to be estimated along with 0. The negative binomial can 
be derived from a Poisson distribution in which the Xi are distributed as a gamma random 
variable.' The first two moments of the negative binomial distribution are given by 

E(Yi1 Xi) = xi exp(Xip) 
and 

var( Yil Xi) = Xi(l + d i ) ,  

so that var(Yi1 Xi) is greater than E(Yi1 Xi). 
Both the Poisson and negative binomial (for given a > 0) distributions are members of the 

linear exponential family of distributions. Quasi-maximum-likelihood methods will therefore 
generally provide consistent estimates of the correctly specified conditional mean 
(Wedderburn, 1974; McCullagh, 1983; Gourieroux, Monfort, and Trognon, 1984a) when 
applied to a random sample from the entire underlying population of interest. 

3. TRUNCATED COUNT DATA ESTIMATORS 

The common statistical structure of truncated estimators follows from the fundamental 
probability relationship 

' While White's covariance matrix estimator should provide consistent estimates of the standard errors, our experience 
suggests that these estimates are still smaller than those obtained from a model which directly accounts for 
overdispersion such as the negative binomial. 
'For this reason the negative binomial is sometimes referred to a compound distribution. Other distributions for the 
X i  are possible but more difficult to estimate (Hinde, 1982). 
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In our case, the expression Prob(A nB) represents the probability of observing some Yi while 
Prob(B) represents the probability of being at or above the truncation limit. The term 
Prob(A I B) represents the probability of observing Yi, given that it exceeds the truncation 
point. In terms of probability distribution functions, (8) can be written as 

where fk(Yi) is the truncated (above k )  probability function, f(Yi) is the probability function, 
and F(k)  is the distribution function evaluated at k. To derive the maximum-likelihood 
estimator, a suitable discrete probability function is applied with the relationship for 
conditional probabilities given in (9). We now do this for the Poisson and negative binomial 
models presented in the previous section, concentrating on the case of k = 0, since this is the 
case most likely to be encountered in practice. 

For the Poisson probability function, a model for counts truncated on the left at the value 
k = 0 can be posited as 

Pr(Yi= j(Yi > 0 ) =  
exp( -

j! 

Xi) Xj 
[I - Fp(")l - I  = (exp(hi) 

1; 
- I)/! ' 

where j now takes only positive integer Glues larger than 0. 
The truncated probability function differs from the standard probability function by the 

factor [1 - Fp(0)] -'. Since Fp(0) < 1, multiplication of the standard probabilities by 
[l  - Fp(0)] -' inflates them, accounting for the unobserved zeros. 

The log-likelihood for this model can be written as 

where m is the number of observations in the truncated sample. 
Newton's method can be used to find consistent maximum-likelihood estimates of 0. It can 

be shown that the maximum-likelihood estimator is consistent when the true data-generating 
process is Poisson. The parameter estimates for standard, untruncated Poisson are 
inconsistent, however, when applied to a sample of truncated counts since the conditional 
mean of the truncated dependent variable is now also dependent on F ( .  ). This case is 
analogous to that in which OLS yields inconsistent estimates in the presence of truncation 
while the truncated variant of the Tobit estimator is consistent if the error terms are normal. 

The conditional mean and variance of Yi are given by4 

E(Yi I Xi, Yi > 0) = Xi[l - Fp(0)] (12) 

-'The first partial derivatives with respect to /3 are 

a In L "' 
1 - exp( - Xi) 

and the second partials are given by 

--
a Z I n L  

-
"' 1 - (1 + Xi)exp(- Xi) I ' 

a p h  a p h r  i = l  [ l  - exp(- Xi)] 

Since the initial draft of this paper was written, the software package GAUSS has implemented the estimators 
discussed here (Aptech Systems, 1989). The program LIMDEP now also provides algorithms for fitting truncated 
count models (Greene, 1990). 

We thank a referee for point out an error in equations (13) and (17) in an earlier draft. 
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and 

var(Yi ( Xi, Yi > 0) = E(Yil Xi, Yi > 0) [l - Fp(0)E(Yil Xi > O)] . (13) 

In the case of the untruncated Poisson, /3 is consistently estimated even in the presence of 
overdispersion, although the standard errors are downwardly biased. However, the estimates 
of the regression parameters and choice probabilities from a truncated Poisson model will be 
biased and inconsistent in the presence of overdispersion because the proper specification of 
the conditional mean of the truncated dependent variable, given in (12), which is necessary for 
consistency of the estimated /3, requires the proper specification of all the moments of the 
underlying relevant cumulative distribution F (  ). This finding is similar to the result that the 
Tobit estimator, unlike ordinary least-squares, yields inconsistent parameter estimates in 
the presence of heteroscedasticity. 

Given the importance of accounting for overdispersion in the truncated count context, we 
present a model for truncated counts based on the negative binomial distribution. This 
negative binomial probability model can be written as 

The log-likelihood is 

The conditional mean and variance of this model are given by 

E(Yi I Xi, Yi > 0) = Xi [1 - FNB(O)] (16) 

and 

var(Yi ( Xi, Yi > 0) = 
E(Yi I Xi, Yi > 0) 

FNB(0)" 
- [FNB(O)]l + a ~ ( ~ iI Xi, Yi > 0)). 

4. INTERPRETATION OF MODEL RESULTS 

As in other regression settings, interest often attaches not only to the regression parameters 
themselves, but also to the partial derivatives and elasticities of the conditional expectation of 
the dependent variable with respect to the explanatory variables. In the truncated dependent 
variable case, one might also wish to know how both the typical member of the observable 

5The first and second partial derivatives of (15) with respect to 0 are given by: 

and 
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population (that is, the group in the population of interest above the truncation limit, or choice 
threshold, from which the choice-based sample is drawn) and the typical member of the entire 
population of interest would change in response to a given change in an explanatory variable. 
We present expressions for both these magnitudes. In addition, we provide a decomposition 
of these derivatives into that proportion resulting from a change among those currently in the 
observable population, and the proportion of the change resulting from the movement of those 
from the unobservable category into the observable group, or vice-versa. 

The expectation of Yi in the population of interest can be expressed in terms of the 
observable proportion of the population: 

E(Yi I Xi) E(Yi ( Xi, Y; > 0) [I - F(O)]. (18) 

From this equation one can obtain the unconditional derivative of Yi with respect to  Xih: 

where 

aE( Yi I Xi, Yi > 0) = bhhi[l - Fp(O)(l - hi) 
axih [I - FP(O)] 

for the Poisson model, whereas 

dE(Yi I Xi, Yi > 0) 1 -FNB(0) [1 - X ~ F N B  
= P h  XiaX i h  

for the negative binomial model and (a[l - F(O)])/aXih equals PhXiFp(0) for the Poisson 
model and P~x~FNB(o)('+"' for the negative binomial model. 

From equation (19), then, we see that the effect of a change in one of the X i h  on the latent 
dependent variable in the full underlying population can be inferred from information 
obtained from a choice-based sample. Furthermore, following McDonald and Moffitt (1980), 
equation (19) also indicates that this change in Yi can be decomposed into two effects: the 
change in the expected value of those above the limit, weighted by the probability of being 
above the limit, plus the change in the proportion of those above the limit, weighted by the 
dependent variable mean of those above the limit. The total effect on the underlying 
population of interest can thus be broken down into the effect on those already above the 
choice threshold and the effect of inducing those below that threshold to cross it in response 
to the change. 

5. SIMULATION RESULTS 

In this section we present a summary of several Monte-Carlo simulations designed to quantify 
for illustrative parameter values the inconsistencies which may result from application of the 
truncated Poisson model to overdispersed truncated samples. As before, attention is restricted 
to the case of truncation of the zero class, since this is the case most likely to arise in practice. 

The simulations were conducted as follows. First, 500 observations on three explanatory 
variables were generated. These variables included a constant term, XO, and two other 
regressors, XI and X2, generated from a zero-mean, unit variance bivariate normal 
distribution with correlation 0.20. For each observation, Xi = exp(XiP) was calculated, where 
01 = Pz = 0.8 for all experiments, and the three values of POwere chosen to achieve values of 
E(Xi) equal to 1, 3, and 5. Four values of a,  0.2, 0.4, 0.6, 0.8, were used to generate data 
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from a negative binomial distribution; higher values of a imply greater overdispersion. The 
IMSL routine RNNBN was used to generate the negative binomial variates. Observations for 
which yi= 0 were dropped from the estimation sample to effect the truncation; regression 
parameters and P(O), the proportion of zero counts, were then estimated by maximizing the 
truncated Poisson likelihood. For each value of [E(Xi),a ] ,  100 repetitions of this procedure 
were conducted, providing results that should be considered illustrative rather than necessarily 
definitive. 

Table I presents the results of the experiments. For each of the regression coefficients and 
the proportion of zeros, P(O), the estimated bias in percentage terms, and the root mean 
square error are reported. Also reported is the number of times out of 100 the hypothesis 
Ho: Pi = true value is rejected at  the 95 per cent confidence level. 

Table I shows that the bias resulting from the application of the truncated likelihood 
Poisson estimator to overdispersed samples can be substantial. For E(Xi = I), overdispersion 
corresponding to a = 0.4 or greater is sufficient to impart roughly 20 per cent bias in the 
estimate of the constant term. The effect on the estimates of 61and 6 2  is substantial as well, 
on the order of 10 per cent. The magnitude of the inconsistency increases in a ,  and the 
frequency with which the 95 per cent confidence interval associated with the truncated Poisson 
parameter estimates excludes the true value. 

In general one sees that, as E(Xi) increases, the magnitude of the inconsistency problem is 
reduced. For E(Xi)= 3, regression parameters are estimated with 2-10 per cent bias on average 
for various values of a ,  and bias in the zero frequency estimates is reduced by a factor of two 
to three. This result is to be expected, since higher values of E(Xi) are associated with fewer 
zeros in the population for any given a .  The bias in the parameter estimates is directly related 
to  the size of the bias in the estimate of P(0). Note though that even for E(Xi)= 5, 
overdispersion of magnitude a > 0.6 or greater results in bias on the order of 5 per cent. 
Failure to take account of a > 0 has a much more dramatic effect on rejection probabilities. 
These rejection frequencies increase away from the desired 5 per cent level as a and E(Xi) 
increase, rising as high as 97 per cent. 

We have also conducted simulations applying the standard Poisson and negative binomial 
models and the truncated negative binomial model to data generated from a truncated negative 
binomial distribution. These results are available from the authors. They show, as one might 
expect, that the truncated negative binomial is essentially unbiased. The standard Poisson 
model, on the other hand, can have biases over 100 per cent for small values of E(Xi), 
particularly for large values of a. The 95 per cent confidence intervals from standard Poisson 
model estimates rarely contain the true parameter values in this situation. The standard 
negative binomial model does not perform as badly as the standard Poisson model, but it still 
has substantially biased parameter estimates, and its confidence intervals for small values of 
E(Xi) reject much too often. 

In summary, these results suggest that the failure to  account for overdispersion in truncated 
samples of count data can have serious consequences for estimation and inference. The greater 
the degree of overdispersion, the worse the resulting inconsistencies. 

6. AN EMPIRICAL APPLICATION: FISHING TRIPS 

In this section we illustrate the use of various count data models to estimate the number of 
fishing trips a household in Alaska takes during the 22-week Alaskan fishing s e a ~ o n . ~  The 

6 ~ h edata used in this section come from a series of surveys conducted by Jones and Stokes Associates (1987) for 
the Alaska Department of Fish and Game. 
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available sample is from a diary survey of 1063 Alaskan households. To have been included 
in the sample, a household must have taken at least one fishing trip. The maximum number 
of fishing trips taken was 67, the mean number of fishing trips taken by Alaska's fishing 
households was 6.43, the median number of trips 5, and the standard deviation 6.39 trips. A 
large number of covariates are available in the data set. 

The function we estimate is known as a participation equation in the recreation demand 
literature. This equation has typically been estimated using ordinary least-squares. The other 
function typically estimated with micro-data in this literature is known as a site selection 
equation (Morey, ,1981). This function, which predicts where a household will go to recreate 
conditional on their having decided to make a recreational trip, is now usually estimated using 
a multinomial or nested logic framework (Smith, forthcoming). Much less attention has been 
paid to  estimating the participation equation than to estimating the site selection equation. 

Table I1 presents parameter estimates from standard and truncated forms of the Poisson and 
negative binomial models. Given the large number of possible predictor variables available, the 
specification used should be considered illustrative. * The variables used are: AVLONG, the 

Table 11. Estimates for seasonal fishing models 

Standard Truncated 
NLS Standard Truncated negative negative 

Variable OLS Y = exp(XP) Poisson Poisson binomial binomial 

AVLONG 

MISS 

CROWD 

INC 

CPMILE 

FOFFl 

LEISURE 

TRATE 

CONST 

01 


Log L -

Absolute value of t-statistic in parentheses. 

'The early recreation demand literature and aggregate data on per capita visits from different areas to a particular 
recreation site and the average cost of travelling to the site from the different areas to estimate an implied demand 
for the site as a function of the cost of visiting it. These simple 'travel cost' models lost favour when micro-data sets 
on household recreation behaviour first started becoming widely available in the mid-1970s. The current state of the 
art in recreation demand modelling is reviewed in Bockstael, McConnell, and Strand (forthcoming). Unfortunately, 
most applied work in this area uses fairly primitive techniques unsuited for the statistical properties of the data. 

'The variables used are those suggested by ordinary regression models and logit models in the recreation demand 
literature. 
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average length of recreational fishing trips taken; MISS, a dummy variable which indicates that 
the last part of the diary survey was not returned; CROWD, a factor score estimated from 
attitudinal variables on crowding; INC, the household income in thousands of dollars; 
CPERM, the cost per mile, in cents of operating the vehicle the household uses for fishing 
trips; FOFFl, a factor score estimated from indicators of preseason familiarity with different 
fishing sites; LEISURE, a factor score estimated from indicators of the amount of leisure time 
available and alternative work opportunities; and TRATE, a measure of fishing quality at 
different sites discounted by the household's distance from them (i.e. the inclusive value from 
a nested logit model of fishing sitelspecies choice). Table I1 also presents parameter estimates 
from the linear least-squares model (OLS) and from nonlinear least-squares (NLS) model 
y = exp(XP) + E where E is considered to be normally distributed. The coefficients from the 
NLS model are directly comparable to those from the count data models, whereas those from 
a linear least-squares model are not. The OLS coefficients can best be compared to the other 
models by looking at the elasticities they imply at different points or at mean elasticities. 

Based on the log-likelihood, the truncated negative binomial model fits best (-2839.75), 
followed by the standard negative binomial ( - 2929.44) with the NLS and OLS regression 
model are a poor third (-3378.13) and fourth (-3396-69), respectively. The two Poisson 
models fit dramatically worse. Indeed, they both fit worse than a simple regression model with 
only a constant term which has a log-likelihood of -3479.63. This result is due largely to the 
incorrect imposition of an equality restriction between the mean and variance by the Poisson 
models. The unconditional variance of the trip variable is over six times that of the mean. 
Conditioning on the covariates reduces this appaent overdispersion, but not nearly enough to 
get a mean-variance equality. The other models do not impose this restriction and have one 
more estimated parameter than the Poisson models. The truncated Poisson fits only marginally 
better than the standard Poisson model, because with a mean number of trips of 6.43, one 
would not expect to see many zeros. The Poisson and negative binomial log-likelihood values 
are very different. The log-likelihood of the truncated negative binomial ( - 2839.75) indicates 
a significantly better fit than the standard negative binomial ( - 2929.44). 

Across all of the models, most of the variables have the expected signs; and the qualitative 
results are consistent across each of the six models. The number of trips goes down with the 
length of trips taken, a negative attitude towards crowding, lack of familiarity with different 
fishing sites, and income. The coefficient on MISS allows one to estimate the number of trips 
which went unreported due to the failure to return the last portion of the diary survey. The 
number of trips increases with the amount of leisure time available and the fishing quality 
discounted by distance. The positive coefficient on CPERM reflects the fact that CPERM is 
largely an indicator of the presence of capital equipment. Low values of CPERM indicate the 
use of regular automobiles for fishing trips, middle-range values indicate trucks or vehicles 
pulling boats, and high values indicate campers, large trailers, or other large recreational 
vehicles which make in possible to avoid lodging expenses. 

A closer examination of the parameter values suggests that they do not vary greatly across 
the six specifications. To a large extent this should be expected. The mean number of trips is 
6.43, large enough that the normal should be a good approximation to  the Poisson and none 
of the estimators should be grossly affected by the truncation at zero trips. This similarity of 
coefficient estimates is also consistent with our simulation results, which indicated that the 
Poisson estimates suffered from relatively little bias for mean counts of the magnitude reported 

9The  mean value of each of these variables is given in the parentheses: AVLONG (2.47), MISS (Oe24), CROWD (O), 
INC (51.13), CPMILE (0.13), FOFFl (0), LEISURE (O), and TRATE (3.26). 

http:3479.63
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here, even in the presence of moderate overdispersion. Differences between the coefficient 
estimates are most noticeable for TRATE, the policy variable. TRATE can be increased by 
such actions as stocking fish, reducing the commercial catch, rehabilitating fish spawning 
areas, opening new fishing sites, or reducing congestion. The NLS model implies an elasticity 
of 2.63 at the mean TRATE which is 28 per cent larger than that of the truncated negative 
binomial (2.06). The truncated Poisson model implies an elasticity which is 12 per cent larger 
than the truncated negative binomial. The OLS model's elasticity evaluated at the mean 
TRATE is 20 per cent larger. These differences may be important for policy decisions based 
on the responsiveness of the public to potentially costly improvements in fishing quality. 

Examination of the t-statistics reveals that the estimated standard errors vary considerably 
across specifications. This finding serves to reinforce one of the conclusions from the Monte- 
Carlo study: failure to account for overdispersion can have very serious consequences for 
inference, even when the average number of counts is fairly high. Failure to account for the 
truncation can also result in estimates of coefficient standard errors which are too small, 
although this effect is less pronounced here due to the large mean number of trips. 

The absolute values of the t-statistics in the Poisson models are approximately twice those 
of their negative binomial counterparts. The OLS and NLS t-statistics are much closer to those 
of the negative binomial models, being larger for some parameter estimates and for others 
smaller. The standard negative binomial model has absolute t-values which are on average a 
little over 10 per cent larger than those of the truncated negative binomial models. In most 
instances one would draw the same qualitative inference from all of the models. 

An important exception arises in the case of the income coefficient, however. The point 
estimates are negative across all specifications; and this frequent counterintuitive result has 
been rationalized in the literature as arising from (conjectured) preferences of higher-income 
persons for other forms of recreation. The OLS and NLS estimates are significant at greater 
than the 95 per cent confidence level, as are the estimates from both Poisson estimators. The 
standard negative binomial estimate is only significant at the 90 per cent confidence level, while 
the estimate from the truncated negative binomial is not significant at any commonly used 
confidence level. 

Interestingly, the effects of overdispersion seem to be much more important here to 
goodness of fit than is truncation. Again this is due in large part to the fairly large mean 
number of trips taken. lo  Creel and Loomis (1990), implementing the estimators proposed in 
an earlier version of this paper (Grogger and Carson, 1988), looked at deer-hunting trips in 
California, which has a much smaller mean, 2.47, and found that truncation had a much more 
pronounced effect than overdispersion. We obtain similar results predicting the number of 
fishing trips that our respondents take in a shorter time interval (e.g. a particular month) where 
the mean number of trips taken is, of course, much smaller. 

7. CONCLUDING REMARKS 

Our motivation in developing the truncated count data models presented here was the feeling 
that there are a large number of potential applications for such models. Currently we are using 
them to predict the weekly number of recreational fishing trips taken in Alaska and the number 
of arrests among a population of individuals with at least one arrest. Applications from the 
fields of transportation and labour economics also seem natural. 

''It is worth cautioning here that what is large for the mean of a Poisson distribution in terms of convergence to  a 
normal is not necessarily large for a negative binomial distribution, particularly one with a sizeable or. 
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A finding which shows up throughout this paper is the great importance of overdispersion 
in the estimation of the truncated count models. Our Monte-Carlo results showed that 
regression coefficients can be substantially biased when overdispersion is not accounted for and 
the mean number of counts is relatively low; that is, when many zeros would be expected in 
a nontruncated sample. The simulation results and the empirical example pointed out the 
serious consequences for inference that may arise when overdispersion is neglected, even when 
mean counts are large. Some of the specification tests of the Poisson versus the negative 
binomial in the nontruncated case can be easily extended to cover the truncated case. Given 
that only one tail of the distribution is observable, special attention should be paid to deriving 
tests with particular power against overdispersion in the upper tail. The finite sample 
performance of all these tests would need to be assessed. Our experience suggests that the 
Poisson mean-variance equality restriction is rarely appropriate. " 

Researchers using the estimators presented should also be aware that modifications are likely 
to be required for different sampling plans. We have implicitly assumed that a random sample 
of those agents with positive values of Yi is being used, as will often be the case. In the area 
of recreation demand the most common examples are the periodic surveys of licence-holders 
conducted by many states. 

We should mention two other common sampling plans in this literature.12 The first is a 
choice-based sampling plan known as on-site sampling (Robson and Jones, 1989; Shaw, 1988) 
in which the probability of inclusion in the sample is proportionate to the number of visits to 
the site. Such surveys are often conducted by the US Forest Service and the National Park 
Service. An on-site sampling plan will often require merely a fairly simple weighting 
adjustment to the estimators presented. Some designs, particularly those with a 
capture-recapture structure which collect primarily information about the present trip, may 
require quite complicated weighting adjustments. 

The second is a two-stage or double sampling scheme (Neyman, 1938) in which a large 
'screening' survey is administered to a large random sample of all households, with a detailed 
follow-up survey of only those indicating that they participated in one or more of the activities 
of interest. The US Fish and Wildlife Service's National Survey of Fishing, Hunting, and 
Wildlife Related Activities does this explicitly, and many of the National Marine Fisheries 
telephone surveys do this implicitly by almost immediately terminating interviews with 
respondents who do not engage in fishing. l3 This screening presents an interesting dilemma: 
very few additional questions are asked of households interviewed in the screening survey, 
which makes the estimation of a selection equation difficult. The situation is further 
complicated by a mixing of two types of zeros: those who would engage in the recreational 
activity in question if conditions were right (e.g. fishing quality or leisure time increased) and 
those who would not engage in the activity under any circumstance. The first type of zeros are 
sometimes known as stochastic zeros while the second type of zeros are known as structural 
zeros. If the observed zeros are a mixture of the two types, the researcher may be better off 
simply using the appropriate truncated count data estimator on the positive counts, as 
inclusion of a large number of structural zeros will severely bias the regression coefficients for 
the trip-generation process of interest. 

' I  We have only seen one economic variable, the number of jobs held by male respondents to the 1980 Wave of the 
National Longitudinal Survey of Youth, in which the mean-variance equality appears to hold. 

I 2 ~ h e s etwo sampling plans are also frequently used in other areas such as marketing and transportation 

l3  With the few exceptions, e.g. Smith (1990), the empirical work on  estimating participation functions from these data 
sets has not been sensitive to the integer nature of the trip variable or two the two-stage sampling plan used. See Walsh, 
Johnson and McKean (1988) for an overview of many of the studies based on  US Fish and Wildlife Service surveys. 
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A number of extensions could be made to  the models presented. We note two here. The first 
involves incorporating techniques developed in survival analysis for handling different kinds 
of unobservable heterogeneity among sample members, particularly heterogeneity which 
results in self-selection into the observable sample. The second involves extensions of a 
univariate estimator proposed by Cohen (1960) for the case where some but not all of the zero 
counts are observed. This extension seems particularly relevant to  some panel designs such as 
the data set used by Hausman, Hall, and Griliches (1984) in which zeros are observed but 
inclusion into the sample required that a patent be filed in least 1 year. l4 
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