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Abstract—The current trend in high performance and embedded signal

processing consists of designing increasingly complex heterogeneous

hardware architectures with non-uniform communication resources. In

order to take hardware and software design decisions, early evaluations

of the system non-functional properties are needed. These evaluations of

system efficiency require high-level information on both the algorithms

and the architecture. In this paper, we define the notion of Model of
Architecture (MoA) and study the combination of a Model of Computation

(MoC) and an MoA to provide a design space exploration environment for

the study of the algorithmic and architectural choices. A cost is computed

from the mapping of an application, represented by a model conforming

a MoC onto an architecture represented by a model conforming an MoA.

The cost is composed of a processing-related part and a communication-

related part. It is an abstract scalar value to be minimized and can

represent any non-functional requirement of a system such as memory,

energy, throughput or latency.

I. INTRODUCTION

In the 1990s, models of parallel computation such as the ones

surveyed by Maggs et al. in [1] were designed to represent a

system including hardware and software-related features. Since the

early 2000s, rapid prototyping initiatives such as the Algorithm-

Architecture Matching (AAA) methodology [2] have fostered the

separation of algorithm and architecture models in order to automate

design space exploration.

Models of Computation (MoCs) and especially dataflow MoCs

are currently gaining popularity for the design of stream processing

systems [3]. Their popularity comes from their capacity to model

a parallel application and to guarantee (under certain conditions)

functional properties such as deadlock-freeness and memory bound-

edness while ignoring hardware concerns (instruction set, number of

processing elements, etc.).

Modern hardware processing systems are a combination of non-

equivalent processing and communication resources, referred to as

heterogeneous Multiprocessor Systems-on-Chips (MPSoCs) [4]. The

design and programming costs of heterogeneous MPSoCs are con-

stantly rising, because the improvement of programming efficiency is

slower than the increase of system complexity. This phenomenon is

known as software and hardware productivity gaps [4]. In MPSoCs,

different sources of heterogeneity arise such as different types of pro-

cessing units, Non Uniform Memory Access (NUMA) and different

types of interprocessor communication (IPC). A unique MoC model

is thus unable to represent the properties of an application and the

resources of the hardware platform.

In this paper, the notion of Model of Architecture (MoA) is intro-

duced. The main goal of an MoA is to offer standard, reproducible

ways to evaluate the efficiency of design decisions. Reproducibility

signifies that the model alone, without an associated implementation,

is sufficient to reproduce the cost computation. One may note a

difference between system performance and system efficiency. In

computer science, and considering an application alone, performance

is often a synonym of throughput [5][6]. However, signal processing

system design requires decisions based on many non-functional costs

such as memory, energy, throughput, latency, or area. These costs can

be seen as the different modalities of a system’s efficiency. In order

to evaluate these non-functional costs, an MoA models the internal

behavior of an architecture at a high level of abstraction.

Modern streaming applications such as telecommunication, video

processing, or deep learning, require a great amount of computation.

An early evaluation of the system efficiency is a valuable tool for

system designers, as shown by company products such as Poly-

Platform from PolyCore Software, Inc., SLX Explorer from Silexica

or Pareon from Vector Fabrics whose objectives include providing

early performance numbers to the designers. These tools have internal

performance models but no standard approach is shared between

them. MoAs complement the work on MoCs in providing precise se-

mantics for the second input of the Y-chart [7]. The Y-chart separates

the description of an application from the one of an architecture, as

illustrated in Figure 1 where algorithm descriptions, conforming to a

precise MoC are combined with architecture descriptions conforming

to an MoA.

Model of 
Architecture

Model of
Computation Algorithm Architecture

Mapper and Simulator

efficiency metrics

conform to conform to

redesign redesign

Fig. 1: MoC and MoA in the Y-chart [7].

The paper is organized as follows: Section II presents state of the

art MoCs for parallel computation. Section III introduces the notion

of MoA and Section IV proposes a new MoA named Linear System-

Level Architecture Model (LSLA). Section VI demonstrates system-

atic, reproducible cost computation from algorithm and architecture

models.

II. STATE OF THE ART OF MOCS

The objective of this paper is to sketch the contours of MoAs as

the architectural counterparts of MoCs, thereby helping to bridge the

increasing gap between MoC-based application design, and platform-

based hardware/software implementation. This section introduces a
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few representative MoCs that are relevant to signal processing system

design. These MoCs will be used in Section VI to demonstrate the

proposed LSLA MoA.

Many MoCs have been designed to represent the behavior of a

system. The Ptolemy II project [8] has had a considerable influence

in promoting MoCs with precise semantics and different forms.

Different families of MoCs exist such as finite state machines,

process networks, Petri nets, synchronous MoCs and functional

MoCs. This paper leverages on both dataflow MoCs and the Bulk

Synchronous Parallel (BSP) MoC for their capacity to represent

parallel computations, and their relevance to signal processing system

design. Section II-A presents static and dynamic dataflow models

while Section II-B introduces the BSP MoC.

A. Dataflow MoCs

A dataflow MoC represents a streaming application with a graph

where vertices, named actors, represent computation and exchange

data through First In, First Out data queues (FIFOs). The unitary

exchanged data is called a data token. Computation is triggered when

the data present on the input FIFOs of an actor respect its firing rules.

Dozens of different dataflow MoCs have been explored [9] and this

diversity of MoCs demonstrates the benefit of precise semantics and

reduced model complexity.

1) The Synchronous Dataflow (SDF) MoC: Synchronous Dataflow

(SDF) [10] is the most commonly used dataflow MoC [11]. SDF has

a limited expressivity and an extended analyzability. Production and

consumption token rates set by firing rules are fixed scalars in an SDF

graph and for that reason, SDF is commonly called a static dataflow

MoC.

Static analysis can be applied on an SDF graph to determine

whether or not fundamental consistency and schedulability properties

hold. Such properties, when they are satisfied, ensure that an SDF

graph can be implemented with deadlock-free execution and FIFO

memory boundedness.

An SDF graph (Figure 2) is defined as G = 〈A,F 〉 where A

is the set of actors, and F is the set of FIFOs. For an SDF actor,

a fixed integer-valued data rate is set for each port by the function

rate : P in

data ∪ P out

data → N
∗ where P in

data is the set of input ports,

P out

data is the set of output ports for an actor and N
∗ is the set of

strictly positive integers. A delay d : F → N is set for each FIFO

f ∈ F , corresponding to a number of tokens initially present in the

FIFO F . N refers to the set of non negative integers.

A Actor

FIFO

Port name
and rate A Bp: 1 p: 1

pi: 2

fi: 4 fo: 4

Cpo: 6

p: 3

*4*4

Delay and
number of tokens

Fig. 2: Example of an SDF Graph.

If an SDF graph is consistent and schedulable, a fixed sequence of

actor firings, called a graph iteration, can be repeated indefinitely to

execute the graph, and there is a well defined concept of a minimal

sequence for achieving an indefinite execution with bounded memory.

The notion of graph iteration will be used to compute the cost of

mapping an SDF algorithm model on an LSLA architecture model

in Section VI-A.

2) The Enable-Invoke Dataflow (EIDF) and Core Functional

Dataflow (CFDF) MoCs: EIDF is a highly expressive form of

dataflow MoC that is useful as a common basis for implementing

and analyzing a wide variety of specialized dataflow MoCs [12].

While specialized models such as SDF are useful for exploiting

specific characteristics of targeted application domains, the more

flexibly-oriented MoC EIDF is useful for interfacing different forms

of dataflow and providing tool support that spans heterogeneous

systems.

In EIDF, the behavior of an actor is decomposed into a set of actor

modes such that each actor firing operates according to a given mode.

At the end of each actor firing, the actor determines a next mode set,

which specifies the set of possible modes according to which the

next actor firing can execute. The dataflow behavior (production or

consumption rate) for each actor port is constant for a given actor

mode. However, the dataflow behavior for the same port can differ

for different modes of the same actor, which allows for specification

of dynamic dataflow behavior. An EIDF graph is defined as G =
〈A,F 〉 and notations used to denotes actors, FIFOs, and data ports

are identical to these defined in SDF.

In this paper, we focus on a restricted form of EIDF called

core functional dataflow (CFDF) (Figure 3a). CFDF requires the

next mode set that emerges from any firing to contain exactly one

element [13], ensuring model determinacy. The unique actor mode

within the next mode set of a CFDF actor firing is referred to as the

next mode associated with the firing. Dataflow attributes of a CFDF

actor are characterized by a dataflow table (Figures 3b and 3c). The

rows of the table correspond to the different actor modes, and the

columns correspond to the actor ports. Given a CFDF actor A, we

denote the dataflow table for A by TA. If m is a mode of A and p

is an input port of A, then TA[m][p] = −κ(m, p), where κ(m, p) is

the number of tokens consumed from p in mode m. Similarly, if q is

an output port of A, then TA[m][q] = ρ(m, q), where ρ(m, q) is the

number of tokens produced onto q in mode m. Mode transition for

a CFDF actor is represented by a mode transition graph (Figures 3d

and 3e). Given a CFDF actor A, the mode transition graph for A,

denoted MTG(A) is a directed graph in which the vertices corrspond

to the modes of A. The edge set of MTG(A) can be expressed

as {(x, y) ∈ VA × VA | y ∈ µA(x)}, where VA represents the

set of vertices in MTG(A), and µA(x) is the set of possible next

modes for actor x. While production and consumption rates for CFDF

actor modes cannot be data-dependent, the next mode can be data-

dependent, and thus, µA(x) can have any number of elements up to

the number of modes in A.

X Y
Port:p1

Port:p2

A Actor

FIFO

(a) Example of a CFDF graph.
Mode p1

1

2

1

2

(b) Dataflow table for X.

Mode p2

-1

-4

1

2

(c) Dataflow table for Y.

M(X,1) M(X,2)M(X,1) M(X,2)

(d) Mode transition graph
for X.

M(Y,1) M(Y,2)

(e) Mode transition graph
for Y.

Fig. 3: Dataflow attributes of an example CFDF graph.

The combination of the CFDF MoC and the LSLA MoA to

compute an efficiency cost will be discussed in Section VI-B.

B. The Bulk Synchronous Parallel MoC

Another example of a MoC for parallel computation is the Bulk

Synchronous Parallel (BSP) [14] MoC. BSP analyzes an applica-

tion into several phases called supersteps. A BSP computation is

composed of a set of components A called agents in this paper to

distinguish them from the Processing Elements (PEs) in an MoA.

Each agent α ∈ A has its own memory. An agent α can access

the memory of another agent β through a remote access (message)



3

r(α, β) via a so-called router. Application execution happens in a

series of supersteps indexed by σ ∈ N and consisting of processing

efforts, remote accesses and a global synchronization s(σ) (Figure 4).

α Agent α β γ δ ε

Memory

Router

time

Remote
access

Superstep

α1

β1

γ1
δ1

ε1

α2
β2

γ2 δ2
ε2

α3
β3

γ3
δ3

α1
Firing of A in
superstep 1

Synchronization

ε3

Fig. 4: Example of a BSP Representation.

Each agent α executes in the superstep σ the processing effort ασ ,

requiring a time w(ασ) ∈ N. During the superstep σ, an agent sends

or receives at most hσ remote accesses, each access transferring one

atomic data from one agent to another. A barrier synchronization

follows each superstep, ensuring global temporal coherency before

starting the superstep σ + 1.

A lower bound for the time of a superstep is computed by:

Tσ = max
0≤α<card(A)

w(ασ) + hσ × g + s (1)

where card(A) is the number of agents, g is the time to execute

one atomic remote transfer, and s is a fixed synchronization time.

A superstep has a discrete length n × L with n ∈ N and L the

minimal period of synchronization. Smaller values of L in general

lead to superstep times that are closer to the corresponding lower

bounds. The BSP execution cost computation is limited to latency

and assumes that communication costs for an agent are additive. The

combination of the BSP MoC and the LSLA MoA to compute an

efficiency cost will be explained in Section VI-C.

Each one of the previous MoCs is characterized by a specific set of

properties such as their expressiveness, dynamicity, analyzability, or

their decidability. Depending on the complexity and constraints of the

modeled application, a simple SDF representation or a more complex

CFDF or BSP representation may be chosen. MoCs, by nature, do not

carry hardware related information such as resource limitations and

hardware efficiency. In this paper, we propose the concept of MoA

to complement MoCs in the process of design space exploration.

III. DEFINITION OF MODELS OF ARCHITECTURE (MOAS)

Definition 1. A Model of Architecture (MoA) is an abstract

efficiency model of a system architecture that provides a unique,

reproducible cost computation, unequivocally assessing a hardware

efficiency cost when processing an application described with a

specified MoC.

An MoA does not need to reflect the real hardware architecture

of the system. It only aims to represent its efficiency at a coarse

grain. As an example, a complete cluster of processors in a many-

core architecture may be represented by a single Processing Element

(PE) in its MoA representation, hiding the internal structure of this

PE. MoAs are intended to be used at a high level of abstraction

where hardware, operating system and middleware may be abstracted

together. MoAs can be used at all stages of the system design process,

from early steps (e.g. to define how many hardware coprocessors

are necessary) to late steps (e.g. to optimize runtime scheduling). In

addition to classical information such as processor frequency, number

of cores or memory architecture, an MoA can give information on

physical properties such as energy consumption and temperature

dissipation.

In the next section, a new MoA is proposed and named LSLA.

This model is providing simple semantics for computing an abstract

cost from the mapping of an application described with a precise

MoC.

IV. THE LINEAR SYSTEM-LEVEL ARCHITECTURE MODEL

(LSLA) MOA

A. Definitions

As an MoA, LSLA provides reproducible cost computation when

the activity A of an application is mapped on the architecture. Three

application-related notions are required prior to the definition of

LSLA: application activity, quanta and tokens. These notions are

necessary because they make LSLA independent from the chosen

MoC.

Definition 2. The application activity A represents the amount

of processing and communication necessary for accomplishing the

requirements of the application.

Definition 3. A quantum q is the smallest unit of application

activity. There are two types of quanta: processing quantum qP and

communication quantum qC .

Two distinct instances of processing quanta are equivalent in the

sense that they represent the same amount of computational activity.

Processing and communication quanta do not share the same unit of

measurement. As an example, in a system with a unique clock and

Byte addressable memory, 1 cycle of processing can be chosen as

the processing quantum and 1 Byte as the communication quantum.

Definition 4. A token τ ∈ TP ∪ TC is a non-divisible unit of

application activity, composed of a number of quanta. The function

size : TP ∪ TC → N associates to each token the number of quanta

composing the token. There are two types of tokens: processing tokens

τP ∈ TP and communication tokens τC ∈ TC .

The activity A of an application is defined by the set:

A = {TP , TC} (2)

where TP = {τ1
P , τ

2
P , τ

3
P ...} is the set of tokens composing the

application processing and TC = {τ1
C , τ

2
C , τ

3
C ...} is the set of tokens

composing the application communication.

An example of a processing token can be a run-to-completion task.

It is composed of N processing quanta (for instance, N cycles). An

example of a communication token is a message in a message passing

system. It is composed of M communication quanta (for instance M

Bytes). Using the two levels of granularity of a token and a quantum,

the LSLA MoA can reflect the cost of managing a quantum and the

overhead of managing a token composed of several quanta. Definition

5 formally defines the LSLA model, illustrated in Figure 5.

Link

PE Processing Element

CN Communication Node

10x+1 Per token cost
(x=# of quanta)

z

B

1x

x y

10x 1x
A10x+1

5x+1 D

C 2x+1

2x+1λ=0.3

Fig. 5: LSLA MoA semantics elements.
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Definition 5. The Linear System-Level Architecture Model (LSLA)

is a Model of Architecture (MoA) that consists of a four-tuple

M = (G,L, cost, λ). Here, G = (P,C) is an undirected graph

where P is the set of abstract architecture Processing Elements (PEs)

and C is the set of architecture Communication Nodes (CNs). A

processing token τP must be mapped to a PE p ∈ P to be executed.

A communication token τC must be mapped to a CN c ∈ C to be

transferred. L = (ni, nj), ni ∈ C, nj ∈ C ∪P is a set of undirected

links connecting either two CNs or one CN and one PE. A link models

the capacity of a CN to communicate tokens to/from a PE or to/from

another CN.

The element of G denoted as “cost” is a function associating a

cost to different elements. The cost related to the management of a

token τ by a PE or a CN is defined by:

cost : TP ∪ TC × P ∪ C → R

τ, n 7→ αn.size(τ) + βn,

αn ∈ R, βn ∈ R

(3)

where αn is the fixed cost of a quantum when executed on n and

βn is the fixed overhead of a token when executed on n. A token

communicated between two PEs connected with a chain of CNs Γ =
{x, y, z...} is reproduced card(Γ) times and each occurrence of the

token is mapped to 1 element of Γ. This procedure is explained on

different exemples in Section VI. A token not communicated between

two PEs, i.e. internal to one PE, does not cause any cost.

The cost of the execution of application activity A on an LSLA

model M is defined as:

cost(A,M) =
∑

τ∈TP

cost(τ,map(τ)) + λ
∑

τ∈TC

cost(τ,map(τ))

(4)

where map : TP ∪ TC → P ∪ C is a surjective function returning

the architecture elements where a token is mapped.

λ ∈ R is a lagrangian coefficient setting the Computation to

Communication Cost Ratio (CCCR), i.e. the cost of a single commu-

nication quantum relative to the cost of a single processing quantum.

V. RELATED WORK ON MOAS

Model Abstr- Distributed Cost Reprodu-

action Memory type(s) cible cost

UML Marte [15] - - yes multiple no

AADL [16] - yes multiple no

[4] - yes multiple no

[17] + yes multiple yes

[18] + yes time no

[19] ++ yes multiple no

S-LAM [20] ++ yes time no

LSLA +++ yes abstract yes

TABLE I: Properties of different state of the art architecture models.

The concept of MoA is evoked in [21] where it is defined as “a

formal representation of the operational semantics of networks of

functional blocks describing architectures”. This definition is very

broad, and allows the concepts of MoC and MoA to overlap. As

an example, an SDF graph representing a fully specialized system

may be considered as a MoC because it formalizes the application.

It may also be considered as an MoA because it fully complies with

the definition from [21]. This is in contrast to the orthogonalization

between MoC and MoA representations that is supported in our

proposed modeling framework. Moreover, contrary to the definition

from [21], our proposed definition of MoA does not compel the MoA

to match the internal structure of the hardware architecture, as long

as the generated cost is of interest.

Table I references architecture models of abstract heterogeneous

parallel architectures. An evaluation of the level of abstraction of

each model is given, as well as some properties.

UML Marte [15] is a system modeling standard offering a holistic

approach encompassing all aspects of real-time embedded systems.

The standard consists of Unified Modeling Language (UML) classes

and stereotypes. As a specification language, UML Marte does not

standardize how a cost should be derived from the specified hardware

resources and non-functional properties. In contrast, an MoA focuses

on reproducible cost computation.

The Architecture Analysis and Design Language (AADL) language

[16] defines a syntax and semantics to describe both software and

hardware components. The language constructs match logical and

physical features such as threads and processes for software and bus

and memory for hardware. In contrast, MoAs offer abstract features

for describing hardware architectures and delegate responsibility for

modeling algorithms to MoCs.

Castrillón and Leupers define in [4] a quasi-MoA that divides an

architecture into PEs. Each PE has a specific Processor Type (PT)

associated to multiple costs and attributes such as context switch time

and resource limitations. A graph G of PEs is defined where each

edge interconnecting a pair of PEs is associated to a Communication

Primitive (CP), i.e. a software application programming interface

that is used to communicate among tasks. A CP refers to a refers

to a Communication Resource (CR) and has its own cost model

associating different costs to communication volumes taking into

account the number of channels and, the amount of available memory

in the module, etc. This model is refered to as a quasi-MoA because

it does not specify the cost computation procedure from the data

provided in the model.

In [17], Kianzad and Bhattacharyya present the CHARMED frame-

work that aims at optimizing multiple system parameters represented

in pareto fronts. CHARMED uses an MoA composed of a set of

PEs and Communication Resources (CR). Each PE has an attribute

vector including processor area, processor price, data memory size,

instruction memory size, and power consumption. Each CR also has

a vector of attributes including power consumption and transmission

speed. This model constitutes, to our knowledge, the only existing

MoA as stated by Definition 1. Compared to LSLA, the model in [17]

is more complex and does not abstract the computed cost, limiting

the model to the defined metrics.

In [18], Grandpierre and Sorel define a graph-based quasi-MoA

for message passing and shared memory data transfer simulations

of heterogeneous platforms. Memory sizes and bandwidths are taken

into account in the model. This model can also be considered as a

quasi-MoA because the cost computation procedure is not specified.

In [19], Raffin et. al, describe a quasi-MoA for evaluating the per-

formance of a Coarse Grain Reconfigurable Architectures (CGRAs).

The model is customized for a processor type named ROMA and

based on a graph representing PEs, memories, a network connecting

PEs to memories, and a network interconnecting PEs. The model

contains memory sizes, network topologies and data transfer laten-

cies. The objective of the model is to provide early estimations of

the necessary resources to execute a dataflow application. Contrary to

[19], LSLA abstracts the computed cost and provides a reproducible

cost computation procedure.

The System-Level Architecture Model (S-LAM) [20] quasi-MoA

focuses on timing properties of a distributed system and defines

communication enablers such as Random Access Memory (RAM)

and Direct Memory Access (DMA). S-LAM is focused on time

modeling and does not provide reproducible cost computation.

Compared to all models except [17], LSLA is the only model

that abstracts the type of the computed implementation cost. By its
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flexibility and low complexity, LSLA is intended to be used both (a)

early in the system design process, when high modeling accuracy

is not needed, and (b) post-deployment for runtime management

decisions, when the decision processing budget is limited. The next

sections illustrate the cost computation provided by LSLA when

combined with SDF, CFDF, and BSP MoCs (Section II).

VI. COMPUTING THE COST OF AN APPLICATION EXECUTION ON

AN LSLA ARCHITECTURE

A. Computing the cost of an SDF application execution on an LSLA

architecture

LSLA architecture

A1

p: 1 p: 2

A2 activity of an iteration: 

2 A1 tokens, 

2 data tokens, 

1 A2 token

tokens relative costs: 

decomposition into quanta

mapping tokens 

to PEs and CNs

SDF

application

z

B

1x

x y

10x 1x
A10x+1

5x+1 D

C 2x+1

2x+1λ=0.3
Fig. 6: Computing the cost of executing an SDF graph on an LSLA

architecture. The obtained cost for 1 iteration is 31 + 21 + 0.3 (2 +

2 + 20 + 2) + 7 = 66.8 (Equation 4). The cost unit depends on the

type of cost represented by the model.

The cost computation mechanism of the LSLA MoA is illustrated

by an example in Figure 6 combining an SDF application model

and an LSLA architecture model. The scope chosen for the cost

computation of a couple (SDF, LSLA), provided that the SDF

graph is consistent, is one SDF graph iteration (Section II-A1).

Each actor firing is transformed into one processing token and each

dataflow token is transformed into one communication token. A

token is embedding several quanta (Section IV), allowing a designer

to describe heterogeneous tokens to represent firings and data of

different weights. In Figure 6, each firing of actor A1 is associated

with a cost of 3 quanta and each firing of actor A2 is associated to

a cost of 4 quanta. Communication tokens represent 2 quanta each.

Each processing token is mapped to one PE (A, B, C or D).

Communication tokens are “routed” to the CNs connecting their

producer and consumer PEs. For instance, the second communication

token in Figure 6 is generating 3 tokens mapped to CNs x, y,

and z because the data is carried from PE C to PE B. Since a

multiplication by λ = 0.3 brings the cost of communication tokens

to the processing domain, the total cost for communication would be

0.3× (2+ 2+ 20+ 2) = 7.8. The resulting cost from Equation 4 is

66.8. This cost is reproducible and abstract, making LSLA an MoA.

B. Computing the efficiency of a CFDF application execution on an

LSLA architecture

Using dynamic dataflow models such as CFDF, a simulation-based

integration is a natural way to apply MoA-driven cost computation

since there is in general no standard, abstract notion of an application

iteration — i.e., no notion that plays a similar role as the periodic

schedules of consistent SDF graphs. Figure 7 illustrates an example

of execution of a CFDF dataflow graph on an LSLA architecture.

We define the cost of execution of actor X in mode M(X, 1) to be

3 quanta and the cost of execution of actor X in mode M(X, 2) to

also be 3 quanta. Similarly, the cost of execution of actor Y in mode

M(Y, 1) is 2 quanta and the cost of execution of actor Y in mode

M(Y, 2) is 4 quanta. These choices represent additional information

associated with the CFDF MoC. The cost of communication tokens

on the FIFO is set to 2 quanta.

z

B

1x

x y

10x 1x
A

10x+1

5x+1 D

C

2x+1

2x+1

λ=0.3

X

p1 p2
Y

activity of 

an execution:

1 X token,

2 X tokens,

2 X token, 

5 data tokens, 

1 Y token

1 Y token

mapping tokens: 

to PEs and CNs

CFDF

application

LSLA architecture

token relative costs: 

decomposition 

into quanta

Fig. 7: Computing the cost of executing a CFDF graph on an LSLA

architecture. The obtained abstract cost for the chosen simulation

scope is 62 + 32 + 0.3 (10 + 20 + 2) + 7 = 110.6.

We can then compute a cost for every PE and CN. There are 2

actor tokens mapped to PE A. Each of them has 3 quanta. The cost

for PE A is 2× (3×10+1) = 62. There are 2 actor tokens mapped

to PE B representing 2 and 4 quanta respectively. The cost for PE

B is 1 × (2 × 5 + 1) + 1 × (4 × 5 + 1) = 32. There is 1 actor

token mapped to PE C representing 3 quanta. The cost for PE C is

1× (3× 2 + 1) = 7. There are 5 communication tokens mapped to

CN x. Each of them has 2 quanta. Therefore, the cost for CN x is

5×(2×1) = 10. Similarly, the cost of y is 1×(2×10) = 20 and the

cost of z is 1× (2× 1) = 2. The obtained cost is the summation of

all PEs’ costs and CNs’ costs multiplied by λ, which in this example

sums up to 62 + 32 + 9.6 + 7 = 110.6.

C. Computing the efficiency of a BSP application execution on an

LSLA architecture

α β γ δ ε

α1 β1

γ1

δ1

ε1

α2
β2

γ2

δ2 ε2

α→γ
β→ε δ→α

ε→δε→β

β→γα→β
ε→γ ε→δ

α1
β1 γ1

δ1 ε1

α2
β2 γ2

δ2 ε2

time

σ=1
processing

σ=1
communication

σ=2
communication

σ=2
processing

Fig. 8: Extracting the activity of a BSP model.

Figures 8 and 9 illustrate the cost computation of the execution

of a BSP algorithm on an LSLA architecture. Figure 8 displays

the extraction of the activity from the BSP description, where

each processing effort ασ is transformed into one processing token

consisting of w(ασ) quanta (Section II-B) and each (atomic) remote
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access is transformed into one communication token of one quantum.

Figure 9 shows the mapping and pooling of tokens, consisting of

associating tokens to PEs and CNs and replicating communication

tokens to route the communications. Agents α and β are mapped on

core B, agent γ is mapped on core A, agent ǫ is mapped on core C

and agent δ is mapped on core D. The global cost is computed as the

sum of the cost of each token on its PE or CN. The communication

token α → β is ignored because it is communicating a token between

two agents mapped on the same PE and such a communication has

no cost in LSLA, because there is no remote access. The abstract cost

z

B

1x

x y

10x 1x
A

10x+1

5x+1 D

C

2x+1

2x+1

λ=0.3

LSLA architecture

α→γ

β→ε
δ→α

ε→δε→β

β→γ
α→β

ε→γ
ε→δ

α1 β1

γ1

δ1

ε1

α→γ

β→ε δ→α ε→δ

ε→β
β→γ ε→γ

ε→δ
δ→α

δ→α β→ε
β→εε→βε→β

ε→γε→γ

α→β

token ignored
because α and β

are mapped
together on B

α1 β1 γ1

δ1
ε1

α2 β2 γ2
δ2 ε2

γ2

α2 β2

ε2

δ2

Mapping

& Pooling

Fig. 9: Computing the cost of executing the BSP model in Figure 8

on an LSLA architecture. The obtained abstract cost is 31 + 31 + 11

+ 11 + 11 + 6 + 0.3 (6 + 40 + 6) + 7 + 5 + 11 + 5 = 144.6 (Equation

4).

of 144.6 is obtained for this couple (BSP, LSLA) and, as for SDF

and CFDF MoCs, this cost is reproducible as long as the activity

extraction from the BSP model follows the same conventions. When

compared to using BSP alone, combining BSP and LSLA helps in

studying the cost of mapping multiple agents on a single PE — for

example, to understand the potential to exploit slack and balance

activity between PEs.

D. Discussion on LSLA cost computation

In previous sections, the cost computation mechanisms of LSLA

have been demonstrated on static SDF dataflow, dynamic CFDF

dataflow and BSP MoCs. The generic and reproducible cost com-

putation of LSLA make LSLA an MoA. While CNs with high cost

(such as y in Figure 9) represent bottlenecks in the architecture,

i.e. communication media with low data rates, PEs with high cost

(such as A in Figure 9) represent processing facilities with limited

processing efficiency. Each PE can indifferently model a General

Purpose Processor (GPP), a Graphics Processing Unit (GPU), or a

Digital Signal Processor (DSP) core executing software as well as

a hardware component implemented on a Field-Programmable Gate

Array (FPGA) or an Application-Specific Integrated Circuit (ASIC).

VII. CONCLUSION

High performance and embedded signal processing systems require

increasingly heterogeneous architectures. Reproducible models are

necessary in order to model reliably system-level efficiency. In this

paper, the notion of Model of Architecture (MoA) has been defined.

An MoA models the behavior of an architecture at a high level of

abstraction. When combined to an application model conforming

to a given MoC, an architecture model conforming to an MoA

provides reproducible cost computation mechanisms for evaluating

non-functional system properties such as memory, energy, throughput,

etc.

An MoA called Linear System-Level Architecture Model (LSLA)

has been introduced and compared to the state of the art of archi-

tecture models. LSLA represents hardware efficiency with a linear

model, summing the influences of processing and communication on

system efficiency.

In future publications, we intend to demonstrate the capabilities of

different MoAs to feed efficiency evaluations of systems, optimizing

various non-functional properties.
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