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1   Introduction 
 

One of the main results of Twentieth-century Cognitive Psychology is that, despite the overall 

impressive abilities of people to sense, remember, and reason about the world, our cognitive 

abilities are extremely limited in well-characterized ways.  In particular, psychologists have found 

that people grapple with scarce attentional resources and limited working memory. Such limitations 

become salient when people are challenged with remembering more than a handful of new ideas or 

items in the short term [20,28], recognizing important targets against a background pattern of items 

[5,26], or interleaving multiple tasks [6,26].    

 

These results indicate that we cannot help but to inspect the world via a limited spotlight of 

attention. As such, we often generate clues implicitly and explicitly about what we are selectively 

attending to and how deeply we are focusing.  Given constraints on attentional resources, it is no 

surprise that communication among people relies deeply on attentional signals.  Psychologists and 

linguists studying communication have recognized that signaling and detecting attentional states lies 

at the heart of the fast-paced and fluid interactions that people have with one another when 

collaborating or communicating [2,7].  Attentional cues are central in decisions about when to 

initiate or to make an effective contribution to a conversation or project. Beyond knowing when to 

speak or listen in a conversation, attention is critical in detecting that a conversation is progressing.  

More generally, detecting or inferring attention is an essential component of the overall process of 

grounding—converging in a shared manner on a mutual understanding of a communication [1].   

 

The findings about our limited attentional resources—and about how we rely on attentional signals 

in collaborating—have significant implications for how we design computational systems and 

interfaces.  Over the last five years, our team at Microsoft Research has explored, within the 

Attentional User Interface (AUI) project, opportunities for enhancing computing and 

communications systems by treating human attention as a central construct and organizing principle. 

We consider attention as a rare commodity and critical currency in reasoning about the information 

awareness versus disruption of users [12].  We have also pursued the use of attentional cues as an 

important source of rich signals about goals, intentions, and topics of interest [10,15].  We seek to 

build systems that sense, and share with users, natural signals about attention to support 

conversations and other forms of fluid mixed-initiative collaborations with computers [24].  Moving 

to considerations of computational efficiency, an assessment of a user’s current and future attention 

can be employed to triage computational resources. Investigations in this realm include selective 

allocation of resources in rendering graphics via relying on models [14,16] or on direct observations 

[21] of visual attention, and in guiding precomputation and prefetching [11] with forecasts of future 

attention.  Finally, although there is a rich history of prior work on attention from cognitive 

psychology, we have found that there is much we do not yet understand. Thus, beyond pooling 

results from prior psychological studies, we need to continue to perform user studies that adapt or 

extend prior results on attention and memory from cognitive psychology to real-world computing 

and communication applications [3,4,18,19]. 

 

We shall first describe several principles and methodologies at the heart of research on integrating 

models of attention into human-computer interaction and communications.  Then, we shall review 



representative efforts that illustrate how we can harness these principles in attention-sensitive 

messaging and mixed-initiative interaction applications.   

 

2   Models of Attention and Decision Making under Uncertainty 
 

How might we access and use information about a user’s attention?  To be sure, subtle clues about 

attention are often available, and a number of these clues can be taken as direct signals about the 

attentional status of users.  For example, sensing patterns of simple gestures such as the touching 

and lifting of a device in different settings can relay important evidence about attention that can be 

exploited in a number of exciting ways [8].  Moving to higher-precision sensing, several researchers 

have pursued the use of gaze-tracking systems, and have used signals about the focus of visual 

attention in a variety of applications [17,25,27].  As gaze sensors grow in reliability and decrease in 

cost, we are seeing the evolution of devices that recognize when and how they are interrogated by 

the spotlight of visual attention. 

 

Nonetheless, we may often be uncertain about a user’s attentional focus and workload in light of 

observations, and about the value of alternate actions in different contexts.   Thus, we turn to 

models that can be harnessed to reason about a user’s attention and about the ideal attention-

sensitive actions to take under uncertainty.  Such models and reasoning can unleash new 

functionalities and user experiences.   

 

We have constructed by hand and learned from data Bayesian models that can be viewed as 

performing the task of an automated “attentional Sherlock Holmes,” working to reveal current or 

future attention under uncertainty from an ongoing stream of clues.  Bayesian attentional models 

take as inputs sensors that provide streams of evidence about attention and provide a means for 

computing probability distributions over a user’s attention and intentions.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. High-level decision model considering a user’s attentional focus and workload as a 

random variable, influenced by the observed states of several sensors. 

 

Perceptual sensors include microphones listening for ambient acoustical information or utterances, 

cameras supporting visual analysis of a user’s gaze or pose, accelerometers that detect patterns of 

motion of devices, and location sensing via GPS and analysis of wireless signals.  However, more 



traditional sources of events can also offer valuable clues.  These sources include a user’s online 

calendar and considerations of the day of week and time of day. Another rich stream of evidence 

can be harvested by monitoring a user’s interactions with software and devices. Finally, background 

information about the history of a user’s interests and prior patterns of activities and attention can 

provide valuable sources of information about attention. 

 

To build probabilistic attentional models with the ability to fuse evidence from multiple sensors, we 

leverage the results of accelerated research over the last fifteen years on representations for 

reasoning and decision making under uncertainty. Such work has led to inferential methods and 

representations including Bayesian networks and influence diagrams—graphical models that extend 

probabilistic inference to considerations of actions under uncertainty. Algorithms have been 

developed which enable us to compute probability distributions over outcomes and expected 

utilities of actions from these graphical representations.  

 

Figure 1 displays a high-level influence diagram representing sensor fusion and decision making in 

the context of a user’s attention under uncertainty.  As portrayed in the figure, a set of variables 

(oval nodes) representing sensed evidence influence a random variable representing a user’s 

attentional status which, in turn, influences the expected value of alternate actions or configurations.  

We introduce intermediate cost and benefit variables in the pedagogical model as it can be useful to 

deliberate about the value and costs associated with different outcomes. Decisions (rectangular 

node) about ideal computer actions take into consideration the costs and benefits, given uncertainty 

about a user’s attention.  In the end, the expected utility (diamond-shaped node) is influenced by the 

action and the costs and benefits.  

 

We extend such a high-level, pedagogical view by constructing richer models that contain 

additional intermediate variables and key interdependencies among the variables.  Also, as both 

devices and people are immersed in time, we move beyond pointwise considerations of the states of 

variables, to build higher-fidelity temporal attentional models that represent changing observations 

and beliefs with the flow of time. We have employed dynamic Bayesian networks and Hidden 

Markov Models for representing and reasoning about states of attention and location over time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A temporal Bayesian attentional model, highlighting key dependencies (dashed arcs) 

between variables in adjacent time slices. 

 

 

 



Figure 2 displays two adjacent time slices of a temporal attentional model.  Such a model provides a 

probability distribution over a user’s workload and task that was developed for an application that 

provides selective filtering of messages and communications to users.  In this case, the status of 

attention includes approximately 15 discrete states.  

 

3   Economic Models of Attention and Information 
 

As we can all attest from personal experiences, computers and communication systems today have 

little awareness of the value and costs of transmitting messages and alerts to users.  Research on the 

Notification Platform project has centered on formulating economic principles of attention-sensitive 

notification—and on implementing a cross-device alerting system based on these principles.  A 

descendant of the Notification Platform, named Bestcom, applies similar principles to interpersonal 

communications [13]. We focus here on the Notification Platform. 

 

The Notification Platform system modulates the flow of messages from multiple sources to devices 

by performing ongoing decision analyses.  These analyses balance the expected value of 

information with the attention-sensitive costs of disruption.  As highlighted in Figure 3, the system 

serves as an attention-savvy layer between incoming messages and a user, taking as inputs sensors 

that provide information about a user’s attention, location, and overall situation. 

 

The design of the Notification Platform was informed by several earlier prototypes exploiting 

context-sensing for identifying a user’s workload, including the Priorities system [12,13].  Priorities 

employs classifiers that predict the urgency of incoming email. The classifiers are trained with 

sample messages, either obtained via explicit training or by automatically drafting data sets by 

observing a user’s interaction with an email browser.  Studies have demonstrated that the system 

performs remarkably well at classifying the urgency of messages (see, for example, the receiver-

operating characteristic curve described in [12]. Priorities also observes a user’s patterns of 

presence at a desktop computer based on time of day, and infers the time until a user will review 

unread messages.  The system computes an expected cost of delayed review for each incoming 

message. This cost is considered, along with a cost of interruption based on activity sensing and 

calendar information, in automated decisions about if and how to alert and transmit information to a 

user about email, tasks, and appointment reminders in mobile and desktop settings.   

 

                     

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3. Conceptual overview of the Notification Platform, a cross-device messaging system that 

balances the costs of disruption with the value of information from multiple message sources. The 

system employs a probabilistic model of attention and executes ongoing decision analyses about 

ideal alerting, fidelity, and routing.  

 



The Notification Platform uses a decision-analytic model for cross-device alerting about 

information from multiple message sources. The analyses consider a user’s attention and location 

under uncertainty, as well as the fidelity and relevance of potential communication channels.  We 

developed a distributed architecture that executes over multiple devices.  Figure 4 displays a 

schematized view of the architecture of the Notification Platform.  Standard interfaces and metadata 

schemas allow users to subscribe different sources of information and devices to a Notification 

Manager/ At the heart of the Notification Manager is a Bayesian attention model and decision 

analysis which accesses clues about attention and location from sensors via a module we refer to as 

a Context Server.   

 

The context server accesses several states and streams of evidence, including a user’s appointments 

from Microsoft Outlook, events about device presence and activity, an analysis of ambient acoustics 

in the room, and a visual analysis of pose using a Bayesian head-tracking system.  Key abstractions 

from the evidence, such as “voice trace detected,” “task completion occurred within 5 seconds,” 

“single application focus,” “head-tracked—looking away from display,” and “meeting away from 

office—ending in 10 minutes,” are posted to a volatile store called the Context Whiteboard which is 

continually updated by incoming evidence.  The Context Whiteboard is contacted for updated 

information every few seconds by the Bayesian attentional model in the Notification Manager.   

 

        
 

Figure 4. Constellation of components of the Notification Platform, depicting the subscription 

architecture.  Subscribed sources and devices communicate with the Notification Manager via a set 

of standard interfaces.  Sensor findings from multiple devices are considered in deliberations about 

information value, attention, and the best channel and alerting modality.   

 

 

The Notification Manager’s decision analysis weighs the expected costs and benefits of alerting a 

user about messages coming into the system’s Universal Inbox.  In computing the costs of 

disruption, the decision model considers the probability distribution over a user’s attentional state 

and location in several places in its analysis, including the cost of disruption associated with 

different alerts for each device, the availability of different devices, and the likelihood that the 

information will reach the user when alerted in a specific manner on a device.   

 

 



The ongoing expected-utility analysis is performed in accordance with a user’s preferences, stored 

in a profile. These include assertions about the cost of disruption for each alert modality, 

conditioned on the user being in different attentional states. As an example, for the case of a desktop 

computer, the system makes available a set of display alternatives as the product of different visual 

displays of the alert (e.g., thumbnail, full-display alert) and several auditory cues (e.g., no auditory 

clue, soft chime, louder herald). The placement of the alert with regards to the current focus of 

visual attention or interaction is also considered.  

 

Figure 5 captures the deliberation of the Notification Platform about incoming messages.  The 

system computes the expected value of receiving an alert as the difference between the value of 

alerting the user now and the value that will be obtained when the information is viewed later.  

Given probability distributions over a user’s attention and location inferred from its sensors, 

Notification Platform iterates over all alerting and display modalities for each device with an 

expected-utility analysis to decide if, when, and how to alert a user.  As represented with the 

metaphor of a narrowing funnel in Figure 5, the system considers, for each device and modality, the 

loss in fidelity of information transmitted. In addition, the system considers the likelihood that an 

alert will be received, given inferred probability distributions over the attention and location of the 

user. This reliability of transmission is represented metaphorically in the figure as the chance that a 

message will make it through a slot in a spinning disk.  In the end, the attention-sensitive costs of 

disruption are subtracted from estimates of the value of alerting, yielding a net value of alerting a 

user for each channel and alerting modality.  The channel and modality with the highest expected 

value is selected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graphical depiction of the Notification Manager’s analyses.  Attention-sensitive costs of 

disruption and the value of information are considered, along with the losses based in decreased 

fidelity (narrowing funnel) and transmission reliability (spinning slotted disk) associated with the 

use of each alerting modality of all subscribed devices.   

 

Figure 6 displays several aspects of the behind-the-scenes functioning of the Notification Platform. 

A context palette displays current findings drawn from sensor sources. Several views onto 

components of the decision analysis are displayed, including inference about the time-varying 

attention of the user.  At the current time, the user is inferred to be most likely in a state named 

“high-focus solo activity,” which has competed recently with “low-focus solo activity,” 

“conversation in office,” and other less likely states. The Universal Inbox displays messages from 

 



several sources, including email, instant messaging, breaking news, and stock prices.  Messages 

have also been received from DocWatch, an agent subscribed to by the user that identifies 

documents of interest for the user. Each message is annotated with the best device and alerting 

policy, and the associated net expected dollar value of relaying the messages with that channel and 

mode is indicated.  As portrayed in the inbox, it is worthwhile passing on to the user two instant 

messages. Other alerts are “in the red,” as the cost of disruption dominates the net value of 

information. In this case, the ideal alerting mode and channel for an instant message is determined 

to be a visual notification in a large format coupled with an audio herald at the user’s desktop 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. View of a portion of the Notification Platform’s real-time reasoning. Information from 

multiple sensors is posted to the Context Whiteboard and fused to infer the user’s attentional status 

and location. Multiple notifications are sorted by net expected value and the channel and alerting 

modality with the highest expected utility is selected 

 

Ongoing research on the Notification Platform project includes the refinement of preference 

assessment tools to ease the task of encoding preferences. Currently, users can adjust sliders to 

change a set of predefined defaults on costs of interruptions.  Another key area of work centers on 

using machine learning for building probabilistic models of attention, location, and cost of 

disruption from data. Results from ongoing machine-learning efforts on our team have been applied 

to refine the Notification Platform [13,22]. 

 

As highlighted in Figure 7, we have also been working to make small devices aware of the 

attentional status and location of users [8]—and either transmitting local sensor information to 

inform a central Notification Manager, performing entirely local notification management and 

related services based on observations, or doing a combination of central and local deliberation 

about notification.  In the latter case, the central Notification Manager makes general decisions 

about routing, and relies on the endpoint device to perform precision targeting of the timing and 

alerting modality, based on local sensing and reasoning. As an example, with the use of a method 

we refer to as bounded deferral, a local device commits to relaying a message that it has received 

before a message-specific deadline is reached; the device does its best to find a good time for 



interruption within the allotted period. Research on smart endpoints includes the challenges of 

embedding and leveraging multiple perceptual sensors on small devices, including GPS, 802.11 

signal strength, accelerometers, infrared proximity detectors, and touch sensors. Part of this work 

has explored opportunities for developing devices, such as cell phones that behave with more 

insight about their disruptiveness by considering the situation at hand, including states derived from 

coarse models of attention [9]. 

 

Additionally, we are continuing to pursue psychological studies of disruption.  Formal studies of the 

costs of disruption began with the early work of Ovsiankina [23] and Zeigarnik [29] nearly seventy-

five years ago. The rich body of work in this realm includes studies on memory, problem solving, 

and overall task efficiency in the face of disruptions.  More recent work includes efforts by our team 

[3,4] and other groups [e.g., 18,19] to probe the influence of notifications of various types and 

saliencies on the efficiency and satisfaction with performing a variety of computer tasks. The 

psychological studies and results complement the mathematical models; the economic models 

provide a principled, flexible foundation which can integrate findings about the costs uncovered by 

user studies of disruption via the setting of parameters considered in expected-utility decision 

making. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Sensing PDA, outfitted with multiple perceptual sensors, including proximity, motion, and 

touch sensors.  In the background, accelerometer signals are displayed showing the motion 

fingerprint of a user walking while looking at the device. 

 

 

4   Attention, Initiative, and Interaction 
 

In another area of investigation within the AUI project, we have studied the use models of attention 

to enhance the robustness and fluidity of human-computer collaboration.  Some of this work focuses 

on the recognition of attentional cues as coordinative signals in mixed-initiative interaction with 

computing devices.  In mixed-initiative interaction, both users and computers take turns in 

contributing to a project or an understanding [9]. The turn taking of conversational dialog is a 

prototypical example of mixed-initiative interaction.  Psychologists have found that people engaged 

in conversations rely on attentional cues to signal when a contribution is going to be offered or has 

been accepted [1].  We have sought to endow computers with an analogous ability to recognize and 

emit signals to guide the nature and timing of contributions and clarifications in support of mixed-

initiative interaction.   

 

DeepListener [15] and Quartet [24] represent efforts in mixed-initiative interaction to incorporate 

attention in spoken language systems.  Both systems tackle what we have referred to as the speech-

target problem: When a computer with an open microphone and speech recognizer hears an 

utterance, how is it to recognize that it is being addressed when there are other people or listening 



devices in a room?  DeepListener and Quartet explicitly address this challenge with probabilistic 

models that infer the likelihood that they are the target of speech.   

 

DeepListener reasons about a user’s attention and intentions to guide clarification dialog in a 

spoken command and control setting. The system considers its uncertainty about whether it is the 

target of speech, what it has heard, and the likelihood of different intentions.  DeepListener 

continues to make expected-utility decisions about taking actions in the world, or about how it 

should approach users, if necessary, to clarify their intentions before taking such world actions. 

These decisions take into consideration the utilities of alternate dialog actions and the stakes of the 

world actions.   

 

DeepListener shares its attention and availability by gracefully changing the colors and intensities 

of an attentional lens that glows on its control panel, or via gestures and rendered “thoughts” of an 

animated agent. These affordances provide cues that assist with conversational turn taking.      

 

Figure 8 displays a situation where DeepListener has heard an utterance that was first directed 

elsewhere in a noisy environment.  After analyzing a new utterance a bit later, the system engages 

the user in a clarification dialog, and then invokes a desired action.  

 

Quartet operates with a continuous speech recognition system, and incorporates a richer model of 

attention under uncertainty. It examines keyboard events, an analysis of the content and the 

coherence of natural language parsing, and a visual pose analysis to ascertain the attentional status 

of the user and system with regards to the establishment, maintenance, and disruption of attention 

between the user and system [24].  Since Quartet couples speech recognition to a natural language 

parser, the system can also use the grammatical parse to reason about whether an utterance was 

misrecognized, or properly recognized but intended for someone else.  Figure 9 shows Quartet 

listening to a user talking about the system rather than speaking to the system.  In this case, Quartet 

is being used as an assistant to control, via voice commands, the navigation of slides displayed in a 

presentation.  Requests directed to Quartet about navigation among slides arise intermittently during 

the more dominant stream of ongoing utterances associated with the presentation.  In this example, 

the user is talking about the computer, and, based on a fusion of the user’s language and visual pose, 

Quartet infers that the user is likely speaking to someone else. 

 
Our ongoing research on mixed-initiative and spoken language systems is focusing on several 

challenges, including the use of sensed or inferred attention to provide clues about a user’s 

intentions, the content and context at hand, and the nature and ideal timing of appropriate 

contributions. This work includes using sensed or inferred attention to inform speech recognition 

systems about the specific microcontexts being addressed with utterances.  Such narrowing of the 

spotlight of analysis can be useful for enhancing recognition as it can enable spoken dialog systems 

to swap in the appropriate language models and semantics, and adjust the scope of possible actions. 

Also, robust solutions to the speech-target problem promise to influence significantly the overall 

sociology of human-computer interaction, by allowing users to interact with multiple devices and 

people in their proximity with speech and gestures in a manner similar to the way that people 

interact with one another.   

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

Figure 8. DeepListener’s deliberation about the target of speech and ideal clarification dialog. The 

system first makes an expected utility decision to share in a subtle manner its thoughts about the 

possibility that it is the target of an utterance. Given additional recognitions, it goes ahead to seek 

clarification, and finally executes an action for the user. 

 

 

In another realm of innovation, computers with an ability to track and to understand attentional 

patterns among people engaged in conversations can provide new kinds of services and facilities. 

For example, methods for identifying visual attention among participants in a conversation can be 

used to automate the control of cinematography, and to capture, organize, and understand a group 

meeting or videoconference [26].  Thus, beyond enhancing human-computer interaction, sensing 

and reasoning about attention promises to enhance the way we communicate and collaborate with 

one another. 

 

 
 
 

 

Figure 9. Quartet in action.  Quartet’s partial recognition is displayed at the top of the display.  The 

system’s beliefs about the attentional status of the user, with regards to initiating, maintaining, or 

breaking out of conversational dialog, is represented as a dynamically changing probability 

distribution. 

 

 

5   Conclusion 
 

We described efforts to endow computing systems with the ability to sense and reason about human 

attention. After reviewing some background on the nature and importance of attention in cognition 

and discourse, we discussed methods for inferring attention from multiple streams of information, 

and for leveraging these inferences in decision making under uncertainty.  Then, we presented 

 



illustrative applications of the use of attentional models in messaging systems and in mixed-

initiative interaction. Research on the use of models of attention in computing systems is still in its 

youth.  We expect that continuing refinement of methods for recognizing, reasoning, and 

communicating about attention will change in a qualitative manner the way we perceive and work 

with computers.  
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