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a b s t r a c t

Models of cardiac tissue electrophysiology are an important component of the Cardiac Physiome Project,

which is an international effort to build biophysically basedmulti-scale mathematical models of the heart.

Models of tissue electrophysiology can provide a bridge between electrophysiological cell models at

smaller scales, and tissue mechanics, metabolism and blood flow at larger scales. This paper is a critical

review of cardiac tissue electrophysiology models, focussing on the micro-structure of cardiac tissue,

generic behaviours of action potential propagation, different models of cardiac tissue electrophysiology,

the choice of parameter values and tissue geometry, emergent properties in tissue models, numerical

techniques and computational issues. We propose a tentative list of information that could be included in

published descriptions of tissue electrophysiology models, and used to support interpretation and

evaluation of simulation results. We conclude with a discussion of challenges and open questions.

� 2010 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2. Cardiac tissue micro-structure and electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1. Cellular components of myocardium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1.1. Myocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1.2. Fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1.3. Other cell types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.2. Spatial organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.2.1. Gap junctions, fibres and sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.2.2. Regional differences in tissue properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.2.3. Extracellular matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.2.4. Spatial organisation of fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.3. Micro-structural basis of bulk electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3. Action potential propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

* Corresponding author. Tel.: þ44 114 222 1845; fax: þ44 114 222 1810.

E-mail addresses: r.h.clayton@sheffield.ac.uk (R.H. Clayton), o.bernus@leeds.ac.uk (O. Bernus), emc58@cornell.edu (E.M. Cherry), hans.dierckx@ugent.be (H. Dierckx),

fhf3@cornell.edu (F.H. Fenton), lucia@mathcs.emory.edu (L. Mirabella), a.panfilov@uu.nl (A.V. Panfilov), fs@cvrti.utah.edu (F.B. Sachse), Gunnar.Seemann@kit.edu

(G. Seemann), h.zhang-3@manchester.ac.uk (H. Zhang).

Contents lists available at ScienceDirect

Progress in Biophysics and Molecular Biology

journal homepage: www.elsevier .com/locate/pbiomolbio

0079-6107/$ e see front matter � 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.pbiomolbio.2010.05.008

Progress in Biophysics and Molecular Biology xxx (2010) 1e27

Please cite this article in press as: Clayton, R.H., et al., Models of cardiac tissue electrophysiology: Progress, challenges and open questions,
Progress in Biophysics and Molecular Biology (2010), doi:10.1016/j.pbiomolbio.2010.05.008

mailto:r.h.clayton@sheffield.ac.uk
mailto:o.bernus@leeds.ac.uk
mailto:emc58@cornell.edu
mailto:hans.dierckx@ugent.be
mailto:fhf3@cornell.edu
mailto:lucia@mathcs.emory.edu
mailto:a.panfilov@uu.nl
mailto:fs@cvrti.utah.edu
mailto:Gunnar.Seemann@kit.edu
mailto:Gunnar.Seemann@kit.edu
mailto:Gunnar.Seemann@kit.edu
mailto:h.zhang-3@manchester.ac.uk
www.sciencedirect.com/science/journal/00796107
http://www.elsevier.com/locate/pbiomolbio
http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.008
http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.008
http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.008


3.1. Continuum approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3.2. 1-D propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3.3. 2-D propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3.4. 3-D propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4. Mathematical description of cardiac tissue electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.1. Models of discrete cardiac tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.2. Continuous approximation of cardiac tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.2.1. Bidomain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.2.2. Monodomain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.2.3. Comparison between bidomain and monodomain models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.3. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4.4. Tissue geometries and imaging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5. Integration of cell and tissue models of cardiac electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.1. Emergent properties in tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.1.1. Liminal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.1.2. Minimum cycle length for propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.1.3. Conduction velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.2. Electrotonic current-mediated differences in dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.2.1. Decreased action potential amplitude and shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5.2.2. Changes in restitution, alternans, and memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6. Numerical implementation of cardiac tissue models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.1. Modelling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.2. Discrete representations of tissue geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.3. Numerical methods for discrete space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.4. Implicit, explicit and semi-implicit solution schemes for discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.5. Linear system solvers and preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.6. Temporal and spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

6.7. Parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7. Strategies for reducing calculation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.1. Lookup tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.2. Exponential solutions for gating variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.3. Operator splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.4. Efficiency of adaptivity in space and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.5. Using graphics processing units for computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.6. Use of simplified cell models for representing tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.6.1. Reductions of detailed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.6.2. Generic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.6.3. Phenomenological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

7.7. Choosing an appropriate cellular electrophysiology model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

8.1. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

8.2. Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

8.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

1. Introduction

Mechanical contraction of cardiac tissue is triggered by electrical

depolarisation of the cellmembrane, and co-ordinated by the spread

of depolarisation through cardiac tissue from the sino-atrial node

to other regions of the heart. The sequence of depolarisation and

subsequent repolarisation can be measured with electrodes (Durrer

et al., 1970) and optical imaging using voltage-sensitive fluorescent

dyes (Efimov et al., 2004). These experimental techniques have

been especially valuable for documenting the abnormal activation

patterns that underlie cardiac arrhythmias (Gray et al., 1998).

Cardiac tissue contains excitable myocytes. Local depolarisation

of the cardiac myocyte membrane above a threshold voltage, for

example in response to current injection froma stimulating electrode

or current provided by neighbouring myocytes, triggers the opening

of voltage-gated Naþ channels and a rapidmembrane depolarisation,

which generates an action potential. The action potential upstroke

produces local gradients in membrane voltage that cause current

flowwithin the tissue. This current flow acts in turn to open voltage-

gated Naþ channels in neighbouring electrically connected cells,

resulting in propagation of the action potential through the tissue

(Jongsma and Wilders, 2000; Kleber and Rudy, 2004; Plonsey and

Barr, 2000; Rook et al., 1992). The speed and pattern of propagation

depends on local tissue micro-structure, although at larger spatial

scales cardiac tissue behaves as a functional syncytium.

Over the last 50 years, experimental cardiac electrophysiology

has been increasingly complemented by computational models

of action potential propagation that embed models of membrane

excitability within a framework that describes cardiac tissue

(Clayton and Panfilov, 2008; Henriquez and Papazogou, 1996;

Kleber and Rudy, 2004). These models can provide a quantitative

description of action potential propagation, and have explanatory

power because they can be used to test and generate hypotheses

that are difficult to address experimentally. Examples where

models have provided new insights include studying the mecha-

nisms of re-entry and defibrillation in 3D tissue (Rodriguez et al.,

2005; Ten Tusscher et al., 2009), and the role of tissue micro-

structure and heterogeneity in the atrioventricular node (Li et al.,

2008). While it appears conceptually straightforward to build

models of cardiac tissue electrophysiology, these models typically
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embed several important assumptions. The model assumptions can

have important implications for the interpretation of simulation

studies. For instance, most models of cardiac electrophysiology

assume that cardiac tissue can be treated as a static continuum,

where parameter values such as tissue conductivity are either

uniformly distributed or vary smoothly in space. Furthermore, most

models assume that cardiac tissue is comprised of myocytes and

extracellular space only. These models neglect other types of cells

and compartments. Similarly, assumptions of modelling parameter

values can have important consequences for the accuracy and

validity of models, yet many parameter values are difficult to obtain

and to verify (Winfree, 1998).

Models of tissue electrophysiology are an important component

of the Cardiac Physiome Project, which is an international effort to

build biophysically based multi-scale mathematical models of

the heart. Models of tissue electrophysiology can provide a bridge

between electrophysiological cell models, tissue mechanics, and

blood flow (see other papers in this issue). This paper is a critical

review of computational models of action potential propagation in

tissue, with a focus on six main areas. First, we cover the structure

and micro-structure of cardiac tissue, and how this structure

determines the passive electrical properties of bulk tissue. Second,

we review the generic behaviours of action potential propagation

in 1-D, 2-D, and 3-D tissue. Third, we discuss different approaches

to modelling cardiac tissue, the choice of parameter values, and

tissue geometry. Fourth, we examine the implications of embedding

excitable cells into tissue, both for models and for real tissue. Fifth,

we review commonly used numerical approaches to solving the

models described in section three. Sixth, we discuss ways to reduce

computation times. We finish with a discussion of challenges and

open questions in electrophysiological tissue modelling.

2. Cardiac tissue micro-structure and electrical properties

At the microscopic level, cardiac muscle is a composite tissue. It

consists of various cell types, mainly myocytes and fibroblasts, sup-

ported by an extracellular matrix (ECM) and permeated by fluids.

In this sectionwe provide a brief overview of the major components

of cardiac muscle at the microscopic level, how the components are

organised spatially in the heart, and how the tissue micro- and

macrostructure influence the passive electrical properties of cardiac

tissue.

2.1. Cellular components of myocardium

2.1.1. Myocytes

Cardiac myocytes are the major constituent of heart muscle, and

their primary function is to produce mechanical tension. Contrac-

tion is triggered by electrical depolarisation, which is initiated and

mediated by specialised myocytes including sino-atrial and atrio-

ventricular node cells and Purkinje cells (Boyett et al., 2009; Hucker

et al., 2009). In mammalian atrial and ventricular tissue, myocytes

can be coarsely approximated by a cylinder with dimensions

ranging from 50 to 150 mm in length and 10e20 mm in diameter

(Gerdes et al., 1986; Satoh et al., 1996; Spach et al., 2004; Streeter

et al., 1969). The shape and volume of myocytes even in a small

region of tissue can be variable and complex, and these properties

are also influenced by species, developmental stage, and disease

processes (Bers, 2008; Campbell et al., 1987).

Myocytes are enclosed by a lipid membrane, the sarcolemma,

which separates the cell exterior from its interior. Cardiac myocytes

contain one or more nuclei, usually in the cell centre. On average

a mature young (17e30 years) healthy human heart contains

approximately 8.2 billion myocyte nuclei in the ventricles (Olivetti

et al., 1991), corresponding to about 6.5 billion cells, assuming that

25 percent of myocytes have two nuclei and 75 percent one nucleus

(Olivetti et al., 1996). An average annual loss of approximately 52

million ventricular myocyte nuclei per year ensues subsequently,

with a corresponding increase in ventricular myocyte volume of

110e120 mm3 per year (Olivetti et al., 1991) acting to preserve

thickness.

Cardiac myocytes also contain mitochondria, myofibrils, the

sarcoplasmic reticulum, the sarcomeres and the cytoskeleton,

which provides anchoring for the different organelles. The intra-

cellular space is filled up with the sarcoplasm, an aqueous solution

containing lipids, various ion species, carbon hydrates and proteins.

The sarcolemma represents a semi-permeable barrier, and contains

the ion channel, pump, and exchanger proteins that carry the

inward and outward currents that underlie the action potential, as

well as proteins involved in cell adhesion and signalling. Expression

of these membrane proteins is strongly dependent on develop-

mental stage, tissue type, and location, and is further influenced by

disease. Transverse tubules (t-tubules) are deep invaginations of

the sarcolemma, and act to communicate electrical and Ca2þ signals

to the cell interior (Brette and Orchard, 2003; Fawcett and McNutt,

1969). The t-tubules have a complex geometry (Fig. 1), with a high

density of L-type Ca2þ channels located closely to Ca2þ release sites

in the sarcoplasmic reticulum. A further specialisation of the cell

membrane is found at its ends, i.e. the intercalated disks, where

cells are mechanically coupled. Intercalated disks also include gap

junction channels, which provide for intercellular electrical

coupling (see below) (Gumbiner, 1996; Lodish et al., 2003).

2.1.2. Fibroblasts

Although myocytes account for the largest volume fraction of

normal myocardium, they can be outnumbered by themuch smaller

fibroblasts (Adler et al., 1981; Camelliti et al., 2005). The density of

fibroblasts in cardiac muscle is dependent on species, age and

disease (Banerjee et al., 2007, 2006). Cardiac fibroblasts play a major

role in themaintenance of the ECM,which provides a framework for

cardiac tissue and is the major determinant of passive mechanical

properties. Fibroblasts can develop into myofibroblasts. Both cell

types serve as mediators of inflammatory responses and are

involved in the development of fibrosis in the injured heart.

2.1.3. Other cell types

Endothelial cells cover the internal surface of blood vessels in

cardiac tissue (Davies, 2009), and vascular smooth muscle cells are

found in vessel walls. Various types of neural cell are also associated

with innervation of the myocardium (Chen and Chen, 2009).

2.2. Spatial organisation

2.2.1. Gap junctions, fibres and sheets

Myocytes are coupled to other myocytes by gap junction chan-

nels, which enable both intercellular signalling and propagation of

the action potential as described in Section 3 (Delmar and Sorgen,

2009; Lampe and Fishman, 2009; van Kempen et al., 1991). Gap

junctions have a cylindrical or barrel shape with a diameter of

about 2 nm and length of approximately 2e12 nm. Gap junction

channels consist of two hemi-channels, connexons, located in the

membrane of the two coupled cells. Each connexon is formed by six

membrane proteins, connexins, which have been named according

to their atomic weight ranging from 25 to 50 kD. In mammalian

ventricular myocardium connexin43 is the most prevalent. Other

connexins have been found in the atria and conduction system

(connexin37, connexin40 and connexin45).

Gap junctions can be found at various locations throughout the

sarcolemma, but most are located at intercalated disks. Longitudi-

nally coupled gap junctions are found at the longitudinal ends of
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cells, whereas transverse gap junctions are located in lateral

membranes. The distribution of gap junction orientations in the

sarcolemma depends on tissue type. In ventricular myocardium,

longitudinal gap junctions are most abundant, resulting in macro-

scopic anisotropic electrical coupling (Hoyt et al., 1989).

The main features of tissue micro-structure are preferential local

alignment of myocytes along their principal axis (Fig. 2) and their

end-to-end coupling. By analogy to skeletal muscle, a local fibre

orientation can be defined along the principal axis of myocytes. In

the ventricles, fibre orientation has been known to smoothly rotate

between endocardium and epicardium ever since original work by

Streeter (Streeter et al., 1969). This finding obtained by visual

inspection of tissue has been confirmed using various techniques,

such as histology (Streeter et al., 1969), optical techniques (Hucker

et al., 2008; Sands et al., 2005; Smith et al., 2008), and diffusion

tensor MRI (Gilbert et al., 2007) (Fig. 3). Peskin also used mechanical

principles to derive the fibre architecture of the ventricles with

a prediction of about 180� of rotation between endocardium and

epicardium (Peskin, 1989). Comparative anatomical studies have

shown that these general features of fibre organisation in the

ventricular wall are conserved across species. Some of these studies

however have highlighted specific regions of themyocardiumwhere

fibre organisation ismuchmore variable (Dierckxet al., 2009;Nielsen

et al., 1991; Scollan et al., 2000), suggesting abrupt changes in

orientation and meshing of fibres (Lunkenheimer et al., 2006).

In addition to the fibrous structure described above, ventricular

myocytes are organised into laminar structures, also called sheets,

which were first described in detail by Feneis and Hort (Hort, 1957a,

1957b, 1960). These sheets are typically 4e6 myocytes thick and are

separated by cleavage planes and layers of connective tissue. Detailed

microscopic imaging studies of cardiac tissue has demonstrated

a laminar structure in ventricular tissue (Sands et al., 2005); however,

it is important to note that the laminar structure involves branching

and discontinuous sheets that accommodate the fibre structure, and

may be more prominent in some parts of the ventricles than others

(Gerneke et al., 2007; LeGrice et al., 1995; Pope et al., 2008; Sands

et al., 2005). The ventricular wall also accommodates a vascular

network, and detailed examination shows the presence of many

blood vessels and other voids within the tissue (Burton et al., 2006).

2.2.2. Regional differences in tissue properties

The shape and arrangements of myocytes depends on tissue

type and so varies with location in the heart, with important

differences between atrial and ventricular tissue for example

Fig. 2. Confocal microscopic images from a three-dimensional stack of living atrial tissue of rabbit (modified from (Lasher et al., 2009)). The images are acquired at a depth of (a)

20 mm and (b) 30 mm into the sub-epicardial myocardium. Scale: 50 mm.

Fig. 1. Confocal microscopy of isolated living ventricular myocyte from rabbit (modified from (Savio-Galimberti et al., 2008)). (A) A transversal section through the myocyte is

shown with the cell interior in dark and exterior in bright color. (B, C) A segment of cell is visualised in three dimensions. The cell membrane includes deep invaginations, the

transverse tubular system, into the cell interior.
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(Anderson and Ho, 1998; Cabrera et al., 1998; Gilbert et al., 2007).

Similarly, the expression levels and distribution of ion channel,

pump and exchanger proteins in myocytes are heterogeneous,

giving rise to regional differences in action potential shape, dura-

tion, and conduction velocity (Boyett et al., 2009; Hucker et al.,

2009; Nerbonne and Guo, 2002; Szentadrassy et al., 2005).

2.2.3. Extracellular matrix

Cardiac myocytes are surrounded and supported by the ECM,

which is a complex network including strands of collagen and elastin.

Both collagen and elastin are fibrous proteins, and their relative

densities can vary with age, species, and tissue type (Abrahams et al.,

1987; Ju andDixon,1996;Weber et al.,1994). For example, collagen is

found in high densities throughout the ventricular myocardium, but

is less abundant in papillary muscles and trabeculae. Moreover, the

thickness of collagen fibrils can dramatically increase in pathological

cases from 40 nm up to as much as 300 nm.

The arrangement of the ECM differs at specific locations

(Robinson et al., 1983). In the endomysium, the collagen network

surrounds a single myocyte, with interconnection to neighbouring

myocytes. In the perimysium, bundles of perimysal collagen fibres

envelop groups of adjacent myocytes and provide the laminar

structure of the myocardium (Pope et al., 2008). Long perimysal

collagenous tendons can link adjacent laminar structures. In the

epimysium, collagen and elastin form a layer that is found at the

epi- and endocardial surfaces.

2.2.4. Spatial organisation of fibroblasts

Fibroblasts form the largest population of cells in the heart,

but their structural arrangement in cardiac tissue is still not well

understood. It has been suggested that fibroblasts are organised in

sheets that follow closely the structural arrangement of myocytes,

with some fibroblasts forming strands that bridge cleavage planes

between sheets (Goldsmith et al., 2004). Each myocyte is adjacent

to several fibroblasts; in-vitro and in-situ studies have found

evidence of functional gap junctions between fibroblasts and both

myocytes and other fibroblasts (Kohl et al., 1994; Rook et al., 1992),

suggesting that fibroblasts could play an active role in tissue elec-

trophysiology (Kohl et al., 2005).

2.3. Micro-structural basis of bulk electrical properties

The spread of depolarisation through cardiac tissue depends on

intercellular coupling through gap junctions, as well as intracellular

and extracellular conductivities. Both intracellular and extracellular

spaces are filled with conducting fluid and act as volume conduc-

tors, with low-resistance gap junctions connecting the intracellular

spaces of adjacent cells. This structure ensures that the action

potential upstroke in one part of the cell membrane results in

depolarisation of neighbouring regions that is sufficient to open

voltage-gated Naþ channels in these regions, resulting in a propa-

gating action potential (Jongsma and Wilders, 2000; Kleber and

Rudy, 2004; Rook et al., 1992).

The electrical properties of bulk tissue depend on the conduc-

tivities of the intracellular and extracellular spaces. In general, both

conductivities are anisotropic, and in turn depend on the relative

volumes of myocytes and extracellular space, blood flow in the

vasculature, myocyte shape and orientation, the distribution of gap

junctions and their state, and the ionic composition of intracellular

and extracellular spaces (Stinstra et al., 2005). Measuring these

conductivities in tissue remains a challenge, because the properties

listed above are either difficult to measure or vary regionally within

the tissue. Estimating conductivities is further complicated by the

different conditions under which experiments are carried out

from one study to another. These difficulties explain the large range

of experimentally measured values of intra- and extracellular

conductivities and their anisotropy ratios as discussed in Section

4.3 (Roth, 1997; Stinstra et al., 2005). Macroscopic conductivities

associated with fibroblasts are still not established and their role in

determining bulk electrical properties is not well understood.

At the tissue level, measurements and quantitative description

of conductivity is further complicated by the local orientation of

fibres and, in ventricular tissue, sheets. Moreover, recent studies

have shown that connexin43 expression can also vary throughout

the ventricular wall (Poelzing et al., 2004). Optical mapping studies

have examined how these macroscopic features affect conductivi-

ties by measuring space constants for membrane potential decay

along and across fibres, following a sub-threshold stimulus (Akar

et al., 2001; Poelzing et al., 2005).

Fig. 3. Reconstruction of fibre orientation in the rabbit heart using DT-MRI. (A) Long-axis cross section through the heart showing fibre helix angle. (B) Transmural fibre helix angles

extracted from a sector of the left ventricular mid free wall and fitted with a 5th order polynomial. The dashed lines represent the 95% confidence interval. Modified from (Gilbert

et al., 2009).
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3. Action potential propagation

Despite the complex structure described above, at the macro-

scopic scale cardiac tissue behaves as a functional syncytium,

supporting propagating waves of depolarisation and repolarisation.

The biophysics of this process has been reviewed extensively

elsewhere (Kleber and Rudy, 2004; Plonsey and Barr, 2000). In this

section we examine this continuum approximation and review the

properties of action potential propagation in 1-, 2-, and 3-D.

3.1. Continuum approximation

At the cellular scale, there is a delay between the depolarisation of

a myocyte and its neighbours that has been attributed to the effect of

gap junctions. This is evidence that at this scale action potential

propagation is a discrete process (Kleber and Rudy, 2004). However, at

larger spatial scales depolarisation appears to propagate smoothly

(Durrer et al.,1970). A common and important assumption underlying

cardiac tissue electrophysiology is that in some cases the discrete

nature of cardiac propagation may be neglected, and propagation

can be considered as continuous, and this leads to a simplified

mathematical description of the tissue (see Section 4). Support for this

assumption comes from experiments in cultured neonatal rat

ventricular cells. In 1-D strands of these cells with a single-cell thick-

ness, gap junction delaywas found to be around 118 ms, accounting for

about half of the total conduction time.However, in strands containing

several cell layers this delay was smaller and amounted to only 22% of

the total conduction time (Fast and Kleber, 1993).

3.2. 1-D propagation

In the continuous limit, 1-D propagation is characterised by

a single parameter, the conduction velocity (CV). This parameter is

determined by many factors, the most important of them being

membrane excitability (mainly depending on the magnitude of the

fast Naþ current, see Table 1) and the conductivities of cardiac tissue.

Typical values of CV measured longitudinal to the cell axis are

between 1.7 and 2.5 m s�1 in the conduction system, and between

0.48 and 0.61 m s�1 in the ventricles (Kleber and Rudy, 2004). Both

lowering excitability and decreasing tissue conductivity result in

reduction of CV and may therefore cause propagation block. CV also

depends on the degree to which cardiac tissue has repolarised, and

decreases as pacing cycle length shortens, a feature known as CV

restitution. At cycle lengths of longer than about 1.5 times the action

potential duration (APD), CV approaches a maximal saturated value.

At shorter cycle lengths, CV usually decreases gradually because the

depolarisation wavefront encounters tissue that has not fully repo-

larised. In some cases CV increases as cycle length is decreased.

This phenomenon is called supernormality, and has been observed

in Purkinje fibres, in some cardiac cell cultures, or under certain

conditions (Chialvo et al., 1990; Endresen and Amlie,1989; Endresen

et al., 1987). The slope of the CV restitution curve is an important

characteristic of myocardium, which is believed to influence the

onset of dynamical heterogeneity in the heart (Mironov et al., 2008).

3.3. 2-D propagation

In 2-D, the 1-D features of cardiac action potential propagation

are augmented by the effects of tissue anisotropy and wavefront

curvature.

Anisotropic propagation results from the organisation of cardiac

myocytes into fibres as described in Section 2. Longitudinal prop-

agation along the principal axis of a fibre is faster than transverse

propagation, resulting in axially symmetric anisotropy (Girouard

et al., 1996). Since most gap junctions are located at the ends of

myocytes, gap junction coupling in the transverse direction is

limited (Hoyt et al., 1989). Both these factors contribute to anisot-

ropy; however, amodelling study by Spach et al. (Spach et al., 2000)

showed that myocyte shape is as important (or more so) as changes

in gap junction distribution. Anisotropic propagation is charac-

terised by two principal values of CV: a longitudinal CV parallel to

fibres and a transverse CV orthogonal to fibres.

The second important characteristic of 2-D propagation is

curvature. Fig. 4 displays three typical shapes of a wavefront: plane,

convex and concave. The effects of curvature on wave propagation

can be explained by the following simple arguments. A plane

wavefront conserves its length locally and thus each depolarised

cell needs to depolarise only one cell in front of it. In contrast the

length of a convex wavefront steadily increases, and therefore the

current initiating depolarisation spreads to a larger area than that

for a plane front. As a result, convex fronts propagate more slowly

than a plane front. Conversely, a concave front decreases its length

during propagation, resulting in faster propagation. The depen-

dency of velocity on curvature is an important factor determining

normal and abnormal (re-entrant) wave propagation in cardiac

tissue. Curvature effects are often also referred to as current-to-load

or source-sink mismatch and may be important for propagation

through Purkinje-muscle junctions.

Direct experimental measurement of the relationship between

CV and curvature in real cardiac tissue remains difficult because of

regional differences in CV and restitution (Nash et al., 2006; Yue

et al., 2005), and because both curvature and anisotropy affect

the velocity of wave propagation (Bernus et al., 2004). Fig. 5 shows

an example of an indirect study of the curvature effects (Cabo et al.,

1994), showing that the propagation velocity of a wave through

a thin isthmus decreases as the isthmus width decreases. Numer-

ical experiments performed by Cabo et al. confirmed that the

decrease in velocity could largely be ascribed to the effect of

wavefront curvature. They also showed that the radius of curvature

of the wavefront could be estimated as half of the isthmus width.

Therefore, the plot of dependency of velocity on the inverse

isthmuswidth shown in Fig. 5 represents the influence of curvature

on the velocity of wave propagation. Cabo et al. also found

a particular size of the isthmus for which wave propagation was

blocked, varying from 0.5 mm to 2.7 mm depending on the

stimulation frequency. Based on these data, the minimal radius of

a semicircular propagating wave is between 0.25 and 1.3 mm, and

waves with a greater curvature cannot propagate. These figures are

consistent with earlier estimates of 0.2 mm for critical radius, based

on stimulation of cardiac tissue by electrodes of different sizes

(Lindemans and Zimmerman, 1979).

Fig. 4. Schematic representation of wave-front of different curvature and directions of

local currents.
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3.4. 3-D propagation

Propagation in 3-D is influenced by tissue anisotropy and

curvature in a similar way to 2-D propagation. There is emerging

evidence that 3-D propagation is modulated by the fibre-sheet

structure of cardiac tissue (see Section 2.2.1), which extends axially

symmetric anisotropic propagation with two principal values of CV

to orthotropic propagation with three principal values of CV in the

fibre direction, normal to fibre direction and in the sheet plane, and

normal to the sheet plane. High-density intramural electrical

mapping of active wave propagation in porcine ventricular tissue

(Caldwell et al., 2009) has shown clear evidence of orthotropic

propagation, with local conduction velocities of 0.67, 0.3, and

0.17 m s�1 in a ratio of 4.3:1.8:1.0 along the three main directions

coinciding with the local micro-structure directions.

4. Mathematical description of cardiac tissue

electrophysiology

Models of cardiac tissue electrophysiology encode information

about excitability at the cell level and electrical conduction at the

tissue level to enable quantitative description of action potential

propagation. In discretemodels the granular nature of cardiac tissue

is characterised by an explicit representation of individual cells,

whereas in continuous models cardiac tissue is treated as a func-

tional syncytium. Both approaches involve a choice of parameters as

well as a description of tissue geometry. In this section we review

different types of cardiac tissue model, and discuss the choice of

parameters and tissue geometry.

4.1. Models of discrete cardiac tissue

Mathematical descriptions of discrete cardiac tissue include

simple cellular automaton (CA) models, coupled map lattices (CML)

(Holden and Zhang, 1993), and lattices of coupled ordinary differ-

ential equations (or CODE lattice) (Winslow et al., 1993).

Cellular automata (CA) are simplified descriptions of cardiac

tissue, in which each cell has a finite number of states. At each time

step the state of each cell is updated to a new state that depends on

its previous state and the state of its neighbours. This simplicity

enabled CA models of cardiac action potential propagation to be

formulated in mathematical terms (Wiener and Rosenblueth, 1946)

and implemented on some of the earliest computers (Moe et al.,

1964). CA updating rules have been developed to generate

smoothly curved wavefronts that can take into account the effects

of wavefront curvature described in Section 3.3 above (Bub et al.,

2002; Gerhardt et al., 1990), and the effects of tissue anisotropy

(Hall Barbosa, 2003). CA models are computationally cheap to

implement, and have been used to examine the properties of spiral

waves and in particular the effects of tissue heterogeneity (Bub

et al., 2002; Greenberg and Hastings, 1978; Moe et al., 1964;

Smith and Cohen, 1984). However, a major limitation of a CA

approach is the discrete states that each cell can occupy, which

makes it difficult to implement rate-dependent effects.

Coupled map lattices (CML) are a development of a CA approach

in which states are continuous, but are updated by interactions

within a lattice (Waller and Kapral, 1984). Each interaction can be

allocated a different coupling strength, enabling anisotropic prop-

agation to be modelled (Holden and Zhang, 1993).

A further refinement of the CML approach is to couple the ordi-

nary differential equations (ODEs) describing the kinetics of an

individual cell using resistors that represent gap junction connec-

tions. This type ofmodel has been used to examine propagation in 1D

fibres (Rudy, 1995; Shaw and Rudy, 1995, 1997b; Viswanathan et al.,

1999) and 2D sheets (Winslow et al., 1993). A variant of this

approach is tomodel cardiac tissue as a network of connected cables,

which can be used to represent 3D tissue anisotropy (Vigmond and

Leon, 1999). A particular strength of these approaches is that it is

possible to construct detailedmodels of tissue architecture at the cell

level, so that the effect of discrete gap junction conductances and

cellular anisotropy can be studied (Roberts et al., 2008; Spach et al.,

1992, 2000; Stinstra et al., 2006). However, without careful optimi-

sation these approaches can be computationally expensive (Vigmond

and Leon, 1999) and they also require description of cell size and

capacitance, the composition of the extracellular space, as well as

data on the location and conductance of individual gap junctions.

Fig. 5. Relation between the isthmus width and the velocity of the wavefront. Experiments in sheep myocardium. Fibres are directed horizontally. Isochronal maps before creation

of the isthmus (A) and for isthmus widths of 2.26 mm (B) and 0.88 mm (C). D conduction velocity vs inverse isthmus width. Reproduced from (Cabo et al., 1994) with permission.
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4.2. Continuous approximation of cardiac tissue

At the tissue scale cardiac tissue behaves as a functional

syncytium of electrically coupled cells (Section 3.1). A homogeni-

sation of the discrete representation of cardiac tissue as a resistor

network can be applied to derive a continuous description (Neu and

Krassowska, 1993), and its idealised electrical behaviour may be

considered as an excitablemedium in 1-, 2-, or 3-D, where excitable

cells are coupled diffusively via transmembrane voltage Vm (Keener

and Sneyd, 1998)

4.2.1. Bidomain model

Bidomain models represent cardiac tissue as a syncytium

composed of intracellular and extracellular domains. It is assumed

that both domains are overlapping and continuous, but separated

by the cell membrane. The bidomain model of cardiac tissue is

based on current flow, distribution of electrical potential and the

conservation of charge and current (Henriquez, 1993).

The description of each domain is based on a generalised

version of Ohm’s law defining the relationship between the electric

field E (in V m�1) derived from the potential fðVÞ, the current

density J (A m�2), and the conductivity tensor G (S m�1):

E ¼ �Vf
J ¼ G E ¼ �G Vf

(1)

Considering the intracellular and extracellular spaces specifi-

cally, we have:

Ji ¼ �GiVfi

Je ¼ �GeVfe
(2)

Where Ji and Je are the intra- and extracellular current densities, Gi

and Ge are intra- and extracellular conductivity tensors respec-

tively, and fi and fe are the electrical potential in the intracellular

and extracellular spaces.

Considering the conservation of current and charge, and

assuming only membrane related sources in the intra- and extra-

cellular spaces we can write divergence equations:

V$Ji ¼ �Im; V$Je ¼ Im
V$ðJi þ JeÞ ¼ 0;

(3)

where Im (A m�3) is transmembrane current per unit volume,

which is composed of a capacitive component with units Am�2 and

an ionic component iion resulting from current flow through ion

channels, pumps and exchangers in the cell membrane, with units

A m�2.

Im ¼ bm

�

Cm
dVm

dt
þ iion

�

; (4)

Here bm (m�1) is the surface area-to-volume ratio of a cardiac

cell, Cm (F m�2) the specific cell membrane capacitance, and Vm the

transmembrane voltage, which is given by:

Vm ¼ fi � fe (5)

Combining Equations (2)e(5), we obtain:

V$GiðVVm þ VfeÞ ¼ bm

�

Cm
vVm
vt þ iion

�

V$ððGi þ GeÞVfeÞ ¼ �V$ðGiVVmÞ
(6)

Equation (6) represents the bidomain model of cardiac tissue.

Assuming that the extracellular space is bounded and there is no

electric current flowing from the extracellular space to adjacent

spaces homogeneous Neuman (no-flux) boundary conditions can

be implemented at the boundary G as:

G : n$ðGiVfiÞ ¼ n$ðGiVðVm þ feÞÞ ¼ 0
G : n$ðGeVfeÞ ¼ 0;

(7)

where n is the outward normal to the boundary G.

The conductivity tensors in Equation (5) (Gi and Ge) are deter-

mined by the anisotropy of cardiac tissue, and their components

depend on the tissue conductivities as well as the local orientation

of tissue within the coordinate system of the model.

4.2.2. Monodomain model

The bidomain model of cardiac tissue (Equation (6)) can be

simplified by assuming that the anisotropy of the intracellular

and extracellular spaces is the same, i.e. that the conductivity in

the extracellular space is proportional to the intracellular

conductivity:

Ge ¼ lGi (8)

where l is a scalar, representing the ratio between the conductivity

of the intra- and extracellular spaces.

Substituting equation (8) into equation (6), we have:

V$
l

1þ l
GiVVm ¼ bm

�

Cm
vVm

vt
þ iion

�

(9)

If we introduce an effective conductivity G ¼ ðlÞ=ð1þ lÞGi, we

obtain the monodomain model of cardiac tissue as:

V$G VVm ¼ bm

�

Cm
vVm

vt
þ iion

�

; (10)

With the no-flux boundary condition:

G : n$ðG VVmÞ ¼ 0 (11)

The monodomain equation (10) is often written as.

vVm

vt
¼ V$DVVm �

iion
Cm

(12)

where D (m2 s�1) is a diffusion tensor or scalar diffusion coefficient.

In the case of axially symmetric anisotropy, where diffusion in all

directions orthogonal to the fibre direction is assumed to be the

same, propagation is described by two values of the diffusion

coefficient; a longitudinal coefficient D1 for propagation along

fibres, and a transverse coefficient D2 for propagation orthogonal to

the fibres. If the fibre direction is given by the vector f, the diffusion

tensor can be written:

D ¼ D2Iþ ðD1 � D2Þff
T (13)

where I is the identity matrix, and fT is the transpose of f. The

elements ofD can bewritten as follows (Panfilov and Keener,1995):

dij ¼

�

D2 þ ðD1 � D2Þfifj ði ¼ jÞ
ðD1 � D2Þfifj ðisjÞ

(14)

For orthotropic anisotropy with principal directions longitudinal to

fibres in the sheet plane, normal to fibres in the sheet plane, and

normal to the sheet plane, the diffusion tensor is given by (Colli-

Franzone et al., 2005):

D ¼ D1ff
T þ D2ss

T þ D3nn
T (15)

where D1, D2 and D3 are diffusion coefficients longitudinal to fibres,

normal to fibres in the sheet plane, and normal to both fibres and

sheets, and f, s and n are unit vectors in the corresponding direc-

tions. Since f, s and n are orthonormal
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ffT þ ssT þ nnT ¼ I; (16)

where I is the identitymatrix. Hence equation (15) can be rewritten as

D ¼ D2I þ ðD1 � D2Þff
T þ ðD3 � D2Þnn

T ; (17)

which reduces to equation (13) for axially symmetric anisotropy

where D3 ¼ D2.

4.2.3. Comparison between bidomain and monodomain models

If there is no injection of current into the extracellular space,

descriptions of action potential propagation provided by mono-

domain and bidomain models are close to each other even under the

condition of unequal anisotropy ratio in the extracellular and intra-

cellular spaces (Colli-Franzone et al., 2005). A recent study (Potse et al.,

2006) compared patterns of action potential propagation simulated

using monodomain and bidomain models. They found that in the

absence of external stimuli, the patterns obtained with the mono-

domain model were almost identical to those obtained with a bido-

main model. Similarly, Roth examined spiral wave tip trajectories in

monodomain and bidomain models and found that in most cases the

trajectories were similar in both cases (Roth, 2001). Themonodomain

model is a single PDE, andnumerical solutions are easier to obtain (see

Section 6). However, the bidomain model provides a more detailed

description of cardiac tissue, and the separation of intracellular and

extracellular spaces is necessary to accommodate the injection of

current into the extracellular space during external stimulation and

defibrillation (Trayanova, 2006). During defibrillation, the unequal

anisotropy of the intracellular and extracellular spaces plays an

important role in generating virtual electrodes that are essential for

successful defibrillation (Wikswo et al., 1995). The bidomain model

can be expanded to include further domains, and one example of this

approach is a model that includes an additional domain representing

fibroblasts (Sachse et al., 2009).

4.3. Parameters

The key parameters that determine the conduction properties of

a tissue model are elements of the effective diffusion tensor or the

diffusion coefficient, which in turn depend on the tissue conduc-

tivities, surface-to-volume ratio and specific capacitance (Winfree,

1998).

As described in Section 2.3, the intracellular and extracellular

conductivities are determined by the local tissue micro-structure

and the composition of the intracellular and extracellular spaces,

which vary within the tissue and are further modified by local blood

flow. Measurements of longitudinal conductivity span the range

of 0.17e0.45 Sm�1 for intracellular space, and 0.12e0.62 Sm�1 for

extracellular space; corresponding measurements for transverse

conductivity range from 0.019 to 0.06 Sm�1 for intracellular space

and 0.08e1.74 Sm�1 for extracellular space (Stinstra et al., 2005).

Typically, the values for conductivities chosen for simulation studies

lie within these ranges, and result in a plausible CV (Colli-Franzone

et al., 2005). However, detailed models of cardiac micro-structure

developed with the purpose of reconstructing the effect of cardiac

micro-structure on conductivity indicate that there may not be

definitive values of conductivity, but rather a range of typical values

with local variation (Stinstra et al., 2005).

Experimental measurements of surface-to-volume ratio range

from 2400 to 8900 cm�1 depending on species and developmental

stage (Bers, 2008). Typical values chosen for tissue models range

from 1000 to 5000 cm�1 (Colli-Franzone et al., 2005; Keener and

Bogar, 1998; TenTusscher et al., 2004; Xu and Guevara, 1998),

which for an idealised cylinder correspond to a value of around 2

divided by the cell radius (Winfree, 1998).

Specific membrane capacitance is usually measured to be in the

range 1e10 mF cm�2. This value combined with typical values of

conductivities and cellular dimensions gives CV within the physio-

logical range. Themembrane capacitance of the squid giant axonwas

estimated to be about 1 mF cm�2 based onmeasurements of the time

course of membrane current following a sub-threshold voltage step

(Curtis and Cole, 1938). However, similar studies in cardiac Purkinje

fibres yielded a higher value of around 10 mF cm�2 (Fozzard, 1966;

Schoenberg et al., 1975). This higher value can be attributed to two

components of the membrane capacitance, a surface component

associated with the outer sarcolemma and a deep component

associatedwith clefts in the cell membrane (Fozzard,1966). The cleft

capacitance charges only slowly, and so is thought to make only

a small contribution to actionpotential propagation. Since about 90%

of the ventricular cell membrane is located within clefts and the

t-tubule system, a specific membrane capacitance of 1 mF cm�2 is

justified (Noble, 1979) although some tissue models have used

a higher value of 2 mF cm�2 (TenTusscher et al., 2004).

A common approach taken to determine suitable parameter

values for a computational model is to vary the conductivities (or

diffusion coefficients) to ensure that CVs within the observed range

are achieved. However, because these parameters have an impor-

tant effect not only on CV but also on features such as conduction

block, a more rigorous approach based on experimental work is

needed to determine the range of suitable values and how, for

example, these are modified by disease processes.

4.4. Tissue geometries and imaging data

Models of cardiac tissue can be implemented with either ide-

alised geometries (1-D strand, 2-D sheet or 3-D box), or anatomi-

cally detailed geometries based on reconstructions from dissection

or imaging data (2-D slice, 3-D slab or whole organ). A simplified

geometry enables propagation to be studied in the absence of

anatomical detail, whereas more detailed geometrical models with

high spatial resolution enable the role of anatomical structures to

be evaluated.

Based on various experimental techniques that include histology,

confocal microscopy, magnetic resonance imaging (MRI) and diffu-

sion tensor MRI (DT-MRI), realistic anatomic structures of cardiac

tissue with high spatial resolutions have been reconstructed for

single myocytes (Savio-Galimberti et al., 2008), the sino-atrial node

(Dobrzynski et al., 2005), atrial tissue (Lasher et al., 2009), thewhole

atrium (Seemann et al., 2006), and ventricle (Hsu et al.,1998; Nielsen

et al., 1991). Furthermore anatomically detailed models of canine

(Nielsen et al., 1991), rabbit (Vetter and McCulloch, 1998), pig

(Stevens and Hunter, 2003) and mouse (Sampson and Henriquez,

2005) ventricular anatomy defined on a finite-element mesh have

been constructed, aswell as highly detailedmodels of small portions

of ventricular tissue imaged at spatial resolutions of around 1 mm

(Pope et al., 2008; Sands et al., 2005). Whole ventricle anatomical

models combining histology data at resolutions of around 20 mm

withMRI data at a resolution of 100 mmare being developed (Gilbert

et al., 2009; Plank et al., 2009), alongwith whole heart models using

MRI data at a resolution of 120 mm (Cherry and Fenton, 2008).

Diffusion tensor MRI (DT-MRI) provides a non-invasive tool to

reconstruct the anatomical structures and fibre orientation of

cardiac tissue, especially in the ventricles. This technique measures

the Brownian motion of protons, which reflects to some extent

the fibre structure of the tissue because the motion of protons is

constrained by the cell membrane. The use of this approach for

ventricular tissue has been validated by its correlation with histo-

logical data (Holmes et al., 2000; Hsu et al., 1998; Scollan et al.,

2000). DT-MRI provides a diffusion tensor with its primary eigen-

vector being correlated to cardiac fibre orientation, whilst the
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secondary and tertiary eigenvectors being have been proposed to

relate to the orientation of cardiac sheets (Helm et al., 2005).

However, the typical spatial resolution available with DT-MRI may

not be sufficient to correctly identify the sheet structure in ventric-

ular tissue because there may be more than one sheet orientation

within the volume of tissue that produces the DT-MRI signal (Gilbert

et al., 2007).

At the cell scale there are often discontinuities in tissue structure,

especially at the junctions between two distinctive tissue regions,

such as at the junction of the crista terminalis and the pectinate

muscle in the right atrium, the junction of the right ventricular free

wall and ventricular septum, and Purkinje-ventricular junctions.

At these locations fibre orientation changes abruptly, and these

changes not only complicate the process of obtaining a mesh from

DT-MRI data, but may also require special numerical treatment.

5. Integration of cell and tissue models of cardiac

electrophysiology

As described above, models of tissue electrophysiology integrate

individual cells together into a given structure, where each cell is

electrically connected tomultiple neighbours. The coupling between

cells is generally represented as a diffusive process, which gives rise

to an electrotonic (diffusive) current between neighbouring cells.

This electrotonic current can modify cellular electrophysiology both

quantitatively andqualitatively in both real tissue andmodels. In this

section, we present some of the issues associated with simulating

cardiac tissue electrophysiology and discuss their implications.

5.1. Emergent properties in tissue

When individual cells are coupled together to form tissue,

new properties that have no single-cell equivalents emerge. In this

section we describe some of these fundamental properties and

discuss their importance to tissue behaviour.

5.1.1. Liminal length

In a single cell, an action potential can be elicited from a stim-

ulus provided the stimulus current has sufficient magnitude and

duration to raise the membrane potential above its threshold of

excitability. In tissue, neighbouring cells that are initially polarised

act as current sinks and so counteract a stimulus current. Thus,

enough current must be injected to raise the membrane potential

of neighbouring cells above threshold, while also ensuring that the

membrane potential at the stimulus site is not decreased below

threshold by electrotonic current flow to polarised neighbours.

This requirement introduces a new spatial scale to the stimulation

process; a large enough region of tissue must be stimulated directly

for a wave to develop and propagate. Although the length (in 1-D)

necessary to initiate propagation depends on the magnitude and

duration of the injected current, there is a minimum length below

which no combination of stimulus strength and duration can

produce a propagating wave. This minimum length is called the

liminal length, which in cardiac tissue is typically of the order of

1 mm (Fozzard and Schoenberg, 1972; Noble, 1972; Rushton, 1937).

The corresponding concepts of liminal area and liminal volume

apply in 2- and 3-D, respectively. Stimulating a region of size below

the liminal length (or area or volume) ensures that the stimulus will

dissipate without producing a propagating wave, even if the same

magnitude and duration of the stimulus current successfully elicits

an action potential in a single cell with the same electrophysio-

logical characteristics. This concept is related to the safety factor for

propagation (Kleber and Rudy, 2004; Shaw and Rudy, 1997a).

Because different models may have different thresholds of excit-

ability, liminal length is a model-dependent property.

5.1.2. Minimum cycle length for propagation

Another important property associated with excitable tissue is

the appearance of a minimum cycle length that can be used to

achieve successful wave propagation. This is also known as the

effective refractory period (ERP). In a single cell, any stimulus current

causes a change of themembrane voltage, evenwithin the refractory

period. However, in tissue a response may occur at the site of

stimulation, but neighbouring tissue within the refractory period

will not be able to sustain awave, and propagationwill fail. As tissue

is paced faster, there is less recovery time before the next beat, so

that there is a minimum cycle length at which the tissue can be

paced and below which propagation failure occurs. As an example,

Fig. 6 shows the minimum cycle length for propagation in tissue

compared to the minimum cycle length achievable in a single cell

(using a stimulus currentmagnitude of twice diastolic threshold) for

the Nygren et al. model for human atrial cells (Nygren et al., 1998)

and the Fox et al. model for canine ventricular cells (Fox et al., 2002).

It is possible to pace the Nygren et al. model at extremely short cycle

lengths in a single cell, whereas when embedded in a tissue model

propagation fails for cycle lengths below 320 ms. Similarly, the Fox

et al. model can be paced at a minimum cycle length of 90 ms for

a single cell, but propagation fails for cycle lengths below 190 ms in

a tissue model. Because the diastolic interval characterises the

recovery time following an action potential, the minimum cycle

length for propagation is associated with the minimum diastolic

interval for propagation. This important property of real tissue may

not be captured by simplified or generic models (see Section 6).

5.1.3. Conduction velocity

With the introduction of propagation in tissue, the property of

CV emerges. CV is related to the strength of cell-to-cell coupling,

and scales as the square root of the diffusion coefficient D

(see equation (12)). CV is also determined by the characteristics of

the action potential upstroke. Although the maximum upstroke

velocity (maximum dVm/dt) is loosely correlated with maximum

CV, it is not especially useful as a velocity predictor, as can be seen

Table 1

Maximum conduction velocity (CVmax), maximum upstroke velocity (dv/dtmax), and

maximum conductance sodium current (gNa) in tissue for 14 different models, in

order of decreasing CVmax. Although overall CVmax and gNa decreases as dv/dtmax

decreases, neither value can be used alone to predict CVmax. The value of gNa is not

available for the Nygren et al. model because it uses the Goldman-Hodgkin-Katz

formulation for INa that uses membrane permeability rather than conductance. In all

cases, the explicit Euler method is used with a spatial resolution of 0.01 cm, time

step of 0.01 ms, and diffusion coefficient of 0.001 cm2/ms. CV and dv/dtmax are

measured at the center of a 1 cm-long cable paced at a cycle length of 1000 ms.

Model Reference CVmax

(cm/s)

dv/dtmax

(V/s) in

tissue

gNa
(nS/pF)

Luo-Rudy I (Luo and Rudy, 1991) 64.7 275 23

Shannon et al. (Shannon et al., 2004) 61.8 263 16

Iyer et al. (Iyer et al., 2004) 60.1 266 56.32

Faber-Rudy (Faber and Rudy, 2000) 59.4 246 16

ten Tusscher et al. (TenTusscher

et al., 2004)

59.4 227 14.838

Priebe-Beuckelmann (Priebe and

Beuckelmann,

1998)

58.7 247 16

Mahajan et al. (Mahajan et al., 2008) 52.2 172 12

Fox et al. (Fox et al., 2002) 51.3 196 12.8

Courtemanche et al. (Courtemanche

et al., 1998)

50.4 127 7.8

Beeler-Reuter (Beeler and

Reuter, 1977)

47.6 110 4

Hund-Rudy (Hund and Rudy, 2004) 47.3 133 8.25

Pandit et al. (Pandit et al., 2001) 45.1 103 8

Nygren et al. (Nygren et al., 1998) 39.5 83 n/a

Bondarenko et al. (Bondarenko et al., 2004) 39.1 94 13
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in Table 1. For example, the CV obtained for the Fox et al. model for

canine ventricular cells (Fox et al., 2002) is only 8 percent larger

than that obtained with the Hund-Rudy model for canine ventric-

ular cells (Hund and Rudy, 2004); however, maximum dVm/dt for

the Fox et al. model is 47 percent larger than that of the Hund-Rudy

model. Similarly, the CV obtained using the ten Tusscher et al.

model for human ventricular cells (TenTusscher et al., 2004) is the

same as the CV obtained with the Faber-Rudy model of guinea-pig

ventricular cells (Faber and Rudy, 2000), with a dVm/dtmax that is 8

percent smaller; and the CVs of the Nygren et al. (Nygren et al.,

1998) and Bondarenko et al. (Bondarenko et al., 2004) models

differ by only 1 percent, although dVm/dtmax is 13 percent larger for

the Bondarenko et al. model. In addition, the CV of the Courte-

manche et al. model for human atrial cells (Courtemanche et al.,

1998) is 7 percent larger than that of the Hund-Rudy model,

whereas maximum dVm/dt is actually 5 percent smaller for the

Courtemanche et al. model. The value of maximumdVm/dt has been

shown to depend not only on membrane kinetics but also on

electrotonic currents from neighbouring cells (Spach et al., 1992).

CV also is correlated loosely with the maximum Naþ conductance

gNa, with exceptions such as the relatively high conductance values

for the Iyer et al. (Iyer et al., 2004) and Bondarenko et al.

(Bondarenko et al., 2004) models and the relatively low value for

the Beeler-Reuter model (Beeler and Reuter, 1977).

5.2. Electrotonic current-mediated differences in dynamics

The flow of current within the tissue resulting from regional

differences in potential can have an important influence on local

dynamics and excitation.

5.2.1. Decreased action potential amplitude and shape

When an action potential propagates in tissue, cells outside the

stimulus region are brought above the excitability threshold purely

through electrotonic currents from neighbouring depolarised cells.

In addition, neighbouring cells that have not yet been depolarised

remove current from cells that are beginning to depolarise. As

a result, the action potential amplitude in tissue is generally reduced

compared to the amplitude in single cells (or in tissue regions where

a stimulating current is injected directly). Fig. 7 shows decreased

action potential amplitude in tissue compared to single cells for five

different models (Courtemanche et al., 1998; Luo and Rudy, 1991;

Pandit et al., 2001; Priebe and Beuckelmann, 1998; Shannon et al.,

2004). Amplitude reductions of up to 20% have been observed in

models (Bueno-Orovio et al., 2008).

The effects of reduced action potential amplitude can have

significant consequences. Fig. 8 shows how reduced action poten-

tial amplitudes in tissue can affect transmembrane currents and the

overall action potential morphology and duration. In this case, the

reduction in amplitude leaves the maximum voltage attained

outside the stimulus region below the threshold for activation of

the L-type Ca2þ current. As a result, the action potential plateau

develops later and in a different manner, resulting in action

potential prolongation away from the stimulus site.

Experimental and modelling studies have shown that electro-

tonic current can affect the shape of the action potential. One study

(Conrath et al., 2004) showed that in some models of cardiac tissue

the duration of propagating action potential is up to 80 ms shorter

than action potential duration in uncoupled cells. Moreover, earlier

experimental studies on dog hearts showed that the repolarisation

Fig. 6. Rate adaptation plots show the minimum cycle length for propagation in tissue

compared to the minimum cycle length in a single cell. For a stimulus amplitude twice

diastolic threshold, much smaller cycle lengths can be achieved in single cells (grey,

solid) than in tissue (black, dashed) because action potentials do not always propagate

in tissue. Dynamical properties therefore can be significantly different in tissue, as in

the Fox et al. model, where the range of cycle lengths exhibiting alternans is reduced in

tissue and no return to the 1:1 response at short cycle lengths is observed.

Fig. 7. Effects of cell coupling on action potential amplitude. In single cells (grey, solid),

depolarizing current is applied directly to the cell. In tissue away from the stimulus site

(black, dashed), the stimulating current is mediated through the electrotonic current

coupling neighbouring cells. Because the electrotonic current includes contributions

from neighbours not yet depolarised, action potential amplitudes in tissue are

generally smaller than those in single cells. Action potentials are shown for a cycle

length of 500 ms for the Pandit et al. and Shannon et al. models and for a cycle length

of 1000 ms for the Luo-Rudy I, Priebe-Beuckelmann, and Courtemanche et al. models.
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phase of the action potential can be modulated by the activation

sequence or distance from pacing site (Abildskov, 1976; Osaka et al.,

1987). The APD was found to progressively decrease as the wave

moved away from the stimulation site, and this effect was more

pronounced in directions transverse to the local fibre orientation

(Osaka et al., 1987). Evidence of this negative linear correlation

between APD and activation time has been found in several animal

species including humans (Hanson et al., 2009). However, the

amount by which APD decreases as a function of activation time

may be species-dependent due to different expressions of ionic

currents underlying the repolarisation phase, as recently suggested

in a computational study by Sampson and Henriquez (Sampson and

Henriquez, 2005).

5.2.2. Changes in restitution, alternans, and memory

Restitution is the rate adaptation of cardiac cells and tissue,

alternans is beat to beat alternation in action potential shape and

duration, and memory is the extent to which a particular action

potential depends on the sequence of preceding beats. In tissue,

a number of important dynamical properties associated with resti-

tution, alternans, and memory may be altered by the presence of

electrotonic currents. Fig. 9 shows an example of how alternans

properties can change in tissue. For the Fox et al. model (Fox et al.,

2002), the magnitude of alternans (difference between long and

short APDs for one cycle length) is increased in tissue, but 2:1 block

occurs at a relatively long cycle length, thereby reducing the range of

cycle lengths over which alternans is experienced. For the Mahajan

et al. model (Mahajan et al., 2008), the alternans magnitude is

decreased in tissue over range of cycle lengths that experience

alternans. A number of differences in other properties, including

restitution curve shape and slope, alternans onset cycle length and

magnitude, and memory amplitude, have been described in detail

(Bueno-Orovio et al., 2008; Cherry and Evans, 2008; Cherry and

Fenton, 2007; Cherry et al., 2008; Nygren et al., 1998; Ten Tusscher

et al., 2006).

Electrotonic effects can influence not only the presence and

characteristics of alternans but also on the stability of re-entrant

waves. As an example, Fig. 10 shows the Fox et al. model in two

cases: the original parameter set and with the conductance gKr
doubled. Doubling gKr eliminates alternans in a single cell; however,

electrotonic effects cause the alternans to reappear in tissue, similar

to the case with original parameter values. In 2-D, the original

parameters give rise to a stable spiral wave, whereas doubling gKr
leads to sustained spiral wave breakup from the same initial

conditions. The output of models that are intended to be predictive

should therefore be interpreted carefully. Interventions that appear

promising in single cells may not produce the same results in

tissue, and indeed may lead to less desirable electrophysiological

behaviour.

6. Numerical implementation of cardiac tissue models

This section addresses numerical issues related to modelling of

cardiac tissue electrophysiology; in particular we discuss discrete

space and discrete time representations of the continuous

Fig. 8. Effect of the decrease in action potential amplitude in tissue on action potential

morphology. Within the region directly stimulated (red traces from red locations

indicated at top), the action potential retains a large amplitude, but the amplitude is

decreased by more than 35 mV outside the stimulated region (black traces from black

locations indicated at top). As a result, the L-type calcium current (iCa,L) is not activated

normally outside the stimulus region because the voltage Vm is insufficient to open the

d-gate. Hund-Rudy model (Hund and Rudy, 2004) in a 1.8-cm-long cable with the

stimulus applied within the first 0.3 cm.

Fig. 9. Differences in alternans magnitude between single cells (grey, solid) and tissue

(black, dashed). In the Fox et al. model, the alternans increases in tissue, while in the

Majahan et al. model, the alternans magnitude decreases. Cycle lengths shown are

190 ms for the Fox et al. model and 150 ms for the Mahajan et al. model.
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bidomain and monodomain equations and the types of mesh used

to represent tissue geometry. Furthermore, we provide an overview

of the techniques used for numerical simulations of tissue

electrophysiology.

6.1. Modelling approaches

As described earlier, models of cardiac tissue electrophysiology

are based on reactionediffusion-systemswhere the reaction process

is attributed to the cellular actionpotential, and the diffusionprocess

represents current flow between cells. Most modelling approaches

including mono-, bi-, or multidomain models assume that cardiac

tissue behaves as a functional syncytium (Henriquez and Papazogou,

1996; Sachse et al., 2009), and the numerical implementations

discussed in this section are related to these approaches.

6.2. Discrete representations of tissue geometry

Discrete models of tissue geometry can be constructed in various

ways. Standard spatial models include 2- and 3-D tissue segments,

ventricles andwhole heart geometries. Thesemodels are commonly

composed of discrete volume elements, for example tetrahedra

(Bourgault et al., 2003; Vigmond et al., 2002) and hexahedra (Colli

Franzone and Pavarino, 2004; Seemann et al., in press). Each

element type has advantages and disadvantages. For instance,

a mesh assembled from uniform cubic voxels can be derived easily

from imaging data, but does not reconstruct curved surfaces such as

the epicardium effectively. In contrast, irregular tetrahedral meshes

can improve the representation of surfaces, butmesh generation can

be more difficult and the numerical methods associated with

irregular meshes can result in higher computational costs.

Common approaches are to construct a regular mesh with

uniform elements, or an irregular mesh with elements of uniform

type, but different shape and size. Hybrid meshes, with uniform and

non-uniform elements used to represent less important regions, and

grid refinement at critical points, border zones or at areas of

large gradients in physical fields have been considered. Meshes that

accurately represent complicated tissue anatomy while meeting the

requirements of computational methods are difficult to construct,

and this area remains an important challenge. Various mesh

generation tools have been developed in other engineering fields,

and some of these tools may be useful for generating models of

tissue geometry. Recent work aims at providing meshes with high

spatial accuracy that are appropriate for the computationalmethods

used in simulation of tissue electrophysiology (Prassl et al., 2009).

Adaptive mesh generation during the simulation has also been

suggested to decrease calculation time (Deuflhard et al., 2009) (see

Section 7.4).

6.3. Numerical methods for discrete space

The bidomain (equation (6)) and monodomain (equations (10)

and (12)) models are based on Ohm’s law and Poisson’s equation

for stationary electrical currents. In this section, we will focus on

numerical approaches for solving Poisson’s equation, which allow

for a sound description of the anisotropic electrical properties of

cardiac tissue. Mathematically, Poisson’s equation is a set of partial

differential equations (PDEs), and analytical solutions exist only for

special cases. In general, numerical techniques implemented on

computers are used for solving these PDEs. To approximate the PDEs,

they are transformed into linear systems of equations (LSE) of the

form Axþ b ¼ 0 using discretisation techniques. In cardiac elec-

trophysiology, the Finite Difference Method (FDM), the Finite

VolumeMethod (FVM) and the Finite ElementMethod (FEM) are the

most commonly applied techniques to transform Poisson’s equation

into LSEs. Less often, the Boundary Element Method, mesh free

methods, and spectralmethods have been used (Bueno-Orovio et al.,

2006; Chinchapatnam et al., 2009; Fischer et al., 2000).

Fig. 10. Differences in dynamics between the Fox et al. model with original parameters and a modification where the maximal conductance gKr is doubled. With the modification,

alternans is eliminated in a single cell (0-D) but reappears in tissue (1-D), and a spiral wave initiated in two-dimensional tissue experiences sustained breakup. 2-D domain is

30 cm � 30 cm; both spiral wave simulations are shown after 6.3 s of simulation time.
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The FDM is based on approximating the partial derivatives of

PDEs by difference quotients. The underlying spatial mesh is

usually structured, so for example in 3-D the mesh consists of

uniform cubic voxels. The FDM has been applied by many groups

over many years for studies of tissue electrophysiology, for exam-

ples see (Potse et al., 2006; Pullan et al., 2005; Seemann et al., in

press). This approach can be generalised for grids with irregular

spacing (Trew et al., 2005b). The advantage of the FDM is the

straightforward and easy implementation of the method. The

disadvantage is that it is difficult to describe smooth surfaces such

as the surface of the heart without steps, so that it becomes difficult

to implement boundary conditions.

The FEM provides an alternative way of representing discrete

space. Potentially complex cardiac tissue geometry is divided into

small sub-domains, called “finite elements”, which can be described

and handled in a simplified manner. These finite elements can have

non-uniform size and shape. Inside each element, the solution is

approximated by an interpolation function. The FEM is widely used

because of its well-developed theory allowing for variable mesh

representations and interpolation of material properties. A partic-

ular advantage is that complex, curved geometries can be modelled

accurately, see for example (Vigmond et al., 2002). The FEMmethod

has been used by many groups in this research field, especially for

simulations with anatomically detailed geometry. The disadvantage

of the FEM is the higher effort compared to the FDM both for

development and running the software.

For the FVM, volume integrals in a PDE involving a divergence

component are converted to surface integrals applying the diver-

gence theorem. This method is conservative because the flux

entering a volume is identical to the one leaving the neighbouring

volume. The FVM can be applied easily to unstructured meshes. It

also has been used in bidomain modelling (Courdiere and Pierre,

2006; Harrild and Henriquez, 1997; Jacquemet and Henriquez,

2005; Trew et al., 2005a). Since the method is conservative,

a coupling between excitation propagation in the heart and the

electrical field in the body can be easily achieved (Courdiere and

Pierre, 2006).

The FDM, FVM and FEM applied to Poisson’s equations lead to

large sparse, symmetric matrices. Methods for solving these are

described in Section 6.4 onwards.

Simulations of action potential propagation require boundary

conditions, including permanent conditions at tissue boundaries as

described in equations (7) and (11) (usually Neumann or no-flux

boundary conditions) and possibly time dependent boundary

conditions, which can be current or voltage stimuli in the intra- and

extracellular space at given points in time. Boundary conditions

(Dirichlet boundary conditions) associated with setting potentials

can be applied to the LSE after its generation by changing the

respective entries or line and column in the matrix and the

respective entry in the right hand side vector. With the bidomain

model, a permanent zero potential is frequently set in the extra-

cellular space at the boundary. For complex tissue geometries

no-flux boundary conditions can be implemented using a phase-

field approach (Fenton et al., 2005).

6.4. Implicit, explicit and semi-implicit solution

schemes for discrete time

Explicit, implicit, and semi-implicit (also called IMEX) methods

can be used to solve the equations describing the time dependence

of action potential propagation. The choice of numerical method

influences the stability, computational cost and the accuracy of the

implemented model.

Explicit methods have been used extensively (Barr and Plonsey,

1984; Henriquez and Plonsey, 1990; Penland et al., 2002; Pollard

and Barr, 1991; Roth, 2001; Vigmond et al., 2002), because they are

easy to implement. However, even though the computational cost for

each time step is low in an explicitmethod, the time stepmayneed to

be small to guarantee stability for the diffusion operator (Press et al.,

1992); specifically, the condition Dt � Dx2/(2dD) must be satisfied,

where d is the system dimension (1, 2, or 3), D is the diffusion coef-

ficient, Dt is the time step, and Dx the space step. Implicit schemes

can be stable with longer time steps (Bourgault et al., 2003; Hooke

et al., 1994; Munteanu et al., 2009; Murillo and Cai, 2004), but

require solution of a non-linear systemof equations at each time step,

and so are more computationally expensive. A good compromise

between these two methods is a semi-implicit IMEX scheme, in

which some terms of the equations (e.g., the linear terms) are solved

implicitly and the remaining terms (e.g., the non-linear terms) are

solved explicitly. The stability constraints of IMEX methods are less

demanding than fully explicit methods but more than fully implicit

methods. Since the linear terms are usually solved implicitly in an

IMEX method, a solution of a linear system is required at each time

step. The IMEXmethods can be classified on the basis of the order of

approximation they can achieve. First-order methods are the most

common (Colli Franzone and Pavarino, 2004; Keener and Bogar,

1998), although higher order IMEX methods have been proposed.

An extensive stability analysis of IMEX methods for solving the

bidomain equations coupled with the FitzHugh-Nagumo kinetic

model can be found in (Ethier and Bourgault, 2008), together with

a comparison of computational costs.

6.5. Linear system solvers and preconditioners

Most numerical approaches to solve tissue electrophysiology

models result in a linear system of equations. Linear solvers can be

classified as direct solvers and iterative solvers (Demmel, 1997).

The first group is composed ofmethods that compute the solution of

the linear system by direct manipulation of the original matrix, like

computing a factorisation or a Gaussian elimination. In theory, these

methods can be efficient and produce exact solutions. However,

rounding errors can become significant, and exact solutions are not

obtained. In addition, these methods require large amounts of

memory and CPU time for the initial decomposition, although the

factorisation of the matrix needs to be computed only once if the

matrix does not change during the time evolution. LU factorisation is

one of the most common direct solvers, together with the Cholesky

factorisation for symmetricmatrices. Since one drawback of this kind

of approach is that the pattern of the original sparse matrix can be

filled during the process, a renumbering strategy can be employed.

The most widely used approach is iterative solving. Approxi-

mate solutions of the linear system are computed until a stopping

criterion (usually an error tolerance) is reached. Most published

approaches for discretisation of monodomain and bidomain

models leads to symmetric matrices. In this case a common option

is the Conjugate Gradient method (CG) or its variations like the

BiConjugate Gradient Stabilized (BICGSTAB) method. However in

some cases, due to the formulation chosen and numerical scheme

implemented, non-symmetric matrices may arise (Gerardo-Giorda

et al., 2009; Pennacchio and Simoncini, 2009) requiring an alter-

native method to solve the system. In these cases Krylov subspace

solvers are extensively used, in particular the Generalised Minimal

Residual Method (GMRES). We refer to (Saad, 2003) for details

about the algorithms mentioned.

To speedup the convergence of iterative solvers, several types of

preconditioners can be used to transform the initial linear system into

an equivalent system whose associated matrix has better spectral

properties such as a lower condition number or improved clustering

of the Eigenvalues. One common option is to compute an incomplete

LU (or an incomplete Cholesky) factorisation, preserving a pattern
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similar to that of the original matrix, and to use this new matrix as

a preconditioner for the system. This approach has been shown to

be effective on serial architectures (Ethier and Bourgault, 2008).

A comparison using a parallel architecture has shown that a CG solver

preconditioned by a domain decomposition parallelisation of an

incomplete LU factorisation to be twice as fast as the same solver

preconditioned with a Jacobi preconditioner (Potse et al., 2006). In

another study (Colli Franzone et al., 1998) a CG solver preconditioned

by Symmetric Successive Over-Relaxation preconditioner was used

for solving the eikonal model. In (Gerardo-Giorda et al., 2009) the

authors propose a specific preconditioner for the bidomain problem

consisting of amodel-based block triangular preconditioner obtained

after a proper reformulation of the monodomain model. This

approach reduced the CPU time required by the incomplete LU pre-

conditioned CG solver on serial architectures by 50%.

Multigrid methods have been employed for the solution of

mono- and bidomain models. Multigrid methods are based on the

combination of an iterative solver running on fine computational

grids of the domain and a direct solver running on a coarse grid of

the same domain (Hackbusch, 1985). The rationale behind these

methods is that, while the high frequency component of the error

in the solution can be reduced quickly using an iterative solver on

a fine grid, the low frequency (smooth) component of the error can

be reduced efficiently by using a direct solver on a coarse grid.. By

repeating these steps both the high and the low frequencies of the

residual of the linear system can be reduced efficiently within

a specified tolerance. Multigrid methods have been employed as

solvers in sequential implementation (Keener and Bogar, 1998).

They have been also used as preconditioners for other solvers (such

as CG) both in sequential (Sundnes et al., 2002) and in parallel

implementations (Weber dos Santos et al., 2004a). Multigrid

methods can also be adapted for local changes in conductivity for

modelling discontinuous tissue (Austin et al., 2006). Studies that

compared multigrid preconditioners with standard incomplete LU

preconditioned CG in sequential and parallel implementations,

demonstrated higher efficiency of multigrid preconditioners (Plank

et al., 2007; Weber dos Santos et al., 2004b). In parallel imple-

mentations the optimal number of levels of the multigrid approach

depends on the number of processors and on the available memory

(Vigmond et al., 2008).

In (Pavarino and Scacchi, 2008) the authors propose and analyze

a Multilevel Additive Schwarz preconditioner for the bidomain

system. This approach overcomes the multiplicative nature of

multigrid methods, which limit the extent to which they will scale

in parallel implementations. This type of preconditioner has

been shown to be both scalable and to offer a potentially optimal

approach on structured meshes (Munteanu et al., 2009).

6.6. Temporal and spatial resolution

Choosing an appropriate spatial and temporal resolution for

a tissue model is a complex decision that depends on the

numerical method, cell electrophysiology model, diffusion coef-

ficients and their anisotropy ratio, and geometrical properties of

the tissue anatomy. It is important not only to guarantee

numerical stability, but also to ensure that the solution fulfils

requirements regarding accuracy. The underlying motivation is to

ensure that rapid processes, such as the action potential

upstroke, are sufficiently resolved in time and, similarly, that

sharp spatial gradients, such as a propagating wavefront, are

sufficiently resolved in space. The optimal way to consider these

requirements is to choose the resolution based on the features of

the reactionediffusion properties. The upstroke velocity of the

action potential determines the upper limit of the time step, and

the size of the wavefront the space step. However, there is little

consensus about what these values ought to be. Simulations of

larger tissue volumes typically employ a spatial resolution of

between 0.1 and 0.2 mm, with a time step of between 0.01 and

0.02 ms for the diffusion component of the model, with a smaller

time step for the cell membrane kinetics. A pragmatic approach

is to compare the conduction velocity found using given spatial

and temporal resolutions with a solution obtained using smaller

or larger resolutions and to consider the resolution adequate

when these solutions converge. However, this approach may not

always be practical, especially for 3-D simulations, where using

a spatial resolution twice as fine increases the computational cost

by a factor of eight. In addition, altering the spatial resolution

requires remeshing, which can be a complicated and time-

consuming procedure when non-uniform grids are used. Some

mesh generation software may be unable to produce finer

meshes because of restrictions on the number of elements.

In practice, a common procedure for ensuring converged results

is to measure CV for different resolutions and to consider the

resolutions used adequate when finer resolutions give close results

(often, within five or ten percent). CV is quite sensitive to spatial

resolution, much more so than other quantities like APD. Fig. 11

shows examples of CV and APD as a function of spatial resolution

for two models solved using an explicit Euler method with the

FDM. In this case APD was insensitive to resolution for the values

used. In contrast, CV was sensitive. The temporal resolution is also

important; however, for the range of spatial resolutions considered

here the time step was constrained by the stability criterion for the

explicit Euler method, and hence little error was incurred by the

time step selection. When using implicit or semi-implicit methods,

larger time steps can be used without incurring instability in the

numerical method, but a time step that is too large, like a space step

that is too large, can yield unacceptable errors in CV, as has been

shown previously (Cherry et al., 2003; Courtemanche, 1996).

In two or more dimensions, spatial resolution can play a signif-

icant role in determining the system dynamics. With insufficient

resolution, curved wave-fronts can develop corners; with standard

FDMs on uniform Cartesian grids, these corners tend to develop in

the fronts at 45-degree angles from the coordinate axes. Fig. 12

shows rotating spiral waves for the Nygren et al. model (Nygren

et al., 1998) obtained at different spatial resolutions with the

same temporal resolution. The spirals obtained using coarser

resolutions show clear signs of under-resolution. The resolution

required to avoid these distortions varies frommodel to model and

depends largely on the steepness of the upstroke. For example,

0.25 mm is an adequate resolution for the Nygren et al. model, as

shown in Fig. 15, but for the Fox et al. model, which has a faster

upstroke, a finer resolution of 0.15 mm is required.

In addition to overt signs like wave-front distortions, spatial

resolution also can affect other properties of spiral waves. Fig. 12

also shows the spiral wave tip trajectories obtained for different

spatial resolutions during the last 5 s of a 60 s simulation. When

coarser resolutions are used, the trajectory obtained increases in

size; thewavelength decreases as well. In addition, although the tip

trajectory differences are relatively small, the spiral period depends

more strongly on resolution. Here spiral periods of 352, 352, 358,

and 391 ms are obtained for resolutions of 0.125, 0.25, 0.5, and

1 mm, respectively. The coarsest resolution, then, gives a spiral

period 11% longer than the finest resolution. This type of change in

period can produce significant differences in dynamics for more

complex spiral wave trajectories and consequently result in erro-

neous stability or instability.

When anisotropy is introduced, additional resolution

constraints apply. The safest choice is to use a resolution sufficient

for the smallest diffusion coefficient (or conductivity) of the system.

It may be possible to use a resolution betweenwhat is sufficient for
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the smallest and largest diffusion coefficients, but this has not been

demonstrated. One way to quantify whether the spatial resolution

is adequate is to examine the shapes of elliptical waves initiated in

2-D domains with a fixed anisotropy ratio but varying fibre angles.

Fig. 13 shows an example of how such data can be used. Fixed

voltage contours are obtained for multiple fibre angles using

a given spatial resolution, and are then rotated back to align with

the x-axis. The eccentricity of the rotated ellipse is then calculated

for each fibre angle. For inadequate resolution, the eccentricity

depends strongly on the fibre angle. As the spatial resolution

becomes finer, the dependence decreases, but in general rather fine

spatial resolution is required to eliminate the dependence. The

eccentricity values are model-dependent as well, with models

characterised by slower upstrokes requiring a coarser resolution

than those with faster upstrokes.

In addition to these issues of conduction velocity, wave-front

shape, spiral trajectory, and rotation period, inadequate spatial

resolution has been shown to affect dynamics in other ways. Coarse

resolution can induce spiral wave breakup when finer resolution

results in stable spirals (Fenton et al., 2002; Panfilov and Keener,

1995). The opposite also can occur, with coarse resolution (or

fewer connections between grid points) producing stable trajec-

tories, but finer resolution resulting in breakup (Bueno-Orovio

et al., 2008; Panfilov, 2002). For media with low excitability,

spiral waves can even pin to the lattice and follow (for a uniform

grid) quasi-rectangular trajectories (Fenton et al., 2002). Overall,

Fig. 12. Spiral waves and tip trajectories obtained after 60 s of simulation time using the Nygren et al. model in a two-dimensional sheet (10 cm � 10 cm) as a function of spatial

resolution. Although the solutions for 0.25 and 0.125 mm agree well, indicating adequate resolution at 0.25 mm, the solution is under-resolved for coarser resolution. The presence

of “corners” at 45� from the coordinate axes indicative is a sign of inadequate resolution and can be seen for the solution using 0.5 mm, although it is much more pronounced when

the spatial resolution is 1 mm. The spiral tip trajectories also vary, with the coarsest resolution demonstrating significant lattice pinning by the presence of corners within the

trajectory. Different periods are also produced, with coarser resolutions displaying longer periods.

Fig. 11. Dependence of conduction velocity (CV) and action potential duration (APD) on spatial resolution for the Luo-Rudy 1 and Fox et al. models using an explicit Euler integration

method. CV in general is much more sensitive to resolution than APD. Although a fixed temporal resolution of 0.005 ms is used here, using an implicit or semi-implicit method to

take time steps above the explicit Euler stability limit can produce large errors in CV as has been shown previously (Courtemanche, 1996; Cherry et al., 2003).
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although it is known that variations in spatial resolution can result

not only in quantitative but also in qualitative dynamical differ-

ences, there is at present no method to guarantee adequate reso-

lution in the absence of such a comparison beyond reporting that

a given solution agrees well with a solution obtained using finer

spatial and temporal resolution.

6.7. Parallel implementation

Various parallel implementations of solvers have been developed

and applied for simulations of tissue electrophysiology. For example,

some simulators (Potse et al., 2006) are based on on OpenMP (Open

Multi-Processing, http://openmp.org/), an implementation of mul-

tithreading that supports shared memory architectures. The main

advantage of OpenMP is that implementations can be easily adapted

for parallel execution, since the serial implementation needs only to

be slightly modified or can use OpenMP indirectly by interfacing

with specific linear algebra packages able to deal with OpenMP.

An alternative approach is based onMPI (Message Passing Interface,

http://www.mpi-forum.org/), a message-passing application

programming interface that allows codes running on many

computers to communicate with one another. In this case, specific

code has to be developed to dealwithMPI, but high scalability can be

achieved. MPI based code can run on both distributed and shared

memory architectures. The principal advantage of MPI is that it

allows usage of systems with distributed memory architectures,

which have only a fraction of the cost of systems with shared

memory. Examples of this programming strategy applied to tissue

electrophysiology simulations can be found in (Colli Franzone and

Pavarino, 2004; Pavarino and Scacchi, 2008). An intermediate

approach involves developing hybrid code that can take advantage

of computer architectures, which are a hybrid combination of shared

and distributed memory (Bordas et al., 2009).

7. Strategies for reducing calculation time

A number of pragmatic approaches apart from standard

numerical methods can be used to reduce the time required to run

simulations of cardiac tissue electrophysiology. In the following

sectionwe describe some of the most effective and well established

techniques, as well as some more novel approaches.

7.1. Lookup tables

Many models of cellular electrophysiology require computa-

tionally expensive functions, such as exponentials, logarithms, trig-

onometric functions, and exponentiation to be evaluated. These

functions often depend purely on Vm, and significant computational

speedup can be obtained by pre-computing these values and storing

them in lookup tables that are used for subsequent evaluation

(Victorri et al., 1985). The tables can be arranged as 1-D arrays

corresponding to a physiological range of voltages with a fine

enough resolution to capture differences (generally on the order of

0.01e0.1 mV) (Cherry et al., 2003). Often, combinations of these

expensive functions can be evaluated and stored together so as to

minimize their calculation within the time-stepping process.

Although choosing thenearest voltage value represented in the table

is one possibility, linear interpolation can be used to interpolate

between the two nearest voltage values represented in the table for

increased precision. Speedup achieved depends on the number and

type of functions replaced by lookup tables: the more computa-

tionally expensive the function, the greater the resulting speedup.

Exponentiation to non-integer powers are often themost expensive,

followed by exponentials and trigonometric functions, although

system architecture, compiler choice, and function argument ranges

affect the relative cost of evaluating such functions. Nevertheless, it

is possible to achieve a speedup factor of up to 5 (Cherry et al., 2003).

Fig. 13. Eccentricity of ellipsoids formed from a centrally located point stimulus as a function of uniform spatial resolution and constant fibre angle for the Fox et al. model in a two-

dimensional sheet (3 cm � 3 cm). Anisotropy ratio is 5:1 (corresponding to diffusion coefficients of 0.001 and 0.0002 cm2 ms�1 along and across fibers, respectively). Top: contours

at �30 mV after 20 ms of propagation for a spatial resolution of 0.075 mm. Rotated contours are obtained by rotating the ellipses by the fibre angle to align with the x-axis. Bottom:

Eccentricity is calculated for the rotated contours by taking the ratio of the width to the height. For the range of spatial resolutions used, the shape of the ellipsoids depends strongly

on the fibre angle, with a maximum eccentricity for fibers aligned to the coordinate axes. The dependence decreases as spatial resolution increases.
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Lookup tables can also be used for computationally expensive

functions that are dependent on other variables, such as intracel-

lular calcium concentrations and even some transmembrane

currents. It is also possible to construct a 2D table for computa-

tionally expensive functions that depend on two state variables.

An example can be found in the Hund-Rudy model (Hund and

Rudy, 2004), where the d-gate is raised to a variable power.

Because exponentiation is usually such a costly function to eval-

uate, and because the two quantities involved have limited ranges

(the d-gate varies strictly between 0 and 1, while the variable power

takes values between 1 and 9), use of a 2D lookup table can save

computational time with little effort.

It is important to note that lookup tables may not be suitable for

representing certain quantities that exhibit large changes for small

changes of function variables. If the table size needed to represent

such quantities is extremely large pre-calculation may be time-

consuming, and memory requirements or memory access times

may become prohibitive. An alternative is to use lookup table

values within certain values and to calculate the quantity directly

otherwise, which can be accomplished with a simple if- statement

in the code. Careful coding of the model equations can further add

to the benefits of lookup tables. This can be done using automated

tools, and can result in substantial speedup (Cooper et al., 2006). In

all cases, the application of lookup tables for a given model within

a particular code should be evaluated to ensure acceptable accuracy

is maintained.

7.2. Exponential solutions for gating variables

For explicit time-stepping schemes, speedups can be obtained in

many cases by integrating the gating variables for the cell model

ODEs using exponential solutions (Maclachlan et al., 2007; Plank

et al., 2008; Rush and Larsen, 1978). This method applies to an

individual gating variable y represented by the ordinary differential

equation.

dy

dt
¼ ðyN � yÞ=sy_ (18)

With a steady-state value yN and the time constant sy. If voltage is

considered to be non-varying over a single time step, this can be

solved analytically over that time step as

ynþ1 ¼ ðyN � ynÞ exp
�

�Dt=sy
�

; (19)

where yN and sy are solved using Vn, the value of the membrane

potential at the old time step, and Dt is the time step. Similar

benefits can also be achieved by integrating using a semi-implicit

integration scheme under the same assumption that yN and sy are

constant over the time step (Cherry et al., 2003; Whiteley, 2006).

The primary advantage of this method is to allow a larger time

step than a purely explicit integration scheme while retaining

accuracy. The value of the exponential can be pre-computed and

stored in a lookup table to avoid computationally expensive func-

tion evaluations. However, the technique solves the set of ODEs in

a decoupled form, which makes the solution first-order-accurate,

although it is possible to extend the approach to achieve second-

order accuracy (Sundnes et al., 2009). In addition, calculation of

other variables, such as ionic concentrations, cannot benefit from

this approach.

7.3. Operator splitting

The global system of PDEs and ODEs can be decoupled in several

ways by operator splitting, with the aim of improving the compu-

tational efficiency and reduce complex dependencies between the

variables of the problem. In principle, these methods introduce

a splitting error that is independent of the numerical methods used

to solve the decoupled components. This additional error should be

quantified, unless the split steps are re-iterated until a suitable

convergence condition is satisfied. In general, splitting techniques

that alternate between two decoupled operators are first-order-

accurate. However, second-order accuracy can be achieved by

performing two half-steps with one operator before and after a full

step of the second operator (Strang, 1968).

In (Roth, 1991; Roth and Wikswo, 1994) an operator splitting

technique on a finite-difference formulation is used to solve the

bidomainproblemcoupledwith a PDE representing the surrounding

bath. In (Qu and Garfinkel, 1999) a second-order-accurate splitting

technique has been proposed to separate the solution of the mon-

odomain PDE describing propagation in tissue from the Luo-Rudy

phase I ODEs describing local membrane kinetics. However, the ODE

systemwas solved using the Rush-Larsen method (Rush and Larsen,

1978), while the time advancing scheme for the PDE was an explicit

forward Euler method, which resulted in the algorithm being only

first-order-accurate overall. An operator splitting technique has also

been devised for solving the bidomain equations coupled with

a description of volume conduction in the torso (Sundnes et al.,

2005). In this study the authors proposed a general formulation of

operator splitting, based on a q-rule, that can result in a second-order

scheme for a proper choice of the parameter. The ODE system was

solved using a third order Runge-Kutta scheme. The ODE system

itself can be decomposed using operator splittingmethods. Operator

splitting techniques applied to the bidomain equations are reviewed

in (Vigmond et al., 2008), where a three-step operator splitting for

decoupling the bidomain system that has been proven to be

unconditionally stable is described.

7.4. Efficiency of adaptivity in space and time

A major challenge for increasing numerical efficiency is the use

of adaptivity in space and time. Although there is a rich numerical

literature on adaptivity for bothfinite-difference and finite-element

methods, dynamic and simultaneous adaptivity in space and time in

which both the spatial and temporal resolution are varied locally

over the course of the simulation has only rarely been applied to

cardiac electrophysiology studies (Cherry et al., 2000, 2003; Colli

Franzone et al., 2006; Deuflhard et al., 2009; Trangenstein and

Kim, 2004). In contrast, dynamic temporal adaptivity has been

used more commonly (Allexandre and Otani, 2002; Qu and

Garfinkel, 1999; Quan et al., 1998; Vigmond and Leon, 1999) and

dynamic spatial adaptivity also has been used (Belhamadia et al.,

2009; Pennacchio, 2004). The general idea behind dynamic space-

time adaptivity is that the algorithm can increase or decrease spatial

and temporal resolution locally during times when such adjust-

ments are beneficial (e.g., higher resolution for action potential

upstrokes and associated sharp spatial gradients and lower reso-

lution during quiescence). Developing dynamically adaptive

methods is a complex endeavour. Also, characterising accuracy and

efficiency of such techniques is not straightforward. One significant

challenge in measuring the speedup provided by adaptive methods

is that their efficiency generally depends on the dynamical state

simulated, including thewavelength,wave-frontwidth, and density

of waves in the domain. For simple plane wave propagation with

long periods during which no wave is present in most of the

domain, adaptive methods can provide a speedup of more than an

order of magnitude. The efficiency gains in the presence of more

complex spatiotemporal dynamics are generally more modest but

still can be significant. A spaceetimeeadaptive finite-difference

approach was found to give a speedup of a factor of 20 for a plane

wave in a 2-D domain (Cherry et al., 2000) and 50 for a plane wave
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in a 3-D slabwith rotational anisotropy (Cherry et al., 2003), but still

managed a factor offive for a 2-D domainwith sustained spiralwave

breakup (Cherry et al., 2000), in all cases compared to a uniform

mesh using the finest spatial and temporal resolutions available to

the adaptive algorithm.

A different spaceetimeeadaptive method using finite elements

gave a speedup factor of less than a of two in a two-dimensional

domain during initiation and about one rotation of a spiral wave

(Trangenstein and Kim, 2004). Another approach using an adaptive

multilevel FEM with a linearly implicit Rosenbrock discretisation

with stepsize control in time achieved a reduction of two orders of

magnitude for both the number of computational nodes and the

number of time steps taken for a single propagating plane wave in

a 3-D domain using the bidomain equations (nomeasure of speedup

was given) (Colli Franzone et al., 2006). This approach recently was

extended to realistic cardiac geometries (Deuflhard et al., 2009).

Similar work is underway to extend thework of Cherry et al. (Cherry

et al., 2003) to realistic anatomies by combining it with the phase-

field approach (Fenton et al., 2005), as shown in Fig.14. In addition to

a dependence on the dynamical state, the speedup achieved also

depends on the electrophysiology model: because the computa-

tional costs associatedwith regridding andother numerical tasks are

fixed, computationally more expensive models can benefit more

from adaptivity than simpler models.

A related approach is to use increased spatial resolution only for

the variables associated with the rapidly varying INa. This technique

has been shown to increase computational efficiency for planewave

simulations using the bidomain model with the Noble et al. guinea-

pig ventricularmodel (Noble et al.,1998) by two orders ofmagnitude

(Whiteley, 2008); however, it is unclear whether similar perfor-

mance gains would be achieved for larger domains with more

complex dynamical states containing multiple interacting waves.

7.5. Using graphics processing units for computation

The increased computational power and memory of graphics

processing units (GPUs), combined with decreasing costs, has

generated significant interest in utilising graphics hardware for other

applications. GPUs have been optimised for traditional computer

graphics, which is focused on highly data-parallel operations on

floating-point numbers, and provide less of an advantage for activi-

ties outside this range, such as intensive memory communication

and integer and double precision calculations (Owens et al., 2007).

Nevertheless, many computationally demanding calculations may

benefit from GPUs, which have already been applied to simulations

outside graphics and visualisation applications, including cellular

automata, dendritic growth,fluid and gas dynamics, signal and image

processing, geometric computing, and reactionediffusion equations

(Owens et al., 2007). Recent work demonstrated significant speedup

of simulations of cardiac electrophysiology equations in tissue (Sato

et al., 2009; Vigmond et al., 2009). However, it remains to be seen

how effectively GPUs can be integrated into large-scale cardiac

simulations.

7.6. Use of simplified cell models for representing tissue

Large-scale tissue simulations may involve millions of grid

points. To improve computational tractability in these cases,

simplified cell models represent an alternative to more biophysi-

cally detailed models. Whereas detailed cell models may include

30e100 variables and tens to hundreds of equations, simplified

models generally include between two and ten variables and

a correspondingly reduced number of equations. Such a reduction

in the computational workload can translate into a speedup of one

or more orders of magnitude, although this depends on how the

diffusion calculation is implemented (see Section 6). In some cases,

reduced models also have less restrictive spatial and temporal

resolution requirements and can achieve further computational

savings by using coarser resolutions.

Simplified models used for cardiac electrophysiology tissue

simulations generally fall into three categories: direct reductions of

more detailed models, generic models, and phenomenological

models. Below we discuss each of these types of simplifications,

including the advantages and limitations of each approach.

7.6.1. Reductions of detailed models

Reduced models are developed by reducing the complexity of

a detailed model through any of several means. Rapidly varying

variables, such as the m-gate governing activation of INa, may be

eliminated adiabatically by using the steady-state value, thereby

assuming that the gate instantaneously achieves the steady-state

value associated with a given voltage. This approach not only

eliminates a variable but also eliminates a significant source of

stiffness in the differential equations, so that larger time steps can

be used in the numerical scheme. However, unacceptably large

errors can result. For example, eliminating the m-gate adiabatically

in a reduction of the Priebe-Beuckelmann model results in signif-

icantly decreased conduction velocity (Bernus et al., 2002). Addi-

tional gating variables also can be eliminated either by removing

slowly varying gates or by combining variables, such as the two

voltage-dependent inactivation gates used inmany representations

of INa (Bernus et al., 2002). Another common approach to reduce

the number of variables is to treat many or all intracellular ion

concentrations as constant. Although this can produce computa-

tionally desirable benefits, such as decreased accommodation time

after a change in the pacing cycle length, treating concentrations as

Fig. 14. Adaptive mesh refinement in a 2-D slice of canine ventricles from (Nielsen et al., 1991). Left: Voltage plot 160 ms after a stimulus applied in the lower left using the Luo-

Rudy phase I model (Luo and Rudy, 1991). Right: Three-level grid structure corresponding to the voltage plot. Coarse mesh regions (0.5 mm) are shown in white, fine (0.125 mm) in

green, and intermediate (0.25 mm) in yellow.
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constants can remove other important properties, such as memory.

Finally, currents with small values, such as background currents or

the sarcolemmal Ca2þ pump, in some cases may be eliminated

(Mahajan et al., 2008). For models involving detailed Markov

representations of currents, reductions can be accomplished by

substitution with less complex Hodgkin-Huxley-style descriptions,

by using rapid equilibrium assumptions, or by replacing ODEs with

algebraic equations when transients are fast enough to be consid-

ered instantaneous (Henry and Rappel, 2004; Hinch, 2004; Plank

et al., 2008).

The main advantage of reduced models is that they improve

computational tractability while retaining a similar structure as

the more detailed model. In this way, it is easier to incorporate

biophysical variations, such as spatial gradients in channel

expression, the effects of pharmaceutical agents, and electrophys-

iological remodeling effects. However, the reduction may reduce or

eliminate important properties of real cells and tissue such as

memory. Furthermore, the reduction process must be undertaken

separately for each detailed model to ensure that the desired

properties are preserved with each variable eliminated.

7.6.2. Generic models

Generic excitable media models, such as the FitzHugh-Nagumo

(FHN) model (Fitzhugh, 1961), have been used to illustrate prop-

erties of wave propagation for many years. The FHN model itself is

a 2-variable reduction of the Hodgkin-Huxley model (Hodgkin and

Huxley, 1952) and in its original form produces action potentials

more like neural action potentials. The FHN model can be modified

to produce longer action potentials and to eliminate hyper-

polarisation that occurs during the depolarisation phase. However,

the FHN model and others like it generally lack other important

properties, including realistic APD restitution, memory, and a non-

zero minimum cycle length (and corresponding APD) below which

block occurs. Without these more realistic properties, generic

models often are of limited use and are generally restricted to

showing the types of qualitative behaviour that may occur with

more detailed models. As computational resources have increased,

generic models have been used less often. Nevertheless, one of the

main advantages of generic models remains, which is the relative

ease with which analytical results can be obtained.

7.6.3. Phenomenological models

A third approach to reducing computational complexity is to

develop phenomenological models that aim to reproduce key

dynamical properties of cells and tissue without including as much

biophysical detail. For example, rather than including the descrip-

tions of ten or more ion channels, pumps, and exchangers,

a phenomenological model may focus on “summary” inward and

outward currents that rely on fewer variables and equations. The

Fenton-Karma model (Fenton and Karma, 1998) and its subsequent

extensions (Bueno-Orovio et al., 2008; Cherry and Fenton, 2004)

are examples of phenomenological models. Originally, it included 3

variables and 12 parameters together with three currents, repre-

senting the fast inward, slow inward, and slow outward currents.

Extended versions of the model have increased the number of

variables to 4 and the number of parameters to 28 (Bueno-Orovio

et al., 2008); these additions allow spike-and-dome action poten-

tial shapes to be reproduced. Among the dynamical properties that

are incorporated are the threshold of excitation, maximum

upstroke velocity, action potential shape, APD, APD and CV resti-

tution curves, and the minimum cycle length (greater than zero)

below which propagation fails.

Because thesemodels focus on reproducingdynamical properties

rather than detailed ion currents, they can be fit directly from tissue-

level experimental data that measure these quantities, rather than

from patch-clamp data obtained from isolated cells. The small

number of variables and parameters makes parameter fitting much

more straightforward, as many parameters govern or contribute to

only a single property. In addition to fitting experimental data, the

model can be used to fit data from more biophysically detailed

models (Bueno-Orovio et al., 2008). For example, as shown in Fig.15,

Fig. 15. Original TNNP and the 4-variable model fit to it (see text for details). A. Resti-

tution curves for the TNNP model (grey) and the 4-variable fit. B. Spiral wave at three

times during a single rotation for the TNNP model (left) and the 4-variable fit (right).
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themodel can successfully reproduce the restitution curve and spiral

wave dynamics of the ten Tusscher et al. model for human ventric-

ular cells (TenTusscher et al., 2004). The Priebe-Beuckelmannmodel

(Priebe and Beuckelmann, 1998) also has been fit (Bueno-Orovio

et al., 2008).

In addition to improving computational tractability, one of the

advantages of phenomenological models is the relative ease with

which specific dynamical properties can be implemented. As an

example, this model has been used to examine the effects of

different action potential shapes on tissue dynamics (Cherry and

Fenton, 2004). In this application, two different parameter sets

were developed to produce action potentials with different shapes

but with identical restitution and bifurcation properties in isolated

cells for APDmeasured to 80 percent (ormore) of repolarisation (see

Fig. 16A and Fig. 16B). In tissue, bothmodels also produce alternans,

but CV restitution curves with more gradual slopes over a wider

range of cycle lengths are able to reduce or even eliminate alternans

for the model that repolarises more quickly. This can prevent spiral

wave breakup that occurs for the other model, as shown in Fig. 16C.

A disadvantage of this approach is that reproducing the effects of

ion channel blockers and other modifications of specific electro-

physiological changes is not as straightforward. However, it is possible

to perform a newparameterfitting to data obtained in the presence of

the channel blocker, an approach that may be useful for novel phar-

maceutical agents whose effects are incompletely characterised.

7.7. Choosing an appropriate cellular electrophysiology model

Most recentmodels of cardiac cellular electrophysiology have been

designed to represent cells from specific regions (e.g., atria, ventricles,

Purkinje) and in some cases sub-regions (e.g., ventricular epicardial,

endocardial, midmyocardial) of the heart, as well as particular animal

species (e.g., mouse, rat, guinea pig, rabbit, canine, and human). The

number of models described in the literature has increased signifi-

cantly in the recent past. However, a model for a specific combination

of species and region may still not be available. Also, more than one

model representing the particular combination of species and heart

region of interest may be available, and in some cases only a small

subset ofmodels reproduce the properties of interest for a given study.

For instance, alternans at fast pacing rates is a common phenomenon

across a number of species, but not all models of such species show

alternans. The Fox et al. canine ventricularmodel (Fox et al., 2002) has

alternans, but the earlier Winslow et al. canine ventricular model

(Winslow et al., 1999) on which it is based does not. Among rabbit

ventricular models, the Mahajan et al. model (Mahajan et al., 2008)

has alternans, but the earlier Shannon et al. model (Shannon et al.,

2004), from which it derives most of its current formulations, does

not. Thus, not all models are appropriate for investigating specific

phenomena, and in some cases there may be no model that displays

behaviours observed experimentally.

Furthermore, most cellular level models are validated for

specific conditions, including temperature, pacing rate, ionic

concentrations, sex, and age. The model may not be applicable

outside these conditions. Most models are constructed using iso-

lated cell data only and so may not be able to reconstruct the

properties and behaviour of cells in tissue. It is also important to

note that modifying a model by changing parameter values or

equations may compromise the original validation.

Simplified models can be appropriate in many cases, especially

for tissue studies. In many cases tissue phenomena such as spiral

wave breakup are model-independent and can be obtained using

any model with similar characteristics. In addition, simplified

models avoid problems associated with large numbers of param-

eters whose values may not be known with great precision and

with large number of variables whose individual effects cannot

easily be discerned. Ideally, models should be as simple as needed

to explain the phenomena of interestdbut no simpler.

8. Discussion

Integrated models of cardiac tissue electrophysiology are being

used in basic science investigations including studies of defibrillation

Fig. 16. Electrotonic effects on alternans and spiral wave stability. A. Bifurcation diagram showing APD as a function of cycle length in an isolated cell for two parameter sets (Cherry

and Fenton, 2004). APD values below 80 percent of repolarisation match almost exactly, as shown for the inset action potentials at cycle lengths of 290 ms (during alternans) and

500 ms. B. Matching restitution functions for the same two parameter sets in isolated cells. C. Two views of spiral wave dynamics for the two parameter sets within a rabbit

ventricular anatomy (Vetter and McCulloch, 1998). Although the APD restitution curves for the two models are identical in isolated cells, CV restitution in tissue modulates the

effects of the steep APD restitution curve slope in tissue for Model 2 and produces a stable spiral wave.
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(Rodriguez et al., 2005) and specific arrhythmias such as ventricular

fibrillation (Ten Tusscher et al., 2009). Recently, highly detailed

anatomical (Li et al., 2008; Plank et al., 2009) and patient specific

models (Pop et al., 2009) have been introduced. Despite this prog-

ress, and increasing acceptance ofmodels as research tools, there are

few examples where models of cardiac electrophysiology have been

useful in clinical applications. The reality falls short of the vision of

the Cardiac Physiome Project, and there are some important issues

that are not fully resolved;we have highlighted some of these in this

review, andwe continue this discussion below. From a philosophical

point of view it is important to recognise that the purpose of

modelling cardiac tissue electrophysiology is not only to reconstruct

observed phenomena at ever greater levels of detail, but also to

explain themechanisms that underlie them and hence to predict the

effects of changing parameters and other components of the model.

All models involve assumptions and simplifications, and the tissue

models reviewed here are simplifications of real cardiac tissue, its

micro-structure and electrophysiological properties. For a particular

model to be useful, itmust capture enough detail at a particular level

of complexity to offer a mechanistic insight that complements

experimental work.

The heart is a complex multi-scale and multiphysics system,

where cellular electrophysiology is coupled to metabolism and

tension development, as well as to tissue mechanics and fluid

dynamics. Fully coupled and integrative models of the heart are part

of the vision for the cardiac Physiome, and although progress in this

area is being made (Jie et al., 2010; Nickerson et al., 2006; Niederer

and Smith, 2007; Panfilov et al., 2007), these large-scale models

remain a significant future challenge. Within the narrower scope of

tissue electrophysiological models, there are a number of challenges

and open questions; we summarise and discuss some of these below.

8.1. Challenges

The increasing availability of high performance computing

resources has a huge impact on computational research, in partic-

ular enabling simulations with more biophysical detail and higher

throughput. These technological advances are driving the efforts in

cardiac computational research towards more detailed and inte-

gratedmodels, with the goal of patient specific electrophysiological

simulations that can be used clinically (Neal and Kerckhoffs, 2010;

Plank et al., 2009; Pop et al., 2009). Balancing the amount of

anatomical and biophysical detail against the time and data

capacity required to perform simulations is an important issue.

Underlying these considerations is the validity of the assumptions

that are embedded in tissue electrophysiology models.

Understanding the functional relationship between the discrete

structure and continuum behaviour of cardiac tissue at microscopic

and macroscopic levels is a significant challenge. As described

earlier in Section 6, most models of cardiac tissue approximate the

spatial domain as a continuum even though observation of cardiac

tissue shows clearly that it is fundamentally discrete, composed of

cells of different sizes and shapes that couple together. Although

several approaches for representing cells discretely have been

developed (Roberts et al., 2008; Spach et al., 2004; Stinstra et al.,

2006), it is not yet known when such treatment is necessary. It

will be important in the future to identify at what spatial resolution

and under what conditions the continuum approximation is no

longer valid for both monodomain and bidomain models, in tissues

with anisotropy and, in 3-D, orthotropic fibre-sheet structure. A

further consideration is the diverse cellular composition of cardiac

tissue. Most current models of tissue electrophysiology represent

only myocytes and neglect other cell types such as fibroblasts.

A challenge common to modelling communities is the level of

methodological detail required for a scientific publication that

describes a model of cardiac tissue electrophysiology. How much

detail is necessary to describe a model of cardiac tissue electro-

physiology, so that the results cannot only be conceived by a reader,

but also reproduced for validation? Recently the MIRIAM (Le Novere

et al., 2005) and MIASE (http://www.ebi.ac.uk/compneur-srv/miase/

index.html) standards have been proposed, which specify the type of

information that should be includedwhen describing computational

experiments at the cellular and sub-cellular level. Specific guidelines

for models at the cardiac cell level have been proposed, which

emphasise careful documentation of the underlying biophysics,

relation of the model parameters to experimental data, numerical

methods, and consistency of units in the model (Smith et al., 2007).

Although many of the simulation studies cited in this review

report details and provenance of models and parameters, this

attention to detail is not always the case. With rapid increases in

available computing power and increasingly detailed simulation

codes, it is possible to overlook the assumptions and parameter

values that underlie a particular tissue scale model. On the basis of

the issues raised in this review, we would propose that the

following tentative list of should be included in descriptions of

tissue electrophysiology models:

� Description of the model for cardiac cellular electrophysiology,

referenced to the original cell model publication or model

implementation such as the CellML model version curated at

http://www.cellml.org, and with any changes to parameters

justified and highlighted.

� Description of the tissue electrophysiology model, referenced

to the original model publication and with a list of parameters

that includes conductivities (or diffusion coefficients) and

corresponding CV justified and linked to experimental

measurements where possible.

� Numerical methods used to obtain solutions to the equations for

cell and tissue electrophysiology, with evidence of numerical

stabilitysuchasconsistentCVwithchanges in timeandspacestep.

� Links to source code, libraries, and other resources used in

implementation of the model.

� Details of tissue geometry, including the source of anatomically

detailed models, details of the meshing procedure and any

image processing operations carried out on raw imaging data,

information on spatial resolution, and, for FEM approaches,

element size and shape.

� Evidence that tissue dynamics have been validated against

either experimental data or comparable modelling data. For

instance APD and CV restitution curves can be compared with

other published data to demonstrate convergence.

This list is not intended to be proscriptive; rather our aim is to

propose criteria to ensure that models of cardiac tissue electro-

physiology are described in a consistent way:

8.2. Open questions

Different models of tissue electrophysiology involve different

assumptions and simplifications, yet there is no generally accepted

framework for choosing an appropriate combination of cellular

electrophysiology model, tissue model, geometrical model, and

numerical method. As discussed in Section 7.7, there is evidence

that the choice of cellular electrophysiology model can influence

tissue-level behaviours such as the stability of re-entry, however

each of the areas listed below remain as open questions.

� Choice of tissue model. As discussed above (Section 4.2.3)

both monodomain and bidomain tissue models can produce

almost identical propagation sequences providing that no
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current is injected into the extracellular space (Potse et al.,

2006). However, there remain unresolved issues such as the

role that boundary conditions play in the behaviour of re-

entrant waves (Sambelashvilli and Efimov, 2004).

� Numerical approach. We have discussed the different

numerical approaches that have been used to solve the equa-

tions of tissue electrophysiology, yet there are few studies

where the influence of the numerical approach has been

studied in a systematic way. A particular issue here is the

possible influence of irregular and hybrid meshes on complex

emergent behaviours such as re-entrant waves.

� Benchmarks for numerical methods and implementations.

Related to the two questions described above is the lack of

suitable benchmarks by which different tissue models and

numerical approaches could be compared. A set of example

problems, with accepted solutions, would be one solution.

� Parameters and parameter sensitivity. There are not well

accepted values for parameters, such as the tissue conductivi-

ties, which are important in determining the behaviour of

a propagating action potential. Morework is needed not only to

establish the biophysical basis for these parameters, but also to

understand how sensitive the emergent phenomena discussed

in section 5 are to variability in these parameters.

� Methods for representing detailed and heterogeneous tissue

micro-structure. Cardiac tissue is a complex composite tissue,

that is full of heterogeneity, yet it appears to behave as a func-

tional syncytium. The roles played by fibroblasts, voids, and the

fibre-sheet architecture of cardiac tissue inpropagation of normal

and abnormal activation remain unexplored in detail. Further-

more, appropriate parameters and boundary conditions for rep-

resenting this complex structure are not well accepted, and it is

likely that new numerical methods will need to be developed to

handle abrupt changes in the orientation of fibres and sheets.

� Representation of pathological structure and function. This

review has concentrated on models of normal tissue, although

models of cardiac tissue electrophysiology have been widely

used to study arrhythmias, which are usually associated with

pathology. Robust methods and parameters to represent

conditions including ischaemia, infarction, and heart failure are

an important area that is not yet fully developed.

� Validation against experimental data. While it can be possible

to validate simulated conduction velocity, activation sequence

and restitution against published experimental data, many of

the phenomena investigated using tissue models, such as the

criteria for stable or unstable re-entry, are difficult to verify

experimentally. As we have suggested above, a useful starting

point for this process is to carefully compare model behaviour

to experimental datawhere theyexist, and to include this link in

publicationswheremodels of tissue electrophysiology are used.

8.3. Conclusion

Models of cardiac tissue electrophysiology have played an

important role in advancing our understanding of action potential

propagation in the heart. Despite significant progress in the eval-

uation of modelling approaches, the efficient numerical treatment

of models, and development of novel approaches, there are

important challenges to be overcome for application and validation

of these approaches in fields outside of their established domain.
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