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Abstract

Individual-based models describing the migration and proliferation of a population of cells

frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice-

based model is that a proliferative population will always eventually fill the lattice. Here we

develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects.

We also derive approximate mean-field descriptions for the lattice-free model in two special

cases motivated by commonly used experimental setups. Lattice-free simulation results are

compared to these mean-field descriptions and to a corresponding lattice-based model. Data

from a proliferation experiment is used to estimate the parameters for the new model, including

the cell proliferation rate, showing that the model fits the data well. An important aspect of

the lattice-free model is that the confluent cell density is not predefined, as with lattice-based

models, but an emergent model property. As a consequence of the more realistic, irregular

configuration of cells in the lattice-free model, the population growth rate is much slower at

high cell densities and the population cannot reach the same confluent density as an equivalent

lattice-based model.
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1 Introduction

Discrete models are often used to study collective cell migration [7, 9, 13, 20, 29] and collective cell

growth processes [6, 8, 10, 30, 31, 37, 41]. These models produce detailed snapshots and movie-

based data that are easy to compare with experimental images and time-lapse data [39]. There are

two key classes of random walk model that have been used to represent collective cell migration

and growth.

Lattice-based random walk models typically represent the spatial domain as a one-, two- or

three-dimensional regular lattice, with lattice spacing ∆. Cell motility events are usually repre-

sented by nearest neighbour transitions, and cell proliferation events by placing new agents on

the lattice. Computationally, the evolution of the system can be represented by a discrete time-

stepping mechanism, where during each time step of duration τ , each agent has problem-specific

probabilities of moving and of proliferating [2, 3, 16, 35, 36, 39]. Alternatively, the evolution of the

system can be represented by a continuous-time framework where the waiting time for a particular

event to occur is sampled from some problem-specific distribution [13, 33, 34].

Classical lattice-based random walks are noninteracting [7, 33], meaning that each motility and

proliferation event is independent of the state of the system. For example, an agent can move

to a target site that is already occupied or a proliferation event can deposit a daughter agent at

the same lattice site as the parent agent. These simple mechanisms do not incorporate any form

of agent-to-agent interactions since multiple agents can reside on the same lattice site. Therefore,

noninteracting models are only relevant for problems where the cell density is so low that cell-to-cell

contacts and crowding effects are unimportant.

Many relevant applications of collective cell migration and proliferation involve situations with

high cell densities and many cell-to-cell contacts [28, 47, 49]. Contact effects, such as contact

inhibition of migration [1] and contact inhibition of proliferation [28], can play a major role in

determining the behaviour of cell populations. In such situations, the effects of cell-to-cell crowding

are often observed experimentally [47]. These observations have motivated the development of

interacting random walk models that incorporate crowding effects to replicate contact inhibition

of migration and contact inhibition of proliferation. Interacting lattice-based random walk models,

also known as exclusion processes [27], allow each lattice site to be occupied by, at most, a single

agent. The lattice spacing ∆ is thought of as being equivalent to the cell diameter [38]. Interacting
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lattice-based random walks can be simulated in the same way as a noninteracting random walk,

except that individual movement and proliferation probabilities now depend on the state of the

system. For example, a motility event that would place an agent on an occupied site would be

aborted. These aborted events are a simple way of representing crowding effects in the system [16,

34, 38]. Interacting lattice-based random walk models have been used to represent many processes

in cell biology, including cancer cell migration [16, 24], wound healing [10, 23] and embryonic

development [39].

Recently, research has begun to focus on deriving mean-field (continuum limit) descriptions of

lattice-based interacting random walk models. The mean-field description most frequently takes

the form of a partial differential equation (PDE) for agent density. The ability to represent math-

ematically both the individual-level details and the population-level description of the random

walk process is important for two key reasons. First, many experimental observations reflect

both individual-level and population-level data for the same system [48]. Second, knowing the

continuum-limit PDE for the random walk process enables the use of a range of mathematical tools

(e.g. travelling wave analysis, similarity solutions). These can often give greater insight into the

collective behaviour than is possible with computational simulations of the individual-based model

alone. For example, Liggett [27] showed that an unbiased interacting motility mechanism can be

described by the linear diffusion equation; Deroulers [16] showed that agent-to-agent contact ef-

fects can lead to a nonlinear diffusion equation; Simpson [41] showed that combining proliferation

mechanisms with motility leads to a nonlinear reaction–diffusion PDE that is a generalization of

the Fisher–Kolmogorov equation [19, 25].

Lattice-free random walk models represent agent motility and proliferation on a continuous

domain [21, 32] and are more realistic than lattice-based models. Lattice-free models allow the

direction of movement to be a continuous variable, rather than restricting agents to a discrete

set of directions corresponding to nearest-neighbour lattice sites. This is more consistent with

observations of cell migration and proliferation, where individual cell movements and proliferation

events are not restricted to a lattice [36, 44]. In two dimensions, this means that each agent is

allowed to move in any direction θ ∈ [0, 2π). Circular distributions are used to draw random angles

for either the direction of movement or the turning angle at each step of a two-dimensional random

walk [13, 32]. Lattice-free models have been used extensively in studies of molecular motion [50].
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Most applications of lattice-free models to processes in cell biology have been noninteracting, which

means that each discrete motility and proliferation event is independent of the state of the system

and crowding effects are neglected [21, 32, 50]. In order for lattice-free models to be used for high-

density applications in cell biology, crowding mechanisms must be introduced into the lattice-free

framework.

The aim of this work is to compare lattice-based and lattice-free interacting random walk models

of cell migration and proliferation. To achieve this, we introduce both a lattice-based and a lattice-

free model and apply them to two standard experiments used in cell biology. The first experiment,

shown in Figure 1(a)–(b), is a scratch assay experiment that involves placing a population of

cells on a two-dimensional substrate and then scratching away part of the population to reveal

a sharp interface between the occupied region and the cell-free region. The motility of the cell

population is characterised by measurements of the rate at which the population spreads into the

scratched region. To characterise cell motility only, scratch experiments are often conducted over

short time scales (∼1 day) for which cell proliferation is minimal [24]. The second experiment we

will consider, shown in Figure 1(c)–(d), involves placing a sparse population of cells uniformly on

a two-dimensional substrate. The cells then migrate and proliferate and the total number of cells

in the population increases until the population eventually becomes confluent [47]. This kind of

proliferation experiment is usually conducted over longer time scales (∼ 5-7 days) to give the cells

the opportunity to proliferate many times during the course of the experiment. The data shown

in Figure 1(c)–(d) illustrate the key role of crowding effects: when the cell density is relatively low

(Figure 1(c)), the cell trajectories recorded are quite long, whereas when the cell density is higher

(Figure 1(d)), the cell trajectories are much shorter. These observations indicate the importance

of contact inhibition of migration [1] in this experiment. Similarly, growth rate data from the

experiments in Figure 1(c)–(d) indicate that the population growth rate decreases as the density

increases [47]. This implies that contact inhibition of proliferation is also important for these cells.

Here, we develop a new individual-based lattice-free model for a population of motile and

proliferative cells with crowding effects. Bruna and Chapman [9] previously developed a model of

hard sphere diffusion allowing for crowding effects. However, our approach differs from this and

from other previous lattice-free models [45, 50] as we allow agent proliferation (and agent-to-agent

interactions are handled in a different way to hard sphere models [9]). We compare simulations of
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the lattice-free model in the experimental scenarios described above to simulations of a comparable

lattice-based model and to experimental data. A variety of lattice types has been used in previous

lattice-based modelling, including hexagonal or irregular lattices [4, 5, 18]. However, we focus on a

square lattice as a basis for comparison with the lattice-free model as this is the most commonly used

lattice in cell-based applications [2, 3, 33, 36, 39]. Where possible, we derive mean-field descriptions

of the lattice-free model and compare these to averaged simulation results. Our work highlights

important similarities and differences between the lattice-based and lattice-free approaches and

demonstrates key challenges in deriving mean-field descriptions for interacting lattice-free models.

2 Two-dimensional lattice-based interacting random walk model

2.1 Discrete model

We use a two-dimensional square lattice with spacing ∆. Each site is indexed (i, j) where i, j ∈ Z,

and each site has position (x, y) = (i∆, j∆). In any one realization of the discrete model the

occupancy of site (i, j) is C̄i,j , with C̄i,j = 1 for an occupied site, and C̄i,j = 0 for a vacant site.

If there are N(t) agents on the lattice, during the next time step of duration τ , N(t) agents are

selected independently at random, one at a time. When chosen, an agent attempts to move with

probability Pm ∈ [0, 1]. We consider the simplest form of motility where the target site is chosen

at random without any directional bias. For example, a motile agent at (x, y) will attempt to step

to either (x ± ∆, y) or (x, y ± ∆), each with equal probability 1/4. Since biological cells cannot

occupy the same position in space, motility events that would place an agent on an occupied site

are aborted.

Once the N(t) motility events are attempted, another N(t) agents are selected independently at

random, one at a time. When selected, an agent attempts to proliferate with probability Pp ∈ [0, 1].

In general N(t) increases during each time step for Pp > 0, and this computational approach is

appropriate for small values of Pp where the increase in N(t) per time step is small. Here we

consider the most straightforward proliferation mechanism where a proliferative agent at (x, y)

attempts to deposit a daughter agent in one of (x±∆, y) or (x, y ±∆) with equal probability 1/4.

Any attempted proliferation events that would place a daughter agent onto an occupied site are

aborted.
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(a) (b)

(c) (d)

Experiment 1: Unbiased cell spreading experiment

Experiment 2: Proliferation to confluence experiment

Figure 1: Two canonical cell biology experiments. (a)–(b) Two snapshots of an unbiased scratch

assay where a dense population of motile cells is placed on a two-dimensional substrate and a portion

of the population (to the right of red dashed line) is scratched away (reprinted with permission from

the American Physical Society, Khain et al. Physical Review E v83, (2011), 031920 [24]). After

the scratch has been made, the rate at which the cells move along the lateral coordinate into the

scratched region is measured. These experimental images correspond to U87 glioma cells with a cell

diameter of 20 µm and the amount of time that elapsed between snapshots (a) and (b) is 24 hours

[24]. (c)–(d) Two snapshots of a cell proliferation assay using mouse fibroblasts (Reprinted from

Chemical Engineering Science, v64 Tremel et al., Cell migration and proliferation during monolayer

formation and wound healing, pp247–253 (2009) [47], with permission from Elsevier). In these

experiments, a sparse population of cells is initially uniformly distributed in a culture system and

then allowed to proliferate so that the population grows and eventually becomes confluent. The

amount of time that elapsed between snapshots (c) and (d) is approximately 50 hours [47].
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This lattice-based model is the same as that of [41] and is called an exclusion process since

no two agents can occupy the same lattice site. All lattice-based simulations are dimensionless in

the sense that we set ∆ = τ = 1, and we note that the simulation results can be rescaled using

appropriate length and time scales for any particular application.

2.2 Mean-field model: a single nonproliferative agent

For a single nonproliferative agent, the lattice-based model reduces to a nearest-neighbour random

walk where crowding effects are absent. Standard arguments relate the stochastic motility to a

diffusion process in an appropriate limit [22]. Since the motion of a single agent is unbiased, it

is straightforward to show that the mean displacement per step is zero. An expression for the

mean squared displacement (MSD) can be derived by considering the x and y components of the

displacement in the ith step:

〈(xi − xi−1)
2〉 =

[

Pm

4
∆2 +

Pm

4
∆2

]

=
Pm∆2

2
,

〈(yi − yi−1)
2〉 =

[

Pm

4
∆2 +

Pm

4
∆2

]

=
Pm∆2

2
. (1)

Hence the total MSD per computational time step is Pm∆2 and the MSD per unit time is Pm∆2/τ .

Holding ∆2/τ constant and letting ∆ and τ tend to zero jointly, the probability density function

for the position of the single agent satisfies the two-dimensional linear diffusion equation with

diffusivity given by [22]

D =
Pm

4
lim

∆,τ→0

(

∆2

τ

)

. (2)

2.3 Mean-field model: a population of interacting proliferative agents

To connect the discrete mechanism for a population of interacting agents with a mean-field model,

we average the occupancy of site (i, j) over many statistically identical realizations to obtain 〈Ci,j〉 ∈
[0, 1]. After averaging, we form a discrete conservation statement describing δ〈Ci,j〉, which is the

change in average occupancy of site (i, j) during the time interval from time t to time t + τ . The

discrete conservation equation encodes all of the processes occurring in the discrete simulations. In

this case we have:

δ〈Ci,j〉 =
Pm

4

[

(1 − 〈Ci,j〉)
∑

〈Ci,j〉 − 〈Ci,j〉
(

4 −
∑

〈Ci,j〉
)]

+
Pp

4

∑

〈Ci,j〉(1 − 〈Ci,j〉), (3)
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where we define
∑

〈Ci,j〉 = 〈Ci−1,j〉 + 〈Ci+1,j〉 + 〈Ci,j+1〉 + 〈Ci,j−1〉. (4)

The positive terms on the right-hand side of equation (3) represent events that place an agent

at site (i, j) (either by movement or proliferation) while the negative terms represent events that

remove agents from site (i, j) (which can only occur by movement). Note that all terms on the

right-hand side of equation (3) are proportional to terms like (1 − 〈Ci,j〉). This reflects the fact

that potential motility and proliferation events are only successful if the target site is vacant.

To obtain the mean-field equation for the discrete conservation statement, all terms in equation

(3) are expanded in a Taylor series about site (i, j). Dividing the resulting expression by τ and

taking the limit as ∆ → 0 and τ → 0, with ∆2/τ held constant gives the following PDE for C(x, y, t)

[13]:
∂C

∂t
= D∇2C + λC(1 − C), (5)

where the diffusivity is given by equation (2) and the growth rate λ by

λ = lim
τ→0

(

Pp

τ

)

. (6)

To obtain a well-defined continuum limit requires that Pp = O(τ) so that λ remains finite in the

limit τ → 0 [13, 22, 41].

3 Two-dimensional lattice-free interacting random walk model

3.1 Discrete model

Here we develop a new individual-based model for cell migration and proliferation that is free

from lattice constrains but incorporates crowding effects. Agents can occupy any location in two-

dimensional continuous space, provided there is sufficient room to do so. The position of the centre

of the ith agent is denoted (xi, yi) for i = 1, . . . .N . As with the lattice-based model, N(t) agents

are selected independently at each time step and, when selected, attempt to move with probability

Pm ∈ [0, 1]. We consider the simplest possible motility mechanism: the agent attempts to move

a fixed distance ∆ in a randomly chosen direction θ ∈ [0, 2π). For the purposes of incorporating

crowding (exclusion) effects, we assume that each agent is a circle of diameter ∆. These assumptions

about the step length and agent diameter mean that the lattice-free model can be easily compared
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with the lattice-based model. However, we note that it would be straightforward to relax these

assumptions and allow the step length, for example, to be drawn from some probability distribution

[13]. To enforce exclusion effects, any movement attempt where the agent’s attempted path

(xi, yi) + s∆(cos θ, sin θ), where s ∈ [0, 1],

passes within a distance ∆ of another agent’s position is aborted.

Once the N(t) motility events have been attempted, another N(t) agents are selected indepen-

dently and attempt to proliferate with probability Pp ∈ [0, 1]. The agent attempts to divide into

two daughter agents, separated by distance ∆ along an axis of randomly chosen direction θ ∈ [0, π].

The proliferation attempt is aborted if the path connecting the daughter agents’ target positions,

(xi, yi) + s∆/2(cos θ, sin θ), where s ∈ [−1, 1],

passes within a distance ∆ of another agent’s position. Figure 2 illustrates the motility and prolif-

eration mechanisms of the lattice-free individual-based model.

The lattice-free proliferation mechanism is similar to the lattice-based mechanism: in both

models the parent agent and daughter agents are separated by a distance of ∆ immediately after a

proliferation event. The lattice-free proliferation mechanism differs slightly from the lattice-based

mechanism since the parent agent in the lattice-free model moves a distance ∆/2 during a successful

proliferation event, whereas the parent agent in the lattice-based model does not move.

There are other subtle differences between the lattice-based and lattice-free models in terms

of the mechanism for aborting potential migration and proliferation events. In the lattice-based

model, the only condition that determines whether an event is successful is the occupancy of the

target site. In the lattice-free model, even if the target location is vacant, an event will be aborted

if the path from the initial to the target location is obstructed by another agent.

3.2 Mean-field model: a single nonproliferative agent

For a single, nonproliferative agent, the lattice-free model reduces to a lattice-free random walk

without agent-to-agent interactions [13]. As in the lattice-based model, the motion of a single

agent is unbiased and so the mean displacement per step is zero. An expression for the MSD can

9
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Figure 2: Schematic illustration of the lattice-free model. (a) An attempted motility event. (b) An

attempted proliferation event. In each case, the event will be aborted if there is another agent that

overlaps the dark grey area or, equivalently, if there is another agent whose centre lies in the light

grey area, refereed to as the excluded area.
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Column j Column j+1Column j-1

width ∆

x

y

Figure 3: Schematic illustration used to derive the mean-field model for the lattice-free motility

mechanism in the special case where the initial distribution of agents within the domain is, on

average, independent of the vertical location. We divide the domain into vertical strips, each of

width ∆, and associate each agent with the strip that contains the centre of that agent. For

example, the middle agent overlaps strips j − 1 and j, but it is associated with strip j since the

centre of the agent lies in strip j.

be derived by considering the x and y components of the displacement in the ith step:

〈(xi − xi−1)
2〉 =

Pm∆2

2π

∫ 2π

0
cos2 θ dθ =

Pm∆2

2
,

〈(yi − yi−1)
2〉 =

Pm∆2

2π

∫ 2π

0
sin2 θ dθ =

Pm∆2

2
. (7)

This is the same as in the lattice-based case (equations (1)). Hence the MSD per unit time

is Pm∆2/τ , and the probability density function for the position of the agent satisfies the two-

dimensional linear diffusion equation [22], with the same diffusivity (2) as for the lattice-based

model.

3.2.1 Mean-field model: a population of interacting nonproliferative agents

We consider a special initial condition for a population of nonproliferative agents where the distri-

bution of agents within the domain is, on average, independent of the vertical location. This corre-

sponds to the scratch experiment in Figure 1(a)–(b). Under these conditions, the two-dimensional
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motion can be quantified in terms of the horizontal coordinate only [24, 41, 42].

To derive a mean-field description, we divide the domain into vertical strips, each with width

∆, and associate each agent with the strip that contains that agent’s centre (see Figure 3). Let n̂j

represent the total number of agents in strip j and nmax the maximum number of agents that can

be placed within any strip. We now develop a conservation statement for the relative agent density

nj = n̂j/nmax (nj ∈ [0, 1]), analogous to equation (3) for the lattice-based model. The change in nj

during a time interval of duration τ is equal to the change in density associated with events that

move agents into strip j (from strips j±1) minus the change in density associated with events that

move agents out of strip j (into strips j ± 1). To account for crowding effects, we assume that the

probability of an agent successfully entering strip j is proportional to the available space, (1− nj),

in that strip. Hence

δnj = Pmβnj−1 (1 − nj) + Pmβnj+1 (1 − nj) − Pmβnj (1 − nj+1) − Pmβnj (1 − nj−1) , (8)

where β is the probability that an attempted movement would take an agent in strip j to strip j +1

(which by symmetry is the same as the probability that the attempted movement would take the

agent to strip j−1). Incorporating β into the conservation statement allows for the fact that not all

successful motility events change the value of nj . For example, one of the highlighted trajectories

in Figure 3 would reduce nj and increase nj−1, whereas the other would leave nj unchanged.

As with the lattice-based discrete conservation statement, the nonlinear terms in equation (8)

vanish. Identifying the discrete occupancy of the jth column, nj , with a continuous function C(x, t)

and taking the usual limit ∆, τ → 0 with ∆2/τ held constant leads to the one-dimensional linear

diffusion equation for the vertically averaged density C(x, t):

∂C

∂t
= D

∂2C

∂x2
, (9)

with

D = Pmβ lim
∆,τ→0

(

∆2

τ

)

. (10)

The key result here is that the spatial distribution of agents in the lattice-free model evolves

according to a linear diffusion equation. To be consistent with the diffusivity in equation (2) for a

single nonproliferative agent, we must have β = 1/4. We will confirm this by comparing averaged

simulation data to the solution of equation (9) in Section 4.
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3.2.2 Mean-field model: a homogeneous population of interacting proliferative agents

We now consider a special initial condition where the distribution of agents within the domain is, on

average, independent of position. This corresponds to the experimental setup in Figure 1(c)–(d). In

this special case, the state of the system can be described by a spatially invariant density function,

Cm(t), representing the spatially averaged density of agents within the domain [6, 41]. To develop

a mathematical model for Cm(t) we suppose that the number of agents at time t is N(t) and let Ω2

be the total area of the domain. We now estimate the probability that a particular proliferation

attempt will be successful. This requires that there are no other agents within a certain area, A,

surrounding the agent attempting to proliferate. If pi is the probability that the centre of agent i

is not in A, given that agents 1 to i − 1 are not in A, then we have

pi =
1 − Ei−1 − A

1 − Ei−1
, (11)

where Ei is the proportion of the total area excluded by the first i agents. The probability Ps that

a proliferation attempt will be successful is then the probability that the centres of all N(t) agents

lie outside A:

Ps =

N(t)−1
∏

i=1

1 − Ei − A

1 − Ei
. (12)

Each agent excludes an area π∆2 although the area excluded by different agents can overlap, (see

Figure 4). Hence we may write a recurrence relation for Ei:

Ei+1 = Ei + πd2(1 − qi), (13)

where d = ∆/Ω and qi is the expected proportion of agent i’s excluded area that overlaps with

area already excluded by the first i − 1 agents. The expected overlap, qi, depends on short-range

correlations in agent locations arising from the restriction that no two agents can be closer than a

distance ∆ apart. To make progress, we make the simplifying assumption that qi is equal to the

proportion of the total area that is already excluded by the first i−1 agents so that qi = Ei. Given

that E1 = πd2, the recurrence relation for Ei can then be solved to give

Ei = 1 −
(

1 − πd2
)i

. (14)

For consistency with lattice-based case, we define the spatially averaged agent density Cm(t) to

be d2N(t), so Cm(t) = 1 is the same density as a fully occupied lattice of spacing ∆. Provided that
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Figure 4: An attempted proliferation event. In order for the proliferation attempt to be successful,

there must be no agents whose centres are in the red area A. In this example, there are a total of

5 agents and the area excluded by these agents, E5, corresponds to the sum of the light and dark

grey areas. If there were a 6th agent, the probability that its centre would lie outside A would be

given by equation (11), p6 = (1−E5 −A)/(1−E5), which is the white area divided by the sum of

the white and red areas.
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the domain size is large (d ≪ 1), we can treat the spatially averaged agent density as a continuous

variable. Combining equations (12)–(14) gives

dCm

dt
= λCm

Cm/d2
−1

∏

i=1

(1 − πd2)i − 2d2

(1 − πd2)i
, (15)

where, as before, λ = limτ→0(Pp/τ).

It is worth noting that agent density cannot exceed the optimal hexagonal arrangement of circles

in the plane, which imposes an upper bound of π/
√

12 ≈ 0.91 on the proportion of area that can be

occupied. Since, in our notation, an agent density of Cm(t) = 1 corresponds to circles on a regular

square lattice (area coverage π/4), the upper bound on Cm(t) is 2/
√

3 ≈ 1.15. Equation (15)

cannot, therefore, be accurate at high densities because its equilibrium increases without bound as

the domain size tends to infinity (d → 0). Nevertheless equation (15) may provide a reasonable

description of the population growth at low to moderate agent densities. We will assess this by

comparing numerical solutions of equation (15) with simulation results in Section 4.2.

4 Results

We now compare averaged simulation data to the solutions of the appropriate mean-field models

for the two scenarios illustrated in Figure 1.

4.1 Non-proliferative simulations

To mimic a scratch assay geometry (Figure 1(a)–(b)) we consider two-dimensional cell motion with

an initial condition where the distribution of agents within the domain is, on average, independent

of the vertical location. Unlike the scratch assay in Figure 1(a)–(b), where the initial population

is adjacent to the left boundary and spreads unidirectionally, we consider an initial population of

agents in the centre of the domain so that we will observe bidirectional spreading. To achieve

this, we initialise the simulations with a fixed average agent density C0 ∈ [0, 1] in the region

−x0/2 ≤ x ≤ x0/2 and no agents outside this region. In the lattice-based simulations, initially

each lattice site in the region −x0/2 ≤ x ≤ x0/2 is occupied with probability C0, independent of

the other lattice sites (Figure 5(a)). In the lattice-free model, agents are placed at random within

the region −x0/2 ≤ x ≤ x0/2 so that all agents are located a distance at least ∆ from all other

agents (Figure 6(a)).
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For all simulations we impose periodic boundary conditions on all boundaries. However, our

results are insensitive to the boundary conditions applied to the vertical boundaries since we only

perform simulations for relatively short periods of time so that the agents never reach the vertical

boundaries. Under these conditions, the appropriate solution of equation (9), on ∞ < x < ∞, is

[15]:

C(x, t) =
C0

2

[

erf

(−x0/2 − x√
4Dt

)

+ erf

(

x0/2 + x√
4Dt

)]

. (16)

Results in Figure 5(a)–(c) show snapshots from a single realization of the lattice-based model with

an initial density of C0 = 0.6 and x0 = 40. Results in Figure 5(d) show the column density of

agents, further averaged over 50 identically prepared realizations, compared with equation (16)

with D = Pm∆2/(4τ). As expected, the averaged simulation data are accurately predicted by the

linear diffusion equation [43].

We now investigate corresponding simulations for the lattice-free model. Agent density profiles

are obtained in the same way as in the lattice-based model, by averaging the number of agents in

vertical strips of width ∆ (see Figure 3) across an ensemble of 50 identically prepared realizations.

Figure 6(a)–(c) shows snapshots from a single realization of the lattice-free model. We also plot

equation (16) and find that the solution of the linear diffusion equation matches the discrete data

very well. This comparison confirms the validity of the conservation argument in Section 3.2.1.

The results shown in Figure 5 and 6 are for an initial density of C0 = 0.6. Starting the

simulations with a lower initial density results in an equally good match with the mean-field diffusion

equation. Initial conditions with C0 > 0.6 are not readily achievable in the lattice-free model; the

reasons for this will be discussed in the following section.

The key objective in performing scratch assays (Figure 1(a)–(b)) is to describe the motility

of cells, which is usually done by measuring the rate at which the leading edge of the population

moves after the scratch has been made [23, 28]. Mathematical models are applied to scratch assays

to quantify the cell motility rate so that predictions about the migration of the cells can be made

under different conditions, such as a scratch assay performed for a different amount of time or in

a different geometry, e.g. a circular scratch. One way to quantify cell motility using the lattice-

free model is to perform repeated simulations of the discrete model to characterise the mean rate

of advance of the leading edge. This could then be used to calibrate the value of Pm to match

experimental data [24]. Instead, our mean-field approach shows that the average behaviour of the
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Figure 5: Non-proliferative simulations of the lattice-based model with ∆ = τ = Pm = 1 and

Pp = 0. Agents are initially placed at randomly chosen lattice sites in the region −20 ≤ x ≤ 20

and the initial average agent density within this region is C0 = 0.6. Discrete snapshots in (a)–(c)

show agent locations t = 0, 500 and 1000. Simulation data in (d), averaged over 100 identically

prepared realizations, show stochastic density profiles (red) superimposed on the solution of the

appropriate continuum model (green), given by equation (16) with D = Pm∆2/(4τ). The arrows

show the direction of increasing t.
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Figure 6: Non-proliferative simulations of the lattice-free model with ∆ = τ = Pm = 1 and Pp = 0.

Agents are initially placed at random chosen lattice sites in the region −20 ≤ x ≤ 20 and the

initial average agent density within this region is C0 = 0.6. Discrete snapshots in (a)–(c) show

agent locations t = 0, 500 and 1000. Simulation data in (d), averaged over 100 identically prepared

realizations, show stochastic density profiles (red) superimposed on the solution of the appropriate

continuum model (green), given by equation (16) with D = Pm∆2/(4τ). The arrows show the

direction of increasing t.
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lattice-free model is given by equation (9). This allows us to quantify cell motility in terms of the

diffusivity D, without the need for repeated computational simulations. Once an estimate of D has

been made using experimental observations, predictions can be made about the migration of the

cells under different conditions [40].

4.2 Proliferative simulations

We now consider simulations of a proliferation assay analogous to the experimental setup shown

in Figure 1(c)–(d). Simulations are initialised with a low density of agents, distributed randomly

throughout the domain. The biological timescale for cell proliferation is much greater than the

timescale for cell motility [41, 42] so we assume that the proliferation probability is much smaller

than the movement probability (Pm ≫ Pp > 0). One important consequence of this separa-

tion of timescales is that the spatial distribution of agents remains approximately homogeneous:

C(x, y, t) = Cm(t) [6, 41].

For the lattice-based mean-field model, a homogeneous distribution means that the spatial

gradients in equation (5) vanish so that we have:

dCm

dt
= λCm(1 − Cm). (17)

Recent work has shown that for typical values of the cell diffusivity (10−6 mm2/s) [11, 28], cell

diameter (20 µm) [24] and cell doubling time (18 − 20 hours) [28, 40], the appropriate parameters

in the discrete model are Pm = 1 and Pp = 0.001 [41]. With these parameters, Figure 7(a)–(b)

shows snapshots from a realization of the lattice-based model. After a sufficient period of time, the

lattice becomes fully occupied. To quantify the growth in agent numbers, we record the spatially

averaged agent density Cm(t) = N(t)/Ω2, where N(t) is the total number of agents and Ω2 is the

area of the domain. Figure 7 shows the simulation data for Cm(t) together with the logistic growth

curve predicted by equation (17), which matches the simulation data very closely.

Equivalent simulation results for the lattice-free model are shown in Figure 8. In the early

stages of the experiment (up to approximately t = 2000), the population growth curve in Figure

8(c) is very close to the lattice-based result. This reflects the fact that, in the absence of significant

agent-to-agent crowding effects, the lattice-based and lattice-free models behave similarly. However,

at later times, the agent density in the lattice-free model grows much more slowly and does not

reach Cm(t) = 1 (the density of a fully occupied lattice), even after the much longer simulation
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Figure 7: Simulations of the lattice-based model with proliferation, ∆ = τ = Pm = 1 and Pp =

0.001. Agents are initially distributed at random and the initial agent density is C0 = 0.01. Here

we compare simulation data (dashed blue) and the solution of the mean-field equation (17) (solid

red).

time of t = 20000. This reduced growth rate is a consequence of the irregular, though more

realistic, arrangement of the agents in the lattice-free model (compare Figure 7(b) to Figure 8(b)).

Even at moderate densities, this irregular arrangement means that the probability of a successful

proliferation event is greatly reduced. In contrast, even at very high densities approaching Cm(t) =

1, a vacant lattice site will always become occupied eventually via a proliferating agent at one of

the nearest-neighbour sites.

Also shown in Figure 8(c) is the numerical solution of the mean-field equation (15) (see Appendix

for details of solution method), which matches the lattice-free simulation data well. This shows

that, despite the simplifying assumptions made to arrive at equation (15), this mean-field model

encompasses the key processes in the lattice-free proliferation model. In particular, equation (15)

captures the long tail as the population grows more slowly at higher densities.

Although we have demonstrated a good match between individual-based simulations and mean-

field models for the biologically relevant parameter values Pm = 1 and Pp = 0.001 in Figures 7

and 8, it is well-known that the accuracy of the lattice-based mean-field model decreases as the

proliferation rate Pp increases [6, 10, 41]. This is due to the formation of clusters, as daughter

agents are deposited near parent agents more rapidly [24], which means that the assumption of a

spatially homogeneous population is no longer valid. To test the behaviour of the models under

these conditions, we compare simulation data and mean-field results for both models when Pp is
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Figure 8: Simulations of the lattice-free model with proliferation, ∆ = τ = Pm = 1 and Pp = 0.001.

Agents are initially distributed at random and the initial agent density is C0 = 0.01. Here we

compare simulation data (dashed blue) and the solution of the approximate mean-field equation

(15) (solid green). Also shown for comparison is the solution of the logistic equation (17) describing

the corresponding lattice-based model (solid red).

increased by a factor of 10 to Pp = 0.01 (Figure 9). The lattice-based simulations reach confluence

approximately 10 times faster than in Figure 7, but still match the logistic growth curve well. The

lattice-free model again grows more slowly than the lattice-based model, with a very long tail. The

match between the lattice-free simulations and mean-field model, equation (15), is good up to a

density of approximately Cm(t) = 0.7. Above this density, the individual-based simulations grow

more slowly than predicted by equation (15). This is consistent with the observation in Section

3.2.2 that equation (15) is not expected to be accurate at high densities.

5 Comparing lattice-based and lattice-free models to experimen-

tal data

The results in Section 4.2 reveal a key difference between the lattice-based and lattice-free models.

In the lattice-based model, the lattice rapidly becomes fully occupied and no further proliferation

is possible. The lattice-free population grows much more slowly at moderate to high densities and

it is likely that it will never reach the same confluent density as the lattice-based model. This is

an advantage of the lattice-free model because the population carrying capacity, rather than being

determined by an artificially imposed lattice, is an emergent outcome of the model. There are
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Figure 9: Results from both models with more rapid proliferation, ∆ = τ = Pm = 1 and Pp = 0.01.

Agents are initially distributed at random and the initial agent density is C0 = 0.01. Here we

compare simulation data (dashed blue) and the solution of the relevant mean-field equations for

both the lattice-based (solid red) and lattice-free (solid green) models. Panel (a) shows a close up

of panel (b) for earlier times (t ≤ 1000).

22

Page 22 of 32

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

also qualitative differences between the models in that the lattice-based confluent population is

always perfectly aligned on the underlying lattice, whereas the lattice-free model predicts a more

random distribution of agents. We note that the lattice-free arrangement (e.g. Figure 8(b)) is

visually a much better representation of experimental results (Figure 1(d)) than the the lattice-

based arrangement.

We now ask whether these differences would lead us to make different predictions about an

experimental system if we applied the two models to the same experimental data. To explore this

issue, we fit the mean-field models, equations (15) and (17), to data from a proliferation experiment

[47]. The first 40 hours of data correspond to a settling phase during which there was no significant

change in density; like Tremel et al. [47], we ignore these data and instead use the post-settling

data only. Using a standard curve-fitting algorithm (Matlab lsqcurvefit, which uses the trust-region-

reflective optimisation algorithm [14]), we calibrated λ, ∆ and C(0) in equations (15) and (17) to

produce a least-squares fit to the experimental data. The data and fitted model growth curves are

shown in Figure 10 and the fitted parameter values and least-squares residuals are given in Table

1. Note that the data and results in this section are dimensional; dimensionless density C(t) is

related to dimensional density Ĉ(t) via C(t) = ∆2Ĉ(t).

The lattice-based model fits slightly better (lower residual) than the lattice-free model, but the

difference in fit is relatively small and Figure 10 shows that both models produce a reasonable

match to the data. The lattice-based model predicts a cell diameter of 32 µm and the lattice-free

model predicts a cell diameter of 24 µm. The cells are packed more loosely in the lattice-free

model so, in order to achieve a given density, it predicts a smaller cell size than the lattice-based

model. Nevertheless, both values are consistent with experimental observations showing that the

typical fibroblast cell diameter is in the range 20–30 µm (Figure 1(a)–(b)) [47]. The lattice-free

model estimates a proliferation rate λ that is approximately 10% higher than the lattice-based

model. This is intuitively reasonable since more proliferation events are aborted in the lattice-free

model than in the lattice-based model, so the lattice-free model requires a higher rate of attempted

proliferation events to give a comparable observed proliferation rate.

The most significant difference between the lattice-based and lattice-free models again lies in

the predicted long-term behaviour of the population. Although both models have reached similar

densities (approximately 950 cells per mm2) by t = 70 hr, the lattice-based model is at 96% of its
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Figure 10: Average cell density against time: data from the experiment of [47] (points); growth

curve predicted by the lattice-free model (solid green); growth curve predicted by the lattice-based

model (solid red). Model parameters, shown in Table 1, were fitted using a least squares method

(Matlab lsqcurvefit) to provide the best match to the data. Note that the first 40 hours of the

Tremel et al. [47] data, corresponding to the initial settling phase, were neglected and are not

shown here; in the graph, t = 0 corresponds to the beginning of the growth phase.
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Cell diameter

∆

Initial density

Ĉ(0)

Proliferation

rate λ

Least-squares

residual

Lattice-based model 0.032 mm 43 cells/mm2 0.095 hr−1 124 cells/mm2

Lattice-free model 0.024 mm 38 cells/mm2 0.105 hr −1 153 cells/mm2

Table 1: Results of fitting the lattice-free and lattice-based mean-field models (equations (15) and

(17) respectively) and to experimental data from a proliferation assay [47]. The three parameters

shown in the Table were adjusted to obtain a least-squares fit of each model to the data. The final

column shows the square root of the sum of squared residuals for each model. The density values

shown in the Table are in units of cells per mm2; these dimensional densities Ĉ(t) can be converted

to dimensionless density C(t) via C(t) = ∆2Ĉ(t).

maximum density (which is 987 cells per mm2), whereas the lattice-free model is only at 53% of the

density corresponding to a fully-occupied lattice of spacing ∆ (which is 1786 cells per mm2). The

lattice-based model therefore predicts that there will be minimal growth beyond t = 70 hr, whereas

the lattice-free model predicts that significant growth will occur beyond t = 70 hr (see Figure 10),

with a slow approach to carrying capacity. Unfortunately Tremel et al [47] do not report any data

beyond t = 70 hr, so it is difficult to draw any conclusions about which of the two models best

represents long-term experimental data.

6 Discussion

We have developed a new, discrete model for migration and proliferation of a population of cells

in a monolayer. In contrast to the majority of previous discrete models, this model is lattice-free,

meaning that there is no restriction on cells to occupy points on a predefined, artificial lattice. This

results in a much more realistic configuration of cells (for example compare Figure 7(b) to Figure

8(b)).

Freeing cells from lattice constraints has some surprising consequences for the population-level

predictions of the model. Most notably, it is impossible for the population to reach the maximum

density that would be predicted by an equivalent lattice-based model. This is because the cells

are not perfectly aligned, but are arranged in a more spatially random configuration. Thus the

available space is used less efficiently and, as the average density increases, it becomes increasingly
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unlikely that a cell will have the space required to divide into two daughter cells. Some models

have used a non-square lattice [4, 5, 16] to enable a more realistic spatial configuration of cells.

However, this approach still has the disadvantage that the carrying capacity of the population is

predetermined by the arbitrary choice of lattice.

The mean-field descriptions of the lattice-free model developed in this paper make simplifying

assumptions about the spatial structure of the population. This has enabled us to develop practical

tools that can predict average population-level behaviour. An important goal for future work is a

more rigorous derivation of the continuum limit of the lattice-free model, for example by using a

spatial moment dynamics approach [6, 26, 43]. Nevertheless, we have shown that population-level

behaviour can be predicted in two special cases. Firstly, in the case where there is no proliferation,

the population is well described by the linear diffusion equation. Secondly, in the case where

the population is spatially homogeneous, the average agent density may be approximated by an

ordinary differential equation. This equation predicts lower densities and a slower approach to

carrying capacity than the logistic growth equation, which is the equivalent mean-field description

for the lattice-based model.

We compared the predictions of the lattice-free model to experimental data from a proliferation

assay [47]. Fitting the model parameters to the data gives a fit that is comparable to that of the

logistic equation and predicts a similar (though slightly higher) proliferation rate. However, the

lattice-based model predicts that the population has reached confluence at 70 hours and there will

be no further growth. The lattice-free model predicts that the population will continue to grow

beyond 70 hours, though at a much reduced rate. The significance of this difference is difficult to

assess using published data since most proliferation experiments are aimed at measuring the growth

rate and hence focus on the early stages of the growth curve rather than the later stages when the

population is approaching confluence.

Simulations of the lattice-free model are more computationally intensive than the lattice-based

model. This is because, under the simulation method implemented, each attempted movement

or proliferation event requires the location of all other agents in the population to be checked, so

simulation time is proportional to N(t)2. In contrast, the lattice-based model only requires the

status of the four nearest-neighbour lattice sites to be checked, so simulation time is proportional

to N(t). In practice, this restricts the size of population that can be simulated under the lattice-
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free model. An important goal for the future is to develop more efficient simulation algorithms, for

instance by indexing which agents are in a given region of the domain at a given point in time. This

will enable spatially variable processes to be studied, for example invasion waves of proliferating

cells [40], in the lattice-free framework.

The migration aspect of our lattice-free model is similar to models of hard sphere suspensions

[9, 45]. The main difference between these previous approaches and our lattice-free model is that

our model includes cell proliferation. Another difference is that hard sphere models often assume

elastic collisions [45] or only check that the target site for a movement event is vacant [12]. This

mechanism would allow agents to “leapfrog” over other agents, which is not biologically realistic

[46]. An important aspect of our model is that an agent can only complete an attempted move if

the entire path from its initial to its target location is clear of other agents.

Using a lattice-free framework enhances the realism of the model by removing artificial con-

straints on the cells’ spatial distribution. Nevertheless, the model still makes several simplifying

assumptions. For instance, the cells are treated as incompressible circles, whereas in reality cells

are not circular and can deform in shape to accommodate neighbouring cells. A cell attempting to

move or to proliferate is assumed to select a direction at random and if it encounters another cell

in that direction, the attempt is aborted completely. In reality, cells may exhibit some global direc-

tional bias, for example due to chemotaxis [33, 35], or local persistence. A cell may also adjust its

direction or step length in order to complete a movement or proliferation event. These extensions

will be addressed in future work.

In this paper, we have focused on the simplest possible lattice-free model to enable direct

comparison with a lattice-based equivalent. Removing lattice constraints is a necessary prerequisite

for tackling complex, inherently non-lattice effects, such as shape deformation and directional

persistence.
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Appendix: method of numerical solution of ordinary differential

equations

The lattice-free mean-field equation (15) for a homogeneous, proliferating population of cells was

solved in Matlab version 7.10 using the ode45 function. This function implements the Dormand–

Prince version of the Runge–Kutta formulae, which uses 4th and 5th order approximations in an

adaptive step size routine [17].

To ensure that our numerical results are reproducible, we also used a standard 4th order Runge–

Kutta method with a fixed step size δt. Using δt = 50 or δt = 20 gave solutions that are indistin-

guishable from the results presented in Figures 8–10.

For equation (15) to be well defined, the upper limit (Cm/d2 − 1) for the index i in the iterated

product must be an integer. We solved equation (15) in two ways: (i) by rounding Cm/d2 − 1 to

the nearest integer; (ii) by taking the integer part of Cm/d2 − 1 (i.e. reducing it to the nearest

smaller integer). As a result of either of these procedures, the rate of population increase, dCm/dt,

is discontinuous in Cm, implying that the solution Cm(t) is nonsmooth. However, when the domain

is large relative to the agent diameter, we have d ≪ 1 ensuring that the discontinuities are small in

magnitude and the solution appears smooth over the timescale of interest. For the domain size used

in Figures 8–10, d = 0.02, and we found that the two rounding methods described above produce

identical results.
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