
Models of Computations and Systems~Evaluation of

Vertex Probabilil:ies in Graph Models of Computations

DAVID MARTIN AND GERALD ESTRIN

University of California at Los Angeles,* Los Angeles, California

~tBSTIRACT. This paper concerns itself with the modeling of computations tmd systems and the
generation of a priori estimates of expected computation time for given problems on given
processing systems. In particular, methods are discussed for determining the probabilities of
reaching vertices in a graph model of computations.

A priori estimates of expected computation time for given problems on given process-
ing systems may be generated by modeling the computation with a transitive
directed graph [1].

A computational algorithm is first represented by a directed graph containing
cycles, with vertices representing macro-operations and arcs representing sequence,
branching control conditions and data transfer. Cycles may then be removed in a
systematic transformation resulting in a transitive directed graph [2-51. The model
of the computation can be assigned to a model of a computer system and a successive
relaxation procedure used to obtain a suboptimal assignment and sequencing of
tasks on machines. In this process a measure of expected path length, which takes
into account branching probabilities, serves as a criterion.

A fundamental aspect of the above process involves the computation of vertex
probabilities which are then used in computing tile estimates of expected path
length through a graph.

In this paper the nature of transitive directed graphs representing computations
is discussed, a systematic enumerative procedure for calculating vertex probabilities
is described, and then a more practicable algorithm useful in a priori assignment
and sequencing experiments is established.

A computer program for calculating vertex probabilities is presented and results
summarized for several graphs abstracted from complex problems.

Graph Model of Computation

Consider a graph (such as Figure 8) consisting of two sets (W, U), viz., a set of
vertices and a set of directed ares which connect the vertices together; let us estab-
lish a correspondence between mathematical formulas and the graph.

A computational statement representing a formula specifies the generation of a set
of data by means of a defined transformation upon the elements of another set of data.
Let the input set be s~ and let so be the set into which si is mapped through the trans-

* Department of Engineering. This work was supported by the Atomic Energy Commission,
Division of Research (AT (11-1) Gen 10) and the Office of Naval Research, Information Systems
Branch (Nonr 233 (52)).

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967, pp. 281-299.

~82 DAVID MARTIN AND GERALD ESTRIN

formation, f. Then we can write

~o = f (s ~) , (1)

and we usually state that so is a fimetion of s~. The formula (1) is represented
graphically in Figure 1. If w~ represents an initial input operation, then the source of
s~ is unambiguous. I f w~ represents an interior opert~tion in the graph, the input set
for 'w s may have been generated by w~ or its predecessors and transported to aeces-
siblc storage until required. Under troy conditions, the presence of the arc from 'w~ to
w/ unambiguously establishes tha t the operation (computat ions) represented by
w /canno t be executed until w,~ has generated s~.

Vertex Input Logic

Since the computat ional tasks (vertices) represent functions whose arguments are
either conveyed along the arcs incident into a given vertex or were previously stored
in an accessible location, it is possible to specify when a given vertex may "begin"
by writing a Boolean expression whose t ruth value indicates tha t all precedence con-
ditions have been satisfied. There ~re three types of "ver tex- input" logic described
in what follows.

Conjunctive Input. Let a given vertex require all of several sets of data, each set
coming from a different source (ver tex) . Let the availability of these sets of dat~ be
represented by Boolean variables, a l , a~, •. •, a~. Then the event "all da ta swill-
able" is represented by the t ruth value of the conjunction a~ A a2 A, " ' " , /~ aN.

Mutually Exclusive Inputs. Let ~t given vertex require only one set of input data,
but let this set of data be generated from one of several mutual ly exclusive origins
(vertices). Let the event 'kdl dat:-~ :wailable" be represented by the Boolean vari-
able, a~, and its al ternate forms by a l l , a n , • • - , a~m • Then the condition for vertex
initiation is

al = a l l • a12 • ' ' ' (]~) a i m , (2)

under the condition tha t all tile aij are mutual ly exclusive events.
Compound Input. I f the initiation of a vertex requires several sets of data, each of

which has several mutual ly exclusive origins, we are interested in the t ru th value of
the expression (an ® • .. @ al,,,) /~ . . . /~ (a~l @ - -- @ a).

For purposes of calculation it is convenient to decompose vertices with compound
input logic into several vertices with simple, i.e., only A or @, input logic. This is
easily done by introduction of an appropriate number of pseudo-vertices as shown
in Figure 2.

Whenever a computat ion is described in terms of INCLUSIVF~ OR input conditions

?
S

o

S i FIG. 1. The opera t ion r ep re sen t ed b y w~
genera te s S~ ; the ope ra t ion (funct ion) r ep re -
s en t ed by wt " t r a n s f o r m s " S~ into So.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Models o f C o m p u t a t i o n s a n d S y s t e m s 283

a12 a21 all~ a22

Fro. 2

we require a transformation such that on ly /k , @ input conditions exist and thereby
avoid complex definition of data distributions in the model.

Ver tex O u t p u t L o g i c

The existence of mutually exclusive alternate origins of sets of data is due to the
presence of b r a n c h i n g or dec i s ion vertices in the graph. An arc incident out from a
branching vertex may be traversed with a probability less than unity and may be
selected conditional upon data being generated. In tile usual langmtge of computer
programming such an operation is called a conditional transfer.

A branching vertex is defined as a vertex with EXCLUSIVE Oa output logic as
follows: If B is a Boolean variable representing the event that there is an output
from a vertex and b~, b2, . . . , b~ are the Boolean variables representing m u t u a l l y

exc lus ive events at the output of the branching vertex, we can write

B ~ bl G b~ O " '" @ bn, (3)

where the two sides of the expression are logically equivalent [6].
Program flow may also occur from a given vertex along several different ares

simultaneously, i.e., there may be a bundle of arcs, each with the same origin vertex
and different terminal vertices, tlmt are incident out from a vertex (or pseudo-
vertex) jointly. Then, if for any event represented by b~ as above, we define Boolean
variables b~, b~, • • • , b~,~ such that there is a logical equivalence between any pair
of b.~5, we can unambiguously denote the simultaneity of output arcs on the graph.
We choose to use the symbol, , , to mark the logical equivalence of events on output
arcs and obtain

b~ ~ bil * hi2* " . . * b~,~ (4)

as a representation of simultaneous vertex outpu(, events. The • output condition is
sometimes referred to as an AND output coI~dition in this paper.

If the sets {b~ , bj2 , . . • , bj,~5}, j = 1, 2, • • • , n , represent all of the possible out-
put events tha t can occur upon completion of a vertex, ther~ the occurrence of a
compound output event will be represented by the expression

(b n * . . . * b~,,~,) @ . . . 0 (b~, • . . . * b , , , ,) . (5)

As in the case of compound input logic, pseudo-vertices are introduced to de-
compose compound output logic into simple output logic. This is illustrated in
Figure 3 for the condition where wk initiates w, , wb, wo, wd under the conditions
(~vo • ~'b) • (wo * ~v~).

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

284 DAVID M A R T I N AND G E R A L D E S T R I N

Fro. 3

Let us consider the probabilities associated with branching arcs. If 'w~: and w~ tare
origin and terminal vertices of an are, u,j, let the probability of reaching wj via tt,.~
be q~i • In general, q~i is a conditional probability of traversing u,j given that w,: has
been reaehed. We now require tha t program flow be co~served, i.e., if
uk~, u~.~, . . . , uk. are the mutually exclusive ares incident out from a branching
vertex wk with simple EXCLUSIVE OR output logic, then

~qk i = 1. (6)
i = l

I t is instructive to compare our graphical network with two types of networks
used in other contexts. The first is the P E R T [7] network, in which all vertices have
AND input, and output logic. Hence all vertices are reached with probability one.
Another special network is the graph representation of the sequential machine,
where vertices correspond to the internal states of the machine and arcs represent
the transitions between states. All vertices in the latter cases have :VzXCLUSIVE O~
input and output logic and the arc traversal probabilities are the state-to-state
transition probabilities. The probabilistic properties of such a network can be repre-
sented as a simple Markov chain. Ore" network is a more general form of these two
cases and the computational probabilities are more diiIicult to determine.

Vertices
A computationM vertex on a directed graph represents an unambiguously defined
computational statement. The execution of the statement may imply the execution
of several other more elementa~3~ operations or "mierostatements." A certain amount
of "fine s t ruc ture" may not explicitly appear in the graph dependent upon the rela-
tive complexity of functions represented by single vertices. In fact the fine structure
implied by any particular vertex might itself be represented by a graph whose
characteristics are identical to those discussed above. Hence if the assumption is now
made tha t ver tex properties (such as time required for the operation) are known,
then t rea tment of the problem of representing collections of vertices by a single
vertex [2] will indicate the effect of the implied fine structure.

Vertex Probabilities
In the following two procedures are considered for determining the probability, pk,
of ever reaching a given vertex, wk, on the graph. I t is assumed that the directed
graphs are acyclie, that all vertices possess simple input and output logic and tha t

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Mode{,~ of Compulati~8 and Systems 285

all branching decisions are independent.. A properly connected graph is defined as one
in which 0 < p~, _~ I and p~ is just. the probability of w~ being linked to a subset of the
set of origin vertices which have no logical predecessors.

Vertex .Probability Computational Procedure I

A partially ordered set of computations represented on a directed graph can be re-
garded as a collection of mutually exclusive subgraphs whose vertices possess no
exclusive-oI~ input or output logic within any subgraph. These subgraphs we call
ANI)-type subgraphs. Each branching vertex can be regarded ~s a multiway switch
in which one and only one position (emergent arc) is selected each t.ime the vertex is
execu'~ed, Each switch position is chosen according to the set of arc traversal proba-
bilities assigi~ed to the arcs incident out from a given branching vertex.

If any given graph could be partitioned into a nuraber of mutually exclusive sub-
sets (a~-D-type subgraphs) whose union was equivalent to the sot repPesented by the
graph, then the following procedure would determine the probability of ever reach~
ing a vertex 'w~.

l. For each ANl)-type subgraph establish the are traversaI probabilities of all ares
contained in it.

2. Compute the probability of traversing each AriD-type subgraph as the product
of the arc traversal probabilities found in step 1.

3, Consider each vertex in turn and find tile set of AND-type subgrapb8 eontainitxg
that vertex. Tile probability of ever reaching that vertex is the sum of the proba-
bilities computed for the subgraphs in step 2~

We are Ieft with {;he need for a systematic procedure to find all the dis{:i~-~et AYD-
type subgraphs into which a computational network can be partitioned, It. is helpful
to introduce two structural indices associa[ed with the vertices, called the pre-
cedence and ante numbers.

A connection matrix [Z] describes graph linkages with a nonzero Zi.~ entry when..
ever there is an arc u~j from vertex w.z to vertex wj. From [Z] is obtained [2, 3, 5] a
square Boolean precedence matrix, [D], which has dimensions equal to the number
of vertices, contains nonzero entries in its lcth row to mark the predecessor (not
necessarily immediate) vertices of vertex wj, and contains nonzero entries in its/ctll
column to mark the successor (not necessarily immediate) vertices of vertex w~.:.
We define

Nw
& (7)

1~1

& £

as the precedence number of' w~: and

Nw

I = 1

as the ante number of w~., where du is an element of [D] and N,) is the number of vertices
in the graph. The precedence and ante numbers of a given vertex have certain
properties that are simply related to tile partial orderings between vertices, viz,., if
w~ precedes wj then d~ < d~. and f~ > f~, but not conversely.

JournM of the Association for Computing .~lachinery, Vol. 14, N'o. 2, April 1987

286 DAVID MARTIN AND GERALD ESTRIN

Now let S be the set of b ranch ing vertices in the graph and execute the following

procedure.

1. Find the set of branching vertices S.
2. Let the set of (branching) arcs incident out from each w~ C S be U~ +, and let I~ be the

index set of the arcs ir~ U~ ~, i.e., uj C U(~ ~ j C [~ • Note that uj just represents an fi~-
dexing of the branching arcs emerging from a vertex w~ . We imply that we retail~ a mapping
between the u~ and the previously described ui~. Now form a distinct combiaatio~ of
indices C(k) (tile kth such distinct combination, say) by selecting one index from each of
tile index sets [~ , wi ~ S, and form the union set of ares

V~ ~ U u~, (9)

where V~ will be used to form an ~tND-type subgraph as follows.
Find the set of arcs 3.

E ~ £ I.J U~ + - Vk, (10)
wi~S

i.e., tim set of branching arcs which are excluded from the AND-type subgraph being
formed.

4. We must now "purge" the graph, i.e., remove those vertices and arcs whose presence in tile
graph is precluded by the removal of arcs in Ek from the graph. To accomplish this with
an iterative procedure we define Rk(--) as the set of arcs and vertices removed from the
graph during formation of the subgraph. InitiMly, Re(-) = Ek . Define W,~ as the set of
vertices with precedence number n. Now, in order of increasing precedence number,
examine all the vertices in the (original) graph as indicated in the steps that follow.

5. Examine the vertices in the sets W0, W1 , W2 , etc., in that order, and determine their
input logic. Let w~ be the vertex under examination. Determine the input logic of w~ :
a. wi has AND input logic. Find tile set of arcs incident into wl , viz., Ui-. If any of the
arcs in Ui- arc also in Rk(--), add wi U U~-U U~ + to Re(-) , i.e., wi and the arcs both inci-
dent into and out from w~ . If U~- = 4~, i.e., w~ E W0 , no additions are made to Re(-) .
b. wi has EXCLUSIVE oRinput logic. If all the arcs in Ui- are in Rk(--), then add wi O U~ +
to Rk(--). If not all the arcs in UC are in Rk(--), i.e., Ui- (~2 Rk(--), then there should be
one and only one arc in Ui- not in Rk(--). If there are more, then the input logic at w~ is
riot EXCLUSIVE OR, and the graph has improper logical structure. If there is properly only
one arc U~- not in Rk(--), Rk(--) is unchanged.

6. When the complete set W has been exhausted, the vertices and arcs that have not been
removed from the original graph, i.e., the set (W, U) -- Rk(--), constitute ttle .~.ND-type
subgraph that results from a choice of branching arcs whose indices are in the set C(k).

All the other AND-type subgraphs in to which (W, U) can be pa r t i t ioned are f ound
by repeat ing the above procedure us ing all other d is t inc t combina t ions C(k) def ined
in step 2 above. I t is wor th no t ing here tha t the procedure given above for f i nd ing

the AND-type subgraphs into which a g iven acyclic directed graph can be p a r t i t i o n e d
depends no t only upon the s t ruc ture of the original graph b u t more i m p o r t a n t l y

upon the inpu t and o u t p u t logic possessed by the vertices. Hence even though we
select s t ruc tura l ly d is t inc t sets V~ and V j , V~ ¢ V i , the AND-type s u b g r a p h

complet ion procedure above m a y yield the same AND-type subgraph by t he dis-
carding of subgraphs reached with probabi l i ty zero b u t conta in ing index selected

branch ing arcs. This point is i l lustrated by Figure 4, in which selection of V -~

{Ul~, u34} and V' ~ {u12, u3a} yields on ly one AND-type subgraph G = G' = {w~, w2,
w6, u12, u28}. Fur thermore , it mus t be noted t ha t the above procedure is essent ia l ly
enumera t ive and therefore the size of the problem mus t be considered. A n u p p e r
bound for tile n u m b e r N of AND-type subgraphs obta inable from a graph c o n t a i n i n g

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Moddd of Computations and Nystems 287

n brai~ching vertices with m~ arcs incident out from the ith branching vertex i =
1 , 2 , . . . , h i s

n

f = I (11)
i~l

The small example illustrated in Figure 5 indic~ttes that N is generally much less
than the upper bound. However, the complexity with which it might be possible to
deal using the above enumerative procedure seems so small that we now leave aside
this procedure and consider a nonenumerative procedure based on a more restrictive
assumption about the original graph.

Vertex Probability Computational Procedure I[

h nonenumerative procedure becomes possible if a certain amount of semantics is
introduced into the process of generating a pl~eedence matrix which picks out
select predecessors and successors only if they also satisfy logical conditions and
maintain proper connectivity. The following discussion attempts to clarify these
remarks.

Consider a vertex w~ in the interior of a graph, wk is reached from a subset of the
origin vertices via a subgraph consisting of wk, its logical predecessors and associ-
ated connecting arcs. We choose to distinguish at this point between structural
predecessors denoted D~-- (defined by nonzero entries in the kth row of the matrix
[D]) and the set of logical predecessors, denoted Ek-, which are a subset of Dk- that
are reached with a nonzero probability given that we has been reached. In similar
vein, topological and logical successor sets Dk + and E~ + are defined. To clarify further
it must be recognized that the subgraph consisting of the set of vertices D S O wk and
the associated connecting ares can be partitioned into a number of distinct Axn-type
subgraphs. The condition for elements of the Ek- sets is then equivalent to stating
that a logical predecessor of 'wk nmst be included in at least one of the distinct aND-
type subgraphs into which Dk- O w~ and the associated connecting arcs is par-
titioned. A similar condition holds between E~ + and Dk + U 'wk • I t follows that

.Ek- ~ D~-, Ek + ~ Dk +. (12)

(~) (b)
FIG. 4. A graph illus-
trating the noaunique- Fro. 5. An example graph: a, originM graph;
ness of AND-type sub- b, part i t ion
graph selection

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

2~ DAVID MARTIN AND GERALD ESTRIN

I

<
Fro.

3

6. A graph in which
Dk-~ = Ej: ±

FIG.

J

7.

A graph in which
Dk ~ ~ E# a

For illustration, consider the directed graph in Ii'igure 6 where we have

D~- = {1, 2, 3},

and Figure 7 where we have

D6- = {1, 2, 3, 4, 5},

E ~ - = {1, ~, 3},

E~- = {1, 3, 5}.

(13)

(14)

One very important difference between De :~ and Ek ~ lies in their determination. The
sets Dk ± can be obtained directly from the precedence matrix [D]. Ek ± may require
the enumeration of the AND-type subgraphs into which Dk ± U we and the associated
connecting arcs are partitioned.

in the remainder of this study, we concern ourselves with directed graphs for
which E~ :~ = Dk ±, 'wk C W, a condition which holds for all the complex graphs
encountered in our experiments [3] and which may hold always if the logic implied
by the original computational formulas is retained in defining a graph and no artifi-
cial graph linkages are arbitrarily inserted.

With the above discussion in mind we proceed to describe a practicable algorithm
for computing vertex probability.

Consider a subgraph Gk- incident into a vertex wk and including 'wk. The proba-
bility, pk, of ever reaching we depends upon the traversal probabilities of ares inci-
dent out from branching vertices in G~-. We find the latter formulation useful when-
ever wk has conjunctive input logic. In the case that, we has disjunctive input logic
we note that the probabil i ty of the union of a number of mutual ly exclusive events
is equal to the sum of their individual probabilities of occurrence.

If we make use of the above observations and the assumptions that branching
decisions are mutual ly independent and De ± = E~¢ ±, the algorithm for computing
the probabil i ty of ever reaching a vertex wk follows.

1. E x a m i n e in o r d e r of s u b s c r i p t t h e v e r t e x s e t s w~ , i = 0, 1, 2, . . . , w h e r e i is t h e p r c -

c e d e n c e n u m b e r . L e t wk be a v e r t e x u n d e r c o n s i d e r a t i o n .
2. F i n d Z Z , t h e s e t of i m m e d i a t e p r e d e c e s s o r s of wk . F o u r c a s e s c a n o c c u r :

a. Z k - = 4~, i .e . , wk i s a n i n i t i a l v e r t e x a n d pk = 1.

b. Z k - c o n s i s t s of a s i n g l e v e r t e x , e .g . , Zk - = {w,}. T h e n p~ = p a q ~ k •

C. Zk - c o n s i s t s of m o r e t h a n one v e r t e x a n d wk h a s e x c l u s i v e - o i l i n p u t l og i c . T h e n

p k = ~ p i q i ~ . (15)
w i ~ z k -

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Models of Computations and Systems 289

d. Za:- consists of more thart one vertex and zv~ has AND iaput, logic. We de~tt with ~
subset of D i , S~--, which contains only the bruaching vertices preceding 'wj,, . Then

wleSk-- w j e Z i --Z i nD k -

Computational Experiments

Figures 8-12 depict graphs representing computations arising in X-ray crystMlog-
r~@~ly (Figure 8), Numerical We~ther Prediction (Figures 9, 10) and the Assign-
ment and Sequencing Computation (Figures 11, 12). Cyclic to acyclic transforma-

A A

l o 2o s o 9o

Fro. 8. X-Ray

Journal of the Aasoeiatioa for Comput ing Machinery, Yol. 14, No. 2, April 1967

290 DAVID MAI~TIN AND GERA]~D ESTR~N ~

I
6
.v i i° ,I 21° I 31° I 41° I 510 ! 61°_

F~G. 9. NWP32

tions [3] remove all feedback arcs leaving the nonfeedbaek topology unchanged but
primarily affecting the estimated operation times. Instead of explicitly labeling the
input and output control conditions, the vertex shapes are varied as follows:

1. Circle: AND INPUT, AND OUTPUT

2. Diamond: AND INPUT, OR OUTPUT

3. Hexagon: oR INPUT, AND OUTPUT
The oil input-oR output condition did not explicitly appear in the graphs studied.
The coordinates are merely a convenience for locating vertices. Table 1 is a summary
of graph statistics for the computations modeled as vehicles for assigmnent and
sequencing experiments which used the vertex probability calculations.

The results of these computations then serve as inputs to programs which are
used in assignment and sequencing of operations on computers and estimating the
resulting expected computation time [3]. Figures 13-15 illustrate the preparation of
graph description (LINK 1) and the assignment and sequencing perturbation
process (LINK 2). The vertex probability computation occurs in the former.

Dependent Branching Decisions

Thus far, the vertex computational probability algorithm has been derived on the
assumption that all the branching decisions executed in the computational network
were mutually independent. We now modify our algorithm to include the case where
the branching decisions are not mutually independent.

First of all, it would be instructive to give a couple of instances where nonin-
dependence of branching decisions arises. Consider the following ALGOL statements:

LI:
L2:
L3:

L4:

i f a, < x /k x < a2 t h e n go t o L2 e l se go to L3;
i f a, _~ y /k Y L~ a4 t h e n go t o L4;

These statements may be represented on a directed graph, with decision vertices
represented by diamond-shaped boxes, as shown in Figure 16. Now if z and y are

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Models of Computations and Systems 291

/
/ / /

,/
/

!
/ /

\ \ 4

~0

3O

2O

I I iO I 210 I 310 I i i0 I 510 I 610 I 710 I 810 I 910 I

FIG. 10. NWPt47

independent of each other, i.e., their values are not linked eomputationally or
otherwise, then the arc traversal probability qL~,L4 is determined independently of
qLI.L~ • On the other hand, if x and y are computationally related, there is a condi-
tional probabilistic relation between qL~,z,~ and q~t,~2, determined by the relation
between x and y, i.e., by the probability distributions of x and y over the intervals
In1, a2] and [a3, a4], respectively. In particular, let y = Tx, where T is a computation
that maps x into y, and let f (x) be the probability density function of x on the
interval [at, a2]. Then, knowing the, relation y = Tx, we can determine the region,
i.e., the union set of disjoint intervals, into which the interval [at, a2] maps. Al-
though it is an abuse of notation, let this union set be denoted by [a/, a2']. We can

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

2 9 2 DAVID MARTIN AND GERALD ESTRI:2,%7

1.90

o
/

100

2o

R

8_0

7° i /
6O

//

\ \
2o

\ /

I 110 I 210 I 310 I 410 I 510 I 610 I 710 I SlO I 910 I

FiG. 11. 82V

then determine the probability density function of y = Tx over [al', as'I, and henc~
also the density function of y on the intersection set [al', a~'][a3, a4]. From th i s
information, we can finally determine the conditional probability for (y C [a3, a4] [
x C [a~, a2]), i.e., the probability that y ~ [a3, a4] given x C [al, a2]. Now if t h e
branching decisions made in vertices L1 and L2 were statistically independent, the
probability of executing vertex L4 would be

pL4 = pclq~l , r .2qr .2 ,L4 (independence). (17)

However, if these branching decisions were not statistically independent (as we

Journal of 'the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Models o] Computations and S y s t e m s 293

~0

i30

120

HO

. J

]
J

, \I
/t

(j/

have postulated), then

Fro. 12. L2

px~4 = PL2qLI.~.2(qL2,L41 qLl,r.2) (depe~ldenee), (18)

where (qL=.L4 { q~l,L2) is t h e conditional probability of traversing arc (L2, L4) given
that are (L1, L2) has b e e n traversed. The conditional probability (qL~.L41 qL1.L~)
can be determined fror~t t h e eondi~iomd probability for (y C: [an, a~] I x C [at, a2]).

Journal of the Association for Computing Machinery, Vo/. 14, No, 2, April 1967

294 D A V I D M A R T I N A N D G E R A L D E S T R I N

TABLE 1. GR~PI~ STATISTICS

G R A P H STATISTICS
Statistic

No. of V e r t i c e s
No. of V e r t e x C l u s t e r s

No, of A r c s
No, of F e e d b a c k A r c s (cyc l e s)

No, of Vertices with
OR input logic
OR output logic
AND input logic
AND output logic

Avg. no. a r c s input to
any v e r t e x

M a x . n.o. of a r c s input
to a n y v e r t e x

A v g . no. of a r c s output f r o m :
any v e r t e x
v e r t e x w / A N D output log ic
v e r t e x w / O R output log ic

M a x . no. of a r c s output
f r o m any v e r t e x

NWP32 82V

32 82
32 74

47 129
0 14

0 16
0 21

32 66
32 61

W F B N F B W F B N F B

I 47 I. 47 ~--57--[--~-~-

i 7 6 6

-'-I i. 47 --- [i. ig

11111 s15

G RA PH
NWP147

147
147

246
12

2
2

145
145

W F B N F B

21 I 21

i . 67 I. 59
- - - 1 .59
--- 2.00

25 I 25

WFB: includes feedback arcs: NFB: does not include feedback arcs.

L2

193
176

294
24

33
40

160
153

W F B N F B

1.52 1 .40

12 12

i . 52 i . 40
- - - 1.22

2.07

12 l 12

XRAY

223
202

413
45

24
24

199
199

W F B NF'}5

5 I 4

1 . 8 5 1 . 6 5
- - " 1 . 6 1
--- 2 , 0 0

11 I 11

Let us give one more instance where the simplifying assumption of statistical
independence is incorrect. Consider the graph in Figure 17. The branching decisions
in vertices 1 and 2 are made in parallel. Let pl = p2 = 1, and let us compute p3 •
Now the branching decisions classify the same datum, x, into the two classes cl
and c2, and we wish to determine the 'probability tha t x C cl and x C c~. This
probabili ty clearly depends upon whether Cl and c2 do not intersect @1 n c2 = ~),
partially interesect (cl N c2 ~ ,~) or totally intersect (either cl n c2 = c~ or
cl N c2 = c2). If Cl N c2 = ¢, it is clear that p~ = 0 (this case would not be properly
representable by the graph in Figure 17, since w3 would be redundant) . On the other
hand, if Cl N c2 ¢ ,~, then (q23 I q~a) ~ q% • The conditional probabil i ty (q% I q13)
is determined from a knowledge of the probabil i ty density functions of x on c~
and c2, and the relation between cl and c2. Specifically,

f 0 , c l n c 2 = ¢ ,

(q~3 1q18) = (q2a [q13), ci f~ c2 ~ 4, (1 9)

l l , c l N c~ = cff c~c~),
q2jq13, cl n c2 = c~(c~o),

and hence, since p~ = ql~(q23 I ql~),

0, cl N c2 = 4,,

kq2~, cl fi c2 = c~.

In cases where there are more than two branching decisions t h a t are dependent
upon one another, expressions similar to the ones above can be written, except

Journal of the Association for Comput ing Machinery, Vol. 14, No. 2, April 1967

Models of Compzdations and Systems 295

Read Arc Data;
Generate Immed.
Predecessor List
& Connection
Matrix; Read
Ve riex Data

I Generate Immed.
Successor List

. i1 i
Generate Precedence
Matrix from

I Connection Matrix
l (Subr. DGEN)

, .

]Generate Vertex & I
Arc Activity
Numbers
I (Subr. ACTVTY)

o ~ p ~ t e v e ~ t e ~
omputational
robabilities
ubr. PRBLTY) i J

~u~mpute Initial
gencies]

orm of Cycles
ubr? CYCLES)

Output Lists & Computed 1
!

FIG, 13. Flowchart of IANK

Read in H-Vector; Compute]

On Single Processor , Generate
Sequence (Subr. ASSIGN {0)),
Memory :Profile (Subr. PROFYL),
& Path Length (Subr. FTIME}.

of the a priori assignment arid seq,te~mi~g progr~zm

that the number of different cases might become large. GencrMIy speaking, if we
are concerned with n dependent branching decisions, then expresskms of the form

q~(q2 { qt)(qa [q2q~) . . . (% (q,-,~ ,." q~)

will arise where the q~ are are traversal probabilities.
Let us now address ourselves to the problem of incorporating these cases into the

vertex computational probability algorithm. Let us begin by assuming that we
have chosen a particular vertex w~, found the sets D (arid S (and chosen the

Journal of the Association for Computing Machinery, V<~I. l,t, No. 2, April i967

296 DAVID MARTIN AND GERALD ESTIIIN

Read LINK l - Gene ra t ed
Common Data Tape

i
Read H - M a t r i x , S y s t e m
State, Sub -Ope ra t i on
Componen t s , Unit Data
T r a n s f e r Times (V-Mat r ix) ,
M a x i m u m S to rage , Cost
Conversions.

Read B a s i c Inven to ry ,
I n c r e m e n t a l Inventory ,
M a x h n u m Inven to ry ,
Bas i c Processor Costs,
I n c r e m e n t a l S t r u c t u r i n g
Cos t s , Des ign H i s t o r y

[;riU out °ata

i
Compute A c t i v i t y - W e i g h t e d
Complex O p e r a t i o n " r imes ,
I n i t i a l S y s t e m Sta te ,
In i t i a l U r g e n c i e s .

P e r f o r m In i t i a l A s s i g n m e n t |
/

& Sequence
(Subr. ASSIGN (1))

1

Compute Initial V e r t e x |
T i m e s (Subr. TCOMP (1)) J

t 3
Compute In i t i a l I n v e n t o r y |
Cost]

t
Cnmpute In i t i a l Cos t (Subr.
TCOST, COST); Output i n i t i a l l Ass ignmen t , Sequence , Cos t .

FIG. 14.

Compute u r g e n c i e s (Subr. URGNCY);
O r d e r V e r t e x C l u s t e r Set (Subr.
VSORT).

P e r f o r m T r i a l A s s i g n m e n t s for
E a c h Ver t ex C l u s t e r

J
T r y V e r t e x C l u s t e r on e a c h |
Processor J

P e r t u r b Inven to ry]

P e r t u r b Sys t em State A c c o r d i n g
to P o l i c y

tPage I

P e r t u r b Ve r t ex T i m e s (Subr. TCOMP(0))

t
D e t e r m i n e Sequence P o s i t i o n of V e r t e x
C l u s t e r on T r i a l P r o c e s s o r
(Subr. SEQNCE)

Compute Cost of T r i a l A s s i g n m e n t &
Sequence (Subr, TCOST, COST)

F l o w c h a r t of L I N K 2 of the a p r i o r i a s s i g n m e n t a n d s e q u e n c i n g p r o g r a m

idi mutually exclusive AND-type subgraph. The probability that wk will be connected
to the origin verdces by means of the i th AND-type subgraph can be regarded as
tile probability of the joint ocemTenee of a number of mutually dependent b ina ry -
valued events, i . e . , dependent Bernoulli trials. If {ul, u2, • • • , u : ~ } is the set of ~ . ~ r e s

in tile ith AND:type subgraph and {q~, q2, • , q.,,,~} is the set of corresponding arc

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Model8 of Computations and Systems 297

t, ravers~] probabilities, then the probability that all the ares will be traversed is

> ~ : ql(:~2 I q l) . . . (q . . t ~,,,~_1 . . q O . (22)

Now t h o s e conditional are tr~versal probabilities tha t correspond to ares incident

revlous

IPoint B,
Previous P a g e r

NO

ACCEPT: Update Arrays for
accepted Assignment & Sequence

REJECT: Restore Arrays for
rejected Assignment & Sequence]_

NO

YES

"'End-of-Iteration Output
(Subr. OUTPUT (0))

Point A, N ~
iFrev ious Pag

YES

[Final Output (Subr. OUTPUT(I)) I

END

FIG. 15

Journal of the Association for Computing Machinery, Vot. 14, No. 2, April 1967

298 DAVID MARTIN AND GERALD ESTRIN

LI:

L 2 :

Fro. 16

1:

F r o . 17

out from nonbranching vertices represent events that occur with certainty, and
hence they are really not conditional upon the outcome of any of the branching
decisions. Thus, as before, these unity probabilities need not be included in the
fornmla for p~ . Hence,

P~ = q~(q~ [q~) " " (q,~,' I q<-~ "'" qO, (2:~)

where {ul, u2, . ." , u~,} represents the set of arcs incident out from branching
vertices in the ith AND-type subgraph. Having computed all the pk~, we may
obtain pk through

p~ = ~ p ~ . (2 4)
i

The foregoing algorithm is an extension of the enumerative vertex computational
probability algorithm previously derived, and it presumes that sufficient information
is available for the evaluation of all the required conditional arc traversal proba-
bilities.

Unfortunately, due to the conditional relations between the various arc travers~l
probabilities, our extended algorithm cannot be recast into a more compact form
as was done when the branching decisions were mutually independent. Hence, t h e
extended algorithm remains essentially enumerative.

Conclusion

This paper has formulated procedures for determining' the probability of reaching
vertices in a transitive directed graph representation of computations and h a s
discussed a number of problems arising in such modeling.

The algorithms are essential to methods for a priori estimation of computation
time on models of computer systems and have proven themselves effective in a
number of experimental studies.

Further work is needed to handle branching dependency, to automatic~ll:y
generate estimates of are traversal probabilities from initial formulas or prograrn~
and to test for improperly connected graphs.

Other papers will deal with cyclic to acyclic transformations, path length calcuht
tions and experiments in automa~tic assignment and sequencing.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967

Models of Computations and Systems 299

REFERENCES

1. BE~oE, C. The Theory of Graphs and [gs Applica~iom~. Jc, im Wilcy and Sons, New York,
1962.

2. Ec~rlaI N, G., ~N~ TVRN, R. Automatic assigmaent of computatiot/s ia a variable structure
computer system. IEEE Tra:ns. EC-I2 (Dec. 1963), 755-773.

3. MAR'tIN, I). The automatic assignment and sequench~g of computations oa parallel proces-
sor systems. Ph.D. thesis, U. of California, Los Angeles, Jan. I966.

4. ELMaO*{m~BYY, S . g . An algebra for the analysis of generalized activity ~etworks. Manage.
Sci. I0 (April 1964), 494-514.

5. RUSSELL, E. C. Automatic assignment of computational tasks in a variable structure
computer. M.S. thesis in Engineering, U. of California, Los Angeles, 1963.

6. C~aNAe, R. [nt'roduction 1o Symbolic Logic and [~s Applications. Dover Publications,
New York, 1958, pp. 19-23. ~

7. KgbbI~:g, J. E., Jm Parametric programming and the primal-dual Mgorithm. Oper. Res. 7
(May-June 1959), 327-334.

aECmVED M,Xt~CH, 1966; RF~VISED ~:~Y, 1966

Journal of the Aasociation for Computing ~Iacifinery, Vol. 14, No. 2, April 19~17

