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~tBSTIRACT. This paper concerns itself with the modeling of computations tmd systems and the 
generation of a priori estimates of expected computation time for given problems on given 
processing systems. In particular, methods are discussed for determining the probabilities of 
reaching vertices in a graph model of computations. 

A priori estimates of expected computation time for given problems on given process- 
ing systems may be generated by modeling the computation with a transitive 
directed graph [1]. 

A computational algorithm is first represented by a directed graph containing 
cycles, with vertices representing macro-operations and arcs representing sequence, 
branching control conditions and data transfer. Cycles may then be removed in a 
systematic transformation resulting in a transitive directed graph [2-51. The model 
of the computation can be assigned to a model of a computer system and a successive 
relaxation procedure used to obtain a suboptimal assignment and sequencing of 
tasks on machines. In this process a measure of expected path length, which takes 
into account branching probabilities, serves as a criterion. 

A fundamental aspect of the above process involves the computation of vertex 
probabilities which are then used in computing tile estimates of expected path 
length through a graph. 

In this paper the nature of transitive directed graphs representing computations 
is discussed, a systematic enumerative procedure for calculating vertex probabilities 
is described, and then a more practicable algorithm useful in a priori assignment 
and sequencing experiments is established. 

A computer program for calculating vertex probabilities is presented and results 
summarized for several graphs abstracted from complex problems. 

Graph Model of Computation 

Consider a graph (such as Figure 8) consisting of two sets (W, U), viz., a set of 
vertices and a set of directed ares which connect the vertices together; let us estab- 
lish a correspondence between mathematical formulas and the graph. 

A computational statement representing a formula specifies the generation of a set 
of data by means of a defined transformation upon the elements of another set of data. 
Let  the input set be s~ and let so be the set into which si is mapped through the trans- 

* Department of Engineering. This work was supported by the Atomic Energy Commission, 
Division of Research (AT (11-1) Gen 10) and the Office of Naval Research, Information Systems 
Branch (Nonr 233 (52)). 

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967, pp. 281-299. 



~82 DAVID MARTIN AND GERALD ESTRIN 

formation, f. Then we can write 

~o = f ( s ~ ) ,  (1) 

and we usually state that  so is a fimetion of s~. The formula (1) is represented 
graphically in Figure 1. If  w~ represents an initial input operation, then the source of 
s~ is unambiguous. I f  w~ represents an interior opert~tion in the graph, the input set 
for 'w s may have been generated by w~ or its predecessors and transported to aeces- 
siblc storage until required. Under troy conditions, the presence of the arc from 'w~ to 
w/ unambiguously establishes tha t  the operation (computat ions)  represented by 
w /canno t  be executed until w,~ has generated s~. 

Vertex Input Logic 

Since the computat ional  tasks (vertices) represent functions whose arguments are 
either conveyed along the arcs incident into a given vertex or were previously stored 
in an accessible location, it is possible to specify when a given vertex may  "begin" 
by writing a Boolean expression whose t ruth value indicates tha t  all precedence con- 
ditions have been satisfied. There ~re three types of "ver tex- input"  logic described 
in what  follows. 

Conjunctive Input. Let a given vertex require all of several sets of data, each set 
coming from a different source (ver tex) .  Let the availability of these sets of dat~ be 
represented by Boolean variables, a l ,  a~, •. •, a~. Then the event "all da ta  swill- 
able" is represented by the t ruth  value of the conjunction a~ A a2 A,  " ' "  , /~ aN. 

Mutually Exclusive Inputs. Let ~t given vertex require only one set of input  data, 
but let this set of data  be generated from one of several mutual ly  exclusive origins 
(vertices).  Let the event  'kdl dat:-~ :wailable" be represented by the Boolean vari- 
able, a~, and its al ternate forms by a l l ,  a n ,  • • - , a~m • Then the condition for vertex 
initiation is 

al  = a l l  • a12 • ' ' '  (]~) a i m ,  (2) 

under the condition tha t  all tile aij are mutual ly  exclusive events. 
Compound Input. I f  the initiation of a vertex requires several sets of data,  each of 

which has several mutual ly  exclusive origins, we are interested in the t ru th  value of 
the expression (an ® • .. @ al,,,) /~ . . .  /~ (a~l @ - -- @ a ... .  ). 

For purposes of calculation it is convenient to decompose vertices with compound 
input logic into several vertices with simple, i.e., only A or @, input logic. This is 
easily done by introduction of an appropriate  number  of pseudo-vertices as shown 
in Figure 2. 

Whenever a computat ion is described in terms of INCLUSIVF~ OR input conditions 

? 
S 

o 

S i FIG. 1. The  opera t ion  r ep re sen t ed  b y  w~ 
genera te s  S~ ; the  ope ra t ion  ( funct ion)  r ep re -  
s en t ed  by  wt " t r a n s f o r m s "  S~ into  So. 
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a12 a21 all~ a22 

Fro. 2 

we require a transformation such that on ly /k ,  @ input conditions exist and thereby 
avoid complex definition of data distributions in the model. 

Ver tex  O u t p u t  L o g i c  

The existence of mutually exclusive alternate origins of sets of data is due to the 
presence of b r a n c h i n g  or dec i s ion  vertices in the graph. An arc incident out from a 
branching vertex may be traversed with a probability less than unity and may be 
selected conditional upon data being generated. In tile usual langmtge of computer 
programming such an operation is called a conditional transfer. 

A branching vertex is defined as a vertex with EXCLUSIVE Oa output logic as 
follows: If B is a Boolean variable representing the event that there is an output 
from a vertex and b~, b2, . . .  , b~ are the Boolean variables representing m u t u a l l y  

exc lus ive  events  at  the output of the branching vertex, we can write 

B ~ bl G b~ O " '"  @ bn, (3) 

where the two sides of the expression are logically equivalent [6]. 
Program flow may also occur from a given vertex along several different ares 

simultaneously, i.e., there may be a bundle of arcs, each with the same origin vertex 
and different terminal vertices, tlmt are incident out from a vertex (or pseudo- 
vertex) jointly. Then, if for any event represented by b~ as above, we define Boolean 
variables b~,  b~,  • • • , b~,~ such that  there is a logical equivalence between any pair 
of b.~5, we can unambiguously denote the simultaneity of output arcs on the graph. 
We choose to use the symbol, , ,  to mark the logical equivalence of events on output 
arcs and obtain 

b~ ~ bil * hi2* " . .  * b~,~ (4) 

as a representation of simultaneous vertex outpu(, events. The • output condition is 
sometimes referred to as an AND output  coI~dition in this paper. 

If the sets {b~ , bj2 , . .  • , bj,~5}, j = 1, 2, • • • , n ,  represent all of the possible out- 
put events tha t  can occur upon completion of a vertex, ther~ the occurrence of a 
compound output  event will be represented by the expression 

( b n  * . . .  * b~,,~,) @ . . .  0 (b~, • . . .  * b , , , , ) .  (5) 

As in the case of compound input logic, pseudo-vertices are introduced to de- 
compose compound output logic into simple output logic. This is illustrated in 
Figure 3 for the condition where wk initiates w, ,  wb, wo, wd under the conditions 
(~vo • ~'b) • (wo * ~v~). 
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Fro. 3 

Let us consider the probabilities associated with branching arcs. If 'w~: and w~ tare 
origin and terminal vertices of an are, u,j, let the probability of reaching wj via tt,.~ 
be q~i • In general, q~i is a conditional probability of traversing u,j given that w,: has 
been reaehed. We now require tha t  program flow be co~served, i.e., if 
uk~, u~.~, . . .  , uk. are the mutually exclusive ares incident out from a branching 
vertex wk with simple EXCLUSIVE OR output  logic, then 

~qk i  = 1. (6) 
i = l  

I t  is instructive to compare our graphical network with two types of networks 
used in other contexts. The first is the P E R T  [7] network, in which all vertices have 
AND input, and output  logic. Hence all vertices are reached with probability one. 
Another special network is the graph representation of the sequential machine, 
where vertices correspond to the internal states of the machine and arcs represent 
the transitions between states. All vertices in the latter cases have :VzXCLUSIVE O~ 
input and output  logic and the arc traversal probabilities are the state-to-state 
transition probabilities. The probabilistic properties of such a network can be repre- 
sented as a simple Markov chain. Ore" network is a more general form of these two 
cases and the computational probabilities are more diiIicult to determine. 

Vertices 
A computationM vertex on a directed graph represents an unambiguously defined 
computational statement. The  execution of the statement may imply the execution 
of several other more elementa~3~ operations or "mierostatements." A certain amount  
of "fine s t ruc ture"  may not explicitly appear in the graph dependent upon the rela- 
tive complexity of functions represented by single vertices. In fact the fine structure 
implied by any  particular vertex might itself be represented by a graph whose 
characteristics are identical to those discussed above. Hence if the assumption is now 
made tha t  ver tex properties (such as time required for the operation) are known, 
then t rea tment  of the problem of representing collections of vertices by a single 
vertex [2] will indicate the effect of the implied fine structure. 

Vertex Probabilities 
In the following two procedures are considered for determining the probability, pk, 
of ever reaching a given vertex, wk, on the graph. I t  is assumed that  the directed 
graphs are acyclie, that  all vertices possess simple input and output  logic and tha t  
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all branching decisions are independent.. A properly connected graph is defined as one 
in which 0 < p~, _~ I and p~ is just. the probability of w~ being linked to a subset of the 
set of origin vertices which have no logical predecessors. 

Vertex .Probability Computational Procedure I 

A partially ordered set of computations represented on a directed graph can be re- 
garded as a collection of mutually exclusive subgraphs whose vertices possess no 
exclusive-oI~ input or output logic within any subgraph. These subgraphs we call 
ANI)-type subgraphs. Each branching vertex can be regarded ~s a multiway switch 
in which one and only one position (emergent arc) is selected each t.ime the vertex is 
execu'~ed, Each switch position is chosen according to the set of arc traversal proba- 
bilities assigi~ed to the arcs incident out from a given branching vertex. 

If any given graph could be partitioned into a nuraber of mutually exclusive sub- 
sets (a~-D-type subgraphs) whose union was equivalent to the sot repPesented by the 
graph, then the following procedure would determine the probability of ever reach~ 
ing a vertex 'w~. 

l. For each ANl)-type subgraph establish the are traversaI probabilities of all ares 
contained in it. 

2. Compute the probability of traversing each AriD-type subgraph as the product 
of the arc traversal probabilities found in step 1. 

3, Consider each vertex in turn and find tile set of AND-type subgrapb8 eontainitxg 
that  vertex. Tile probability of ever reaching that  vertex is the sum of the proba- 
bilities computed for the subgraphs in step 2~ 

We are Ieft with {;he need for a systematic procedure to find all the dis{:i~-~et AYD- 
type subgraphs into which a computational network can be partitioned, It. is helpful 
to introduce two structural indices associa[ed with the vertices, called the pre- 
cedence and ante numbers. 

A connection matrix [Z] describes graph linkages with a nonzero Zi.~ entry when.. 
ever there is an arc u~j from vertex w.z to vertex wj.  From [Z] is obtained [2, 3, 5] a 
square Boolean precedence matrix, [D], which has dimensions equal to the number 
of vertices, contains nonzero entries in its lcth row to mark the predecessor (not 
necessarily immediate) vertices of vertex wj, and contains nonzero entries in its/ctll 
column to mark the successor (not necessarily immediate) vertices of vertex w~.:. 
We define 

Nw 
& (7) 

1~1 

& £ 

as the precedence number of' w~: and 

Nw 

I = 1  

as the ante number of w~., where du is an element of [D] and N,) is the number of vertices 
in the graph. The precedence and ante numbers of a given vertex have certain 
properties that  are simply related to tile partial orderings between vertices, viz,., if 
w~ precedes wj then d~ < d~. and f~ > f~, but not conversely. 
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Now let S be the set of b ranch ing  vertices in the graph and  execute the following 

procedure. 

1. Find the set of branching vertices S. 
2. Let the set of (branching) arcs incident out from each w~ C S be U~ +, and let I~ be the 

index set of the arcs ir~ U~ ~, i.e., uj C U( ~ ~ j  C [~ • Note that uj just  represents an fi~- 
dexing of the branching arcs emerging from a vertex w~ . We imply that we retail~ a mapping 
between the u~ and the previously described ui~. Now form a distinct combiaatio~ of 
indices C(k) (tile kth such distinct combination, say) by selecting one index from each of 
tile index sets [~ , wi ~ S, and form the union set of ares 

V~ ~ U u~, (9) 

where V~ will be used to form an ~tND-type subgraph as follows. 
Find the set of arcs 3. 

E ~ £  I.J U~ + -  Vk, (10) 
wi~S 

i.e., tim set of branching arcs which are excluded from the AND-type subgraph being 
formed. 

4. We must now "purge" the graph, i.e., remove those vertices and arcs whose presence in tile 
graph is precluded by the removal of arcs in Ek from the graph. To accomplish this with 
an iterative procedure we define Rk(--) as the set of arcs and vertices removed from the 
graph during formation of the subgraph. InitiMly, Re( - )  = Ek . Define W,~ as the set of 
vertices with precedence number n. Now, in order of increasing precedence number, 
examine all the vertices in the (original) graph as indicated in the steps that follow. 

5. Examine the vertices in the sets W0, W1 , W2 , etc., in that order, and determine their 
input logic. Let w~ be the vertex under examination. Determine the input logic of w~ : 
a. wi has AND input logic. Find tile set of arcs incident into wl , viz., Ui-. If any of the 
arcs in Ui- arc also in Rk(--), add wi U U~-U U~ + to Re(-) ,  i.e., wi and the arcs both inci- 
dent into and out from w~ . If U~- = 4~, i.e., w~ E W0 , no additions are made to Re( - ) .  
b. wi has EXCLUSIVE oRinput logic. If all the arcs in Ui- are in Rk(--), then add wi O U~ + 
to Rk(--). If not all the arcs in UC are in Rk(--), i.e., Ui- (~2 Rk(--), then there should be 
one and only one arc in Ui- not in Rk(--). If there are more, then the input logic at w~ is 
riot EXCLUSIVE OR, and the graph has improper logical structure. If there is properly only 
one arc U~- not in Rk(--), Rk(--) is unchanged. 

6. When the complete set W has been exhausted, the vertices and arcs that have not been 
removed from the original graph, i.e., the set (W, U) -- Rk(--), constitute ttle .~.ND-type 
subgraph that results from a choice of branching arcs whose indices are in the set C(k). 

All the other  AND-type subgraphs  in to  which ( W, U) can be pa r t i t ioned  are f ound  
by repeat ing the above procedure us ing all other  d is t inc t  combina t ions  C(k)  def ined  
in step 2 above. I t  is wor th  no t ing  here tha t  the procedure given above for f i nd ing  

the AND-type subgraphs  into which a g iven acyclic directed graph can  be p a r t i t i o n e d  
depends no t  only upon  the s t ruc ture  of the original graph b u t  more  i m p o r t a n t l y  

upon  the inpu t  and  o u t p u t  logic possessed by  the vertices. Hence even though  we 
select s t ruc tura l ly  d is t inc t  sets V~ and  V j ,  V~ ¢ V i ,  the  AND-type s u b g r a p h  

complet ion procedure above m a y  yield the  same AND-type subgraph  by  t he  dis- 
carding of subgraphs  reached with probabi l i ty  zero b u t  conta in ing  index selected 

branch ing  arcs. This  point  is i l lustrated by Figure 4, in which selection of V -~ 

{Ul~, u34} and  V' ~ {u12, u3a} yields on ly  one AND-type subgraph  G = G' = {w~, w2, 
w6, u12, u28}. Fur thermore ,  it mus t  be noted t ha t  the above procedure  is essent ia l ly  
enumera t ive  and  therefore the  size of the problem mus t  be considered. A n  u p p e r  
bound  for tile n u m b e r  N of AND-type subgraphs  obta inable  from a graph c o n t a i n i n g  
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n brai~ching vertices with m~ arcs incident out from the ith branching vertex i = 
1 , 2 , . . .  , h i s  

n 

f = I (11) 
i~l 

The small example illustrated in Figure 5 indic~ttes that  N is generally much less 
than the upper bound. However, the complexity with which it might be possible to 
deal using the above enumerative procedure seems so small that  we now leave aside 
this procedure and consider a nonenumerative procedure based on a more restrictive 
assumption about the original graph. 

Vertex Probability Computational Procedure I[  

h nonenumerative procedure becomes possible if a certain amount of semantics is 
introduced into the process of generating a pl~eedence matrix which picks out 
select predecessors and successors only if they also satisfy logical conditions and 
maintain proper connectivity. The following discussion attempts to clarify these 
remarks. 

Consider a vertex w~ in the interior of a graph, wk is reached from a subset of the 
origin vertices via a subgraph consisting of wk, its logical predecessors and associ- 
ated connecting arcs. We choose to distinguish at this point between structural 
predecessors denoted D~-- (defined by nonzero entries in the kth row of the matrix 
[D]) and the set of logical predecessors, denoted Ek-, which are a subset of Dk- that 
are reached with a nonzero probability given that  we has been reached. In similar 
vein, topological and logical successor sets Dk + and E~ + are defined. To clarify further 
it must be recognized that  the subgraph consisting of the set of vertices D S  O wk and 
the associated connecting ares can be partitioned into a number of distinct Axn-type 
subgraphs. The condition for elements of the Ek- sets is then equivalent to stating 
that a logical predecessor of 'wk nmst be included in at least one of the distinct aND- 
type subgraphs into which Dk- O w~ and the associated connecting arcs is par- 
titioned. A similar condition holds between E~ + and Dk + U 'wk • I t  follows that  

.Ek- ~ D~-, Ek + ~ Dk +. (12) 

(~) (b) 
FIG. 4. A graph illus- 
trating the noaunique- Fro. 5. An example graph: a, originM graph; 
ness of AND-type sub- b, part i t ion 
graph selection 
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I 

< 
Fro. 

3 

6. A graph in which 
Dk-~ = Ej: ± 

FIG. 

# 

J 

7. 

# 

A graph in which 
Dk ~ ~ E# a 

For illustration, consider the directed graph in Ii'igure 6 where we have 

D~- = {1, 2, 3}, 

and Figure 7 where we have 

D6- = {1, 2, 3, 4, 5}, 

E ~ - =  {1, ~, 3}, 

E~- = {1, 3, 5}. 

(13) 

(14) 

One very important  difference between De :~ and Ek ~ lies in their determination. The 
sets Dk ± can be obtained directly from the precedence matrix [D]. Ek ± may  require 
the enumeration of the AND-type subgraphs into which Dk ± U we and the associated 
connecting arcs are partitioned. 

in the remainder of this study, we concern ourselves with directed graphs for 
which E~ :~ = Dk ±, 'wk C W, a condition which holds for all the complex graphs 
encountered in our experiments [3] and which may  hold always if the logic implied 
by the original computational formulas is retained in defining a graph and no artifi- 
cial graph linkages are arbitrarily inserted. 

With the above discussion in mind we proceed to describe a practicable algorithm 
for computing vertex probability. 

Consider a subgraph Gk- incident into a vertex wk and including 'wk. The proba- 
bility, pk,  of ever reaching we depends upon the traversal probabilities of ares inci- 
dent out from branching vertices in G~-. We find the latter formulation useful when- 
ever wk has conjunctive input logic. In  the case that, we has disjunctive input logic 
we note that  the probabil i ty of the union of a number  of mutual ly  exclusive events 
is equal to the sum of their individual probabilities of occurrence. 

If  we make use of the above observations and the assumptions that  branching 
decisions are mutual ly  independent and De ± = E~¢ ±, the algorithm for computing 
the probabil i ty of ever reaching a vertex wk follows. 

1. E x a m i n e  in  o r d e r  of s u b s c r i p t  t h e  v e r t e x  s e t s  w~ , i = 0, 1, 2, . . .  , w h e r e  i is  t h e  p r c -  

c e d e n c e  n u m b e r .  L e t  wk be  a v e r t e x  u n d e r  c o n s i d e r a t i o n .  
2. F i n d  Z Z ,  t h e  s e t  of i m m e d i a t e  p r e d e c e s s o r s  of wk . F o u r  c a s e s  c a n  o c c u r :  

a. Z k -  = 4~, i .e . ,  wk i s  a n  i n i t i a l  v e r t e x  a n d  pk = 1. 

b.  Z k -  c o n s i s t s  of a s i n g l e  v e r t e x ,  e .g . ,  Zk -  = {w,}. T h e n  p~ = p a q ~ k  • 

C. Zk -  c o n s i s t s  of m o r e  t h a n  one  v e r t e x  a n d  wk h a s  e x c l u s i v e - o i l  i n p u t  l og i c .  T h e n  

p k  = ~ p i q i ~  . (15) 
w i ~ z  k - 
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d. Za:- consists of more thart one vertex and zv~ has AND iaput, logic. We de~tt with ~ 
subset of D i ,  S~--, which contains only the bruaching vertices preceding 'wj,, . Then 

wleSk--  w j e Z  i --Z i nD k -  

Computational Experiments 

Figures 8-12 depict graphs representing computations arising in X-ray crystMlog- 
r~@~ly (Figure 8),  Numerical We~ther Prediction (Figures 9, 10) and the Assign- 
ment and Sequencing Computation (Figures 11, 12). Cyclic to acyclic transforma- 

A A 

l o  2o s o  9o  

Fro. 8. X-Ray 
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F~G. 9. NWP32 

tions [3] remove all feedback arcs leaving the nonfeedbaek topology unchanged but 
primarily affecting the estimated operation times. Instead of explicitly labeling the 
input and output control conditions, the vertex shapes are varied as follows: 

1. Circle: AND INPUT, AND OUTPUT 

2. Diamond: AND INPUT, OR OUTPUT 

3. Hexagon: oR INPUT, AND OUTPUT 
The oil input-oR output condition did not explicitly appear in the graphs studied. 
The coordinates are merely a convenience for locating vertices. Table 1 is a summary 
of graph statistics for the computations modeled as vehicles for assigmnent and 
sequencing experiments which used the vertex probability calculations. 

The results of these computations then serve as inputs to programs which are 
used in assignment and sequencing of operations on computers and estimating the 
resulting expected computation time [3]. Figures 13-15 illustrate the preparation of 
graph description (LINK 1) and the assignment and sequencing perturbation 
process (LINK 2). The vertex probability computation occurs in the former. 

Dependent Branching Decisions 

Thus far, the vertex computational probability algorithm has been derived on the 
assumption that all the branching decisions executed in the computational network 
were mutually independent. We now modify our algorithm to include the case where 
the branching decisions are not mutually independent. 

First of all, it would be instructive to give a couple of instances where nonin- 
dependence of branching decisions arises. Consider the following ALGOL statements: 

LI:  
L2: 
L3: 

L4: 

i f  a, < x /k x < a2 t h e n  go t o  L2 e l se  go to  L3; 
i f  a, _~ y /k Y L~ a4 t h e n  go t o  L4; 

These statements may be represented on a directed graph, with decision vertices 
represented by diamond-shaped boxes, as shown in Figure 16. Now if z and y are 
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independent of each other, i.e., their values are not linked eomputationally or 
otherwise, then the arc traversal probability qL~,L4 is determined independently of 
qLI.L~ • On the other hand, if x and y are computationally related, there is a condi- 
tional probabilistic relation between qL~,z,~ and q~t,~2, determined by the relation 
between x and y, i.e., by the probability distributions of x and y over the intervals 
In1, a2] and [a3, a4], respectively. In particular, let y = Tx, where T is a computation 
that  maps x into y, and let f ( x )  be the probability density function of x on the 
interval [at, a2]. Then, knowing the, relation y = Tx, we can determine the region, 
i.e., the union set of disjoint intervals, into which the interval [at, a2] maps. Al- 
though it is an abuse of notation, let this union set be denoted by [a/, a2']. We can 
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then determine the probability density function of y = Tx  over [al', as'I, and henc~ 
also the density function of y on the intersection set [al', a~'][a3, a4]. From th i s  
information, we can finally determine the conditional probability for (y C [a3, a4] [ 
x C [a~, a2]), i.e., the probability that  y ~ [a3, a4] given x C [al, a2]. Now if t h e  
branching decisions made in vertices L1 and L2 were statistically independent, the  
probability of executing vertex L4 would be 

pL4 = pclq~l , r .2qr .2 ,L4 (independence). (17) 

However, if these branching decisions were not statistically independent (as we  
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have postulated), then 

Fro. 12. L2 

px~4 = PL2qLI.~.2(qL2,L41 qLl,r.2) (depe~ldenee), (18) 

where (qL=.L4 { q~l,L2) is t h e  conditional probability of traversing arc (L2, L4) given 
that are (L1, L2) has b e e n  traversed. The conditional probability (qL~.L41 qL1.L~) 
can be determined fror~t t h e  eondi~iomd probability for (y C: [an, a~] I x C [at, a2]). 
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TABLE 1. GR~PI~ STATISTICS 

G R A P H  STATISTICS 
Statistic 

No. of V e r t i c e s  
No. of  V e r t e x  C l u s t e r s  

No, of A r c s  
No,  of F e e d b a c k  A r c s  ( cyc l e s )  

No, of Vertices with 
OR input logic 
OR output logic 
AND input logic 
AND output logic 

Avg. no. a r c s  input to 
any  v e r t e x  

M a x .  n.o. of a r c s  input  
to a n y  v e r t e x  

A v g .  no.  of a r c s  output  f r o m :  
any  v e r t e x  
v e r t e x  w / A N D  output  log ic  
v e r t e x  w / O R  output  log ic  

M a x .  no.  of a r c s  output  
f r o m  any  v e r t e x  

NWP32 82V 

32 82 
32 74 

47 129 
0 14 

0 16 
0 21 

32 66 
32 61 

W F B  N F B  W F B  N F B  

I 47 I. 47 ~--57--[--~-~- 

i 7 6 6 

-'-I i. 47 --- [ i. ig 

11111 s15 

G RA PH 
NWP147  

147 
147 

246 
12 

2 
2 

145 
145 

W F B  N F B  

21 I 21 

i .  67 I.  59 
- - -  1 .59  
--- 2.00 

25 I 25 

WFB: includes feedback arcs: NFB: does not include feedback arcs. 

L2 

193 
176 

294 
24 

33 
40 

160 
153 

W F B  N F B  

1.52 1 .40  

12 12 

i .  52 i .  40 
- - -  1.22 

2.07 

12 l 12 

XRAY 

223 
202 

413 
45 

24 
24 

199 
199 

W F B  NF'}5 

5 I 4 

1 . 8 5  1 . 6 5  
- - "  1 . 6 1  
--- 2 , 0 0  

11 I 11 

Let us give one more instance where the simplifying assumption of statistical 
independence is incorrect. Consider the graph in Figure 17. The branching decisions 
in vertices 1 and 2 are made in parallel. Let pl = p2 = 1, and let us compute p3 • 
Now the branching decisions classify the same datum, x, into the two classes cl 
and c2, and we wish to determine the 'probability tha t  x C cl and x C c~. This 
probabili ty clearly depends upon whether Cl and c2 do not intersect @1 n c2 = ~), 
partially interesect (cl N c2 ~ ,~) or totally intersect (either cl n c2 = c~ or 
cl N c2 = c2). If  Cl N c2 = ¢, it is clear that  p~ = 0 (this case would not be properly 
representable by the graph in Figure 17, since w3 would be redundant) .  On the other 
hand, if Cl N c2 ¢ ,~, then (q23 I q~a) ~ q% • The conditional probabil i ty (q% I q13) 
is determined from a knowledge of the probabil i ty density functions of x on c~ 
and c2, and the relation between cl and c2. Specifically, 

f 0 ,  c l n c 2 =  ¢ ,  

(q~3 1q18) = (q2a [ q13), ci f~ c2 ~ 4,  ( 1 9 )  

l l ,  c l  N c~ = cff c~c~), 
q2jq13, cl n c2 = c~(c~o), 

and hence, since p~ = ql~(q23 I ql~), 

0, cl N c2 = 4,, 

kq2~, cl fi c2 = c~. 

In  cases where there are more than  two branching decisions t h a t  are dependent  
upon one another, expressions similar to the ones above can be written, except 
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Read Arc Data; 
Generate Immed. 
Predecessor  List 
& Connection 
Matrix; Read 
Ve riex Data 

I Generate Immed. 
Successor List 

. . . . . .  i1 i 
Generate Precedence 
Matrix from 

I Connection Matrix 
l (Subr. DGEN) 

, . 

]Generate Vertex & I 
Arc Activity 
Numbers 
I (Subr. ACTVTY) 

o ~ p ~ t e  v e ~ t e ~  
omputational 
robabilities 
ubr. PRBLTY) i J 

~u~mpute Initial 
gencies ] 

orm of Cycles 
ubr? CYCLES) 

Output Lists & ..... Computed 1 
! 

FIG, 13. Flowchart of IANK 

Read in H-Vector; Compute ] 

On Single Processor ,  Generate 
Sequence (Subr. ASSIGN {0) ), 
Memory :Profile (Subr. PROFYL), 
& Path Length (Subr. FTIME}. 

of the a priori assignment arid seq,te~mi~g progr~zm 

that  the number of different cases might become large. GencrMIy speaking, if we 
are concerned with n dependent branching decisions, then expresskms of the form 

q~(q2 { qt)(qa [ q2q~) . . .  (% ( q,-,~ ,." q~) 

will arise where the q~ are are traversal probabilities. 
Let us now address ourselves to the problem of incorporating these cases into the 

vertex computational probability algorithm. Let us begin by assuming that we 
have chosen a particular vertex w~, found the sets D (  arid S (  and chosen the 
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Read LINK l - Gene ra t ed  
Common Data Tape  

i 
Read H - M a t r i x ,  S y s t e m  
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i 
Compute  A c t i v i t y - W e i g h t e d  
Complex  O p e r a t i o n  " r imes ,  
I n i t i a l  S y s t e m  Sta te ,  
In i t i a l  U r g e n c i e s .  

P e r f o r m  In i t i a l  A s s i g n m e n t  | 
/ 

& Sequence 
(Subr. ASSIGN ( 1 ) )  

1 

Compute  Initial V e r t e x  | 
T i m e s  (Subr. TCOMP (1 ) )  J 

t 3 
Compute  In i t i a l  I n v e n t o r y  | 
Cost  ] 

t 
Cnmpute  In i t i a l  Cos t  (Subr. 
TCOST, COST); Output i n i t i a l  l Ass ignmen t ,  Sequence ,  Cos t .  

FIG.  14. 

Compute  u r g e n c i e s  (Subr. URGNCY); 
O r d e r  V e r t e x  C l u s t e r  Set  (Subr. 
VSORT). 

P e r f o r m  T r i a l  A s s i g n m e n t s  for 
E a c h  Ver t ex  C l u s t e r  

J 
T r y  V e r t e x  C l u s t e r  on e a c h  | 
Processor J 

P e r t u r b  Inven to ry  ] 

P e r t u r b  Sys t em State A c c o r d i n g  
to P o l i c y  

tPage I 

P e r t u r b  Ve r t ex  T i m e s  (Subr. TCOMP(0)) 

t 
D e t e r m i n e  Sequence P o s i t i o n  of V e r t e x  
C l u s t e r  on T r i a l  P r o c e s s o r  
(Subr. SEQNCE) 

Compute  Cost  of T r i a l  A s s i g n m e n t  & 
Sequence (Subr,  TCOST, COST) 

F l o w c h a r t  of L I N K  2 of the  a p r i o r i  a s s i g n m e n t  a n d  s e q u e n c i n g  p r o g r a m  

idi  mutually exclusive AND-type subgraph. The probability that  wk will be connected 
to the origin verdces by means of the i th AND-type subgraph can be regarded as 
tile probability of the joint ocemTenee of a number of mutually dependent b ina ry -  
valued events, i . e . ,  dependent Bernoulli trials. If {ul, u2, • • • , u : ~ }  is the set of ~ . ~ r e s  

in tile ith AND:type subgraph and {q~, q2, • , q.,,,~} is the set of corresponding arc 
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t, ravers~] probabilities, then the probability that all the ares will be traversed is 

> ~  : ql(:~2 I q l )  . . .  ( q . .  t ~,,,~_1 . .  q O .  (22) 

Now t h o s e  conditional are tr~versal probabilities tha t  correspond to ares incident 

revlous 

IPoint B, 
Previous P a g e r  

NO 

ACCEPT: Update Arrays  for 
accepted Assignment & Sequence 

REJECT: Restore Arrays  for 
rejected Assignment & Sequence ]_ 

NO 

YES 

"'End-of-Iteration Output 
(Subr. OUTPUT (0))  

Point A, N ~  
iFrev ious  Pag 

YES 

[Final Output (Subr. OUTPUT(I)  ) I 

END 

FIG. 15 
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LI: 

L 2 :  

Fro. 16 

1: 

F r o .  17 

out from nonbranching vertices represent events that occur with certainty, and 
hence they are really not conditional upon the outcome of any of the branching 
decisions. Thus, as before, these unity probabilities need not be included in the 
fornmla for p~ .  Hence, 

P~ = q~(q~ [q~) " "  (q,~,' I q<-~ "'" qO, (2:~) 

where {ul, u2, . ." , u~,} represents the set of arcs incident out from branching 
vertices in the ith AND-type subgraph. Having computed all the pk~, we may  
obtain pk through 

p~ = ~ p ~ .  ( 2 4 )  
i 

The foregoing algorithm is an extension of the enumerative vertex computational 
probability algorithm previously derived, and it presumes that sufficient information 
is available for the evaluation of all the required conditional arc traversal proba- 
bilities. 

Unfortunately, due to the conditional relations between the various arc travers~l 
probabilities, our extended algorithm cannot be recast into a more compact form 
as was done when the branching decisions were mutually independent. Hence, t h e  
extended algorithm remains essentially enumerative. 

Conclusion 

This paper has formulated procedures for determining' the probability of reaching 
vertices in a transitive directed graph representation of computations and h a s  
discussed a number of problems arising in such modeling. 

The algorithms are essential to methods for a priori estimation of computation 
time on models of computer systems and have proven themselves effective in a 
number of experimental studies. 

Further work is needed to handle branching dependency, to automatic~ll:y 
generate estimates of are traversal probabilities from initial formulas or prograrn~ 
and to test for improperly connected graphs. 

Other papers will deal with cyclic to acyclic transformations, path length calcuht 
tions and experiments in automa~tic assignment and sequencing. 
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