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apsrraer.  This paper concerns itsell with the modeling of computations and systems and the
generation of a priori estimates of expected computation time for given problems on given
processing systems. In particular, methods are discussed for determining the probabilities of
reaching vertices in a graph model of computations.

A prior estimates of expected computation time for given problems on given process-
ing systems may be generated by modeling the computation with a transitive
directed graph [1].

A computational algorithm is first represented by a directed graph containing
cycles, with vertices representing macro-operations and ares representing sequence,
branching control conditions and data transfer. Cyeles may then be removed in 2
systematic transformation resulting in a transitive directed graph (2-5]. The model
of the cormputation can be assigned to a model of a computer system and a suceessive
relaxation procedure used to obtain a suboptimal assignment and sequeneing of
tasks on machines. In this process a measure of expected path length, which takes
into account branching probabilities, serves as a criterion.

A fundamental aspect of the above process involves the computation of vertex
probabilities which are then used in computing the estimates of expected path
length through a graph.

In this paper the nature of transitive directed graphs representing computations
is discussed, a systematic enumerative procedure for ealeulating vertex probabilities
is deseribed, and then a more practicable algorithm useful in a priori assignment
and sequencing experiments is established,

A eomputer program for caleulating vertex probabilities is presented and results
summarized for several graphs abstracted from complex problems.

Graph Model of Compuiation

Consider a graph (sueh as Figure 8) consisting of two sets (W, U7), viz.,, a set of
vertices and a set of directed arcs which connect the vertices tagether; let us estab-
lish a correspondence between mathematical formulas and the graph.

A computational statement representing a formula specifies the generation of a set
of data by means of a defined transformation upon the elements of another set of data.
Let the input set be s, and let so be the set into which s; is mapped through the trans-
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formation, f. Then we can write
8o = f(s:), (1)

and we usually state that s is a function of s;. The formula (1) is represented
graphically in Figure 1. If w, represents an initial input operation, then the source of
s; is unambiguous. I w;: represents an interior ocperation in Lhe graph, the input set
for wy may have been generated by w, or its predecessors and transported to acces-
sible storage until required. Under any conditions, the presence of the are from w, to
w,; unambiguously establishes that the operation (computations) represented by
wy eannot be executed until w, has generated s, .

Verter Input Logic

Since the computational tasks {vertices) represent functions whose arguments are
either conveyed along the arcs incident into a given vertex or were previously stored
in an accessible location, it is possible to specify when a given vertex may “begin”
by writing a Boolean expression whose truth value indicates that all precedence con-
ditions have been satisfied. There are three types of “vertex-inpus” logic described
in what follows.

Congunctive Input. Let o given vertex require all of scveral sets of data, each set
voming from a different source (vertex). Lot the availability of these sets of data be
represented by Boolean variables, oy, gy, -+, .. Then the event “all data avail-
able” is represented by the truth valuc of the conjunction @z A @ A, -+, A tn.

Mutually Exclusive Inputs. Let a given vertex require only one set of input data,
but let this set of data be generated from one of several mutually exclusive origins
{vertices). Let the event “all data available” be represented by the Boolean vari-
able, a; , and its alternate forms by ay , @, - -+, @1 - Then the condition for vertex
initiation is

o=a Pa® - Do, {2)

under the condition that all the ;; are mutually exclusive events.

Compound Input. If the initiation of a vertex requires several sets of data, each of
which has several mutually exclusive origins, we are interested in the truth value of
the expression (an @ - B ) A - A (At & - @ Ao, ).

For purposes of caleulation it is convenient to decompose vertices with compound
input logic into several vertices with simple, i.e., only A or @, input logic. This is
easily done by introduction of an appropriate number of pseudo-vertices as shown
in Figure 2.

Whenever a computation is deseribed in terms of rNoLusIvE ok input conditions

Si I'1a. 1. The operation represented by w:
generaies S; ; Lhe operation (function) repre-
@ sented by w; “transforms’ §; into So.
s
[}
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Fra. 2

we require s transformation such that only A, @ input conditions exist and therchy
gvold complex definition of data distributions in the model. '

Vertexr Oulput Logic

The exigtence of mutually exclusive alternate oi'igins of sets of data is due to the
presence of branching or decision vertices in the graph. An are incident, out from a
pranching vertex may be traversed with a probability less than unity and may be
selected conditional upon data being gencrated. In the usual language of computer
programming such an operation is called a conditional transfer.

A branching vertex is defined as a vertex with mxcenusive or output logic as
fellows: If B is a Boolean variable representing the event that there is an output,
from a vertex and by, by, - -, by are the Boolean variables representing mutually
exclusive events at the output of the branching vertex, we can write

B=bidh @ - @b, (3)

where the two sides of the expression are logically equivalent [6),

Program flow may also occur from a given vertex along several different arcs
simultaneously, i.e., there may be a bundle of arcs, each with the same origin vertex
and different terminal vertices, that are incident out from a vertex {or pseudo-
vertex) jointly, Then, if for any event represented by b;as above, we define Boolean
variablesba , by, <+ -, by such that there is a logical equivalence between any pair
of b, , we can unambiguotsly denote the simultaneily of output ares on the graph.
We choose fo use the symbol, =, to mark the logical equivalence of events on output
arcs and obtain

bi=baxbax - xbin (4)

as a representation of simultaneous vertex output events. The » output condition is
sometimes referred o as an AN output condition in thig paper.

If the sets {byr , bya, -0+, byuy}, 7= 1,2, -+, n, represent all of the possible out-
put events that ean oceur upon completion of a vertex, then the oceurrence of a
compound output event will be represented by the expression

(bt wb) @ v @ (byyx o b)) (3)

As in the case of compound input logic, pseudo-vertices are introduced to de-
compose compound output logic into simple output logic. This is illustrated in
Figure 3 for the condition where w; initiates w. , ws , we , we under the conditions
(e % 0n) & (10, * wa).
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Let us consider the probabilities associated with branching arcs. If w, and w; are
origin and ferminal vertices of an are, wy, , let the probability of reaching w; via u;
be g; . In general, ¢;; Is o conditional probubility of traversing w.; given that w; has
been reached. We now require that program flow be “conserved,” le., if
Ury, Wk, » -, W, are the mutually exclusive ares incident out from a branching
vertex wp with simple BxeLusive or output logie, then

L2

2 g = L (6)
i=1
Tt is instructive to eompare our graphical network with two types of networks
used in other contexts. The first is the PERT {7] network, in which all vertices have
axp input and output logic. Hence all vertices are reached with probability one.
Another special network Is the graph representation of the sequential machine,
where vertices correspond to the internal states of the machine and ares represent
the transitions botween sbates. All vertices in the latter eases have pxcLusive ar
input and output logic and the arc traversal probabilities are the stale-to-state
transition probabilities. The probabilistic properties of such a network can be repre-
sented as a simple Markov chain. Our network is a more general form of these two
cases and the computational probabilities are more difficult to determine.

Vertices

A computational vertex on a directed graph represents an unambiguously defined
computational statement. The execution of the statement may imply the execution
of several other more clementary operations or “microstatements.” A certain amount
of “fine structure” may not explicitly appear in the graph dependent upon the rela-
tive complexity of functions represented by single vertices. In fact the fine structure
implied by any particular vertex might itself be represented by a graph whose
characteristics are identical to those discussed above. Henee if the assumption isnow
made that vertex properties (such as time required for the operation) are known,
then treatment of the problem of representing collections of vertices by a single
vertex [2] will indicate the effect of the implied finc structure.

Vertex Probabiiilies

Iu the following two procedurcs are considered for determining the proba,bili-t,y, e >
of ever reaching & given vertex, wy , on the graph. It is assumed that tbe directed
graphs are acyclic, that all vertices possess simple input and output logic and that
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Modets of Compulations and Systems 285

all branching decisions ave independent. A properly connected graph is defined as one
inwhich G <oy < 1 and g, s Just the probability of wy being linked to a subset of the
et of origin vertices which have no logieal predeceasors.

Vertex Frobobility Computationul Procedure [
A partially ordered set of computations represented on a divected graph can be re-
gurded a2 & collection of mutually exelusive subgraphs whose vertices possess no
ex«;luﬁive on input or output logic within any subgraph. These subgraphs we eall
Amr—ivpe subgraphs. Each branching vertex can be regarded ag a multiway switch
in which one and only one position (emergent ave) is selectod each time the vertex is
sxecuted. Lach switeh position is choson according to the set of arc traversal proba-
hilities assigned to the ares incident out from a given branching vert
I any given graph could be partitioned into a mumber of mutually exclusive sub-
seis { ANT-type subgraphs) whose union was equivalent to the set represenied by the
graph, then the following procedure would determine the probability of ever veach-
ing a vertex 1w, .

1. For each anp-type subgraph establish the are traversal probabilities of all ares
contained in it.

2. Compute the probability of traversing each Ano-type subgraph as the product
of the arc traversal probabilities found in step 1.

3. Consider each vertex in turn and find the sst of awp-t ¥pes subgrapbs containing
that vertes. The probability of ever reaching that vertex is the sum of the proba-
bilities computed for the subgraphs in step 2.

We are left with the need for a systernatic precedurs to find all the distinet awn-
type subgraphs into which a computational network can be partitioned. Tt is helpful
te introduce two structural indices assoclated with the vertices, called the pre-
cedence and ante numbers,

A connection matrix [Z] describes graph linkages with o nonzero Z;, entry when-
ever there ig an are w4, from vertex w; Lo verlex w; . From [Z] is ebtained [2, 3, 5] a
square Boolean precedence matrix, {D], which bas dimensions equal to the number
of vertices, containg nonzero entries in its kth row to mark the predecessor (nob
necessarily immediate) vertices of verlex i, and contains nonzere entries in ils kth
column 1o mark the successor (nob necessarily immediate) vertives of verlex wg .
We deline

dy = . d (7)
1=1
5 the precedence number of w, and
Mo
A )
fo & 2o da (8)
i

as bhe ante nuimber of wy, where dy; s an element of [ and IV, is the number of ver tices

in the graph. The pmoedeno“ and aite numbers of o given vertex have certain

propertios Lhat arc simply related to the partial orderings between vertices, viz., if
wy precedes w; then dq < djand f; > J;, but not conversely.
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Now let 8 be the set of branching vertices in the graph and execute the following
procedure.

1. Find the set of branching vertices S.

2. Let the set of (branching) arcs incident out from each w: £ 8 be U;*, and let £; be the
index sct of the ares in Uyt 1e, wy € UM ¢ 7 ¢ [ . Note that %, just represents an in-
dexing of the branching arcs emerging from a vertex wy, . We imply that we retaln & mapping
between the u; and the previously desecribed wy . Now form a distinet combination of
indices (k) (the sth such distinel combination, say} by selecling one index from each of
the index sets Iy, wi € 8, and form the union set of ares

vV & U u;, )
ieC{k)
where ¥ will be used to form an AND-type subgraph as follows.
3. Tind the set of ares

B2 U UV, (10)

w. eS8
i

i.e., the set of branching ares which are excluded from the ano-type subgraph being
formed.
4. We must now “purge’ the graph, L.e., remove those vertices and ares whose presence in the
graph is precluded by the removal of ares in ¥, from the graph. To accomplish this with
an iterative procedure we define B:(—) as the set of arcs and vertices removed from the
graph during formation of the subgraph. Initially, Rx(—) = & . Define W. as the set of
vertices with precedence number n. Now, in order of increasing precedence number,
examine all the vertices in the (original) graph as indicated in the steps that follow.
Examine the vertices in the sets Wy, Wy, W, ete., in that order, and determine their
input logie. Let w; be the vertex under examination, Determine the input logie of w, :
a. w; has axv inpul logic. Fiod the set of arcs incident into w; , vie., Uy, If any of the
arves in Uy are also in Lx(—), add w; U Ui U Ut to Ry(—), i.e, w; and the arcs both inci-
dent into and out fromw, . If U7 = ¢, l.c.,w; € Wo, no additions are made to Ri(—).
b. w; has ExcLUsIVE oRinpul logic. 10 ell the ares in U~ are in £i(—), then add w; U U;!
to Bx(—). If not all the arcs in Uy are in Bg(—), ie, U~ ¢ Ei{(—), then there should be
one and only one are in 7, not in Rx{—). If there are more, then the input logic at w; is
not BEXeLUsIvE ok, and the graph has improper logical structure. 1f there is properly only
one are U, not in Biy(—), Re(—) i3 unchanged.
6. When the complete set W has been exhausted, the vertices and arcs that have not been
removed from the original graph, ie., the set (W, U) — Ry(—), constitute the AND-type
subgraph that results from a choice of branching arcs whose indices are in the set C (k).

o]

All the other AND-type subgraphs into which (W, [7) can be partitioned are found
by repeating the above procedure using all other distinet combinations C(k) delined
in step 2 above. It is worth noting here that the procedure given above for finding
the anp-type subgraphs into which a given acyelic diveeted graph can be partitioned
depends not only upon the structure of the original graph but more importantly
upon the input and output logic possessed by the vertices. Hence even though we
select structurally distinet sets V; and V,;, V. # V,;,the ann-type subgraph
completion procedure above may yield the same Axp-type subgraph by the dis-
carding of subgraphs reached with probability zero but containing index selected
branching ares. This point is illustrated by Figure 4, in which selection of V 2
{usn, usd and V' = {ure, uss} yields only one Anp-type subgraph G = G = {wy, 1wy,
g , Wi, Ues}. Furthermore, it must be noted that the above procedure is essentially
enumerative and therefore the size of the problem must be considered. An upper
bound for the number N of axp-type subgraphs obtainable from a graph containing
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# branching vertices with m; ares incident out from the #th branching vertex ¢ =
11‘2) e ;rnis

N = [Il g . (1)
P
The small example iHllustrated in Figure 5 indicates that N is generally much less
than the upper bound. However, the complexity with which it might be possible to
deal using the above enumerative procedure seems so small that we now leave aside
this procedure and consider a nonenumerative procedure baged on a more restrietive
assumption about the original graph.

Verter Probability Computational Procedure IT

A nonenumerative procedure becomes possible if a certain amount of semantics 1s
introduced into the proeess of generating a precedence matrix which picks out
select predecessors and successors only if they also satisfy logical conditions and
maintain proper connectivity. The following dizcussion attempts to clarify these
remarks.

Consider a vertex wy in the interior of a graph. wy is reached from a subset of the
origin vertices via a subgraph consisting of w, , its logical predecessors and associ-
ated connecting arcs. We choose to distinguish at this poinl belween struciural
predecessors denoted D, {defined by nonzero entries in the kth row of the matrix
[(D]) and the set of logieal predecessors, denoted K,.~, which are a subset of D, that
are reached with a nonzero probability given that w, has been reuched. In simitar
vein, topological and logical successor sets Dy ™ and B, are delined. To clarity further
it must be recognized that the subgraph consisting of the set of vertices ™ U wy and
the associated connecting ares can be partitioned into a nuraber of distinet anp-type
subgraphs. The condition for elements of the £, sets is then equivalent to stating
that a logical predecessor of ws must be included in at least one of the distinet axn-
type subgraphs info which 2" U w, and the associated connecting ares is par-
titioned. A similar condition holds between £, and Dy U wy . Tt follows that

By S D, B < byt (12)

:

()

Frag. 4. A graph  illus-

trating the nonunigue- Fre. 5. An example graph: a, original graph;
ness of aND-type sub- b, partition

graph selection
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Fic. 6. A graph in which Fiaz. 7. A graph in which
Dgt = Eki [);f” b E;‘_L

Iror illustration, consider the directed graph in Figure 6 where we have
Dy = {1,238, B = {1,2 3], (13)
and Figurc 7 where we have
D™ = {1,2,8 4,3}, E = 1{1,3, 5} (14)

One very important difference hetween D, and F,* lies in their determination. The
sets D" can be obtained directly from the precedence matrix [2]. K.° may require
the enumeration of the anp-type subgraphs into which D,* U w; and the associated
conuecting ares are partitioned,

In the remainder of this study, we concern ourselves with directed graphs for
which By~ = D5, w. ¢ W, a condition which holds for all the complex graphs
encountered in our experiments [3] and which may hold always if the logie implied
by the original computational formulas s retained in defining a graph and no artifi-
cial graph linkages are arbitrarily inserted.

With the above discussion in mind we proceed to describe a practicable algorithm
for computing vertex probability,

Consider g subgraph G, incident into & vertex w, and including w; . The proba-
bility, e , of ever reaching w, depends upon the traverszal probabilities of ares ingi-
dent out from branching vertices in &, . We find the latter formulation useful when-
ever wy has conjunctive input logic. In the case that w. has disjunctive inpul logic
we note that the probability of Lthe union of a number of mutuatly exclusive events
is equal to the sum of their individual probabilities of ocearrence.

It we make use of the above observations and the assuraptions that branching
decisions are mutually independent and D, = K5, the algorithm for computing
the probability of ever reaching a vertex w;, follows.

1. Iixamine in order of subscript the vertex sets w,, 7 = 0, 1, 2, --- , where ¢ is the pre-
cedence number. Let wy be a vertex under eonsideration.
2. Find Zi~, the set of immediate predecessors of wi . Four cases can oceur:
A, Zi = ¢, 1.6, wy is an initial vertex and p; = L.
b. Zi consists of a single vertex, e.g., Zy = {wa.}. Then pi = Pagar .
¢. Z;~ consists of more than one vertex and wy has exclusive-or input logic. Then
= 2 Pt (15)

Wy
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d. #u vonsists of more than one vertex and wy has awp faput logie. We deal wit]
~ . . . ! 5iC, SR X Fibh A8
subset of 127, 857, which containg ouly the branching veriices preceding wy . Then

e = - > ! o
*—"1‘%}? F wJEZ#ZZﬁnap% : {(i6)

Computational Fxperiments

Figures 3-12 depict graphs representing compulations arising in X-ray crvstallog-
raphy (Figure 8), Numerical Weather Prediction (Figures 9, 10} and the Assig;-
ment and Bequencing Computation (Figures 11, 12). Cyelic to acyelic transforma.

L3

]

BT &

BT 7

BT BT

8

B 1

BT

Fra. 8. X-Ray
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I Wo 1 240 L 30 1 40 I 50 1 40

Fra. 9. NWP32

tions [3] remove all feedback arcs leaving the nonfeedback topology unchanged but
primarily affecting the estimated operation times. Instead of explicitly labeling the
input and output control conditions, the vertex shapes are varied as follows:

1. Circle: AND INPUT, AND OUTPUT

2. Diamond: AND INPUT, OR OUTPUT

3. Hexagon: OR INPUT, AND OUTPUT
The or input-or output condition did not explicitly appear in the graphs studied.
The coordinates are merely a convenience for locating vertices. Table 1 is a summary
of graph statistics for the computations modeled as vehicles for assignment and
sequencing experiments which used the vertex probability calculations.

The results of these computations then serve as inputs to programs which are
used in assignment and sequencing of operations on computers and estimating the
resulting expected computation time [3]. Figures 13-15 illustrate the preparation of
graph description (LINK 1) and the assignment and sequencing perturbation
process (LINK 2). The vertex probability computation occurs in the former.

Dependent Branching Decisions

Thus far, the vertex computational probability algorithm has been derived on the
assumption that all the branching decisions executed in the computational network
were mutually independent. We now modify our algorithm to include the case where
the branching decisions are not mutually independent.

First of all, it would be instructive to give a couple of instances where nonin-
dependence of branching decisions arises. Consider the following ALgoL statements:

Lil: ifay €2 A 2 £ a2 then go to L2 else go to L3;
L2: ifas <y A y £ as then go to 14;

L3: ...

L;i:

These statements may be represented on a directed graph, with decision vertices
represented by diamond-shaped boxes, as shown in Figure 16. Now if = and y are
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independent of each other, Le., their values are not linked computaticnally or
otherwise, then the arc traversal probabilily gs 14 is determined independently of
gr1,12 - On the other hand, if © and y are computationally related, there is 2 condi-
tional probabilistic relation between g 54 and 93,70, determined by the relation
between © and y, ie., by the probabilily distributions of x and y over the intervals
[t , @s) and [, , 04, respectively. In particular, let y = 7'z, where 7' is a computation
that maps x into y, and let f(x) be the probability density function of z on the
interval [my , @s]. Then, knowing the relation y = 7'z, we can determine the region,
i.e,, the union set of disjoint intervals, into which the interval [a; , as] maps, Al-
though it is an abuse of notation, let this union set be denoted by [a;l', ay']. We can
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LMo ) 20 ) 30 ) 40 4 50 4 &0 70 ; 80 4 %0 i

Fia. 11. 82V

then determine the probability density function of y = Tz over [a1, @], and hence
also the density function of ¥ on the intersection set la, adllas, @], From this
information, we can finally determine the conditional probability for (¥ € [as, a4 |
2 € [oy, @]), ie., the probability that ¥ & [as, a4 given z € [a;, as]. Now if the
branching decisions made in vertices 7.1 and L2 were statistically independent, the

probability of executing vertex L4 would be
Pra = Prifrl 02,4 {independence). (17)

However, if these branching decisions were nof statistically independent (as we
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s
0 2 '
'1““"-1““‘{"—&——‘-——3&_1 W 4 K0 4 48 g %0 g %0 g 00

Ta, 12, L2

have postulated), then

Pie = Do, gre e l qri,re) (dependence), (18)

where (qy; ‘e " . . . .

thz;tr;;eqL{zf ; | ?g”}i 15 the conditional probability of traversing are (12, L4) given

cant be d ot em’uz:e é_ ; 28 been traversed. The conditional probability (queea | goaiz)
Tom the conditional probability for (v € [as, @] | x € {1, ).
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TABLE 1. GraPH SrarisTIics

N e
GRAPH STATISTICS GRAPH
Statistic NWpsz | 82V NWPI&T | L2 | XRaY¥ ]
No. of Vertices 32 82 147 ; 193 201
No. of Vertex Clusters 32 74 147 176 202
No. of Ares | 47 128 2485 294 413
No, of Peedback Arcs (eycles) 0 14 12 24 15
No. of Vertices with }
OR input logic : i 16 2 33 24
OR cutput logic ¢ 21 2 40 24
AND input logic 32 66 145 180 198
AND output logie 32 61 145 153 1949
* | WFB NFB IWFH NFB |WFB NFB|WFD NFB|WFH NIDL
Avg. no. ares input to - i ]
any vertex 1.47 | 14T} 157§ 1040 8 1067 | 1,58 1.52 1 .40 1.85) .65
Max. no. of ares input
to any vertex 7 7 B 6 21 21 12 12 5 4
Avg. no. of ares cutput fram: .
any vertex 1.47 [ 1.47 } 1,57 | 1.40 | 1.67 | 1.59] 1.52 .40 ] 1.85 ) 1.65
vertex w/AND output logic e 1147 --- 118 --- 150 —-- ) 122 --- | 18]
vertex w/OR output logic - --- =e= | 2,08 [ --= J2.00) «-- | 2.07] --- 2,00
Max. no. of arcs output
from any vertex 11 11 5 5 25 25 12 12 11 i1

) ;
WFB: includes feedback ares; NFRB: does not include feedback arcs,

Let us give one more instance where the simplifying assumption of statistical
imdependence is incorrect. Consider the graph in Figure 17. The branching decisions
in vertices 1 and 2 are made in parallel. Let 5, = p; = 1, and let us compute p; .
Now the branching decisions classify the same datum, @, into the two classes &
and e, and we wish to determine the probability that @ € ¢ and & € ¢ . This
probability clearly depends upon whether ¢; and ¢ do not intersect (o Ne = @),
partially interesect (¢ N e # ¢) or totally intersect (either ¢; N 2 = ¢ or
e Ve =) Ifep N ey = ¢, it is clear that p; = 0 (this case would not be properly
representable by the graph in Figure 17, since w; would be redundant). On the other
hand, if e, 1 ¢z # ¢, then (o3| 1) = qus . The conditional probability (gss ] g1e)
is determined from a knowledge of the probability density functions of z on &
and ¢, and the relation between ¢; and e, . Specifically,

0, [} n & = ¢,
(gos | gud o Ne =g,
- ’ 19
(Q‘23 i QIS) {1, Cl n (:2 - Cl({}ng), ( )
L{ha/gm, ¢ n Cy = 02(6201),

and hence, sinve py = qualges | qua),

0, 41 ﬂ &= ¢,
_Jou(an|gw), aNe =4, 20
P Tz, 01062561, (- )
oy s N = ¢

In cases where there are more than two branching decisions that are dependent
upon one another, expressions similar to the ones above can be written, except
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; Vertex Times

Generate Precedence ‘
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Memaory Profile (Subr, PROFYL),
L & Path Length (Subr. FTIME).
wl

Generate Vertex &
Arc Activity
Numbera

(Subr. ACTVTY)

4
Compute Vertex

Computational
Probabilities ;
Write Com
{Subr, PRBLTY) LN Zommon Data Tape for
; -l
Compute Initial M;ND
Urgencies

l

Generate Boolean
Form of Cycles
{Subr. CYCLES)

{

Output Lists & J

Computed Data

L |

T, 13, Flowchart of LINK 1 of the o priorl assignment and sequenciug program

that the number of different cases might become large. Generally spoaking, if we
are concerned with n dependent branching deeisions, then expressiong of the form

@lglo) (6l e - (g{gny - qu (2t)
will arise where the g; are arc {raversal probabilities,
Let us now address ourselves to the problem of neorporating these cases inte the

vertex computational probability algorithm. Let us begin by sssuming that we
have chosen a particular vertex w, , found the sets 0,7 and 87 and chosen the
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Perturb Vertex Times (Subr. TCOM‘P(O))J

[ Determine Sequence Position of Vertox |
Clugfer on Trial Processor
(Subr. SEQNCE)

Compute Cost of Trial ASSignwum{&
Sequence (Subr. TCOST, COST)

Point A, Next Page J

Fie. 14, Vlowchart of LINK 2 of the a priori assignment and sequencing program

ith mutnally exelusive AND-type subgraph, The probability that we will be connected
to the origin vertices by means of the ith axp-type subgraph can be regarded as
the probability of the joint occurrence of 4 number of mutually dependent binary-

valued events, i.c., dependent Bernoulli trials. Tf {w, us , - - -

, U} 18 the sel of ares

in the vth snp-type subgraph and {q, ¢, -+, Tuw;} 18 the set of corresponding are
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tmversa] probabilities, then the probability that all the arcs will be traversed is

pei = Glela) o (G ey - @), (22)

Now those conditional arc traversal probabilities that correspond to ares incident

ACCEPT: Update Arrays for
accepted Assignment & Sequence

R o REJECT: Restore Arrays for
rejected Assignment & Sequence
Point C, NO All
Previous Page® Processors
Tried?
YES
Point B, NO All
Previous Page, ertex Clusters
Tried?
YES

End-of-Iteration Output
(Subr. OUTPUT (0) )

Last

Point 4, Iteration?

Previous Page

Final Output (Subr, OUTPUT (1) )

!

END

Fia. 15
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L1i;

L2;

FiG. 16 Fia. 17

oubt from nonbranching vertices represent ovents that oceur with eertainty, and
hence they are really not conditional upon the outcome of any of the branching
decisions. Thus, as before, these unity probabilities need not be included in the
formula for px;. Hence,

Pre = g | q) o (gmir [ Gmisy - 1), (23)

where {u, ws, -, Un;} represents the set of arcs incident out from branching
vertices in the 4th aAnp-type subgraph. Having computed all the py;, we may
obtain p, through

Pr = 2 Pui- (24)

The foregoing algorithm is an extension of the enumerative vertex computational
probability algorithm previously derived, and it presumes that sufficient information
is available for the evaluation of all the required conditional arc traversal proba.-
bilities.

TUnfortunately, due to the conditional relations belween the various arc traversal
probabilities, our extended algorithm cannot be recast into & more compact form
as was done when the branching decisions were mutually independent. Hence, the
extended algorithm remains essentially enumerative.

Concluston

This paper has formulated procedures for determiningj the probability of reaching
vertices In a transitive directed graph representation of computations and has
discussed 4 number of problems arising in such modeling.

The algorithms are essential to methods for a priori estimation of computation
time on models of computer systems and have proven themselves effective in a
nurber of experimental studies.

Further work is needed to handle branching depondency, to automatically
generate estimates of arc traversal probabilities from initial formulas or programe:
and to test for improperly connected graphs.

Other papers will deal with cyelic to acyclic transformations, path length caleula.
tions and experiments in automatic assignment and sequencing.
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