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S U M M A R Y  
Recent numerical studies of convection in the Earth’s mantle have included various 
features of plate tectonics. A number of different methods for modelling ‘plate-like’ 
behaviour have been used. The differences in the methods of modelling plates may 
assume or predict significantly different plate deformation. We describe three 
methods of modelling plates through: material properties, force balance, and a thin 
power-law sheet approximation. We compare the results obtained using each 
method on a series of simple calculations. From these results we are able to develop 
scaling relations between the different parametrizations. While each method 
produces different degrees of deformation within the surface plate, the surface heat 
flux and average plate velocity agree to within a few per cent. The main results are 
not dependent upon the plate modelling method and therefore are representative of 
the physical system we set out to model. 
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1 INTRODUCTION 

A striking and unique feature of the dynamic Earth is that 
it’s surface is divided into tectonic plates (Le Pichon 1968; 
Morgan 1968). These plates behave like rigid caps on the 
Earth’s surface with surface deformation concentrated at the 
plate boundaries (e.g., Isacks, Oliver & Sykes 1968). Using 
boundary layer theory, Turcotte & Oxburgh (1967) 
demonstrated that cold sinking lithosphere may provide 
sufficient driving force to move plates at their observed 
velocities. However, calculations of infinite Prandtl number 
convection with uniform material properties (e.g., 
McKenzie, Roberts & Weiss 1974) or temperature- 
dependent viscosity (e.g., Nataf & Richter 1982) do not 
exhibit plate-like surface velocities. In general, plate-like 
surface velocities are only observed in convection 
calculations with the help of a plate generation method. 

There have been a number of investigations of plates in 
convective solutions and a variety of methods have been 
used to induce plate-like behaviour (e.g., Richter & 
McKenzie 1978; Kopitzke 1979; Davies 1988; Gurnis 1988; 
Gurnis & Hager 1989; King & Hager 1990; Gable, 
O’Connell & Travis 1991). However, only one brief 

* Now at: Earth and Atmospheric Sciences, Purdue University, 
West Lafayette, IN 47906, USA. 
t Now at: Department of Geological Science, University of 
Michigan, Ann Arbor, MI 48109, USA. 

investigation comparing different methods has been 
undertaken (Davies 1989). It is difficult to compare results 
obtained using different methods, because results are often 
presented in terms of implementation specific parameters. 
In light of this, two important questions arise: do different 
methods have essentially the same result on the convective 
flow, and if so, is it possible to relate the material properties 
used in the various methods to observables such as heat flux 
and plate velocity? The importance of understanding the 
difference between the parametrizations is more than a 
study of numerical methods since the resulting plates are 
often quite different. In particular, the deformation of the 
plate assumed or predicted by different parametrizations can 
vary from a uniform velocity with no intraplate deformation 
to a velocity distribution with a broad zone of deformation. 

It is important, before we proceed, to present ou r  
criterion for judging a convective solution to have plate-like 
surface velocities. First, we will consider plates which have 
the same composition as the underlying mantle. Because of 
this, these plates will more closely resemble oceanic plates 
than continental plates which are compositionally different 
from the mantle. Second, plate interiors should have low 
strain-rates so that the surface velocities are nearly uniform. 
Furthermore, the majority of the deformation of plates 
takes place near the plate boundaries, therefore in the 
calculations the stresses and strain-rates should be largest 
near the plate boundaries. 
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While this is a qualitative description, since we do not 
rigorously define what we mean by plate interior and plate 
boundary or how small the strain-rate in the interior of the 
plate should be, this broad definition will allow us to 
examine a wide range of 'plate-like' solutions. We can assess 
the effect that differences in the width of the deformation 
zone and the level of strain in the interior of the plate have 
on the overall flow. We point out that there are few 
observational constraints on the deformation of oceanic 
plates, and through numerical modelling we may be able to 
provide insight as to what observations would be most 
important for understanding plate-mantle interactions. 

In the following sections we describe in detail three 
methods of modelling tectonic plates: the material property 
method (MP) implemented in a finite element code; the 
force balance method (FB) implemented in a spectral/finite 
difference code; and the power-law rheology method (PL) 
implemented in a finite difference code. With the grid sizes 
considered, the results from a constant viscosity Rayleigh- 
Benard benchmark problem using these three codes differ 
by less than 1 per cent (Travis et al. 1991). 

Each method captures essential features of plate tectonics 
while ensuring that the plates do not artificially contribute to 
the kinetic energy of the system by actively driving or 
inhibiting convection. The effect of changing plate thickness 
as plates age is not included in defining the 'base' of the 
plate. Basal tractions are calculated at a constant depth. A 
more physical approach might be to calculate the tractions 
along an isotherm defining the mechanically strong part of 
the lithosphere. However neglecting this effect has a small 
effect on the outcome of the calculations. These methods do 
however include the important driving force due to the 
lateral temperature variations in the plate (Hager 1978; 
Hager & O'Connell 1981). 

The methods described all produce surface velocities 
which, by the broad definition given above, are plate-like. 
We will use these methods to solve a simple set of problems, 
and comment on some of the differences between the 
methods. An important result is that all three methods agree 
not only qualitatively on the very broad features of the 
solution, but there is good agreement in quantitative details 
such as heat flux and surface velocity. 

2 M O D E L  PROBLEM 

We consider the simple geometry of a single plate across the 
top surface of a 2-D Cartesian box with free-slip, insulating 
side walls and a free-slip bottom. We choose an aspect ratio 
of 1.5 in order to produce a plate which is longer than the 
depth of the box, but still achieve a steady solution. The 
material property and force balance methods use a 
uniformly spaced, 49 by 33 node computational grid to 
eliminate differences in the solutions due to the grid 
resolution; however, it is necessary to use a 97 by 65 node 
grid for the power-law method to resolve the deformation in 
the non-Newtonian layer. The plate condition, which will be 
described in  detail in the next section, is applied at the top 
of the box. In all three cases the plate is at a depth of 1/32th 
of the height of the box. The fluid has a constant viscosity, is 
heated from below and cooled from above with a Rayleigh 
number of 10'. 

A series of calculations is presented for each method. The 

properties of the plate are varied so that the plate velocity 
ranges from zero to values slightly greater than the average 
horizontal velocity of the bottom boundary. Each method 
varies different parameters to achieve this range of 
solutions. 

In infinite Prandtl number convection, body forces are 
balanced by viscous forces and the net force on any mass 
element is zero. Similarly, the total force on a rigid plate is 
zero, although the tractions are non-zero on the ends and 
base of the plate. In two dimensions, the total force on a 
plate has a contribution from the basal shear tractions and 
from the normal stress on the ends of the plate (e.g., 
collisional resistance). The surface in contact with ocean or 
atmosphere is a traction free boundary. The changes in 
basal shear tractions must result in changes in normal 
tractions on the plate boundaries. We present all our results 
in terms of a dimensionless integrated shear traction on the 
base of the plate, 

where Lplate is the length of the plate (in this case l S ) ,  t,, is 
the shear stress at the base of the plate, and tfi;=,"" top is the 
shear stress at the same depth for a no-slip calculation. 

We choose the following convention; Z = 0 implies that 
the plate driving force is completely supplied by the basal 
shear tractions with no force on the vertical bounding 
surfaces of the plate, 0 > 0 implies that boundary forces are 
acting to resist plate motion and Z < 0 implies that the plate 
is moving faster than it would be if only the basal shear 
tractions were driving its motion and thus it is being aided 
by boundary forces. With this normalization, f is 0 for a 
plate whose motion is only due to shear traction on the base 
of the plate and 1 for a no-slip calculation (which is 
equivalent to a plate that cannot move). 

The methods produced time-dependent solutions as Z 
approached one. For computational reasons we did not 
attempt to obtain the value of the shear traction at which 
time dependence was first observed, but time-dependent 
solutions were observed for Z > 0.8. In order to simplify the 
comparisons, we only present results of steady solutions. 

3 METHODS 
3.1 Material property (MP) 

The material property method uses a priori defined material 
property zones. The object of the material zones is to create 
plate-like behaviour through the variations in material 
properties within the plate. Weak zones are used to enhance 
deformation at the plate boundaries and a strong zone is 
used to minimize deformation within the plate. This is 
reasonable in light of what we know about mantle rheology: 
the lithosphere is cold, and due to temperature dependence, 
stronger than the interior of the mantle, while at plate 
boundaries the lithosphere may be weakened due to faulting 
and brittle failure or non-linear effects of stress on the 
rheology creating a lower effective viscosity (e.g., King & 
Hager 1990). The shape and viscosity of the material zones 
used in the computations can be chosen to match the 
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about one twentieth of the integrated basal shear traction 
for a no-slip calculation. However this value is dependent on 
the geometry of the weak zone. 

predicted rheology of the lithosphere (e.g., Ashby & Verrall 
1977). 

To minimize the impact of the weak zones on the rest of 
the solution, two-element by two-element squares are used 
for the weak zones at  the plate boundaries. These zones are 
small compared to the size of the box (D/16 by D/16 where 
D is the depth of the box) so their impact on the flow should 
be minimal. The weak zones are located at the upper left- 
and right-hand corners of the computational domain. To 
make the rigid plate, a one-element-thick (D/32), 
high-viscosity zone along the top surface is used. This is 
much thinner than the boundary layer, but it is chosen to  
keep the calculation close to  constant viscosity for 
comparison with the other methods. The viscosity changes 
discontinuously at the boundaries of the material zones. The 
only computational requirement on the sizes of these zones 
is that the depth of the weak zone be at least as deep as the 
thickness of the plate to  avoid a situation where the plate 
locks up. Larger weak zones had only a minimal effect on 
the solutions. For this study a plate viscosity 10' times the 
interior viscosity is used. Previous work has shown that 
higher viscosities d o  not effect the solution (King & Hager 
1990). 

While it might appear that the viscosity of the weak zone 
is an unconstrained parameter, Fig. l(a) shows that there is 
a direct mapping between the weak zone viscosity and the 
integrated basal shear traction, 4. This can be understood by 
considering the force balance on the plate. The shear 
tractions on the base of the plate must be balanced by the 
tractions on the ends of the plate. The stronger the weak 
zone becomes, the greater the end tractions on the plate 
become and the larger 4 becomes. As the weak zone 
viscosity decreases, the magnitude of 4 decreases. A 
negative shear traction occurs at the lowest viscosities 
because the traction balance on the weak zone requires that 
it exert a traction on the plate aiding plate motion, rather 
than opposing the plate motion as it does a t  higher 
viscosities. As Fig. l (a )  shows, 4 asymptotically approaches 
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3.2 Force balance (FB) 

This method is described in detail, including the extension 
to three dimensions and multiple plates, in Gable (1989) and 
Gable et al. (1991). The approach is a constraint upon the 
geometry of surface plates. With the plate geometry 
defined, all forces acting on the plate and fluid are balanced 
to find the global velocity and stress fields which are 
consistent with the body forces and plate-like surface 
motion. For these calculations the plate geometry remains 
fixed, although the plate velocity, which is determined by 
balancing the forces on the plate, can be dependent. 
Computationally, the surface velocity is defined as zero at 
the endpoints and constant in the interior. The horizontal 
force balance on the plate is then 

where P,, and Pv are the horizontal and vertical bounding 
surfaces of the plate, tx, is the shear traction due to 
convective flow across the base of the plate and t,, is the 
normal stress on the vertical plate boundaries. Calculating 
the tractions on the base of the plate (1/32th of the depth of 
the box) also avoids including the unphysical effect of a 
stress singularity at the plate boundary (e.g., Gable et al. 
1991). 

While the shear stress on the base of the plate is 
calculated directly from the flow field, the stress on vertical 
plate boundaries is parametrized as a fraction of the shear 
stress on the base of the plate, R ,  where 

1 .a 

0.8 

LO 0.6 

P iZ 0.4 

It 

LO 

L 
0 

In 
," 0.2 
- ; 0.0 
m 

-0.2 

-0.4 
50 60 70 

Plote Viscosity log F~ 

(3) 

/ 
I 

Figure 1. (a) The relationship between weak zone viscosity in the material property method (MP) and the normalized shear traction f from 
(1 ) .  (b) The relationship between the plate viscosity (log pLp) and normalized shear traction f from ( 1 )  for a power-law exponent n = 15. ? is 0 
for a free-slip calculation and 1 for a no-slip calculation. 
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In  this study, a suite of calculations are made where R, 
which acts as the plate strength at the boundaries, is varied 
from -0.25 to 1. When R is 1, the plate will be immobilized 
and is equivalent to  a no-slip top boundary condition. When 
R is negative, Z is negative. 

3.3 Non-Newtonian rheology (PL) 

Previous studies (Cserepes 1982; Christensen 1984) have 
shown that  plate-like surface velocity profiles can be 
produced by convection in a non-Newtonian fluid layer. The 
success of these studies motivates the use of non-Newtonian 
rheology in this method. 

The model consists of a thin, non-Newtonian layer with 
constant thickness situated on top of a thick Newtonian 
viscous layer (Weinstein 1991). The non-Newtonian layer 
represents the lithosphere and the Newtonian layer 
represents the mantle. D and h are the thicknesses of the 
Newtonian and non-Newtonian layers respectively and h / D  
is assumed to  be <<l. Except for the difference in rheology, 
the  two layers have identical properties. Convection in the 
Newtonian layer causes deformation in the non-Newtonian 
layer by generating shear tractions on the base of the 
non-Newtonian layer. For a large enough power-law 
exponent, the deformation in the non-Newtonian layer is 
concentrated in narrow regions. 

The rheology of the non-Newtonian layer is assumed to 
be a powerlaw of the form 

dU 

3 X  
t,, = 2v- 

where 

v=pp( rxx ) - (n - ' ) ,  n = 1 ,  3,5, . . . . 

(4) 

In  this expression, n is the power-law exponent, up is the 
horizontal velocity of the non-Newtonian layer, pp is a 
rheological constant with the dimensions of viscosity and rxx 
is the dimensionless normal stress. Only odd powers of n are 
considered so that the viscosity remains positive. The 
non-Newtonian layer is weak where the normal stresses are 
large and strong where the normal stresses are  small. In the 
calculations presented in this study, the normal stresses are 
greatest a t  the ends of the non-Newtonian layer and thus 
give rise to weak zones at  the plate boundaries and 
plate-like surface velocity profiles. 

The non-Newtonian layer is coupled to  the Newtonian 
layer by t h e  dimensionless dynamic boundary condition 

where txz is the shear stress at the base of the 
non-Newtonian layer, x is the horizontal coordinate and h is 
the  thickness of the non-Newtonian layer. The  product of 
the first four terms in (6) is positive non-definite, therefore, 
the sign of the shear stress a t  the base of the non-Newtonian 
layer is the same as the sign of the curvature of the velocity 
distribution at that point. Since buoyancy forces in the 
non-Newtonian layer are not included, the thin non- 
Newtonian layer can never drive the flow. The  relationship 
between the average shear traction and the plate viscosity 
(pP) is shown in Fig. l (b)  for a power-law exponent n = 15. 

4 RESULTS 

We present a comparison of results from the three different 
plate modelling methods. Three variables a re  used in the 
comparison, plate velocity, Nusselt number and the ratio of 
average surface velocity t o  average basal velocity. These 
variables are  calculated as Z varies between -0.25 and 1. In 
Fig. 2 we present surface velocity and topography profiles 
for the calculations closest to Z=0.64 (recall that for MP 
and PL, Z is an output and not specified). The  topography is 
calculated from the vertical stress a t  the top of the box, 
following the method described in McKenzie et al. (1974). 
Notice that the interior velocities are uniform for all three 
methods and that the topography profiles are in excellent 
agreement. 

Fig. 3(a) shows the average surface velocity, Vp, as a 
function of 2. For all three methods, there is not only an 
agreement in the trend of the velocities with the basal shear 
traction, but agreement to  within 10 per cent in the 

- 1001 1 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
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X 

Figure 2. (a) Surface velocities for the force balance (solid line, 
P = 0.96), material property (short dashed line, P = 0.96), and 
power-law (long dashed line, P = O . 8 )  methods. For all three 
methods, the integrated basal shear traction is Z = 0.64. The 
velocities are plotted as Peclet numbers. (b) Topography profiles for 
the calculations in (a). 
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Figure 3. The (a) plate velocity, (b) Nusselt number, (c) v,, (ratio of plate velocity to bottom of the box velocity), and (d) P (plateness 
factor) for the three methods (squares-material property, triangles-force balance, circles-power law). 

magnitude of the velocities. It is important to  remember 
when interpreting these plots that each method is used with 
a different numerical method, so some slight differences in 
the solutions are expected due to  the numerical 
approximations. 

Next we examine the heat transport of the convective flow 
using the three methods. The Nusselt number is the ratio of 
the total heat flux across a fluid layer to  its conductive value 
(Chandrasekhar 1961). Fig. 3(b) shows the Nusselt number 
as a function of the shear traction at the base of the plate (2) 
for the three methods. Once again the three methods show 
good agreement. 

To compare the plate velocity with the interior flow, we 
compare the ratio of the average surface velocity t o  the 

average basal velocity ( vT,B): 

(7) 

For a steady-state constant viscosity Rayleigh-Benard 
calculation, v,,, is unity. Fig. 3(c) shows agreement among 
the methods similar to  the agreement already shown for the 
Nusselt number and the plate velocity. Note that for 
calculations with a positive traction (where the end forces 
are  opposing plate motion) v,,, is less than unity, while for 
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calculations with a negative traction (where end forces are 
aiding motion), vT,, is greater than unity. 

To quantify the deformation of the plate, we define a 
‘plateness’ parameter P, 

where Lplate is the length of the plate and U ( x )  is the 
horizontal velocity of the plate at the point x. The plateness 
parameter is a dimensionless number between zero and 
unity which provides a measure of the deformation of the 
plate. For  a sinusoidal variation, P is zero, while for a 
boxcar function P is unity. For the force balance method, P 
is dependent only on  the grid size (in these calculations P is 
0.963). For the material property method, P is dependent 
on the size of the weak zone and is greater than 0.95 in all 
the calculations used in this study. For the power-law sheet 
method, P varies between 0.7 and 0.9 (see Fig. 3d). 
Therefore, the deformation across the plate varies from 
essentially no deformation (P = 1) to a continuous zone of 
deformation across the plate. The three methods agree 
equally well when they have similar values of P(f = 0) and 
when there is a large variation in P(f+ 1). 

CONCLUSIONS 

We find it quite remarkable that while the plate velocity and 
heat flux are nearly the same for all methods, the 
deformation of the plate exhibits differences (see Fig. 2). 
We believe this indicates that while these calculations are 
too simplistic to study the details of plate deformation, we 
are capturing the properties of plates which are important 
for studying global mantle flow. We point out that all our 
results a re  steady-state solutions, and that it is possible that 
for time-dependent solutions the deformation of the plate 
may play an important role in the formation of boundary 
layer instabilities or the pattern of flow. 

We are  encouraged by the overall agreement of these 
three, quite different methods on a simple problem. A 
criticism of plate modelling methods is that they are ad hoc. 
However, the scaling relations between these methods (Fig. 
1) demonstrate that the material property and thin 
power-law sheet method satisfy basic physical principles by 
balancing the forces on the plate. They also provide a 
possible explanation for end forces on plates, namely 
changes in rheology. Furthermore, we show that it is 
possible t o  present plate results in geophysically under- 
standable terms (i.e., basal plate tractions and 
collisional/extensional forces) rather than implementation 
specific parameters. 

We also point out a need to be cautious, since the 
relationship between plate kinematics and convective flow is 
not completely understood. Also, our simplified models do 
not include a number of possibly important factors such as 
compositional differences between the plate and the 
asthenosphere, realistic plate/asthenosphere rheologies and 
elastic deformation within the plate. Our models are capable 
of producing a wide range of plate deformation patterns, 
and the details of plate deformation (particularly oceanic 
plates) a re  mostly unknown. 

Based on  the agreement in this study, we feel that all the 
methods presented successfully model a simple plate on the 

surface of a convecting fluid. We believe this comparison 
also demonstrates that the results are not dependent upon 
the plate modelling method and therefore are  representative 
of the physical system we set out to  model. 
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