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We present a method to derive implicit solvent models of electrolyte solutions from all-atom descriptions;
providing analytical expressions of the thermodynamic and structural properties of the ions consistent with the
underlying explicit solvent representation. Effective potentials between ions in solution are calculated to
perform perturbation theory calculations, in order to derive the best possible description in terms of charged
hard spheres. Applying this method to NaCl solutions yields excellent agreement with the all-atom model,
provided ion association is taken into account.
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Since the pioneering works of Debye, Hückel, and On-
sager, electrolyte solutions have been commonly described
by continuous solvent models, for which the McMillan-
Mayer theory �1� provides a rigorous statistical-mechanical
foundation. Within that level of description, simple phenom-
enological models such as the primitive model �PM�, for
which the ions are assimilated to charged hard spheres �2�,
can lead to explicit formulas for the thermodynamic and
structural properties �e.g., with the help of the mean spheri-
cal approximation �MSA� �3� or the binding MSA �BIMSA�
�4��. These models are the most practical to use �5�, since
they allow for a direct link between the experimental mea-
surements and the microscopic parameters of the system.
Nevertheless, they ignore the molecular structure of the sol-
vent. Consequently, they cannot properly account for the
complex specific effects of the ions, which appear in numer-
ous biological, chemical, and physical interfacial phenomena
�6,7�, without further developments.

An alternative procedure consists in carrying out molecu-
lar simulations, where both the solvent and solute are treated
explicitly. After a rigorous averaging over the solvent con-
figurations, a coarse-grained description of the ions, which
still includes the effect of the solvent structure, can be ob-
tained �8–11�. However, this set of methods is purely nu-
meric; they do not provide any analytical expression for ther-
modynamic quantities. They are therefore restricted to
simple geometries �12,13� �bulk solutions or planar inter-
faces�. The description of complex systems such as porous or
electrochemical materials is still based on continuous solvent
models �14�.

In this letter we present a method aimed at bridging the
gap between analytical and numerical approaches. It is based
on the application of liquid perturbation theory �LPT� �15� to
effective ion-ion potentials extracted from molecular dynam-
ics �MD� results. Different approximations of the PM are
employed for the case of NaCl electrolyte solutions: a two

component model �MSA2�, that only takes free ions into
account, and two different three component models �MSA3
and BIMSA3�, which include a third species �the contact ion
pair�. As we proceed to show, LPT allows us to select the
best simple model which accurately accounts for the thermo-
dynamics and the physical-chemistry of the system.

The first stage consists in calculating the McMillan-
Mayer effective ion-ion interaction potentials Vij

eff�r�, by in-
verting the radial distribution functions �RDF� gij�r� obtained
by MD. The simulations were carried out on a box of 2000
water molecules and 48 NaCl pairs using the same interac-
tion potentials as in reference �16�. This setup corresponds to
a concentration of 0.64 mol l−1. NPT ensemble sampling at
standard pressure and temperature was enforced, with a time
step of 1 fs and a pressure bath coupling constant of 1 ps. An
equilibration run of 0.25 ns was followed by a production
run of 0.6 ns for five different initial configurations. The
averages of the resulting RDF were then used for the poten-
tial inversion via the HNC closure �15�. These effective po-
tentials are assumed to be concentration independent and
will be used for simulations at all concentrations.

Subtracting the long-range Coulombic potential Vij
LR�r�

�which depends on the dielectric constant of the solvent�
from Vij

eff�r�, we obtain the short-range contribution Vij
SR�r� to

the effective potentials. These are given in Fig. 1 �species 1
and 2 refer to Na+ and Cl− free ions, respectively�. All the
short-range potentials exhibit oscillations corresponding to
the solvent layering between the ions, but this effect is par-
ticularly important for the cation-anion interaction: a consid-
erable potential barrier ��2kBT� separates the first two at-
tractive wells. To serve as a reference, Monte Carlo �MC�
simulations were performed with these effective potentials; a
comparison between MD and MC RDF is also provided in
Fig. 1. The excellent agreement between both sets of RDF
validates the HNC inversion procedure �17�, and allows us to
compute all ion thermodynamic properties through implicit
solvent MC simulations.

The second stage of our coarse-graining procedure con-
sists in applying LPT, in order to deduce the best analytical
model of electrolyte solutions which reproduces this molecu-
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lar description. The principle of LPT is to describe the prop-
erties of a given system in terms of those of a well known
reference system, with the difference between them treated
as a perturbation in the reference potential. Assuming pair-
wise additive potentials, Vij =Vij

�0�+�Vij, a first-order trun-
cated expression for the free-energy density of the system
�fv is obtained,

�fv � �fv
�0� +

1

2
��

i,j
�i� j� drgij

�0��r��Vij�r� , �1�

which depends only on the free-energy density fv
�0� and RDF

g�0� of the reference fluid, with �= �kBT�−1 and �i the con-
centration of species i. The Gibbs-Bogoliubov inequality
�15� ensures that the right-hand side of Eq. �1� is actually a
strict upper bound. Once a reference system has been chosen,
the expression on the right-hand side of Eq. �1� must be
minimized with respect to the parameters defining the refer-
ence. This procedure yields the best first-order approxima-
tion to the free energy of the system under consideration.

For a system of charged particles in solution, the natural
reference is the PM, defined in terms of the charge and di-
ameter ��i� of each species. In this case, the perturbing po-
tentials are just the short-range effective potentials computed
above ��Vij =Vij

SR�. We use the MSA �3� solution to the PM,
since it provides analytical expressions for both the free en-
ergy and the RDF. The perturbation term is evaluated using
an exponential approximation to the RDF obtained within
the MSA, g�r�=exp�gMSA�r�−1�, which removes any un-
physical negative regions and improves the comparison with
HNC calculations.

We first used LPT for a two-component system �Na+ and
Cl− free ions� within the MSA �model MSA2�, for concen-
trations ranging from 0.1 to 2.0 mol l−1. The minimization
leads to almost constant diameters on the whole range of
concentration: �1=3.67 Å and �2=4.78 Å. As shown in
Fig. 2, these parameters yield osmotic coefficients close to

MC calculations only at very low concentration, i.e., c
�0.1 mol l−1 �experimental values are given for indicative
purposes only, since a perfect model will exactly match the
MC results�. For molar solutions, the LPT results differ con-
siderably from MC calculations. This discrepancy can easily
be understood by comparing the diameters found within the
MSA2 calculation with the effective potentials given in Fig.
1. The anion/cation contact distance obtained within the
MSA2 calculation is 4.2 Å, which is in the region of the
second minimum of the effective potential and corresponds
to the situation where there is a single layer of water mol-
ecules between the ions. The first minimum of the potential,
which corresponds to the contact ion pair �CIP� is thus com-
pletely ignored by the MSA2 calculation. If the MSA diam-
eters are directly fitted to reproduce the MC osmotic pres-
sure, much smaller values are obtained. These MSA-fit
hydrated diameters, which are compared to the MSA2 diam-
eters in the bottom part of Fig. 2, are averages of the CIP and
the solvent-separated ion pair.

To overcome this difficulty, we have explicitly introduced
the CIP in our model �species 3�. Straightforward calcula-
tions, based on a characteristic-function formalism, allow us
to define an equivalent model in which the free ions and the
CIP are explicitly taken into account �19,20�. We apply this
formalism by defining a pair as an anion and a cation at a
distance less than 4 Å, which corresponds to the position of
the effective potential maximum. The interaction between
free, like charges in this system remains unchanged, and the
cation-anion interactions are easily approximated by extrapo-
lating the original potential at the barrier separating pairs
from free ions �as shown in Fig. 3�. We assume that the
interaction potential is averaged over the rotational degrees
of freedom of the CIP and thus pairwise additive. Hereafter,
the quantities referring to such a three-component model are
written with a tilde symbol. The short-range potentials in-
volving the pair can be derived, in the infinite dilution limit,
from an average of the contributing ion interactions. In Fou-
rier space,
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FIG. 1. Effective McMillan-Mayer short-range pair potentials
extracted from explicit solvent simulations using the HNC closure.
�a� Cation anion, �b� cation cation, �c� anion anion, and �d� cation-
anion RDF obtained from explicit solvent MD and implicit solvent
MC simulations.
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FIG. 2. �Color online� �a� Osmotic coefficient 	 in the
McMillan-Mayer frame of reference. �diamond� MC simulations,
�dot dashed� MSA2, �dot� Debye Hückel Limiting law �DHLL�,
�cross� experiments �Ref. �18� with the McMillan-Mayer to Lewis
Randall conversion�. �b� Minimization diameters. �dot dashed�
MSA2 and �diamond� MSA-fit.
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Ṽ3i
SR�k� = w̃�k/2��V1i

SR + V2i
SR��k�, i = 1,2, �2a�

Ṽ33
SR�k� = w̃�k/2�2�V11

SR + V22
SR + 2V12

SR��k� , �2b�

where w̃�r� is the pair probability distribution

w̃�r� = K0
−1e−�Ṽint�r�, �2c�

Ṽint�r� is the internal part of the pair potential �see Fig. 3�,
and K0 is the association constant, defined as

K0 = �
0




dr4�r2e−�Ṽint�r� = 0.43 l mol−1. �3�

The excess free-energy density of the original system �fv
ex

is that of the three component mixture � f̃v
ex plus a correction

term

�fv
ex = � f̃v

ex − �̃3 ln K0, �4�

which is due to the change in standard chemical potential
between the two component and three component models. It
should be noted that the fraction of pairs is now an additional
parameter in the minimization scheme, which serves to en-
sure chemical equilibrium. Within this representation, the
pair can be modeled as a hard sphere �MSA3� or as a
dumbbell-like CIP �BIMSA3� �4�. Since we have no addi-
tional information, we consider only symmetric dumbbells.
Furthermore, since analytic expressions for the RDF within
BIMSA are not known, we approximate the dumbbell as a
hard sphere when computing the perturbation term �this is
not necessary for the reference term, since an expression for
the free energy is available�. Let �̃c be the diameter of the
cation �anion� within the dumbbell, the diameter of the hard
sphere representing this dumbbell is taken to be �̃3= 4�2

� �̃c
�21�.

Using these two reference systems, the three-component
MSA3 and BIMSA3, we obtain results in much better agree-
ment with the MC simulations, as shown in Fig. 4. The di-

ameters obtained for species 1, 2, and 3 are 3.65, 4.79, and
5.76 Å for MSA3 and 3.69, 4.75 and 6.19 Å for BIMSA3.
The free ion diameters are similar for MSA2, MSA3, and
BIMSA3. The pair diameter is smaller when modeled as a
hard sphere �MSA3� than when modeled as a dumbbell
�BIMSA3�. At high concentration �about 1 mol l−1�, the
MSA3 overestimates the free energy, because the excluded
volume repulsion becomes too important for the pairs to be
represented as hard spheres. The BIMSA3 model is the clos-
est to the MC simulation results. It is worth noting that even
at the lowest concentration considered, the fraction of pairs
�shown in the insert of Fig. 4�, although less then 5%, has a
non-negligible effect on the thermodynamics of the system.

This procedure also provides an accurate description of
the structure over the whole range of concentrations. A de-
velopment similar to the one that leads to Eq. �1� derives the
average unpaired RDF from the corresponding paired quan-
tities
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FIG. 5. �Color online� RDF obtained from MC simulations �dia-
mond�, BIMSA3 �solid line�, and MSA-fit �dot dashed� at two
concentrations.
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FIG. 3. Effective pair potentials derived for MSA3 and
BIMSA3. �a� Cation anion �dashed line: without taking the pair into
account�, �b� pair cation, �c� pair anion, and �d� pair pair. The inter-

nal potential of the pair �Ṽint�r� is set equal to �Vij
eff�r� for distances

less than 4 Å.
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�i� jgij�k� = �̃3w̃�k��1 − �ij� + �̃i�̃ jg̃ij�k�

+ �̃3w̃�k/2���̃ig̃3i + �̃ jg̃3j��k� + �̃3
2�w̃�k/2��2g̃33�k� .

�5�

The RDF obtained within BIMSA3 are compared with the
MC and MSA-fit results in Fig. 5. Our BIMSA3 model ac-
counts for the strong molecular peak of the CIP and provides
the correct distances of minimal approach; whereas the naive
MSA-fit procedure ignores the former and gives poor esti-
mates for the latter. At larger separations, the BIMSA3 re-
sults do not reproduce the oscillations observed in the MC
simulations, but the corresponding energy oscillations in the
effective potentials are less than kBT. In addition, the pertur-
bation term of the BIMSA3 appears to be negligible com-
pared to the reference term for concentrations less than
1 mol l−1. The perturbation can then be omitted to obtain a
fully analytical theory, determined by the hard sphere diam-
eters and the pair fraction given by LPT; with the free energy
and the RDF given in terms of the BIMSA and MSA solu-
tions, as described above. While the procedure we have fol-

lowed uses two different approximations for the reference
and perturbation terms �MSA vs BIMSA�, these are known
to be accurate for the systems under consideration and do not
appear to be inconsistent with each other.

To conclude, we have combined MD simulations with
LPT to construct simple models of electrolyte solutions
which account for the molecular nature of the solvent. The
final result is fully analytical and it yields the thermodynamic
and structural properties of the solution, in agreement with
the original molecular description. The methodology can in
principle be adapted to any molecular description of the sys-
tem �MD simulations involving interaction potentials ac-
counting for polarization effects or Car-Parrinello MD simu-
lations for example� as long as the ion-ion RDF are known.
It can also be generalized to study interfaces. The method
appears to be a promising approach toward the description of
the specific effects of ions, especially for complex systems
whose modeling requires an analytic solution.

The authors are particularly grateful to Werner Kunz for
fruitful discussions.
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