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A small set of core transcription factors (TFs) dominates control of the gene expression program in embryonic stem

cells and other well-studied cellular models. These core TFs collectively regulate their own gene expression, thus

forming an interconnected auto-regulatory loop that can be considered the core transcriptional regulatory circuitry

(CRC) for that cell type. There is limited knowledge of core TFs, and thus models of core regulatory circuitry, for

most cell types. We recently discovered that genes encoding known core TFs forming CRCs are driven by super-enhancers,

which provides an opportunity to systematically predict CRCs in poorly studied cell types through super-enhancer

mapping. Here, we use super-enhancer maps to generate CRC models for 75 human cell and tissue types. These core cir-

cuitry models should prove valuable for further investigating cell-type–specific transcriptional regulation in healthy and

diseased cells.

[Supplemental material is available for this article.]

The pathways involved in complex biological processes such as

metabolism have been mapped through the efforts of many labo-

ratories over many years and have proven exceptionally valuable

for basic and applied science (Krebs 1940; Kanehisa et al. 2012).

Although we knowmuch about the general mechanisms involved

in control of gene transcription (Roeder 2005; Rajapakse et al.

2009; Bonasio et al. 2010; Conaway and Conaway 2011; Noversh-

tern et al. 2011; Adelman and Lis 2012; Peter et al. 2012; Spitz and

Furlong 2012; Zhou et al. 2012; de Wit et al. 2013; Gifford et al.

2013; Kumar et al. 2014; Levine et al. 2014; Ziller et al. 2014;

Dixon et al. 2015; Tsankov et al. 2015), the complex pathways in-

volved in the control of each cell’s gene expression program have

yet to be mapped in most cells. For some cell types, it is evident

that core transcription factors (TFs) regulate their own genes and

many others, forming the central core of a definable pathway.

For most mammalian cell types, however, we have limited under-

standing of these pathways. These gene control pathways are im-

portant to decipher because they have the potential to define

cell identity, enhance cellular reprogramming for regenerative

medicine, and improve our understanding of transcriptional dys-

regulation in disease.

There is considerable evidence that the control of cell-type–

specific gene expression programs in mammals is dominated by

a small number of the many hundreds of TFs that are expressed

in each cell type (Graf and Enver 2009; Buganim et al. 2013; Lee

and Young 2013; Morris and Daley 2013). These core TFs are gen-

erally expressed in a cell-type–specific or lineage-specific manner

and can reprogram cells from one cell type to another. In embry-

onic stem cells (ESCs), where transcriptional control has been

most extensively studied, the core TFs POU5F1 (also known as

OCT4), SOX2, and NANOG have been shown to be essential for

establishment or maintenance of ESC identity and are among

the factors capable of reprogramming cells into ESC-like induced

pluripotent stem cells (iPSCs) (Young 2011). These core TFs bind

to their own genes and those of the other core TFs, forming an

interconnected auto-regulatory loop (Boyer et al. 2005), a property

that is shared by the core TFs of other cell types (Odom et al. 2004,

2006; Sanda et al. 2012). The core TFs and the interconnected auto-

regulatory loop they form have been termed “core regulatory cir-

cuitry” (CRC) (Boyer et al. 2005). Because the ESC core TFs also

bind to a large portion of the genes that are expressed in an ESC-

specific manner, we can posit that regulatory information flows

from the CRC to this key portion of the cell’s gene expression pro-

gram, thus forming a map of information flow from CRC to cell-

type–specific genes (Young 2011).

With limited knowledge of CRCs in most cell types, attempts

tomap the control of gene expression programs have thus far been

dominated by efforts to integrate global information regarding

gene-gene, protein-protein, gene-protein, and regulatory element

interactions nested in these networks (Lefebvre et al. 2010;

Gerstein et al. 2012; Neph et al. 2012; Yosef et al. 2013; Kemmeren

et al. 2014; Rolland et al. 2014). These global studies have provided

foundational resources and important insights into basic princi-

ples governing transcriptional regulatory networks. These include

the identification of recurring motifs of regulatory interactions

(Lee et al. 2002; Alon 2007; Davidson 2010; Stergachis et al.

2014) and of groups of genes that participate in common biologi-

cal processes (Bar-Joseph et al. 2003; Dutkowski et al. 2013).
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However, these network maps do not generally capture the notion

that key control information flows from a small number of core

TFs. Recent studies have revealed that core TFs bind clusters of en-

hancers called super-enhancers and that the super-enhancer (SE)-

associated genes include those encoding the core TFs themselves

(Hnisz et al. 2013, 2015; Whyte et al. 2013). The ability to identify

super-enhancer-associated TF genes, and thus candidate core TFs,

should permitmodeling of CRCs for all human cell types forwhich

super-enhancer data are available.

Here we describe a method to reconstruct cell-type–specific

CRCs based on the properties of core TFs identified in ESCs and

several other cell types: They are encoded by genes whose expres-

sion is driven by super-enhancers, and they bind to each other’s

super-enhancers in an interconnected auto-regulatory loop.We re-

port CRC models for 75 cell and tissue types throughout the hu-

man body. These models recapitulate and expand on previously

described CRCs for well-studied cell types and provide core circuit-

ry models for a broad range of human cell types that can serve as a

first step to further mapping of cell-type–specific gene expression

control pathways.

Results

Models of core regulatory circuitry

To construct core regulatory circuitry

models of human cell types, we used

the logic outlined in Figure 1. Detailed

studies of the transcriptional control of

cell identity in ESCs and a few other cell

types have shown that core TFs have

three properties. Core TFs are encoded

by genes associated with super-enhanc-

ers (Hnisz et al. 2013; Whyte et al.

2013), bind the SEs associated with their

own gene (Whyte et al. 2013), and form

fully interconnected auto-regulatory

loops with the other core TFs by binding

enhancers together with the other core

TFs (Fig. 1A; Odom et al. 2004, 2006;

Boyer et al. 2005; Sanda et al. 2012).

Candidate core TFs were predicted for

multiple cell and tissue types using these

three criteria, as described below.

For 75 human cell and tissue types,

we first identified the set of active genes

that encode TFs that are proximal to SEs

(Fig. 1B, step 1). SEs have high levels of

signal density for H3K27ac and were

identified from H3K27ac ChIP-seq data

compiled from multiple laboratories

(Supplemental Table S1), as previously

described (Hnisz et al. 2013). Recent

chromatin conformation data indicate

that SEs generally interact with the prox-

imal active gene (Dowen et al. 2014), so

the proximal active gene, identified

through H3K27ac density at its TSS (see

Methods), was assigned as the regulatory

target of each SE.

Previous studies have shown that

core TFs bind their own super-enhancers

(Hnisz et al. 2013; Whyte et al. 2013), so we next identified the set

of SE-assigned TF genes whose products are predicted to bind their

own SEs (Fig. 1B, step 2). Binding was predicted by searching SE

constituents for DNA sequence motifs corresponding to the TF

product of the gene assigned to that SE. We compiled DNA-bind-

ing sequence motifs for 695 TFs from multiple published sources

(Supplemental Table S2; Berger et al. 2008; Wei et al. 2010;

Robasky and Bulyk 2011; Jolma et al. 2013; Mathelier et al. 2014)

and scanned SE constituent sequences for the presence of the TF

binding motifs, using the FIMO software package from the

MEME suite (Grant et al. 2011). SE constituents were used for the

motif search, as TF binding distributions peak on the SE constitu-

ent sequences defined by H3K27ac ChIP-seq peak signal (Fig. 1C).

Furthermore, the presence of multiple DNA sequence motifs at SE

constituents is predictive of the binding of a TF, whereas this is not

the case, on average, across the genome (Fig. 1D). This confirms

previous observations of better TF binding prediction in open

chromatin sequences compared to other regions of the genome

(Pique-Regi et al. 2011; Zhong et al. 2013). We considered the

SE-assigned TF genes that were predicted to bind their own SE as
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Figure 1. A method to build core regulatory circuitry. (A) Graphical description of the method used
to create core regulatory circuitry (CRC) models. 1. Identification of SE-assigned expressed TFs.
2. Identification of the TFs that are predicted to bind their own SE, considered as auto-regulated.
3. CRCs are assembled as fully interconnected loops of auto-regulated TFs. (B) Cartoon showing:
1. TF-assigned SE constituents defined by H3K27ac ChIP-seq peak signals; 2. TFs having at least three
DNA-binding sequence motif instances in their SE constituents are considered auto-regulated; 3. TFs
with SEs having at least three DNA-binding sequence motif instances for each of the other predicted
auto-regulated TFs together form an interconnected auto-regulatory loop. (C) Metagenes for the
ChIP-seq signal for H3K27ac (left) and for the average ChIP-seq signal for POU5F1, SOX2, and
NANOG (right) in H1 hESCs in the region ±5 kb around the center of the SE constituents. (D) Average
percentage of DNA-binding motifs that are actually bound by the TFs from ChIP-seq data for POU5F1,
SOX2, and NANOG in H1 hESCs, in either SE constituents or sets of random genomic sequences of
the same size. (E) Venn diagram showing the average numbers, across 84 samples, of: 1. TFs having mo-
tifs that are expressed (445 TFs); 2. TFs having motifs that are expressed and assigned to a SE (61 TFs);
3. TFs having motifs that are expressed and assigned to a SE and that are predicted to bind their own SE
(39 TFs); 4. TFs that are part of the CRC model (15 TFs).
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auto-regulated, as prior evidence in ESCs indicates that such genes

do regulate their own expression (Tomioka et al. 2002; Okumura-

Nakanishi et al. 2005; Navarro et al. 2012).

To identify the SE-assigned TFs able to form an interconnec-

ted auto-regulatory loop by binding to each other’s super-enhanc-

ers, we next identified, from the set of TFs considered auto-

regulated, the TFs that are predicted to bind the SE of the other

auto-regulated TFs, through a motif analysis in SE constituent

sequences (Fig. 1B, step 3).We assembled interconnected auto-reg-

ulatory loops for each cell or tissue type (Fig. 1A, step 3) and select-

ed the loop containing the set of TFsmost often represented across

the set of loops as the representative model of CRC (Supplemental

Fig. S1). On average, across 75 cell types, 15% of the genes consid-

ered expressed and encoding TFs were assigned to an SE, 9% were

predicted to be auto-regulated, and 3% were identified as candi-

date core TFs (Fig. 1E; Supplemental Table S3).

hESC core regulatory circuitry

Themodel of CRC predicted for human H1 ESCs (Fig. 2A, left pan-

el) indicates that the approach described here captures the previ-

ously described core TFs and CRC for ESCs and suggests that

additional TFs contribute to this core circuitry. The H1 ESC CRC

contains three factors—POU5F1, SOX2, and NANOG—that are

considered the foundation of the CRC in ESCs (Jaenisch and

Young 2008; Young 2011). All three factors are essential for the

pluripotent state (Nichols et al. 1998; Niwa et al. 2000; Avilion

et al. 2003; Chambers et al. 2003; Mitsui et al. 2003; Masui et al.

2007; Silva et al. 2009; Theunissen et al. 2011), regulate their

own genes and those encoding the other two factors (Tomioka

et al. 2002; Catena et al. 2004; Boyer et al. 2005; Chew et al.

2005; Kuroda et al. 2005; Okumura-Nakanishi et al. 2005; Rodda

et al. 2005; Loh et al. 2006), and can be used to reprogram fibro-

blasts to an induced pluripotent state (Takahashi and Yamanaka

2006; Yu et al. 2007).

The results of the algorithmwedescribe suggest that seven ad-

ditional TFs contribute to the ESCCRC (Fig. 2A, left panel).Most of

these factors have previously been implicated in control of the

stem cell state, and there is ChIP-seq evidence indicating that their

super-enhancers are bound by POU5F1, SOX2, and NANOG (Fig.

2B). FOXO1 and ZIC3 have previously been shown to be essential

for the maintenance of pluripotency (Lim et al. 2007; Zhang et al.

2011; Declercq et al. 2013). In hESCs, FOXO1 regulates POU5F1

and SOX2 expression (Zhang et al. 2011). ZIC3 directly activates

Nanog expression inmouse ESCs (mESCs) and can contribute to re-

programming of human fibroblasts into an induced pluripotent

state (Lim et al. 2007; Declercq et al. 2013). NR5A1 (also known

as SF1) and RARG can influence the pluripotent state (Guo and

Smith 2010;Wang et al. 2011), and both bind to regulatory regions

of the POU5F1 gene and regulate its expression (Barnea and

Bergman 2000; Yang et al. 2007; Guo and Smith 2010). The other

three TFs—MYB, RORA, and SOX21—are best known for their

roles in other stem cells. MYB and RORA have roles in establishing

or maintaining self-renewing populations of hematopoietic cells

(White and Weston 2000; Lieu and Reddy 2009; Cheasley et al.

2011; Zuber et al. 2011; Doulatov et al. 2013), while SOX21 is

involved in regulating pluripotency in intestinal stem cells, where

its expression is influenced by SOX2 (Kuzmichev et al. 2012).

Thus, there are multiple lines of evidence, summarized in Table

1, that support the inclusion of POU5F1, SOX2, NANOG,

FOXO1, ZIC3, NR5A1, RARG, MYB, RORA, and SOX21 in a model

of hESC CRC.

Figure 2. H1 ESC core and extended regulatory circuitry. (A) (Left) CRC
model for H1 human embryonic stem cells. The role of each TF in ESC
pluripotency and self-renewal is listed in Table 1. (Right) H1 hESC extend-
ed regulatory circuit. Examples of SE-assigned genes that are predicted to
be bound by each of the TFs in the CRC. The role of these factors in ESC
pluripotency and self-renewal is listed in Supplemental Table S5. (B) ChIP-
seq data for H3K27ac, POU5F1, SOX2, and NANOG showing binding of
the TFs to each of the SEs of the SE-assigned TFs in the hESC CRC. SE ge-
nomic locations are depicted by red lines on top of the tracks. (C) Pie
charts showing the percentages of SE-assigned genes (top row) or all ex-
pressed genes (bottom row) whose regulatory sequences are predicted to
be bound by increasing numbers of hESC candidate core TFs. (D)
Diagram showing putative transcriptional regulation of miR-371a on
SOX2 expression in hESCs.

Human core transcriptional regulatory circuitries
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In ESCs, loss of cell identity can be assayed by measuring

POU5F1 protein levels, where reduced levels are associated with

loss of pluripotency, and by counting cell nuclei, where reduced

numbers can reflect loss of self-renewal (Chia et al. 2010; Kagey

et al. 2010). To test whether the candidate core TFs play roles in

control of ESC identity, we analyzed POU5F1 expression changes

and cell nuclei number changes after depletion of each of these

TFs using data from a genome-wide siRNA screen in H1 hESCs

(Chia et al. 2010). These data confirm that the candidate core

TFs contribute to pluripotency and/or survival and proliferation

of hESCs (Supplemental Fig. S2A). Gene-set enrichment analysis

(GSEA) of the set of candidate core TFs shows these factors are en-

coded by genes that are among thosewhose knock-downmost im-

pacts POU5F1 expression and cell nuclei count (Supplemental Fig.

S2B,C). These functional assays in H1 hESCs thus provide support-

ing evidence for a functional role of the candidate core TFs in con-

trol of hESC identity.

Extended hESC regulatory circuitry

POU5F1, SOX2, and NANOG contribute to the formation of SEs at

hundreds of active ESC genes that play prominent roles in cell

identity (Whyte et al. 2013), suggesting that a simple extended

model of regulatory information can be constructed to include

these additional SE-assigned genes downstream from the core

TFs. We identified the SE-assigned genes whose enhancers and

promoters are predicted to be bound by the candidate core TFs

in order to construct amodel of extendedhESC regulatory circuitry

(Fig. 2A, right panel). Analysis shows the regulatory sequences of

the SE-assigned genes are predicted to be bound by a greater num-

ber of candidate core TFs than the regulatory sequences of all ex-

pressed genes (Fig. 2C). Sixty-eight percent of the SE-assigned

genes are predicted to be bound by each of the core TFs. Experi-

mental evidence (Kunarso et al. 2010) shows that POU5F1 contrib-

utes to the regulation of at least 30% (z-test P-value <2.2 × 10−16) of

Table 1. Role of hESC candidate core TFs in ESC identity and in the regulation of other candidate core TF expression

TF Role in ESC identity Refs. Regulation of other core TFs Refs.

POU5F1 Required for ESC pluripotent
state. Can be used to
reprogram fibroblasts into
iPSCs.

Nichols et al. 1998; Niwa
et al. 2000; Takahashi
and Yamanaka 2006; Yu
et al. 2007

Binds to the super-enhancers
associated with POU5F1, SOX2
and NANOG in H1 ESCs and
activates their expression.

Tomioka et al. 2002; Catena et al.
2004; Boyer et al. 2005; Chew
et al. 2005; Kuroda et al. 2005;
Okumura-Nakanishi et al. 2005;
Loh et al. 2006; Kunarso et al.
2010; Hawkins et al. 2011

SOX2 Required for ESC pluripotent
state. Can be used to
reprogram fibroblasts into
iPSCs.

Avilion et al. 2003;
Takahashi and
Yamanaka 2006; Masui
et al. 2007; Yu et al.
2007

Binds to the super-enhancers
associated with POU5F1, SOX2
and NANOG in H1 ESCs and
activates their expression.

Tomioka et al. 2002; Boyer et al.
2005; Chew et al. 2005; Kuroda
et al. 2005; Okumura-Nakanishi
et al. 2005; Rodda et al. 2005;
Loh et al. 2006; Kunarso et al.
2010; Hawkins et al. 2011

NANOG Required for ESC pluripotent
state. Can be used to
reprogram fibroblasts into
iPSCs.

Chambers et al. 2003;
Mitsui et al. 2003; Yu
et al. 2007; Silva et al.
2009; Theunissen et al.
2011

Binds to the super-enhancers
associated with POU5F1, SOX2
and NANOG in H1 ESCs and
activates their expression.

Boyer et al. 2005; Loh et al. 2006;
Kunarso et al. 2010; Hawkins
et al. 2011; Navarro et al. 2012

FOXO1 Required for maintenance of
pluripotency in hESCs.

Zhang et al. 2011 Binds to POU5F1 and SOX2 in hESCs
and activates their expression. Its
associated super-enhancer is
bound by POU5F1, SOX2 and
NANOG in H1 hESCs.

Kunarso et al. 2010; Hawkins et al.
2011; Zhang et al. 2011

ZIC3 Required for maintenance of
pluripotency in mESCs.
Contributes to reprogram
fibroblasts into iPSCs.

Lim et al. 2007; Declercq
et al. 2013

Binds to Nanog and activates its
expression in mESC. Its expression
is directly regulated by POU5F1,
SOX2 and NANOG in mESCs. Its
super-enhancer is bound by
POU5F1, SOX2 and NANOG in
H1 hESCs.

Lim et al. 2007; Kunarso et al.
2010; Hawkins et al. 2011;
Declercq et al. 2013

NR5A1 Can influence ESC pluripotent
state.

Guo and Smith 2010 Binds to POU5F1 and regulates its
expression. Its super-enhancer is
bound by POU5F1, SOX2 and
NANOG in H1 hESCs.

Barnea and Bergman 2000; Yang
et al. 2007; Guo and Smith
2010; Kunarso et al. 2010;
Hawkins et al. 2011

RARG Accelerates reprogramming of
mouse embryonic fibroblasts
to iPSCs.

Wang et al. 2011 Its associated super-enhancer is
bound by POU5F1 in H1 hESCs.

Kunarso et al. 2010; Hawkins et al.
2011

MYB Involved in establishing or
maintaining self-renewing
populations of
hematopoietic cells.

White and Weston 2000;
Lieu and Reddy 2009;
Cheasley et al. 2011;
Zuber et al. 2011

Binds regions near the NANOG
gene. Its super-enhancer is bound
by POU5F1, SOX2 and NANOG in
H1 hESCs.

Kunarso et al. 2010; Hawkins et al.
2011; Quintana et al. 2011

RORA Involved in self-renewal and
multi-lineages potential of
human hematopoietic cells.

Doulatov et al. 2013 Binds to POU5F1 and regulates its
expression. Its super-enhancer is
bound by POU5F1, SOX2 and
NANOG in H1 hESCs.

Kunarso et al. 2010; Hawkins et al.
2011

SOX21 Regulates pluripotency in
intestinal stem cells. Its
expression is influenced by
SOX2.

Kuzmichev et al. 2012 Its associated super-enhancer is
bound by POU5F1, SOX2 and
NANOG in H1 hESCs.

Kunarso et al. 2010; Hawkins et al.
2011
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these downstream SE-assigned target genes (Supplemental Table

S4). Thus, in the model of extended hESC regulatory circuitry,

the core TFs co-occupy and likely regulate the expression of a large

portion of SE-assigned genes.

The model of extended hESC regulatory circuitry contains

many genes that are known to play prominent roles in ESC bio-

logy (Young 2011). These include the TFs PRDM14, SALL4, and

ZNF281, the chromatin regulators DNMT3B, JARID2, and

SETDB1, and the miRNA miR-371a, all of which have established

roles in pluripotency, self-renewal, or differentiation (detailed

functions and associated references in Supplemental Table S5).

Among the SE-assigned genes, some transcriptional regulators

may create feedforward or feedback loops of regulation with the

genes in the extended CRC to modulate the direct effect of core

TFs. For example, miR-371a, the human homolog of miR-290

which is essential for mESC survival (Medeiros et al. 2011), may

fine-tune SOX2 expression in hESCs (Fig. 2D). SOX2 is identified

as a highly probable target of miR-371a by multiple miRNA target

predictor algorithms, including TargetScan (Lewis et al. 2005),

miRDB (Wong and Wang 2015), and PITA (Kertesz et al. 2007)

(Supplemental Table S6), and recent functional assays in human

cancer cells (Li et al. 2015) support a role formiR-371a in direct reg-

ulation of SOX2 expression. We therefore suggest that the ESC

gene expression program is controlled by a CRC consisting of

ten key TFs that (1) bind the SEs of their own genes and regulate

their own expression, and (2) co-bind the SEs of many other genes

important for ESC identity and regulate their expression.

CRC and extended regulatory circuitry for many cell types

We next developed models of CRC and extended regulatory

circuitry for each of 75 human cell and tissue types (Fig. 3;

Supplemental Table S3). The predicted CRCs contain key tran-

scriptional regulators of cell identity that have been previously

identified (Supplemental Table S7). This includes, for example,

TBX5 in the heart (left ventricle) CRC (Ieda et al. 2010; Song et

al. 2012; Nam et al. 2014), PDX1 in the pancreas CRC (Jonsson

et al. 1994; Horb et al. 2003; Zhou et al. 2008), and SOX2 in the

brain (hippocampus middle) CRC (Graham et al. 2003; Ferri

2004; Sisodiya et al. 2006; Lujan et al. 2012). They also contain

well-characterized proto-oncogenes of cancer subtypes represent-

ed by cancer cell lines, such as ESR1 and GATA3 in MCF-7 breast

cancer cells (Usary et al. 2004; Holst et al. 2007) and TCF7L2 and

SMAD3 in HCT-116 colon cancer cells (Supplemental Fig. S3;

Zhu et al. 1998; Tuupanen et al. 2009). Importantly, our approach

recapitulates the oncogenic circuitry that had been previously

identified in T-cell acute lymphoblastic leukemia (T-ALL) Jurkat

cells (Sanda et al. 2012; Mansour et al. 2014), as one of the CRCs

for Jurkat cells contains the four oncogenic TFs—GATA3, MYB,

RUNX1, and TAL1—previously characterized as core TFs in this

cell line (Fig. 4A). Together, these data indicate that the CRCmod-

els capture much existing knowledge of TFs that play key roles in

control of cell identity across diverse cell and tissue types.

We used experimental data to test the accuracy of our predic-

tions in newly identified CRCs. The binding of the core TFs to the

super-enhancer sequences of the other predicted TFs in the core is

supported by ChIP-seq data for core TFs in T-ALL Jurkat cells

(Fig. 4B). Available ChIP-seq data for TFs in the CRCs for other

cell types were also analyzed and lend functional support for the

predicted binding interactions in the CRCs (Supplemental Fig.

S3). To test the mutual regulation of the TFs in the core, we inves-

tigated the effects of shRNA depletion of MYB, RUNX1, TAL1, and

GATA3 on expression of candidate core TF-encoding genes in

T-ALL Jurkat cells (Fig. 4C). Analysis of the data shows that when

a core TF is depleted, the expression of the TFs in the core is signifi-

cantly down-regulated compared to the set of TFs considered ex-

pressed in the cell. This observation is in agreement with a direct

effect of the core TFs on the expression of the other TFs in the core.

The candidate core TFs identified across a wide range of cell

types show features of core TFs that have previously been described

(Lee and Young 2013). Analysis of the candidate core TFs across

samples shows that these are cell-type–specific or lineage-specific:

34% of the core TFs identified across cell types are predicted to

be core TFs in only one cell type, and 77% are predicted to be

core TFs in less than five cell types (Fig. 5A). DNA-binding domain

structures can provide insight on the functional roles of TFs

(Vaquerizas et al. 2009), sowe compared the frequency of different

DNA-binding domains in candidate core TFs to those in ubiqui-

tously expressed housekeeping TFs. Compared to housekeeping

TFs, candidate core TFs are depleted in the most common type of

TFs—zinc finger domain-containing TFs—and enriched in various

classes of TFs that have been associated with developmental pro-

cesses, such as homeodomain-containing TFs (Fig. 5B). Analysis

of expression data shows that candidate core TFs exhibit higher

transcript levels when compared to the full set of TFs considered

expressed in the cell (Fig. 5C). The candidate core TFs are thus

cell-type– or lineage-specific, enriched for functional association

with development processes, and showa relatively high level of ex-

pression compared to other TFs expressed in the cell.

Analyzing CRCs across cell types, we identified features of

CRCs that should help guide further experiments to better under-

stand the transcriptional pathways involved in development and

disease. We observed that a substantial fraction of candidate core

TFs is expressed in multiple cell types, typically within a lineage.

This feature of shared core TFs within lineages is evident through

hierarchical clustering of candidate core TFs across all data sets

(Fig. 6A). It suggests that specific combinations of TFs may be

required to control complementary aspects of cell identity and

that circuitries may be rewired through ectopic expression of a

few TFs between similar cell types. We also found that, compared

to other TFs, candidate core TFs are found significantly more

often in the set of genes associated with diseases or traits via ge-

nome-wide association studies (GWAS), which suggests their in-

volvement in cell identity and disease development (Fig. 6B;

Supplemental Fig. S4). Previous studies have shown that disease-

associated SNPs are enriched in SEs (Hnisz et al. 2013; Parker

et al. 2013), and there are multiple examples of noncoding dis-

ease-associated SNPs overlapping the super-enhancers associated

with TFs in the CRC (Supplemental Fig. S4).

We generated models of extended regulatory circuitry for

75 cell and tissue types using the same process described above

for the hESC extended regulatory circuitry (Fig. 3). The features

of these extended circuitries are consistent with those observed

for hESCs. On average, across samples, 73% of the SE-assigned

genes are predicted to be co-occupied by each of the candidate

core TFs (Fig. 6C), and these SE-assigned target genes of the CRC

play prominent roles in specific cell identities (Fig. 3).

Discussion

There have been tremendous advances in our understanding of the

general mechanisms involved in control of gene transcription

(Roeder 2005; Rajapakse et al. 2009; Bonasio et al. 2010;

Conaway and Conaway 2011; Novershtern et al. 2011; Adelman
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and Lis 2012; Peter et al. 2012; Spitz and Furlong 2012; Zhou et al.

2012; de Wit et al. 2013; Gifford et al. 2013; Kumar et al. 2014;

Ziller et al. 2014; Dixon et al. 2015; Tsankov et al. 2015), but the

pathways by which a small set of core TFs control gene expression

programs have yet to be mapped in most cells. We describe here

models of core transcriptional regulatory circuitry for 75 human

cell and tissue types. These models show significant percentages

of overlap between the TF-TF binding interactions we predict in

the CRCs and the TF-TF interactions identified in previous high-

throughput analyses, for similar cell types (Supplemental Table

S8; Neph et al. 2012). The CRCmodels we provide include known

core TFs and reprogramming TFs that have been previously identi-

fied in a few cell types but add a large list of candidate cell identity

regulators. These include ubiquitous and signaling TFs that should

work together with the minimal set of TFs required to reprogram

cells from one state to another, to establish and maintain cellular

identity. Thesemodels provide the foundation for future studies of

the transcriptional pathways that control cell identity in these

diverse cell types of the human body.

Key target genes of the CRC were identified in a first step to-

ward understanding how the information flows from the core TFs

to all expressed genes. Across all cell and tissue types, the candidate

core TFs were predicted to preferentially co-occupy SE-assigned

genes, compared to all expressed genes. As SE-assigned genes are

typically key for cell identity (Chapuy et al. 2013; Hnisz et al.

2013; Parker et al. 2013; Whyte et al. 2013; Loft et al. 2015), this

shows that the concerted action of candidate core TFsmay be pref-

erentially targeted to those key cell identity genes. This led us to

envision a model whereby the core TFs promote hallmarks of

cell identities through co-binding the SEs of their own genes and

Figure 4. Experimental validation for T-ALL Jurkat cell circuitry. (A) Core regulatory circuit containing GATA3, MYB, RUNX1, and TAL1 for T-ALL Jurkat
cells. (B) ChIP-seq data for H3K27ac, MYB, RUNX1, TAL1, and GATA3 showing binding of the TF to each of the SEs in the T-ALL Jurkat cell core circuit. SE
genomic locations are depicted by red lines on top of the tracks. (C) Boxplots showing fold change (FC) in expression for Jurkat cells transfected with the
indicated shRNAs vs. control shRNAs, for either the set of candidate core TFs displayed in A (red) or the full set of TFs considered expressed in Jurkat cells
(blue). P-values quantifying the difference between the two sets were calculated using a Wilcoxon test.

Human core transcriptional regulatory circuitries

Genome Research 391
www.genome.org



regulating their own expression, and co-binding the SEs of many

other genes important for cell identity and regulating their ex-

pression. The maps of CRC were thus extended to include the

SE-assigned target genes of the CRC. These maps of extended reg-

ulatory circuitry are founding models for the description of

more comprehensive networks that describe additional levels of

regulation that should include signaling pathways, as super-

enhancers serve as integrating platforms for signaling (Siersbæk

et al. 2014b; Hnisz et al. 2015).

The approach presented here constitutes a first attempt to

map CRCs in a wide range of cell types and harbors several limita-

tions that should be considered when using the data. The analyses

were restricted to TFs that were assigned to a SE in the data set and

for which DNA-bindingmotifs are available. The CRCmodels also

rely on data derived from cell lines,which donot necessarily reflect

the state of cells in their normal niche, or from biopsies, which in-

cludemixed populations of cell types. Another consideration is the

challenge of comprehensive experimental validation of the cir-

cuits, which would in principle require knock-out of individual

core TFs and perhaps combinations of these TFs. Ongoing efforts

to characterize DNA-binding motifs for TFs (Jolma et al. 2013;

Mathelier et al. 2014; Hume et al. 2015), taking into account the

influence of their TF partners, and the role of coactivators and

chromatin regulators on their binding to regulatory sequences

(Chen et al. 2008; Yan et al. 2013; Siersbæk et al. 2014a; Schmidt

et al. 2015), and further experimental testing should help refine

the description of the CRC models we provide here.

CRC models should provide guidance for reprogramming

studies andmay prove valuable for better understanding transcrip-

tional dysregulation in disease. Candidate core TFs are enriched in

the genes associated with multiple diseases or traits through

GWAS, supporting their role in disease development. Further-

more, SEs are hotspots of noncoding disease-associated sequence

variants (Maurano et al. 2012; Hnisz et al. 2013; Parker et al.

2013; Corradin et al. 2014; Farh et al. 2015). Some of these variants

maymodify the binding sites for core TFs, providing amechanism

for disease-associated transcriptional misregulation. This is the

case, for example, of TFswe predict in CRCs such as TAL1 in T cells,

TBX5 in cardiac cells, TCF7L2 in colorectal cancer cells, and ESR1

and GATA3 in breast cancer cells (Tuupanen et al. 2009; Cowper-

Sal lari et al. 2012; Sur et al. 2012; Van den Boogaard et al. 2012;

Bauer et al. 2013; French et al. 2013). Extended regulatory circuits

integrating candidate core TFs and their SE-assigned target genes

for many human cell types may thus help better understand dis-

ease-associated genetic variation, leading someday to circuitry-di-

rected therapeutic interventions.

Methods

ChIP-seq data

H3K27ac ChIP-seq data were either downloaded fromGEO (acces-
sion numbers in Supplemental Table S1) or generously shared by
the NIH Roadmap Epigenome project (Bernstein et al. 2010).
ChIP-seq data for H3K27ac (Kwiatkowski et al. 2014), MYB
(Mansour et al. 2014) and TAL1 (Palii et al. 2011) in Jurkat cells
and for POU5F1 (Kunarso et al. 2010), SOX2 (Hawkins et al.
2011), and NANOG (Kunarso et al. 2010) in H1 hESCs were down-
loaded from GEO. ChIP-seq data for CREB1, EBF1, ELF1, ETS1,
PAX5, and POU2F2 in GM12878 lymphoblastoid B cells, for
TCF7L2 in HCT-116 colon cancer cell line, and for ESR1 in T-
47D breast cancer cell line were downloaded from ENCODE
(Gertz et al. 2013).

Figure 5. Features of candidate core TFs. (A) Percentages of TFs identi-
fied as candidate core TFs in a given number of cell or tissue types. The
number of cell or tissue types in which a TF is identified as a candidate
core TF is displayed with boxes on the right. A representative sample of
each cell and tissue type is used when multiple samples from the same
cell or tissue type are present in the data set. (B) DNA-binding domains
that are significantly differentially represented in the set of candidate
core TFs and housekeeping TFs. (C ) Transcript levels for the set of candi-
date core TFs and for the full set of TFs considered expressed in each sam-
ple. P-values quantifying the difference between the two sets were
calculated using a Wilcoxon test.
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CRC mapper

The algorithm we developed to identify
core regulatory circuitry uses as input
H3K27ac ChIP-seq reads aligned to the
human genome, together with the
ChIP-seq peaks identified by MACS
(Zhang et al. 2008) and the enhancer ta-
ble output from ROSE (https://bitbucket.
org/young_com putation/rose) (Lovén
et al. 2013). SEs identified with ROSE are
assigned to the closest transcript predict-
ed to be expressed. For each SE-assigned
TF, a motif analysis is carried out on the
SE constituent sequences assigned to
that TF using FIMO (Find Individual
Motif Occurrences) from the MEME
(Multiple Em for Motif Elicitation) suite
(Grant et al. 2011). A database of DNA se-
quence motifs for 695 TFs was compiled
from the TRANSFAC database of motifs
(Matys et al. 2006), and from the MEME
suite (January 23rd 2014 update), for the
following collections: JASPAR CORE
2014 vertebrates (Mathelier et al. 2014),
Jolma2013(Jolmaet al.2013),Homeodo-
mains (Berger et al. 2008), mouse
UniPROBE (Robasky and Bulyk 2011),
and mouse and human ETS factors (Wei
et al. 2010). For the motif search, the
searchspaceinSEs is restricted toextended
SE constituents, as these are the regions
that capture most of the TF binding in
SEs (Fig. 1C). SE constituent DNA se-
quences are extracted, extended on each
side (500 bp by default), and used formo-
tif search with FIMO with a P-value
threshold of 1 × 10−4. SE-assigned TFs
whose set of constituents containsat least
three DNA sequence motif instances for
their own protein products are defined
as auto-regulated TFs. From the set of
auto-regulated TFs, the TFs predicted to
bind to the SEs of other auto-regulated
TFs, using the same criteria as described
above, are identified. All possible fully
interconnected auto-regulatory loops of
TFs are then constructed through recur-
sive identification. When multiple pos-
sibilities of fully interconnected auto-
regulatory loops are found, the most rep-
resentative fully interconnectedauto-reg-
ulatory loopofTFs is selectedas themodel
of CRC. This loop is defined as the loop
containing the TFs that occur the most
frequently across all possible loops. See
Supplemental Methods for details.

Data access

ChIP-seq data for RUNX1 and GATA3 in
Jurkat cells from this study have been
submitted to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) under accession number

Figure 6. Properties of CRCs of multiple human cell and tissue types. (A) CRCs cluster according to cell
type similarity. Hierarchical clustering of candidate core TFs for 80 human samples. The matrix of corre-
lation based on Pearson coefficients identifies specific clusters for hematopoietic stem cells (HSC), blood
cancer cells, blood cells, epithelial normal and cancer cells, cardio-pulmonary system cells, upper gastro-
intestinal system, and brain cells. Correlation values range from −1 to 1 and are colored from blue to red
according to the color scale. (B) Radar plot showing the enrichment of candidate core TFs, compared to
noncore TFs, in GWAS list of genes for multiple diseases or traits. P-values were calculated using a z-test,
and 1/P-values are plotted for the diseases or traits that showed an enrichment P-value <5 × 10−2 of can-
didate core TFs. (C) Pie charts showing the average percentages for all samples of SE-assigned genes (top
row) or of all expressed genes (bottom row) whose regulatory sequences are predicted to be co-occupied
by more than half or by all the TFs in the CRC.
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GSE76181. The CRC Mapper program is implemented in Python.
It can be found in the Supplemental Material and is freely avail-
able for download at https://bitbucket.org/young_computation/
crcmapper.
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