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Several models of information integration are developed and analyzed within the context of a proto-

typical pattern-recognition task. The central concerns are whether the models prescribe maximally

efficient (optimal) integration and to what extent the models are psychologically valid. Evaluation,

integration, and decision processes are specified for each model. Important features are whether

evaluation is noisy, whether integration follows Bayes's theorem, and whether decision consists of a

criterion rule or a relative goodness rule. Simulations of the models and predictions of the results

by the same models are carried out to provide a measure of identifiability or the extent to which the

models can be distinguished from one another. The models are also contrasted against empirical

results from tasks with 2 and 4 response alternatives and with graded responses.

Conceptual Framework

There is a growing consensus that behavior reflects the influ-

ence of multiple sources of information. Auditory and visual

perception, reading and speech perception, and decision mak-

ing and judgment are modulated by a wide variety of influences

(Anderson, 1981; Bruno & Cutting, 1988; Falmagne, 1985;

Massaro, 1987a, 1988a; Oden, 1981; Perkell & Klatt, 1986;

Welch & Warren, 1980). Until only recently, psychological inquiry

was aimed at studying the relationship between behavior and a given

single source independently of other sources of information. The

common strategy was to eliminate or to hold constant all potential

sources of information except the source of interest. This research

strategy was most apparent in psychophysics but was also pervasive

in perception, memory, and learning.

The single-factor experiment was the dominant mode of in-

vestigation when one-dimensional functional relationships

were the primary goal. Trying to understand behavior when

multiple sources of information are available poses additional

problems. Factorial experiments seem to be the most promising

approach, and we have witnessed immense methodological and

theoretical progress in this domain. Specifically, the additive-

factor method developed by Sternberg (1969) and Anderson's

(1970, 1981) functional measurement are milestones that will

not be easily surpassed. Without these methodologies, there

would have been a plethora of idle psychologists in the last cou-

ple of decades. True, Fisher (1935) bequeathed the statistical

tools for factorial designs long before Anderson, Sternberg, and
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other scientists exploited them. However, Anderson and Stern-

berg contributed paradigms for blending Fisher's methodology

and psychological theory—something that had not been done

previously. Although this blending is not without fault (Giger-

enzer & Murray, 1987), the positive contributions of the re-

search paradigms cannot be questioned (Townsend, 1984).

The magnitude of the problem of multiple sources of informa-

tion compared with understanding how a single source might have

an influence is uncertain. A comparable problem is illustrated by

the considerable research effort that has been directed at the ques-

tion of threshold versus continuous-state sensory systems and the

difficulty in deciding between these two alternatives (Krantz, 1969;

Massaro, 1969; Swets, 1961; Swets, Tanner, & Birdsall, 1961;

Wickelgren, 1968). Given this experience, a justified fear is that

the problem of how multiple sources of information influence be-

havior will increase in difficulty in some exponential manner. A

hope is that the manipulation of multiple sources of information

will also provide more experimental power than a single-factor de-

sign and, eventually, make the task easier.

In this article, we present and compare various existing

models of how multiple sources of information influence per-

ception and decision. The question we address is how individu-

als process two or more sources of information that may agree

with one another or conflict to various degrees. The central con-

cerns are the processes assumed by the models and resulting

differences in their predictions. Our goal is to identify the simi-

larities and differences among the models that are often Over-

looked in the literature. We also address the optimality proper-

ties and empirical validity of the models. Although most of our

examples involve a prototypical pattern-recognition task and

the application of extant models to this task, our analysis can

be applied to any domain involving information integration.

Each model is described and implemented, and similarities and

differences among the models are noted for various types of ex-

periments. We begin our discussion with a description of our

prototypical task and a taxonomy of experiments.

Taxonomy of Experiments

We describe different types of experimental tasks and often

use specific examples to facilitate the presentation. Hence, we

225



226 DOMINIC W. MASSARO AND DANIEL FRIEDMAN

Gr & & G • & & &

& & & & & a &
& G G G G G 0
G G G G G 0 0
L> U L>

G C C G G G Q

U U U U

Figure 1. Forty-nine test letters, varying between G and Q, created by

varying the obliqueness of the straight line (row factor) and the closed-

ness of the gap in the oval (column factor). (After Massaro & Hary,

1986.)

begin by describing a prototypical pattern-recognition task of

manipulating two sources of information at several levels. Two

categories, G and Q, are chosen as the alternatives in a letter-

processing task (Massaro & Hary, 1986). A factorial design is

used to generate test stimuli representing all combinations of

the two sources of information. A range of letters between G and

Q is created when the obliqueness of a line and the closedness of

the gap in the letter Q are varied across seven levels each (Figure

1). Seven levels of closedness are made by removing 0, 2, 3, 4,

7, 9, and 10 points from the right side of the oval of the capital

letter Q. Similarly, the obliqueness of the line varies between the

horizontal and 11,21, 29, 38, 51, and 61 degrees of obliqueness

measured from the horizontal. The resultant 49 test letters

make up the factorial design. The factorial design can be ex-

panded to allow presentation of each source of information

without the presence of the other source of information. In this

expanded design (not shown in Figure 1), the separate charac-

teristics of each of the two sources of information are presented

in isolation. Seven test letters are composed of just the oval, and

seven test letters are composed of just the straight line. The test

items are presented repeatedly to subjects in randomized order

during a series of test trials. Two dependent measures are the

identification judgments and the reaction times. In addition to

experiments requiring categorical judgments, rating tasks can

also be carried out in which subjects are asked to rate each letter

along a continuum, such as that between G and Q.

We now introduce some definitions and distinctions that are

useful for the developments in the article. A set of diiferent ex-

perimental designs is illustrated in Figure 2, A single-factor de-

sign involves the manipulation of one independent variable. For

example, only the closedness of the test letters might be varied,

with the obliqueness of the straight line and all other physical

properties held constant. A factorial design involves the orthog-

onal manipulation of two or more independent variables; each

level of one independent variable is paired with every level of

the other independent variable. In the prototypical example,

this would involve using the set of 49 test letters shown in Figure

1. An expanded factorial design adds conditions in which each

level of each independent variable is presented in isolation. The

expanded conditions involve the variation of one source of in-

formation without the presence of other sources of information.

In the example, the closedness of the gap in the oval of the test

letter would be varied without the presence of the straight line.

Analogously, the straight line would be varied without the pres-

ence of the oval. There are two types of single-factor, factorial,

and expanded factorial designs. A categorical design involves

just the endpoint stimuli of each of the independent variables.

For example, the letters in the four corners in Figure 1 would

make up a categorical factorial design. A graded design involves

intermediate stimuli between the endpoints, as with the test let-

ters in Figure 1. When the independent variables are also pre-

sented in isolation, all 63 of the test letters would constitute a

graded expanded factorial design. The graded design is ideal for

addressing the integration question because the exact nature

of the integration can be determined only when the sources of

information are varied to span the complete range of the inte-

gration function.

These experimental designs can be used with several response

modes. Categorical responses involve a forced choice among a

set of stimulus categories. In our example, categorical responses

would involve identifying each test stimulus as Q or G or as one

of some other set of letter categories. For example, it would not

be unreasonable to give subjects the four letter alternatives cor-

responding to the stimuli in the corners of Figure 1. Townsend,

Hu, and Kadlec (I988) suggested the term feature complete fac-

torial design for an experiment using the four stimuli at the end-

points in Figure 1 along with the four corresponding response

alternatives. More generally, the number of response alterna-

tives could be as small as two or as large as the number of unique

test stimuli. With respect to the test letters in Figure 1, Nosofsky

(1986) and others have described the task with two response

alternatives as categorization and the task with 49 alternatives

as identification. For symmetrical designs that have the same

number of levels of each independent variable, the number of

categorical responses can be 2, or 2" where n is the number of

independent variables, or k" where k is the number of levels

of each independent variable, or in fact any value between 2

and A:".

Number of Independent Variables (IVs)?

ONE/ \TWOORMORE

Single-Factor Number of Levels?

TWO/ \GREATERTHANTWO

Categorical-Factorial IVs Presented in Isolation?

NO/ \YES

Graded-Factorial Expanded Graded-Factorial

Figure 2. A taxonomy of different experimental designs illustrating

some important distinctions among different types of pattern-recogni-

tion tasks.
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Graded responses permit subjects to indicate the degree,

probability, or confidence that the test stimulus matches one of

the response categories. For example, subjects could be asked

to rate on a scale from 0 to 100 the degree to which the test

letter matches G as opposed to Q, where 0 is a perfect G and

100 is a perfect Q. Similarly, the subject might be given a 50-

mm line between the Q and G alternatives and asked to mark

the line corresponding to their interpretation of the test letter.

Tasks with graded responses have been called rating tasks (e.g.,

Kornbrot, 1978). Graded-response alternatives could be multi-

dimensional in principle, but almost all previous tasks have

been limited to one dimension.

Note that pattern recognition tasks, such as the G-Q experi-

ment, go beyond the domain typically addressed by recognition

or decision models. In previous work, a normatively correct an-

swer could be computed from the stimulus information that is

given to the subject. For example, the subject is shown two urns

of balls and told the percentage of red and green balls in each

urn. The subject is also told the prior probability (or likelihood)

that each urn of balls would be picked. Finally, the subject is

told the composition of a sample of balls that was obtained in a

given draw from one of the urns. The question asked is, From

which urn was the observed sample taken? A normatively cor-

rect answer can be computed for this urn task, and a subject's

choice can be compared with the normatively correct one. In

the letter-recognition task, on the other hand, there is no objec-

tively correct answer, and subjects are not given feedback. The

subject simply gives his or her perceptual report. Even so, the

graded factorial design permits us to address the question of

how the information is processed and whether this information

processing is optimal (see the Optimality section).

A General Stage Model

Given the prototypical pattern-recognition task, or any other

psychophysical task involving multiple sources of information,

a basic empirical difficulty is that information integration can-

not be observed in isolation because several processes are in-

volved. The tasks described in the previous section appear to

involve evaluation, integration, and decision processes (Self-

ridge, 1959). Evaluation is denned as the analysis of each source

of information by the processing system. It can be thought of

as the transformation of the physical value of each source into

a psychological value. In the G-Q task, for example, evaluation

would give separate representations of the oval and straight-line

components of the test letter. Integration is denned as some

combination of the representations made available by the evalu-

ation process. Decision maps the outcome of integration into a

response. To develop the various models of pattern recognition

and decision making, we give an account of these three stages

of processing between stimulus and response. The three stages

of processing are illustrated in Figure 3. Regardless of the type

of model, each of these stages must be specified to make predic-

tions of performance. A theory must describe how each source

of information is evaluated, whether and how the different

sources are integrated, and how a decision is made given the

outcome of evaluation and integration.

As anticipated by Estes (1986), the models could be com-

pared and tested more easily if our experiments could provide

results about the operations of one stage without the contribu-

tion of the other stages. All three stages are not necessarily in-

volved in all tasks, but even the simplest experiment appears to

require at least two of these stages. Although integration would

not occur if only one source of information were presented,

evaluation of that source of information and selecting a re-

sponse based on the outcome of evaluation would still be neces-

sary. We also consider models that bypass integration and send

the outputs of evaluation directly to decision. We call these

models nonintegration models. Whether or not integration oc-

curs, a decision process mediates the actual response. For some

tasks, one might assume that the response directly reflects the

outcome of integration and therefore bypasses the decision

stage. This assumption has been used with considerable success

in traditional psychophysical scaling (Stevens, 1961) and in in-

formation integration (Anderson, 1981).

Optimality

We make the following assumptions about the three stages of

information processing. The outcome of the first stage, evalua-

tion, can be described by a scale value, which in general we

denote as x for a given information source X, y for an informa-

tion source Y, and so on. The appendix is a summary of the

notation used throughout this article. We assume that x is a real

number on an interval scale that is measured in some sort of

"currency," such as truth value, probability, activation, energy,

or strength. We do not discuss binary-valued feature models;

available evidence such as that presented by Shaw, Mulligan,

and Stone (1983) and Massaro (19 87b) suggests that real-valued

evaluation functions better explain the data. For each source of

information, this scale value is some function (possibly stochas-

tic) of the stimulus provided from that source but is indepen-

dent of the stimulus from other sources. In the stochastic case,

this assumption naturally can be extended to perceptual inde-

pendence in the sense described by Ashby and Townsend

(1986). For example, in the G-Q recognition experiment, our

independence assumption rules out the possibility that an ob-

server's evaluation of the degree of closedness is affected by the

level of obliqueness in a test object. However, it certainly does

not rule out a statistical interaction of the sources in his or her

responses that is due to the nature of the integration process.

We assume that the information-integration stage, our cen-

tral concern, provides a single scale value at (measured in the

same currency as the x and y) as a deterministic function of the

scale values provided by the evaluation stage, for each choice

alternative A k. At this point, we put no restrictions on the func-

tional form of the integration function, so as to allow investiga-

tion of a wide class of integration models. Although we will not

emphasize them in this article (see the First-Order Versus Sec-

ond-Order Integration section for a brief discussion), this for-

mulation includes so-called nonintegration models. We empha-

size that the value at is assumed to have no "memory" of how

it was obtained. If two different combinations of the sources of

information lead to identical outcomes of integration, then the

decision would be the same in both cases. Put in somewhat

different terms, the decision process does not have access to the

initial statistics given by evaluation and operates on only the

summary statistic produced by integration. In the case of two
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Figure 3. Schematic representation of the three stages of processing that must be accounted for in a pattern

recognition-task with multiple sources of information. (The three stages are illustrated for the sources of

information closedness C and obliqueness O in the G-Q task. The evaluation of the degree to which the

oval is closed and the straight line is oblique produces values c and o that are made available to the integra-

tion process. If no integration occurs, these two values are passed directly to decision. Integration of the

values gives an overall value at, indicating the degree of support for alternative fc[-4t]. The decision process

maps the information made available to it into a response.)

response categories or a graded response between two catego-

ries, a single value a can represent the outcome of integration

(and the subscript can be dropped).

Regarding the final stage, decision, we assume only that the

value of the chosen response alternative Ak is some determinis-

tic or stochastic function of the integrated scale values ak of all

relevant alternatives. Two of the more popular decision rules,

which we refer to as the criterion rule (CR) and the relative good-

ness rule (ROR), are described in the Ingredients for Integration

Models section.

In our examination of models from the literature, we specify

the evaluation and decision stages as well as the integration

stage, although one or more of these stages is often left implicit

in the original presentation. An important concept to recognize

is that the validity and optimality of a given model of informa-

tion integration generally depend on its assumptions regarding

the evaluation and decision stages, as well as its specification of

the integration stage (Estes, 1986).

We are now prepared to define optimality as a property of an

integration model. The basic idea is that the integration process

is optimal if it maximizes the final information content or,

equivalently, minimizes the average loss of information. Spe-

cifically, if ak is a sufficient statistic (DeGroot, 1970) for (x, y,

• • •), then there is no loss of information in the integration

stage, and the integration function is optimal. Often, no suffi-

cient statistic exists, and optimality must be judged in terms of

all three stages taken together. In this case, we use the usual

definition from statistical decision theory: For a given reward

structure for responses and given structure for presenting stim-

uli (possibly including noise), the overall process is optimal if

it maximizes the expected reward. If the reward structure and

stimuli presentation are unbiased (in senses to be discussed be-

low), then this weaker notion of optimality reduces to the maxi-

mum likelihood property: An individual chooses the response

that has the greatest likelihood of being correct.

For example, if the currency (i.e., the scale values produced

by evaluation and used by the decision process) is subjective

probability, then Bayes's theorem, discussed in the next section,

always produces a posterior probability that correctly and fully

incorporates the prior probabilities and likelihoods obtained

from the evaluation stage. Hence, this posterior probability is a

sufficient statistic, and the integration process that produces it

is optimal. We show that some models with currency that is not

subjective probability also produce sufficient statistics in some

contexts. However, for most models, we investigate optimality

of the overall prediction (evaluation and decision together with

integration), usually with reference to maximum likelihood.

We emphasize that the sufficient-statistic definition of optimal-

ity allows subjective probabilities used by the subject to differ

from objective probabilities. In many tasks, in fact, objective

probabilities do not exist (see the Taxonomy of Experiments

section). When they do, an optimal integration process might

not maximize the objective expected value.

Note that optimality differs from empirical validity. Indepen-

dently of the optimality question, we also ask to what extent a

given model accurately describes the actual results of an experi-

ment (see the Empirical Predictions and Tests of the Models

section). This analysis of empirical results also addresses the

interesting question of whether human choice behavior is op-

timal.

Implementation of Models

We illustrate model implementation with results drawn from

Massaro and Hary (1986), who actually carried out the letter-

recognition task that we have described, using a graded factorial

design. Nine subjects saw each of the test letters (shown in Fig-

ure 1) for 400 ms 12 times in random order. On each trial, they

labeled the test letter Q or G. Figure 4 gives the observed perfor-

mance for 2 subjects. The probability of a Q response for each

test letter is the dependent variable. Given that the Q and G

identifications sum to 1, the probability of a Q response to each

test letter, P(Ay) completely represents the identification judg-

ments. Thus, we have 49 independent observations to describe

the 49 test letters.

The ultimate goal of our analysis of integration models is to

determine their optimality properties and to discover which

models better describe actual behavior. It is important to keep

in mind how each of the models is implemented in a given ex-

periment. All of the models require free parameters. That is,

none of the models specifies a priori the outcome of evaluation

for a given level of a given source of information. However, the

models should have equivalent degrees of freedom when con-

fronting our basic pattern-recognition task so a valid compari-

son can be made. We limit the number of free parameters to the

number of unique levels of the independent variables. In the G-
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Figure 4. Observed probability of Q responses for the 49 test letters presented in Figure 1 (created by

varying the obliqueness of the straight line and the closedness of the gap in the oval). (The results are for 2

typical subjects from an experiment carried out by Massaro and Hary, 1986.)

Qtask illustrated in Figures 1 and 4 (or in the expanded version

of this task), 14 parameters are necessary: seven parameters

each for obliqueness and closedness. The parameters represent

some measure of the degree to which the obliqueness and clos-

edness features are present in the test letter. These estimated

parameters in turn give rise to specific predictions for each

model regarding response frequencies (or response ratings in a

graded design). We contrast these predictions in the Empirical

Predictions and Tests of the Models section.

Ingredients for Integration Models

We postulate evaluation, integration, and decision processes

and illustrate the importance of each of these contributions in

our analyses of the models. In this section, we make some pre-

liminary remarks addressing the issue of how each of these pro-

cesses influences optimality. Assumptions about evaluation

have consequences for optimality. The primary consideration is

whether evaluation is noisy (stochastic) or noise free (determin-

istic). To anticipate, most of the models we consider assume

noise-free evaluation, whereas the models based on statistical

theory, such as the theory of signal detectability (TSD), typically

assume a noisy evaluation process. Assuming an independent

sample of noise added to the evaluation of each source of infor-

mation usually leads to different predictions than assuming

noise-free evaluation with noise added at some later stage, for

example, in a stochastic decision process.

Bayes's Theorem

The most venerable method for combining multiple sources

of information is given by a theorem attributed to Reverend

Thomas Bayes (circa 1701-1761) but also derived indepen-

dently by Pierre Laplace (1749-1827; Stigler, 1986). Bayes's

theorem states that

P(H,\E) = (1)

where P(Hj\E) is the probability that some hypothesis H, is

true given that some evidence E is observed; P(E\H,) is the

probability of the evidence E, given that the hypothesis Ht is

true, and P(H,) is the a priori probability of the hypothesis H,.

The probability of hypothesis Ht given some evidence E is equal

to the probability of the evidence given the hypothesis times the

a priori probability of the hypothesis, divided by the sum of

analogous likelihoods for all possible hypotheses. If the a priori

probabilities of all possible hypotheses are equal, Bayes's theo-

rem reduces to

P(Hi\E) =
P(E\H,)

I,P(E\H,)'
(2)

Bayes's theorem specifies how different sources of evidence

are combined. Given two independent pieces of evidence E, and

£2 and equal a priori probabilities, the probability of a hypothe-

sis HI is equal to

"7 (3)P(H,\E, and£2) =

Equation 3 has a direct correspondence to our evaluation and

P(E,\Hl)-X.P(E2\Hl)



230 DOMINIC W. MASSARO AND DANIEL FRIEDMAN

integration processes. In our notation, Equation 3 gives the out-

come a, for integrating two sources of information X and Y,

where P(E, \Ht) represents evaluation of the first source (in

terms of the subjective probability currency) and P(£31H,) rep-

resents separate evaluation of the second source. Equation 3

describes optimal information integration in the currency of

probability under two assumptions. First, the prior probabili-

ties of all relevant response alternatives are equal. Second, the

sources of evidence are evaluated independently of one another,

as explained previously in the Optimality section. Under these

assumptions, Equation 3 follows from probability theory, in

which the probability of the joint occurrence of two indepen-

dent events is the multiplicative combination of the probabili-

ties of the separate events. The probability of two heads in two

tosses of a coin, for example, is the multiplicative combination

of the probability of a head on each toss. See Stigler (1986) for

the derivation, which of course goes back 200 years to Reverend

Bayes and Laplace.

Criterion Rule (CR)

As illustrated in Figure 3, the outcome of integration is trans-

formed by a decision process to produce a response. We con-

sider two general algorithms for the decision operation. The

first, derived from communication theory, rests on the notion

of a criterion. The decision operation uses a criterion value to

assess the outcome of integration (or evaluation in the case of a

single source of information). In a task with two response alter-

natives, for example, the outcome is compared with the crite-

rion. If the outcome exceeds the criterion, one of the alterna-

tives is selected. Otherwise, the other alternative is selected.

Consider a stimulus continuum in a graded single-factor de-

sign in which the value of information source X is varied from

not A to A. Assume, for this argument, that this variation gives

linearly increasing evidence for a given alternative A. That is,

the outcome of evaluation (or integration, given multiple

sources of information) is assumed to be a linear function of

some independent variable. The left panel of Figure 5 shows

this outcome as a linear function of variable X.

A deterministic criterion rule in a discrete judgment task

with the criterion value at .5 would classify the pattern as A for

any value of a greater than this criterion value. Otherwise, the

pattern is classified as not A. Given this CR, the probability of

an A response would take the step-function form shown in the

right panel of Figure 5. That is, with a fixed criterion value and

no noise, the decision operation changes the continuous linear

function of a into a step function of probability of response (A).

Although based on continuous evidence, the response function

is discrete. This categorical result is uncommon for actual ex-

periments (see Figure 4).

If there is noise in the mapping from variable A" to a, however,

a given level of variable X cannot be expected to produce the

same identification judgment on each presentation. With the

addition of noise, it is reasonable to assume that a given level of

variable X produces a bell-shaped range of values of a with a

mean directly related to the level of variable X and a variance

equal across all levels of variable X. Figure 6 illustrates the ex-

pected outcome for identification if there is bell-shaped noise

added to a with the same criterion value assumed in Figure 5. A

signal with a mean value of a at the criterion value will produce

completely random classifications over many trials. This value

of a based on both signal and noise is above the criterion on half

of the trials and below the criterion on the other half. As the

mean of variable X moves away from the criterion value, the

addition of noise will have a diminishing effect on the identifi-

cation judgments. Thus, noise will have a larger influence on

identification in the middle of the range of probability values

than it will at the extremes. A similar outcome to that shown in

Figure 6 is achieved if the mapping from variable X to a is noise

free and the criterion value fluctuates randomly from moment

to moment (Carterette, Friedman, & Wyman, 1966).

Relative Goodness Rule (RGR)

A second algorithm for decision is based on the ideas of Shep-

ard(1957, 1986),Clarke(1957),Luce(1959,1977), and Ander-

son (1981). This is the RGR algorithm. Two underlying assump-

tions are that alternatives defined as irrelevant to the choice task

play no role in the decision and that the probability of a re-

sponse alternative is simply equal to the ratio of the goodness

of match of that alternative relative to the sum of the goodness

of matches of all relevant alternatives. In the context of a cate-

gorical-response experiment with m alternatives, this general

rule can be expressed as

P(At) = - (4)

a,

or the expected probability of response Ak is equal to the scale

value ak of that alternative divided by the sum of the scale values

for all the relevant alternatives in the task (including the alterna-

tive of interest). In contrast to the deterministic algorithm

based on a CR, the RGR predicts a response only probabilisti-

cally. The RGR specifies only asymptotic response probabilities;

it is not a complete process model of how these probabilities

occur. Townsend and Landon (1982) provide a few alternative

process interpretations that are consistent with the choice rule,

but there have been no tests among these alternatives. Although

we lack a process model, there is considerable evidence that

judgment appears to be relative, as predicted by the RGR (Luce,

1977; Oden, 1977).

Applying the RGR when the currency is subjective probability

creates a situation called probability matching (Davison & Mc-

Carthy, 1988; Thomas & Legge, 1970). That is, subjects might

not respond optimally by always choosing the most likely alter-

native but might instead choose each alternative with the proba-

bility given by Bayes's theorem. This model predicts that the

probability of a response corresponding to hypothesis H, is

given by Equation 3. Although nonoptimal, this prediction

should be taken seriously, given that humans and animals have

been shown to probability match in many different domains

(Davison & McCarthy, 1988; Estes, 1984; Myers, 1976).

In experiments with graded responses, the RGR is straightfor-

ward. For example, in our prototypical pattern-recognition

task, Equation 4 would apply to continuous rating judgments

on individual trials, not just average probability of categorical-

response alternatives. In contrast to the RGR prediction for cate-
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Figure 5. Left panel: The evidence for A as a function of the level along a stimulus continuum between not

A and A. Right panel: The probability of an A response as a function of the stimulus continuum if the

subject maintains a criterion rule at a particular value and responds A if and only if evidence for^4 exceeds

the criterion.

gorical responses, its predictions for graded responses are opti-

mal as long as the response on each trial can be interpreted as a

subjective probability. Given the optimality of RGR for graded

responses, an argument might be made for optimality of RGR

for categorical responses. In this case, the decision maker's goal

1.0-

0.8-

0.6-

0.2-

0.0-

NOT A

VARIABLE X

Figure 6. The probability of an A response as a function of variable X

given the linear relationship between evidence for A and variable X and

the criterion rule represented in Figure 5, but with bell-shaped (trun-

cated normal) noise added to the mapping of variable X to evidence

for A.

is to communicate subjective probability over the course of the

experiment rather than simply the most likely alternative on

any given trial. We accept this logic in our analysis.

Fuzzy-Logical Model of Perception (FLMP)

We begin our survey of specific models with the fuzzy-logical

model of perception (FLMP) for several reasons. First, the re-

search framework we used for this article emerged together with

the model over the course of empirical and theoretical work.

Second, the model, although developed independently of

Bayes's theorem, has identical optimality properties for integra-

tion. Third, the three operations of evaluation, integration, and

decision are clearly articulated in the model.

Underlying this model is the assumption that well-learned

patterns are recognized in accordance with a general algorithm,

regardless of the modality or particular nature of the patterns

(Massaro, 1984, 1987a; Oden, 1981, 1984). The model has re-

ceived support in a wide variety of domains. The model consists

of three operations in perceptual recognition: feature evalua-

tion, feature integration, and pattern classification. Continu-

ously valued features are evaluated, integrated, and matched

against prototype descriptions in memory, and an identification

decision is made on the basis of the relative goodness of match

of the stimulus information with the relevant prototype de-

scriptions.

Given multiple features, it is useful to have a common metric

representing the degree of match of each feature. Two features

that define a prototype can be related to one another more eas-

ily if they share a common currency. To serve this purpose, fuz-

zy-truth values (Goguen, 1969; Zadeh, 1965) are used because

they provide a natural representation of the degree of match.

Fuzzy-truth values lie between 0 and 1, corresponding to a
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proposition being completely false and completely Ime. The

value .5 corresponds to a completely ambiguous situation,

whereas .7 would be more true than false and so on. Fuzzy-truth

values, therefore, not only can represent continuous rather than

just categorical information, they also can represent different

kinds of information.

The three operations between presentation of a pattern and

its categorization, as illustrated in Figure 3, can be formalized

mathematically. Feature evaluation gives the degree to which a

given dimension supports each test alternative. The physical in-

put is transformed to a psychological value and is represented

in lowercase letters; for example, dimension X would be trans-

formed to xk, and analogously for dimension Y. Each dimension

provides a feature value at feature evaluation. Feature integra-

tion consists of a multiplicative combination of feature values

supporting a given alternative Ak. If xk and yk are the values

supporting alternative Ak, then the total support ak for the alter-

native Ak would be given by the product of xk and yk.

The third operation is pattern classification, which gives the

relative degree of support (merit) for each of the test alterna-

tives. In this case, the probability of response At given the spe-

cific stimulus X, YJ is

the prototypes in terms of the degree to which the oval is closed

and the line is oblique:

P(Ak\X=X,,Y=Yj) = (5)

where the denominator is equal to the sum of the merit of all m

relevant alternatives, derived in the same manner as illustrated

for alternative.^.

To recapitulate, evaluation in the FLMP involves the represen-

tation of each source of information in terms of a truth value,

between 0 and 1, indicating the merit of a particular alternative.

Integration consists of a multiplicative combination of truth

values. The decision uses the ROR.

Implementation of FLMP

Given a test letter in the G-Q task, the fealural evaluation

stage determines the degree to which the Q and G alternatives

are supported by each feature of the visual information. With

the use of fuzzy-truth values, a value between 0 and 1 is assigned

to the oval and straight-line dimensions, indicating the degree

to which these features support the Q and G alternatives. These

feature values are then integrated within the Q and G proto-

types. The prototypes are denned by:

and

Q: closed oval and oblique line

G: open oval and horizontal line.

Given a prototype's independent specifications for the oval

and straight-line features, the value of one of these features can-

not change the value of the other feature at feature integration.

In the implementation of the model, closed and open are as-

sumed to be opposites (or negations) of one another, as are

oblique and horizontal. Using the definition ofjuzzy negation

as 1 minus the feature value (Zadeh, 1965), we can represent

and

Q: closed and oblique

G: ( I - closed) and (1 - oblique).

The integration of the features defining each prototype can

be represented by the product of the feature values (Oden,

1979; Oden & Massaro, 1978). In this case, the goodness of

match with a Q or G alternative can be represented by

Og = C X O

and

where UQ and aa represent the goodness of match of a test letter

to the Q and G alternatives, respectively.

If Q and G are the only valid response alternatives, the deci-

sion operation determines their relative merit, leading to the

prediction

aQ+ ac

(6)

where P(Ag) is the predicted probability of a Q response to a

particular test letter shown in Figure 1. In graded-response

tasks, Equation 6 gives the mean predicted rating linearly scaled

between 0 and I.

Comparison of FLMP and Bayesian Integration

The FLMP is closely related to Bayesian integration. The con-

cept of fuzzy-truth value differs from that of a subjective condi-

tional probability (see the Previous Rejections of Optimal Be-

havior section). However, if the two concepts are assumed to

coincide for a particular prediction, then simple substitution

shows that Equations 3 and 5 are identical. That is, Bayes's theo-

rem and the FLMP are conceptually equivalent if the truth value

can be interpreted as a conditional probability.

Even if truth values and probabilities are conceptually

different mappings of evaluated information from a single

source into scale values, their estimated values in empirical

tests will be the same. For instance, in the case of an expanded

factorial design with categorical responses for our prototypical

pattern-recognition task, the number of parameters and their

estimated values are the same whether they are called subjective

probabilities or truth values. Therefore, the FLMP is observa-

tionally equivalent to Bayesian integration.

Theory of Signal Detectability (TSD)

A second model of combining evidence from multiple

sources is derived from Thurstone's (1927) law of comparative

judgment. In Case V of Thurstone's theory, the discriminal pro-

cess corresponding to an object in a set of objects can be repre-

sented by a scale value that is a constant plus an independent

normally distributed variable. The scale values differ across ob-

jects, but the random variable is identically distributed. Stimuli
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Xi, X2, • . . , Xn are represented psychologically by real-valued

random variables xl, x2,..., xn, called discriminal processes.

Given two response alternatives At and Aj, corresponding to X,

and Xj, the subject chooses Ai if and only if x, > *,-. Given this

assumption, the probability that At will be chosen is

P(A,\X,, X j ) = P[x, > Xj] = P[x, - x, > 0]. (7)

By assuming that the real-valued random variables are nor-

mally distributed with equal variance, the probability values

can be transformed into scale values of the discriminal pro-

cesses (d
1 values in the TSD). (This transformation is exactly that

used by Dosher, Sperling, & Wurst, 1986, and by Bruno & Cut-

ting, 1988, in their analyses of factorial experiments.) Thur-

stone's Case V then becomes mathematically equivalent to the

TSD with two test stimulus alternatives, and our analyses are

made on this version of the theory.

The traditional assumption in psychophysics since the time

of Fechner (1801-1887) is that sensory systems are character-

ized by thresholds. A threshold represents a barrier in the sen-

sory system that must be overcome in order for a signal to be

detected. All inputs below the threshold value go undetected

and have no differential influence on the sensory system. Input

values above the threshold value are detected. The theory of

signal detectability denied the presence of a threshold and

claimed that some sensory information is always available to

the sensory system (Tanner & Swets, 1954). Detection of a stim-

ulus is viewed as being analogous to a statistical decision task

in which the decision system assigns conditional probabilities

to the output of the sensory system. The decision system sup-

posedly knows the potential outputs from the environmental

events of interest (as it does in a Bayesian analysis). Consider

the standard signal-detection task in which there are two types

of trials: noise (N) trials and signal-plus-noise (SN) trials. The

decision system has knowledge of the SN and N distributions

and, given evaluated stimulus x, computes the conditional prob-

ability that x arose from an N trial and the probability that it

arose from an SN trial. The decision system computes a likeli-

hood ratio equal to the probability that x occurred given SN

divided by the probability that x occurred given N:

/(.*) =
P(x\SN)

P(x\N) '
(8)

The decision system establishes a criterion value, and if the like-

lihood ratio given by Equation 8 exceeds this value, the observer

responds yes; otherwise, the response is no.

In this traditional signal-detection task, a measure of sensory

performance that is independent of the criterion value that was

used in the task can be computed. The values of x from a partic-

ular type of trial (SN or N) are assumed to be normally distrib-

uted. In addition, the variance from SN trials is usually as-

sumed to be equal to the variance from N trials. If the scale is

chosen so that the variance is equal to 1, then the distances along

the x axis can be expressed in z scores. The distance in z-score

units between the mean of the SN distribution and the criterion

value can be computed from the hit rate P(Yes\SN), and the

distance between the mean of the N distribution and the crite-

rion value can be computed from the false-alarm rate

P( Yes | N). The sum of these two distances preserving the sign

gives d', the distance between the means of the two distribu-

tions.

Our goal, of course, is to develop the signal-detection model

to address the problem of integrating multiple sources of infor-

mation. An early application was Green and Swets's (1966) in-

vestigation of the relationship between yes-no tasks, in which

the subject has only one observation interval before making a

decision, and two-interval forced-choice tasks, in which the

subject has two observation intervals before making a decision.

Green and Swets (1966) assumed that the subject integrates the

information by simply adding the evaluation outputs from the

two observation intervals and responds on the basis on this sum.

This new observation has more information relative to the sin-

gle-observation condition which leads to a larger d' value. They

proved that for an optimal observer, the d' value determined

from two observation intervals should be the square root of 2,

or 1.414 times the d' value determined from a single observa-

tion interval (Green & Swets, 1966, Appendix 9-A). This opti-

mality result can be explained intuitively by recalling the well-

known statistical result that the mean (together with the sample

size) of an independent random sample drawn from a normally

distributed population is a sufficient statistic for the sample.

Thus, the sum x + y, together with the sample size of 2, carries

the same information as the original sample {x, y}, and the TSD

model ensures that it is properly processed in this context.

Generalizing this derivation for two observations of the same

source to a single observation of two sources of information,

Green and Swets (1966) stated that the d' given two sources of

information, say X and Y, is equal to the square root of the sum

of squares of each of the individual d' values:

(9)

Underlying this formula is the assumption that the observer

knows the precision of each information source and takes a

weighted sum of the evaluation outputs, with greater weight on

the more precise (i.e., lower noise variance) source. They

proved that Equation 9 is consistent with statistical (i.e., Bayes-

ian) decision theory and therefore optimal (for an appropriate

decision rule, e.g., the CR) under the following assumptions: (a)

All stimuli are degraded by random noise; the output from eval-

uating stimulus Xi can be represented by the real number xt =

S, + et, where e, is a random-error term (arising from imperfect

presentation or imperfect evaluation of the stimulus or both)

and s, is the evaluation of X, in the absence of such noise; (b)

the errors e, are independent and have a mean of 0; (c) the errors

e, are normally distributed; and (d) the errors e, have the same

variance for every level of each information source but may

have different variances for different information sources (Pe-

terson, Birdsall, & Fox, 1954).

To summarize, the main assumption of the TSD model is that

evaluation is degraded by noise and produces a normally dis-

tributed scale value for each source. It transforms these scale

values by the inverse cumulative-unit normal distribution (z

transformation) into d' values. The integration function is de-

nned on these d' values by Equation 9. The decision process

uses the CR.
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Implementation ofTSD: Expanded Nonfactorial Design

A natural implementation of TSD is the case of a nonfactorial

expanded design with two categorical responses (Stanislaw,

1988). It is straightforward because, in contrast to the other de-

signs, a measure of response accuracy can be denned. For exam-

ple, in the prototypical pattern-recognition task shown in Fig-

ure 1, the test letters would be the upper left and lower right

letters, corresponding to a prototypical G and Q, respectively.

That is, the test letters in this case would be either XG = (C,,

Oi)—that is, the not-closed oval with a 10-point gap and a not-

oblique line, as in the letter G—or else Xo = (C7, O7)—that is,

a closed oval and a 61° oblique line, as in the letter Q. In addi-

tion, each of the two levels of the two sources of information

would be presented in isolation. That is, only the closed oval,

open oval, oblique line, or horizontal line is presented on these

single-source trials. The allowable responses for both types of

trials would be either/40 or^c, meaning, "it is most consistent

with a Q" or "it is most consistent with a G." Following Equa-

tion 9, performance given both sources of information is pre-

dicted from performance given each of the two sources pre-

sented alone. One calculates d'c from the relative frequencies of

hits p = P(AQ\ C7) and false alarms q = P(AQ\ C,) for the oval

stimulus presented in isolation by the standard formula, that

is, d'c = Z(p) — 7-(q), where Z(») is the z-score or inverse-unit

normal cumulative distribution function (CDF). (Presumably,

p > q, so d' is positive; that is, a (7-like stimulus is more likely

than a G-like stimulus to generate a Q response.) Similarly, one

calculates d'0 from the Z scores for P(AQ\ O-,) and P(Aa\ O,),

the relative frequencies of Q responses given <2-like and G-like

line stimuli in isolation. The TSD model then predicts that

d'co, the d' value obtained as the difference of the Z scores for

hit and false-alarm rates P(A0 \ XQ ) and P(AQ \ Xa) for the com-

bined stimuli, will result from Equation 9.

Optimality in this implementation of the TSD model requires

the four assumptions listed above, and these assumptions might

not hold in the prototypical pattern-recognition task. If there is

noise at evaluation, the noise from one source may be perfectly

correlated with the other, contrary to Assumption b. In this

case, as noted by Fidell (1970), Equation 9 must be replaced by

the simple summation of the separate d's. Likewise, if the noise

processes are not precisely normal, then no weighted sum of

the evaluation outputs is a sufficient statistic, and the optimality

argument fails. One can construct an example with approxi-

mately normal noise (provided by two dice) that shows dra-

matic failure of optimality. Finally, suppose that Assumptions

a, b, and c hold, but the noise variance for the oval stimulus is

slightly different for Ci than for C7. Then it is easy to see that

the likelihood ratio l(xc) is no longer a monotonic function.

In this case, the criterion rule no longer represents an optimal

decision process (Green & Swets, 1966). Thus, even in its natu-

ral implementation, the TSD model becomes nonoptimal with

violations of its apparently minor assumptions.

Implementation of TSD: Graded Factorial Designs

Some additional assumptions have to be made to apply the

TSD model to graded factorial designs because in many cases,

there is no correct answer. In recognizing uppercase letters, for

example, it is not obvious which letters in Figure 1 should be

called G or Q. In fact, one goal of the experiment is to determine

how the subject classifies a pattern varying with respect to these

levels of information. Thus, we are obtaining a perceptual re-

port on the part of the subject that might be used to describe

the relationship between the stimulus information and the per-

ceptual judgment (see Braida & Durlach, 1972). The measure

of performance now provides a measure of the consistency in

categorizing stimuli, rather than the subject's reliability in dis-

tinguishing signal from noise. That is, two stimuli are consid-

ered to be highly discriminable from one another if they are

consistently categorized as different stimuli (i.e., produce

different responses).

Consider a response to a single dimension of the stimulus, for

example Oj. The probability of a Q response given stimulus Oj,

P(AQ\Oj\ can be expressed in discrimination units. In this

case, the subject needs to have some representation of each of

the response patterns relevant to the task at hand. That is, the

subject is assumed to have information in memory about the

uppercase letters Q and G. A test letter is evaluated in terms of

the degree to which it matches the prototypical patterns stored

in memory. Or, equivalently, taking the signal-detection per-

spective illustrated in Figure 7, the subject can be assumed to

evaluate the test letter along a one-dimensional G-Q continuum

of information. The subject is assumed to place the criterion

at a point equidistant between the means of the distributions

corresponding to the prototypical G and Q, respectively. In our

example, presentation of a given pattern produces a certain

amount of (2-ness, and the subject decides whether this amount

of Q-ness exceeds the criterion value separating the G and Q

categories. If the observation exceeds this criterion value, the

subject responds Q; otherwise, the subject responds G. Of

course, the evaluation process is degraded by normally distrib-

uted noise as assumed in the standard signal-detection model.

Given this conceptualization of the task, the distance between

the mean of any distribution and the criterion can be measured.

For argument's sake, assume that the distribution is normal

with the same variance as the prototypical distributions, so dis-

tance is measured in z scores. To the extent that this distribution

is far from the criterion, subjects would show good discrimina-

tion. In this case, a given pattern would tend to be identified

most of the time as G or most of the time as Q. Poor discrimina-

tion would be reflected by a small distance between the distribu-

tion and the criterion, with the subject about equally likely to

identify a given pattern as G or Q. Performance is evaluated in

terms of the degree to which a given stimulus pattern leads to

consistent or inconsistent responses. The probability of a Q re-

sponse given pattern Oj can be considered to be the hit rate, and

the probability of a G response given pattern O} can be denned

to be equal to the false-alarm rate. Given that only one stimulus

pattern was presented, we see that the false-alarm rate must be

equal to 1 minus the hit rate. Given these hit and false-alarm

rates, the distance between the mean and the criterion can be

computed in the standard manner.

The TSD model represents integration by a sum of evalua-

tions, xc + yo, with the corresponding d'co given by Equation

9. Given this model, d'co, corresponding to performance given

closed and oblique characteristics of the test letter, is equal to

the square root of the sum of the squared d',:, given the closed
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Figure 7. Two distributions corresponding to the G and Q prototypes, with a criterion C placed equidistant

between the means Mu and MQ of the G and Q distributions. (A third distribution corresponds to a test

stimulus S, with mean A/S.)

characteristic, and the squared d'0, given the oblique character-

istic. (Note that the sign has to be preserved in actual practice,

as indicated later in Equation 1 1 . That is, the closed characteris-

tic might favor G, and the oblique characteristic might favor Q,

for example, and the positive d' for the oblique characteristic

would be offset by the negative d' for the closed characteristic.

In this case, their combination would produce relatively ran-

dom judgments.)

This extension of the TSD model differs from the FLMP model.

To see this, consider any expanded factorial design for the pro-

totypical pattern-recognition task illustrated in Figure 1 . Given

the test alternatives Q and C?, for example, the subject's response

to stimulus CiOj on a single graded-response trial (or average

response in a series of categorical-response trials) may be inter-

preted as the subjective probability that the stimulus was a Q,

that is, P(Q | CiOj). The corresponding responses to the single-

factor trial in this case represent P(Q \ Ct) and P(Q \ Oj), respec-

tively. According to the FLMP, the prediction is derived from

P(Q\C,Oj)

= _ P(Q|C,)Xf(QIQ/) _
P(Q\Ci)XP(Q\Oi) + [\ -P(Q|C,)]X[1 -P(Q\Oj)]'

(10)

Our implementation of TSD suggests a different prediction.

Given that the hit rate is 1 minus the false-alarm rate, we calcu-

late d'c, = 2 X Z[P«2|C,)] and d'0, = 2 X Z[P(Q|O;)] from

single-factor trials. The prediction, then, is that the d'c:oj ob-

served from the factorial trial, calculated as rfr,q, = 2 X

Z[P(Q\C,Oj)], will be equal to ±V\(d'c,f ±(d'0jf\, where the

minus sign of the plus/minus sign within the radical applies if

d'c, and d'0j differ in sign, and the minus sign of the plus/minus

sign outside the radical applies if the quantity within the VfJ is

negative. Using JV(«) to denote the normal CDF, the inverse of

which is Z(«), we can reexpress this prediction as

P(Q\CiOi)

Clearly, the predictions in Equations 10 and 11 are quite differ-

ent. For example, suppose P(Q\C,) = P(Q\Oj) = .7. Then,

d'c, = d'0j = 2-2(.7) = 1.05, and Equation 11 yields an inte-

grated d' of (V2~X 1 -05) = 1.485, with corresponding probability

N('/i • 1.485) = .7711. By contrast, Equation 10 yields integrated

probability (.7)2/[(.7)2 + (.3)2] = .8448, with a corresponding

d' of 2.028. Thus, this TSD model and the FLMP give different

predictions for the integration of two sources of information.

To summarize, the TSD model applies directly to nonfactorial

designs with correct answers and can be extended to graded fac-

torial designs in experiments with two response alternatives. It

assumes that evaluation is degraded by noise, but the sensory

output x always generates one response if it exceeds some spe-

cific criterion value and otherwise always generates the alterna-

tive response. Integration in the TSD model occurs by summing

the x values obtained from the independent sources of informa-

tion. As stated by Green and Swets (1966, p. 271), "The

so-called integration model associated with detection theory

assumes in each instance that the multiple observations are lin-

early combined to form a single basis for decision." The predic-

tion of performance based on this assumption corresponds to

Equation 9 or 11. We saw that this model is consistent with

optimal behavior if a set of rather strong assumptions regarding

the noise process are valid. Otherwise, the TSD model has no

normative justification. Of course, it nevertheless may turn out

to be empirically useful for explaining behavior.

Linear Integration Model (LIM)

Anderson (1981, 1982) and his students have established the

most comprehensive framework for the analysis of integration.

This framework is called information integration and uses the

tools of functional measurement—most notably, analysis of

variance (ANOVA) and interval-response scales. In a seminal

study, Anderson (1962) initiated this methodological and theo-

retical framework for the study of person impression (Asch,

1964). Methodologically, a factorial design was used to indepen-
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dently vary descriptive adjectives of a hypothetical person. An-

derson used three adjective factors with three levels along each

factor, giving a total of 33 or 27 unique adjective combinations.

A subject was tested repeatedly on each of the 27 unique de-

scriptions presented in a random order. The three levels along

each factor contained adjectives of high, medium, and low lik-

ableness value. On a given trial, a subject might judge a hypo-

thetical person who was good-natured, unsophisticated, and

tactful. The judgments involved a 20-point rating along a scale

between likable and dislikable. An ANOVA was performed on

the judgments of individual subjects to assess the contribution

of each factor and any interaction among the factors. As ex-

pected, there were large effects of likableness value for each fac-

tor, but, surprisingly, there was no interaction among the factors

for 9 of the 12 subjects. The interaction for the other 3 subjects

was relatively small and accounted for very little of the variance.

Implementation of Adding Rule

According to an adding model, evaluation (called valuation

by Anderson) involves the processes that transform the physical

stimulus to its psychological representation (Anderson, 1981).

Integration involves a linear combination of scale values made

available by evaluation. The decision (called response function)

is assumed to be linear; that is, the integrated value can be

mapped linearly into a rating scale. This decision process is

equivalent to the RGR. For categorical responses, either the RGR

or a CR is assumed.

We first derive the predictions for the addition of values rep-

resenting the different sources of information along with the

RGR. The integration is computed by the addition of the values

representing the evaluation of each source of information (An-

derson, 1965; Anderson & Cuneo, 1978). If c represents the de-

gree to which the oval is closed and o represents the degree to

which the straight line is oblique, the outcome of integration

would be;

and

UQ = C + 0

au = (1 - c) + (1 - o).

If Q and G are the only valid response alternatives, the decision

operation would determine their relative merit under the RGR,

leading to the prediction that both the two-choice classification

judgments and the rating judgments would be equal to

P(A \C=C O = O)=
 C +

 ° = C +
 °

' c + o + [(1 — c) + (1 — o)} 1

(12)

where P(AQ\C = C,, O = O,} would be the proportion of Q

judgments or a rating of Q-ness on a scale of 0 to 1, given the

test letter C,Oj.

Implementation of Averaging Rule

An averaging rule derived from the domain of personality im-

pression is a viable and intuitively plausible candidate for pat-

tern recognition and decision making (Anderson, 1973). Given

continuous and independent evidence from the information

sources, the perceiver might simply average the sources of evi-

dence and classify or rate the pattern on the basis of the com-

puted average. Given the averaging rule, the 0-ness of a test

letter, ao, can be assumed to be an average of its two component

features:

c+o

2 '
(13)

An extension of the averaging rule is a weighted averaging

rule, in which one of the features would receive more weight

than the other (Anderson, 1981; Massaro, 1985). For example,

the oval might contribute more to the judgment than the line.

In the present formulation of the model, however, the scale val-

ues may be viewed as already incorporating weights so that the

two models are not identifiably different. Although the general-

ized TSD also assumes integration by a weighted averaging pro-

cess (Anderson, 1974), the c,- and o, values are first subjected to

a Z(») transform, and their weighted average is subjected to an

/V(«) transform.

In Anderson's theory of averaging, no explicit decision stage

was deemed to be necessary given that the rating judgment was

taken to be a direct reflection of outcome of the integration pro-

cess. At first glance, this assumption seems reasonable when

graded rating judgments are used. As noted by Anderson

(1974), a discrete judgment would necessarily demand an ex-

plicit decision operation. Once the operation is admitted for dis-

crete judgments, it might be argued that it is also involved in

continuous rating judgments. What is revealing in this regard

is how the explicit decision operation changes the interpretation

of the averaging results observed by Anderson and others. Com-

paring Equations 12 and 13, we see that the results of averaging

imply an additive integration rule when the model is imple-

mented with the RGR for the decision stage.

Optimality Properties of LIM and Relation to TSD

The adding rule with an RGR and the averaging rule are non-

optimal models of information integration. The response given

two sources of information supporting the same alternative is a

compromise between the responses given to the separate

sources presented in isolation. Optimal integration (i.e., Bayes's

theorem) dictates that the response given two independent

sources be more extreme than either of the responses given the

separate sources supporting the same alternative. According to

optimal integration, our opinion of someone should always be-

come more favorable with additional positive information, even

if the new information is not as favorable as some of the old.

Averaging, on the other hand, predicts that our overall opinion

is diminished if the new positive information is less positive

than the old.

In the context of general categorical-response experiments,

Anderson (1974) appears to have viewed his algebraic (linear)

integration model as conceptually equivalent to the extension

of TSD we described in the graded factorial designs section. In

particular, his Equation 18, which incorporates a CR decision

process, coincides with our Equation 11 in the case of equal

weights and an unbiased criterion. Hence, we regard the CR ver-

sion of the linear integration model (LIM-CR), in its adding, av-
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eraging, or weighted versions, as observationally equivalent to

our extension of the TSD endowed with the same number of free

parameters, for any categorical response experiment. Given an

interpretation of responses as subjective probabilities, this alge-

braic (linear) integration model is inefficient (nonoptimal) ex-

cept in the special case of evaluation degraded by equal-vari-

ance normal noise processes.

Two-Layer Connectionist Model of Perception (CMP)

There has been a tremendous revival of models based on the

metaphor of neural information processing. In these connec-

tionist models, information is represented in terms of the acti-

vations and inhibitions of neurallike units (Minsky & Papert,

1969/1988; Rosenblatt, 1958; Rumelhart & McClelland,

1986). These units are assumed to exist at different layers; for

example, the TRACE model of speech perception (McClelland

& Elman, 1986) consists of units at the feature, phoneme, and

word levels. The units interact with one another via connections

with positive or negative weights that are either specified in ad-

vance or learned through feedback.

Numerous layers and adjustable weights make possible many

varieties of Connectionist models (see Golden, 1988, for a par-

tial survey). We consider here only a specific two-layer connec-

tionist model of perception (CMP) that is most comparable with

the alternative models such as the TSD and FLMP. The two layers

correspond to an input and an output layer. Connectionist

models with more than two layers may be more powerful but

are usually much less parsimonious; that is, they require many

free parameters. Models with an intermediate (hidden) layer of

units, for example, can describe results that are not linearly sep-

arable (Massaro, 1988b). In effect, a hidden layer of units vio-

lates our independence assumption in information evaluation

and falls outside our conceptual framework.

The CMP is assumed to have input and output layers of neural

units, with all input units connected to all output units. For

ease of exposition, we assume that each level of each source of

information is represented by a unique unit at the input layer.

Each response alternative is represented by a unique unit at the

output layer. Figure 8 gives a schematic representation of two

input units connected to two output units.

An input unit has zero input, unless its corresponding level

of the stimulus dimension is presented. This constraint ensures

that only one input unit is activated per given presentation of a

source of information. Presentation of an input unit's target

stimulus gives an input of 1. The activation of an output unit

by an input unit is given by the multiplicative combination of

the input activation and a weight w. With two active inputs X,

and YJ, the activation entering output unit at is x\ + y\, where

xt = wXf and yt = t> YJ. Analogous to the use of negation in the

FLMP, the weight on the activation entering output unit «2 can

be assumed to be the negative of the weight entering a, (Massaro

& Cohen, 1987). In this case, the activation entering output unit

a-i is x2 + yi, where x2 = —wXi and y2 = —vYj. The total activa-

tion leaving an output unit is given by the sum of the input

activations passed through a sigmoid-squashing function

(Rumelhart, Hinton, & Williams, 1986). Therefore, for an A",y,

stimulus,

OUTPUT

INPUT

Figure 8. Illustration of Connectionist model with two input units, X

and Y, and two output units, a, and a2 • (The activations entering a, from

X and Y are x: and y,, and analogously for a2.)

and

02 =
1

1 + £-1*2̂ 2! 1

The neural processing of a Connectionist model does not

specify completely the stimulus-response function. The activa-

tions at the output layer have to be mapped into a response, and

an RGR is usually assumed to describe this mapping (McClel-

land & Elman, 1986). Taking this tack, the activation a, trans-

formed into a response probability by the RGR gives

1

P(Al\XY} = - (14)

In summary, evaluation in the CMP consists of the activation

of neurallike units. Integration involves the summation of the

separate activations passed through the sigmoid-squashing

function. Decision follows the RGR.

Implementation of the CMP

Given a test letter in our prototypical task, there are two ac-

tive input units corresponding to the closedness and oblique-

ness dimensions. The CMP does not specify the psychophysical

relationship between the physical stimulus and its sensory

transformation. Analogous to the other models, the CMP re-

quires free parameters to specify this relationship. A unique

weight is assumed for each level of each source of information

in the CMP. The number of free parameters is equal to the num-

ber of levels of the closedness dimension plus the number of

levels of the obliqueness dimension. Although an additional

threshold unit is sometimes assumed in Connectionist models,

no such unit is assumed herein.

Presentation of a test letter would activate two input units,

corresponding to the appropriate levels of the obliqueness and
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closedness dimensions. Presentation of an input unit's target

stimulus gives an input of 1; otherwise, the input unit has an

input of 0. For a test letter in our prototypical task, the activa-

tion of output unit by an input unit is given by the multiplica-

tive combination of the input activation and a weight. The acti-

vation entering the output unit corresponding to the alternative

Q would be c + o, where c = wC/ and o = vOj. Given our nega-

tion normalization, the activation entering output unit corre-

sponding to the alternative G would be —(c + o). Thus, the total

activation leaving output units Q and G are

1

for all / because multiplying both the numerator and denomina-

tor bye'gives

5*0 -i^r-i-
e'+l e'+l

It follows that the denominator of the right-hand side of Equa-

tion 16 is equal to 1, so we can expand the right-hand side as

follows:

1 1

1 + e-"'->",
\ + e~'

l+e

and

These activations are transformed into response probabilities

by the RGR so that

P(QIC,0,) = -

Comparison of the CMP and F

(15)

A comparison between the FLMP and CMP reveals that the

two models, couched in different theoretical frameworks, can

make identical predictions in practice (Massaro & Cohen,

1987). In this case, a formal equivalence between the two

models exists if adding the weighted activations at input and

transformed by the sigmoid-squashing function is mathemati-

cally equivalent to multiplying fuzzy-truth values. We now

demonstrate that such an equivalence holds in the case of a sim-

ple categorical-response experiment. That is, if an experiment

allows subjects only two response alternatives, then in their

standard implementations, the CMP and FLMP are observation-

ally equivalent.

For notational simplicity, we consider two sources of infor-

mation, denoted X and Y; the argument remains valid but re-

quires more complex notation when more than two informa-

tion sources are present. Let P, (or Q,-) denote the observed re-

sponse probabilities for the first response alternative (e.g., the G

response in our prototypical task) in single-factor trials with X

set at level i (or Y set at level;'). Let S(t) = 1/(1 + e'
1
) denote

the sigmoid-squashing function mapping / E (—00, GO) to u £

{0, 1), and let S~'(u) = -/«(!/« - 1) denote its inverse. Note

that the weights V, = S-'(P,) and Wj = S'^Q,) will be chosen

for the CMP from data that generate Pt and Q, under the conven-

tion that input units have a value of 1 if activated and 0 if not

activated. In view of Equations 10 and 14, the demonstration

reduces to verifying that

J
 IVI m.'i < "j> ( , ,-• .

p,C, + (i-P,)(i-Q,) S(r,+ Wj) + s(-y,-Wj)

for all values of P.-, Q, in [0, 1]. First note that S(t) + 5(-J) = 1

-S(W,)]'

which of course corresponds to the left-hand side of Equation

16, and the verification is complete.

It is important to recognize that the observational equiva-

lence between CMP and FLMP as models of information integra-

tion does not extend to experiments allowing more than two

response alternatives. For example, suppose that the probabili-

ties of responses A,, A2, and A} are .6, .2, and .2, respectively,

given information source X (at some specified level /) in isola-

tion, whereas the corresponding probabilities for Y are .7, .1,

and .2. Then the weights for X are S~
l
(.6) ~ .405, S~\.2) «.

-1.386, and S~\.2) » -1.386, whereas the weights for rare

.847, -2.197,and -1.386. The CMP prediction for response^,

given both sources is

SX.M5 + .847)

•$•(.405 + .847) + S(-1.386 - 2.197) + S(-1.386 - 1.386)

.778

The FLMP prediction is

(.778 + .027 + .059)

= .8750.

.9004.

Although the difference between these predictions is not strik-

ing in this example, it does establish the nonequivalence of the

two models for three or more response alternatives.

Multidimensional Scaling (MDS)

A related but different attack on the problem of assessing the

influence of multiple sources of information is multidimen-

sional scaling (MDS), developed by Shepard (1962, 1988), his

colleagues, and others (Kruskal, 1964). MDS has been applied

to both similarity judgments and recognition judgments. Tradi-
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tionally, these researchers  have not manipulated the properties

of  test  objects  in  pattern-recognition  tasks. Usually, investiga-

tors  use  only  the  endpoint  categories  (a  categorical  design  in

our framework) and examine the pattern of errors that subjects

make when they identify  the patterns  (Bouma,  1971; Loomis,

1982; Shepard,  1988).  To induce a  reader  to  make errors,  for

example,  letter  stimuli  are degraded  by  presenting them for a

short duration or at a great distance.  The responses of the sub-

jects are entered into a confusion  matrix that indicates the iden-

tification  frequencies for each letter stimulus. For example, sub-

jects might be given the set of 26 lowercase letters  in the English

alphabet  and respond  with  one of  the  26  alternatives  on each

trial.  These  results are then used to distinguish among various

descriptions  of the properties of the  letters. The goal  has been

to find the smallest  number  of dimensions that  best  describes

the  responses  (Gilmore,  Hersh, Caramazza,  &  Griffin,  1979;

Shepard,  1988;  Tovvnsend,  1971).  The  usual  MDS approach

differs  from  the  other  approaches  to  information  integration,

which  all  specify  the  sources  of  information  in  advance,  and

then  describe various ways  in which  the values  obtained  from

the evaluation of each source are combined. In its standard ap-

plication, MDS envisages the reverse process: One seeks to  infer

the  number of  independent sources (and perhaps  their  specifi-

cation) from  an analysis of response  data.

Nevertheless,  MDS  can  also  be  implemented  as  a  model  of

information  integration, and indeed, Ashby and Gott (1988, p.

34) do so explicitly (see also Ashby & Perrin, 1988). To imple-

ment  MDS, one takes  the  identity  (and number, that is, dimen-

sionality)  of  the  sources  of  information  as  given, and  regards

the evaluation of all  information  sources  for  some stimulus as

defining a point in a vector space of the given dimension. Each

possible response is denned as a point in the same vector space.

Given  a distance function  for  the vector  space such  as  the Eu-

clidean or the "city-block" metric, one assumes  a decision rule

based on minimum distance between  the point  and the proto-

type: The individual chooses the response nearest the evaluated

stimulus. The result is an integration model that uses a distance

metric as its integration  function.  Such models are particularly

well adapted  to discrete-response  experiments using a  factorial

design. We take the liberty in what follows of  referring to them

as MDS  models.

Implementation  of  MDS

Assume that n independent  variables, or sources of informa-

tion, are used, and construct a vector space of dimension n with

axes that refer to evaluation scale values for these sources. Sup-

pose also that the design allows several responses, each of which

can be assigned  to a point in this vector  space. For example, in

our G-Q recognition task, we have a two-dimensional space  in

which the horizontal  axis measures  the degree  of closedness of

a  circle  and  in  which the  vertical axis  measures the degree of

obliqueness  of the  line. If the allowable  responses consist only

of G and Q, then the two allowable  responses  might have  recog-

nizable locations at the points A
a
  = (10,0) and AQ = (0,61) for

G  and Q, respectively.  In the simplest  implementation of MDS,

we take  the evaluation process to be essentially a noiseless scal-

ing of the two sources of information, so x  = degree of  closed-

ness  and y  = obliqueness  of line in degrees  from  horizontal of

the stimulus presented.  Alternatively, one can assume that some

specified noise process degrades evaluation; for example, multi-

variate  normal noise in  the general Gaussian  model  of Ashby

and Perrin  (1988).

To define  an  MDS  integration function,  we  need  to  specify  a

metric, or distance  function,  on the vector  space.  All  examples

in  the  MDS  literature use  the  Minkowski  r metric, defined  for

pairs of n vectors x  = ( j c j , . . . , *„) and.4  = (A,,..., A
n
) by the

formula

\Xi-An
1
' (17)

where the exponent  r is a  number  between  1 and  oo. Observe

that in the r -  1 case, the vector distance  between two points is

the sum of the component  factor distances.  This case is known

as the city-block metric because the overall  distance  one must

cover  when traveling on a grid  of city streets is the  sum  of the

north-south  and east-west distances. The case most  often en-

countered,  r = 2, is known as Euclidean distance, because  (ac-

cording to Pythagoras's ancient theorem)  it measures  distance

"as  the  crow  flies"  in  standard  (Euclidean)  geometry.  Some-

times positive weights w, are assumed to multiply  the terms in

Equation  17, but  little  further  generality  is  so  achieved:  The

same result can be achieved by  changing the scale  i in  propor-

tion  №,-"',  that  is,  by  a  change  in  units  for  each information

source. For specified r, the  integration function  in  MDS is given

by  a/,  = | x  — A
k
 \,, where A

k
  is the vector corresponding  to re-

sponse alternative k, and x  is the vector defined by the evaluated

stimulus.

One  possible decision  rule in an MDS  model  is a generaliza-

tion  of the CR:  response  k is selected  if a
k
  = m i n f f l i , . . . , a

n
}.

That is, we assume that an individual selects  the response  alter-

native closest to the perceived  stimulus. Recall that the basic CR

in a simple, unbiased  two-response  case defines a point that  is

equidistant  from  the two  alternatives.  In the present  case of n

dimensions, this would correspond  to the locus of points equi-

distant from  the two response  alternatives.  For example, in the

G-Q  letter-recognition task, the r = 2 (Euclidean distance) met-

ric  defines  the perpendicular bisector  of  the  line segment con-

necting the points A
c
  = (10,0) and AQ = (0, 61) as the general-

ized  criterion:  Evaluated stimuli that  fall  on the Q  side  of this

bisector  generate  Q  responses,  and  evaluated  stimuli  on  the

other side generate  G responses.

The separating boundaries between the response regions can

be more complex than  straight lines (or n — 1 dimensional hy-

perplanes  for  n  information  sources).  For example,  in  Ashby

and Gott's (1988)  general Gaussian model,  the boundaries are

conic sections. Even the simplest city-block case has boundaries

that consist of three connected  lines, two oriented  along an axis

and the third a connecting diagonal. However, in every case, the

generalized  CR partitions  the vector  space into m regions, one

for  each allowable response, and evaluated  stimuli that lie in a

given region all produce the same response.

To summarize, MDS can be implemented  as an information-

integration  model  in which the currency is distance.  The evalu-

ation of stimuli can be assumed to be noiseless or to be degraded

by a specific  noise process.  The integration function  is denned

by  the  Minkowski  r metric  for  some  specified  r. The  decision

rule is usually a generalized CR.
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Table 1

Summary of the Currency and Processes Assumed by the Integration Models

Model Currency Evaluation Integration Decision

FLMP

TSD

LIM-ROR

LIM-CR

CMP

MDS

Truth values

Sensory information

Valuations

Valuations

Activations

Distance

Noise free

Normal noise

Noise free

Normal noise

Noise free

Normal noise

Multiplication

Summation

Addition

Addition

Addition/sigmoid transform

Euclidean or city-block metric

RGR

CR

RGR

CR

RGR

CR

Note. FLMP = fuzzy-logical model of perception; TSD = theory of signal detectability; LIM-RGR = linear

integration model-relative goodness rule; LIM-CR = linear integration model-criterion rule;cMP = connec-

tionist model of perception; MDS = multidimensional scaling.

Relation to Other Integration Models

Clearly, one implementation of MDS is closely related to the

TSD model. Indeed, one obtains precisely the standard TSD

model that we presented earlier under the following assump-

tions (Ashby & Gott, 1988): (a) Noise at evaluation comes from

the same multivariate normal distribution for each stimulus,

the distribution having a mean and correlation of 0 across fac-

tors; (b) the integration function is Euclidean (r = 2) distance;

and (c) the decision rule is generalized criterion (the closest re-

sponse alternative is always chosen). This equivalence of MDS

and TSD provides a geometric interpretation of the key Equa-

tion 9 for TSD: The d's for each factor represent distances along

perpendicular axes, and the overall distance for two factors is

the length of the hypotenuse, so Equation 9 is just the Pythago-

rean theorem.

Another implementation of MDS is based on a city-block inte-

gration function (r = 1). This model turns out to be equivalent

to a TSD model in which the separate d's are added. As Fidell

(1970) pointed out, noise processes that are perfectly correlated

across factors (or sources) leads to an overall d' that is the sum

of the individual factor d's, as in the city-block (r = 1) metric.

If the d's arise from logistic rather than normal noise, then the

city-block MDS model appears to be equivalent to the FLMP for

two response alternatives.

In conclusion, the MDS approach yields some valuable in-

sights into the geometry of information integration and allows

several integration models to be constructed once the r metric

(and the noise process at evaluation and the decision rule) are

specified. However, the two most natural specifications yield a

model equivalent to TSD and one similar to the FLMP. The more

general specifications introduced by Ashby and Perrin (1988)

involve many additional free parameters (e.g., for the covari-

ance matrix). For present purposes, then, MDS does not provide

any additional simple models to be compared with those al-

ready introduced, and thus MDS models are not included in our

empirical assessment of models of integration.

Empirical Predictions and Tests of the Models

In the last five sections, we have developed several models of

information integration. The critical features of the models are

summarized in Table 1. Our analysis revealed differences and

similarities among the models. Given two response alternatives,

both the CR implementation of the LIM (LIM-CR) and the basic

Euclidean version of MDS are observationally equivalent to the

TSD. Although the FLMP and CMP are observationally equivalent

for two response alternatives, they differ for three or more re-

sponse alternatives. Hence, four distinct models remain for

comparison: FLMP, TSD, LIM-RGR, and CMP. We have already

discussed the optimality properties and demonstrated the math-

ematical nonequivalence of these models. Given this set of plau-

sible models, the real basis of comparison is the predictive

power of the models. Reliable assessments will be possible only

after the models have been contrasted in a broad range of exper-

imental tasks. We initiate this project by generating specific pre-

dictions and providing some simple illustrative empirical com-

parisons.

Hypothetical predictions were generated from each model for

the results of an expanded two-factor design with two and with

four categorical-response alternatives. Recall that the expanded

design tests each of the two sources of information presented in

isolation, as well as the factorial combination of the two sources

of information. The design provides a more powerful data base

to assess models of human performance than do standard facto-

rial designs (Massaro, I987b). There were seven levels of each

of the two independent variables. To generate each model's pre-

dictions, hypothetical parameter values were assigned to each

of the single-source conditions. These values are given in Table

2. The hypothetical parameter values in Table 2 were chosen to

be asymmetric around .5 and to cover different ranges between

0 and 1. (Curves generated from symmetric parameter values

are redundant, and real stimulus continua seldom turn out to

be symmetric or to cover the same range.) Each model predicts

that the probability of a particular response is some combina-

Table2

Hypothetical Parameter Values for the 14 Single-Source

Conditions for Models with Expanded

Two-Factor (X and Y) Design

Factor

X

Y

1

.01

.03

2

.10

.20

3

.30

.40

Level

4

.50

.60

5

.70

.80

6

.90

.92

7

.99

.95
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tion of unique parameter values associated with each of the lev-

els of the two independent variables.

The predictions of the models under consideration can be fit

to data with a parameter-estimation program such as STEPIT

(Chandler, 1969). A model is denned in STEPIT as prediction

equations that contain a set of unknown parameters. STEPIT

minimizes the deviations between the observed and predicted

values of the models by iteratively adjusting the parameters of

the equations. Root mean square deviation (RMSD) values in-

dex the overall goodness of fit of the model, and their use en-

sures a maximum likelihood fit. The RMSD value is the square

root of the average squared deviation between the predicted and

observed values. The smaller the RMSD value, the better the fit

of the model.

RMSD values are used because these specify directly the cor-

respondence between a model and data or the correspondence

between the predictions of two models. That is, an RMSD value

of 0.05 means that the observations and predictions are within

roughly 0.05 of one another on the average. More important,

we are evaluating similarities and differences among different

models from which predictions are in terms of probabilities,

not actual frequencies. Other measures of goodness of fit, in-

cluding chi-square, require knowledge about the actual fre-

quencies in each cell. We know that with large enough fre-

quency, any model—no matter how good the fit to data—can

be rejected. Although other statistical tests might be useful in

other contexts, an RMSD goodness of fit seems most appropri-

ate for our purposes.

Two Response Alternatives

We first consider the case in which there are two possible re-

sponses in the task. We generated hypothetical data as follows.

For all five of the models, the probability of an Ak response,

P(Ak), to the single-source conditions was assumed to be equal

to the corresponding parameter value in Table 2. The P(Ak)

values to the factorial conditions were then generated from the

values in Table 2. The currency of the FLMP and L1M-RGR are

values between 0 and 1, and their predictions follow directly

from these values. For the TSD and LIM-CR, the parameter val-

ues must be transformed into z scores before integration, and

the outcome of integration must be transformed back into

P(Ak) values. The currency of the CMP is activation weights that

can vary between large negative and large positive values, but

after the sigmoid transformation, we again obtain normalized

values between 0 and 1. Given the constraints on the generation

of the hypothetical results, identical predictions are made by all

of the models for the single-source conditions. The similarities

and differences among the models can thus be seen directly by

contrasting the predictions for the factorial condition.

Evaluating how much the five models differ from one another

is informative. Logically, one model might mimic the results of

another simply with a change in parameter values. To explore

this issue, the five models were fit to the five sets of predictions

generated by these same models (Table 3). In all cases, 14 pa-

rameter values (2 variables X 7 levels for each variable) were

estimated to minimize the RMSDs between the observed and

predicted data.

Each model can describe data generated by itself and by

Table 3

Root Mean Square Deviation Values for Fits of the Five

Models to the Five Sets of Predictions

Model

Data

LIM-RGR

FLMP

CMP

TSD

LIM-CR

.000

.159

.159

.191

.191

.068

.000

.000

.033

.033

.068

.000

.000

.033

.033

.084

.041

.041

.000

.000

.084

.041

.041

.000

.000

Note. The predictions are for an expanded two-factor design with two

response alternatives given the parameter values in Table 2. LIM-RGR =

linear integration model-relative goodness rule; FLMP = fuzzy-logical

model of perception; CMP = connectionist model of perception; TSD =

theory of signal detectability; LIM-CR = linear integration model-crite-

rion rule.

models that are mathematically equivalent to it. As expected

from the mathematical analyses of the models, the FLMP and

CMP made identical predictions to one another, as did TSD and

LIM-CR (Table 3). The LIM-RGR predictions were unique.

Thus, there are three different sets of predictions. The predic-

tions for the factorial condition by these three classes of models

are given in Figure 9. As can be seen in the figure, the three

classes of models make noticeably different predictions from

one another. Especially noticeable is the difference between the

LIM-RGR and the other two classes of models. Linear integra-

tion followed by the RGR produces additive results that plot as

parallel curves. The predictions for the other two classes of

models are clearly elliptical, with the distances among the

curves much greater in the middle of the range of parameter

values than at the extremes. Even the other two classes differ

significantly, however, in the fine structure of their predictions.

The FLMP and CMP class is more continuously graded across

the continuum relative to the TSD and LIM-CR class. The three

classes of models shown in Figure 9 are identifiably different

from one another. That is, the models cannot accurately de-

scribe predictions generated by each other by simply assuming

another set of parameter values. It is not possible to find a set

of parameter values for one model that will produce predictions

that will mimic the results generated by another model. For the

identifiably different models, the RMSD values are sufficiently

large to warrant the belief that these models could be distin-

guished from one another in practice.

The models were also tested against real data from the Mas-

saro and Hary (1986) task described in the Taxonomy of Exper-

iments section. Table 4 gives the RMSD values. As expected,

the FLMP and CMP gave equivalent descriptions, as did the TSD

and LIM-CR models. Figure 10 gives the observed results along

with the predictions of the three classes of models. As can be

seen in the figure, the LIM-RGR gives a poor description of the

results relative to the good description of the FLMP and CMP and

the TSD and LIM-CR classes of models. Although the fit of the

latter two classes of models were both fairly good, an ANOVA

performed on the RMSD values revealed that the FLMP and CMP

class of models gave a significantly better fit of the results than did

the TSD and LIM-CR class of models, F\\, 8) = 79.46, p < .001.
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Figure 9. Predicted probability of AI responses for the factorial conditions of the expanded factorial design

given the parameter values in Table 1. (The left panel gives the predictions for the linear integration model-

relative goodness rule, the center panel gives the predictions for the fuzzy-logical model of perception and

connectionist model of perception, and the right panel gives the predictions for the theory of signal detect-

ability and linear integration model-criterion rule.)

Graded Responses

The predictions of the models for graded responses are identi-

cal to those predicted for categorical responses. Thus, the pre-

dictions shown in Figure 9 can be tested against both categori-

cal and graded responses (assuming that subjects use a linear

response scale in the graded task). In Massaro and Hary's

(1986) rating task, 6 subjects rated the (3-ncss-G-ness of a test

letter from the G-Q continuum by using a rating scale displayed

Table 4

Root Mean Square Deviation Values for the Fits of the Three

Classes of Models to the G-Q Categorical-Response

Task of Massaro and Hary (1986)

Subject

1
2
3
4
5
6
7
8
9

M

LIM-RGR

.247

.154

.157

.202

.226

.229

.236

.238

.192

.209

Model

FLMP/CMP

.035

.064

.097

.044

.031

.054

.049

.028

.054

.051

TSD/LIM-CR

.032

.072

.110

.048

.044

.050

.057

.030

.081

.058

Note. UM-RGR = linear integration model-relative goodness rule;

FLMP/CMP = fuzzy-logical model of perception and connectionist

model of perception; TSD/LIM-CR = theory of signal detectability and
linear integration model-criterion rule.

on the computer terminal monitor. The scale was a straight hor-

izontal line made up of 51 divisions, although it was displayed

as a continuous line on the monitor screen. The left end of the

scale was labeled Q and the right end G. Subjects were able to

move a pointer along the scale but were not told that the scale

had 51 divisions. The pointer was represented as a black box on

the rating scale, and subjects manipulated the pointer using left

and right arrow keys on the terminal keyboard. Subjects were

instructed to "tell us where the test letter falls on the scale from

QtoG by moving the pointer on the screen in front of you.. . .

We want you to use the whole Q-G scale to respond with, not

just the two endpoints and middle, for example. For the letters

you will see in this study, you should use the entire scale and all

of the points in it."

With the assumption of a linear response scale, the rating task

provides a direct test between linear and nonlinear integration.

Linear integration (Anderson, 1981, 1982) makes strong pre-

dictions about the average rating response in an integration

task: If a subject rates a test letter on an interval scale that varies

on two factors, then the plot of the ratings versus the factors

should produce parallel lines. The additive rule assumes that

the contribution of one factor to integration is the same regard-

less of the ambiguity of the other factor. This rule is not optimal

in that averaging an ambiguous source of information with an

informative source will tend to neutralize the judgment relative

to the informative source presented alone. In contrast, the FLMP

predicts American-football-shaped curves when the average

ratings are plotted in a two-factor graph. These curves reflect

the larger impact of the less ambiguous source of information.

A test between these different predictions was carried out by

fitting the respective models to the individual rating judgments
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Figure 10. Observed (points) and predicted probability of a Q identification as a function of the dosed ness

of the gap and the obliqueness of the line (after Massaro & Hary, 1986). (The left panel gives the predictions

for the linear integration model-relative goodness rule, the center panel gives the predictions for the fuzzy-

logical model of perception and connectionist model of perception, and the right panel gives the predictions

for the theory of signal detectability and the linear integration model-criterion rule.)

of the Massaro and Hary (1986) study. Figure 11 illustrates the

model fits averaged over subjects. The parallel lines predicted

by the LIM-RGR do a rather poor job in fitting the data points.

The FLMP does much better than the additive model. The RM-

SDs for the individual subjects are presented in Table 5.

Four Response Alternatives

Given that some of the models make mathematically equiva-

lent predictions in tasks with two response alternatives, tasks

with a larger number of alternatives need to be considered to
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Figure 11. Observed (points) and predicted Q rating as a function of the closedness of the gap and the

obliqueness of the line (after Massaro & Hary, 1986). (The left panel gives the predictions for the linear

integration model-relative goodness rule, the center panel gives the predictions for the fuzzy-logical model

of perception and connectionist model of perception, and the right panel gives the predictions for the theory

of signal detectability and linear integration model-criterion rule.)
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Table 5

Root Mean Square Deviation Values for the Fits of the Three

Classes of Models to the G-Q Gmded-Response Task

ofMassaro andHaty (1986)

alternatives. In the case of RGR, the probability of a response

AC would be equal to

Subject

1
2
3
4
5
6

M

LIM-RGR

.071

.164

.065

.104

.083

.050

.090

Model

FLMP/CMP

.036

.037

.051

.032

.042

.034

.039

TSD/LIM-CR

.049

.047

.049

.049

.057

.053

.051

Note. LIM-RGR = linear integration model-relative goodness rule;

FLMP/CMP fuzzy-logical model of perception and connectionist model

of perception; TSD/LIM-CR = theory of signal detectability and linear

integration model-criterion rule.

differentiate among these models. To this end, results predicted

by the models were also generated for the same expanded two-

factor design, but now with four response alternatives. To illus-

trate this design, we modify the prototypical G-Q design in Fig-

ure 1 to include the response alternatives C and O. In this case,

the two sources of information are seven levels of closedness of

the oval and seven levels of the length of a somewhat oblique

line (for example, the third or fourth level of obliqueness illus-

trated in Figure 1). Given two sources of information, a natural

summary description of the four alternatives is

C: not closed oval and no line,

O: closed oval and no line,

G: not closed oval and line,

and

Q: closed oval and line.

If c represents the degree to which the oval is closed and / the

degree to which a straight line is present, the goodness of match

with a C, O, G, or Q alternative can be represented by the con-

junction of these feature values:

ao = c A /,

where ac, a0, aG, and aQ represent the goodness of match of a

test letter to the C, O, G, and Q alternatives, respectively.

Integration of the two sources of information would give an

absolute goodness of match for each of the four alternatives.

Decision might consist of either a choice based on a generalized

CR or one based on the RGR. With more than two response alter-

natives, the natural implementation of CR is to choose the alter-

native with the largest goodness of match. On the other hand,

the RGR decision operation determines the relative merit of the

ac

a0 + aa + ag

(18)

where P(AS.\CILJ) is the predicted probability of an A<. response

to a particular combination of the two sources of information

C/and Lj.

With seven levels of each factor, an expanded two-factor de-

sign with four response alternatives generates 252 data points.

These data points were generated with the same parameter val-

ues as for two response alternatives (see Table 2). With four re-

sponse alternatives, the probability of a response given just one

source of information was equal to one half the parameter value

for that source of information.

Given the constraints on the generation of the hypothetical

results, identical predictions are made by all of the models for

the single-source conditions. The similarities and differences

among the models can thus be seen directly by contrasting the

factorial conditions. The FLMP, CMP, and LIM-RGR make

straightforward and unique predictions for the four-alternative

task. (The implementation of TSD for four alternatives is rela-

tively complex and is not presented herein.) The form of the

predictions is apparent in the functions for just one of the four

response alternatives. Thus, the predictions of the three models

for just one response are given in Figure 12.

As can be seen in the figure, these three models make differ-

ent predictions from one another. The FLMP predicts a fan-

shaped set of curves varying between 0 and I . The CMP and the

LIM-RGR, on the other hand, predict results between 0 and .5.

The CMP predicts nonadditive results, whereas linear integra-

tion followed by the RGR produces additive results that plot as

parallel curves.

The application of these models to a task with four alterna-

tives reveals an important difference between linear and nonlin-

ear integration that was not apparent in the task with just two

alternatives. The probability of any response cannot exceed .5

for either the LIM-RGR or the CMP, both of which specify addi-

tive integration. Multiplicative integration in the FLMP predicts

response probabilities between 0 and 1. The problem with addi-

tive integration can be understood by referring to a test stimulus

in the hypothetical QGOC task. Assume that a source of infor-

mation gives one unit of support when it matches the alternative

and 0 when it does not. If the stimulus is a C, then the response

alternative C receives two units of support. However, the re-

sponse alternatives O and G receive one unit of support each

for no line and not closed, respectively. That is, with an additive

integration rule, each of the O and G alternatives receives sub-

stantial support (approximately half of the support for the alter-

native C). Because the RGR is used for decision, then the proba-

bility of a C response cannot be greater than the sum of the O

and G response probabilities. In our example, the probability

of a Cresponse is approximately .5. (This limitation is also true

of the TSD model for four responses.) On the other hand, the

alternatives O and 6' receive little support given multiplicative

integration because the poor match on one feature cancels the

good match on the other.

As in the case with two alternatives, each model was fit to the

predictions of all of the models to address the issue of identifi-
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Figure 12. Predicted probability ofyi I responses for the factorial conditions of the expanded factorial design

with four responses given the parameter values in Table 2. (The left panel gives the predictions for the fuzzy-

logical model of perception, the center panel give the predictions for the connectionist model of perception,

and the right panel gives the predictions for the linear integration model-relative goodness rule.)

ability. Table 6 gives the RMSD values for the fits of the three

models to the three sets of data. Each model can describe data

generated by itself. The LIM-RGR and CMP are much more sim-

ilar in their predictions than are the predictions of either of

these models to those of the FLMP. The RMSD values are suffi-

ciently large enough to warrant the belief that the FLMP could

be distinguished from the LIM-RGR and CMP in practice.

A graded factorial experiment with four response alternatives

was carried out by Massaro, Tseng, and Cohen (1983). The four

responses in the experiment consisted of four words in Manda-

rin Chinese. The experimental task was a graded factorial de-

sign with seven levels of each of two factors. The factors were

the formant structure of the vowel in the monosyllabic words

and the fundamental frequency (F0) contour (tone) during the

vowel. Mandarin Chinese is a tone language, and both of these

Table 6

Root Mean Square Deviation Values for the Fits of Three

Models to the Three Sets of Data Generated

with the Parameter Values in Table 2

Data

LIM-RGR

FLMP

CMP

LIM-RGR

.000

.142

.087

Model

FLMP

.024

.000

.082

CMP

.011

.130

.000

Note. The data are for an expanded two-factor design with four re-
sponse alternatives. LIM-RGR = linear integration model-relative good-

ness rule; FLMP = fuzzy-logical model of perception; CMP = connec-

tionist model of perception.

sources of information are functional to distinguish different

words. The formant structure was varied to make a continuum

of vowel sounds between /i/ and /y/. (The phoneme /y/ is artic-

ulated in the same manner as /i/, except with the lips rounded.)

The Fa contour varied from falling-rising to falling during the

vowel. Six native Chinese speakers participated for 4 days, giv-

ing a total number of 48 responses to each of the 49 test stimuli.

The subjects identified each of the 49 test stimuli as one of the

four words.

Figure 13 gives the observed results and the predictions of

the FLMP, CMP, and LIM-ROR. Table 7 gives the corresponding

RMSD values. As can be seen in the figure, the CMP and LIM-

RGR fail catastrophically primarily because they cannot predict

a probability of a response greater than .5. The FLMP, on the

other hand, captures the results reasonably well. The success of

the FLMP is due to the multiplicative integration of the two

sources of information. A perfect match of a stimulus with a

given response alternative on just one source does not necessar-

ily mean that this alternative should qualify as a reasonably

good alternative. Linear integration, however, guarantees that a

perfect match of a response alternative with just one source of

information will carry significant influence even if the other

source of information mismatches the response alternative

completely.

In conclusion, we have been relatively successful in testing

among the predictions of the models in graded factorial designs

with two and four response alternatives and with a graded re-

sponse. The TSD and LIM-CR class of models and the FLMP and

CMP class of models could be discriminated in a graded facto-

rial with just two response alternatives. The LIM-RGR could be

rejected in both categorical-response and graded-response

tasks. Finally, the FLMP and CMP could be distinguished from
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Figure 13. Observed (points) and predicted (lines) probability of /y/-falling responses for the Chinese word

identification study (after Massaro, Tseng, & Cohen, 1983). (The left panel gives the predictions for the

fuzzy-logical model of perception, the center panel gives the predictions for the connectionist model of

perception, and the right panel gives the predictions for the linear integration model-relative goodness rule.)

one another in a graded factorial design with four response al-

ternatives. The FLMP gave a much better description of the re-

sults than did the CMP. We caution that the observed advantage

of the FLMP is only tentative in that both new results and more

refined models could alter the predictive power of the models.

Relation to Other Models

Our presentation of information-integration models is by no

means exhaustive. Although we have presented five important

models and discussed their optimality and validity properties,

we have not covered all variations of the models or discussed

Table 7

Root Mean Square Deviation Values for the Fits of the Three

Models to the Chinese Word-Identification Task

of Massaro, Tseng, and Cohen (1983)

Model

Subject

1 .244
2 .209
3 .227

4 .264

5 .259

6 .248

M .242

.033

.040

.030

.045

.036

.072

.043

.239

.199

.220

.261

.256

.242

.236

Note. LIM-RGR = linear integration model-relative goodness rule;
FLMP = fuzzy-logical model of perception; CMP = connectionist model

of perception.

other possible models. In the next two sections, we fill in some

of these gaps. We then summarize our results.

First-Order Versus Second-Order Integration

Shaw (1982) distinguished between first-order and second-or-

der integration models (see also Green & Swets, 1966). In first-

order models, the information from the separate sources is inte-

grated prior to making a decision. In second-order models, a

categorical decision is made for each source before integration

takes place. The separate decisions are then integrated to make

a response. The separate decisions in second-order models are

categorical and do not preserve the goodness of match of the

information leading to the decision. Shaw tested the predictions

of these two classes against the results of several different experi-

ments. In the task, one or more stimuli are targets, and a differ-

ent set of one or more stimuli are nontargets. The stimuli were

either brief flashes of light presented to different spatial loca-

tions or bursts of sound, and the task was energy detection. In

other experiments, the task was letter detection in which the

target could appear or not appear in one or more locations. The

probability of a detection response under the various experi-

mental conditions was used to test the models. Shaw concluded

that second-order decision models gave superior accounts of the

results.

The conclusion reached from Shaw's (1982) task appears to

conflict with our framework, in which we assumed that all

sources of information are integrated prior to any decision.

However, an analysis of the experimental tasks reveals that

different results in the two domains should not be unexpected.

Our tasks involve multiple sources of information specifying

the same object. Shaw's tasks, on the other hand, involved deci-
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sions about the simultaneous occurrence of multiple objects.

That is, targets or nontargets occurring at different locations

in the visual display were considered to be different sources of

information. Given Shaw's findings, integration of continuous

information across objects does not appear to occur in the same

manner as integration of information sources specifying the

same object. Given multiple objects, subjects apparently cate-

gorize each object and then use these categorizations to make a

more global decision about the experimental question. That is,

an experimental task is not necessarily isomorphic to categori-

zation of an object but could require information derived from

multiple categorizations. The G-Q task, on the other hand,

equates the experimental task with categorization of an object.

When this is the case, we expect to find that independent deci-

sions do not occur before integration. Ashby and Gott (1988)

also found evidence against independent decisions in a percep-

tual identification of a horizontal and a vertical line segment

attached at an upper left-hand corner. Thus, our conclusions

about integration appear to apply to the situation in which mul-

tiple sources of information specify a single object. More gener-

ally, whether or not integration occurs might be used to deter-

mine whether a perceiver treats multiple sources of information

as specifying a single object or as specifying multiple objects

(Massaro & Cohen, 1988).

Exemplar Models

The models we have discussed in this article belong to a gen-

eral class of summary-description models, as opposed to exem-

plar models. Summary-description models are characterized

by having each response category defined in terms of a simple

conjunction of attributes, features, properties, or dimensions.

Exemplar models, on the other hand, define categories in terms

of descriptions of several exemplars of the relevant category.

The goodness of match of a test item with a category is some

function of the goodness of match of all the exemplars that

make it up. One of the most influential exemplar models has

been the context model developed by Medin and Schaffer (1978)

and extended by Nosofsky (1986) and Estes (1986).

The context model is mathematically equivalent to the FLMP

if each category is represented by one exemplar. The reason is

that the context model and the FLMP contain essentially identi-

cal evaluation, integration, and decision operations. In the con-

text model, a test stimulus acts as a retrieval cue for exemplar

representations in memory. Exemplars in the context model are

represented by a set of attributes. Evaluation produces a good-

ness-of-match value of each attribute of the test item with the

corresponding attribute of each exemplar of each category. This

goodness of match is represented by a value between 0 and 1,

corresponding to the similarity of an attribute of the test item

and the corresponding representation of the attribute in mem-

ory. The integration of the goodness-of-match values across the

different attributes is assumed to be multiplicative (as it is in

the FLMP). Finally, decision is accomplished via the RGR in the

same manner as in the FLMP. The two models make equivalent

predictions in the case in which only one exemplar is assumed

in the context model, and the representation of the exemplar is

equivalent to the summary description in the FLMP.

Medin and Schaffer (1978) also pointed out the value of mul-

tiplicative relative to additive integration in their description of

the combination of dimensions to determine overall similarity.

Given a multiplicative integration, the overall similarity of a

yellow circle and a blue triangle would not be much less than the

overall similarity of a yellow circle and a yellow triangle because

similarity along color would have very little influence on perfor-

mance given the gross mismatch on shape. Given additive inte-

gration, on the other hand, the overall similarity of a yellow cir-

cle and a blue triangle would be significantly less than the over-

all similarity of a yellow circle and a yellow triangle because

similarity of color would add to the goodness of match regard-

less of the gross mismatch on shape. In a multiplicative combi-

nation rule, a single dimension of difference can overrule sev-

eral dimensions of sameness.

Summary-description models are easily extended to include

multiple descriptions of a given category. The most natural ex-

tension is to use the summary description in memory that gives

the best match with the test item. In this case, integration would

involve the goodness of match of the best fitting exemplar of

the category of interest. This computation corresponds to the

computation of disjunction. Given a definition of conjunction,

disjunction can be computed with DeMorgan's law. Given two

exemplars EM and Ek2 making up the description of category

k, the goodness-of-match ak of a test item with category k would

be given by the disjunction of the goodness-of-match values of

the test item with the exemplars Eu and Ea. :

ak = t(Ekl or En) = t(Ek2) + t(Ea) - t(Ekl) X t(Ek2). ( 1 9)

With this definition of disjunction, the context model and the

FLMP with multiple summary descriptions are no longer mathe-

matically equivalent. Consider a situation with two contrasting

categories with two exemplars in each category. Define akj as

the goodness of match of a test item with exemplary from cate-

gory k. Thus, flu and a12 are the goodness of match of the test

item with Exemplars 1 and 2 from Category 1. The support for

Category 1 , notated a\ , would be given by

a, =a,, + a,2-(a,i X a,2).

Analogously, the support for category 2 is given by

In the context model, on the other hand, the degree of support

for a given category is the simple sum of the degree of support

of all exemplars within that category:

a, = a,, + ai-

and

At a quantitative level, the models differ on how all of the exem-

plars in memory contribute to the overall goodness of match of

a test stimulus to a category. Thus, in principle, this extension

of the FLMP could be tested against the context model. To do

so, however, lies outside the scope of this article.

Estes (1986) has also shown a close correspondence between

exemplar and summary-description models. Estes (1986) did

not address the integration question directly but concentrated

instead on the retrieval of exemplar representations, the use of
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feature and pattern frequencies, and the existence of proto-

types. In addition, we have not addressed the learning of catego-

ries. Perhaps people use exemplar-based categorization early in

learning before a reliable summary description is developed

(Estes, 1986).

Discussion

Previous Rejections of Optimal Behavior

Our analyses in the Empirical Predictions and Tests of the

Models section provide preliminary support for the FLMP, an

optimal model of pattern recognition. There is also a history of

study of the psychological validity of normative (optimal)

models in decision making and judgment (Anderson & Shan-

teau, 1970; Arkes & Hammond, 1986). In contrast to our con-

clusions, the consensus from the research is that normative

models are invalid. Previous research has rejected Bayes's theo-

rem in various judgmental situations (Kahneman & Tversky,

1972). As an example, tests of Bayes's theorem have required

estimates of probability in some variant of the two-urn task

(Slovic & Lichtenstein. 1971). Subjects see two urns and are

told the proportion of red and blue beads in each urn. One urn

is picked with some probability, and a sample of beads is drawn.

Given the sample, the subject estimates which urn was, in fact,

picked. The probability of picking an urn, the relative propor-

tion of beads in each urn, the sample size, and the sample

makeup can be varied. The typical result is that subjects behave

less optimally than predicted by Bayes's theorem (e.g., Leon &

Anderson, 1974).

Our impression is that the rejections of the Bayesian model

have been premature. The rejection of Bayes's theorem in many

experiments has been a rejection of the normative form of the

model rather than a psychological form of the model. Predic-

tions have been derived on the basis of the objective rather than

the subjective sources of information. Our implementations of

the models, on the other hand, allow for subjective values for

the various objective sources of information. Consider a test of

the Bayesian model in situations in which subjective base rates

are assumed to be equal to objective base rates. In these cases,

performance falls short of the predictions of Bayes's theorem

(Leon & Anderson, 1974). Central to the current theoretical

framework, however, is the evaluation stage that transforms the

objective source of information into some subjective value.

Thus, performance could still fall short of the optimally objec-

tive prediction but might still be described by the same optimal

algorithm if subjective values are assumed.

Given the mathematical correspondence between Bayes's

theorem and the FLMP, the question arises whether one can be

justified over the other. Deciding between the models boils down

to beliefs about the psychological reality of the currency as-

sumed by the models. For Bayes's theorem, the currency is

probability; for the FLMP, it is truth value. Traditionally, the use

of probabilities in psychology has been associated with thresh-

old or categorical models (Massaro, 1975). Thus, the use of

fuzzy-truth values represents a shift away from these models to

continuously valued states of information.

Bayes's theorem could easily be interpreted as the subject

having only categorical information about a given hypothesis

(response alternative). Research has proved, however, that peo-

ple have information about the goodness of match of an in-

stance with a category (Rosch, 1975). As an example, a sparrow

provides a better match to the concept of bird than does a pen-

guin. Within a model based on Bayes's theorem, the probability

of bird given sparrow would have to be greater than the proba-

bility of bird given penguin. With probability interpreted as rel-

ative frequency, the difference would imply that the proportion

of sparrows that are birds is greater than the proportion of pen-

guins that are birds. However, this difference in probability is

not what is meant when people say that a sparrow is a better

bird than is a penguin. Differences in truth value appear to cap-

ture the difference between penguin and sparrow more accu-

rately. The proposition that a sparrow is a bird is more true than

the proposition that a penguin is a bird. The representation of

birdness in terms of truth values appears more reasonable than

a representation in terms of probabilities.

Relationship Between Luce's Choice Rule and

Thurstone's Case V

The RGR and the CR encompass significant aspects of Luce's

(1959, 1977) choice axiom and Thurstone's (1927) theory of

comparative judgment, respectively. In the choice axiom, the

choice objects are represented by scale values (analogous to the

discriminal processes of Case V of Thurstone). The choice ax-

iom holds if and only if (a) the RGR holds, (b) the scale value

representing an object does not change with changes in the re-

sponse alternatives used in the choice task, and (c) the response

alternatives defined as irrelevant do not enter into the RGR.

Mathematical psychologists have been aware of a close relation-

ship between Thurstone's theory of comparative judgment and

Luce's (1959) choice axiom since the latter's development. Luce

(1959) proved that the choice axiom is equivalent to a version

of Thurstone's theory in which the differences between the dis-

criminal processes have a logistic distribution instead of the

normal distribution implied by Case V (Adams & Messick,

1957). There is equivalence between the two models if and only

if the differences between the discriminal processes are logistic

random variables.

Yellott (1977) observed that knowing the distribution of the

discriminal processes themselves, not simply the distribution

of the differences, is important. In addition, can the relationship

between the two models be generalized to sets of alternatives

greater than two? If the discriminal processes are assumed to

have the double-exponential distribution, then the differences

will be logistic, and the two models are equivalent for any choice

experiment, not simply for pair comparisons (Yellott, 1977).

Also, for pair comparisons, distributions other than the double-

exponential type yield equivalence between the two models. For

three or more alternatives, however, the double-exponential dis-

tribution is unique.

Information Manipulation Versus Use

The approach that we have taken in this article involves the

systematic manipulation of the properties of patterns. Subjects

identify patterns modified in systematic ways, and their re-

sponses are used to test quantitative models of the identification
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process (Naus & Shillman, 1976; Oden, 1979). An important

distinction must be made between the stimulus characteristics

of the patterns that are manipulated in the experiment and the

features that the perceiver actually uses in the identification of

the patterns (Massaro & Schmuller, 1975, p. 209). Patterns can

be described by an almost endless number of characteristics or

properties (Palmer, 1978), and only a small set of these will be

psychologically real. Thus, manipulation of a particular charac-

teristic does not ensure that it is a feature that is used in pattern

recognition (Cheng &Pachella, 1984;Sattath&Tversky, 1987).

Estes (1986) observed that the researcher needs to know the

sources of information actually being used by the subjects in

order to provide valid tests of models of categorization. Which

characteristics function as features remains a psychological

question to be answered.

The paradigm that we have proposed, however, also allows

the experimenter to test which sources of information are being

used by the perceiver. In speech perception, a voicing distinc-

tion allows us to perceive a difference between the verb in the

phrase "to use" and the noun in the phrase "the use." Speech

scientists believed that consonant duration relative to vowel du-

ration (called the C/V ratio) was the critical cue to the voicing

judgments (Denes, 1955; Port & Dalby, 1982). However, Mas-

saro and Cohen (1977, 1983) showed that this cue is invalid,

when the results are analyzed in the manner developed in this

article. A model based on C/V ratio gives a much poorer de-

scription of existing results than does a model based on the as-

sumption of independent consonant and vowel duration cues

(Derr & Massaro, 1980). Thus, the research strategy developed

here not only addresses how different sources of information

are evaluated and integrated, it can uncover what sources of

information are actually used. We believe that the research par-

adigm confronts both the important psychophysical question of

the nature of information and the process question of how the

information is transformed and mapped into behavior.

Equivalence of Models Under Currency Transformation

The distinctions we have drawn between the various integra-

tion models rely on the assumption that the psychological val-

ues can be measured on valid interval scales. Some psycholo-

gists are unwilling to accept this assumption and believe that

only ordinal data are meaningful (Krantz, Luce, Suppes, &

Tversky, 1971). If the currency or scale values are defined up to

only a monotone transformation, then one cannot distinguish

among the different integration functions, and indeed, the inte-

gration function can always be taken to be summation. For ex-

ample, a logarithmic transformation applied to the evaluation

outputs of the FLMP can be integrated by summation rather

than multiplication, and then transformed back by an exponen-

tial transformation before the RGR decision process, to obtain

an additive integration model that is observationally equivalent

to the FLMP. Because transformations of a similar sort can be

made for any of the models, the integration function is not

unique when arbitrary transformations are permitted.

Our position is that implementable models must specify

transformations of the currency as part of the evaluation, inte-

gration, and decision processes; that is, they must be psychologi-

cally motivated. If these processes are only denned ordinally,

then there are infinitely many degrees of freedom because the

space of monotone transformations is infinitely dimensional.

Such excessive lack of parsimony precludes most meaningful

empirical comparisons.

The quantitative models described in Table 1 were all moti-

vated by the underlying psychological processes assumed by the

models. For example, the z transformation in the TSD model is

based on the assumption of normal noise. This assumption is

not only psychologically plausible, it can be tested against em-

pirical data. The particular transformations and integration

functions we have developed and tested, of course, are not

unique. For example, we discovered that the same TSD model

results from (a) an additive integration function applied to

noise-free inputs followed by a noisy criterion rule (as in LIM-

CR) or (b) a Euclidean distance integration function applied to

z-transformed inputs (as in MDS). The point is that some spe-

cific transformations must be assumed to compare the models

empirically, and we have sought the simplest and most natural

specification for each model.

Summary

Our main analytical results are as follows, (a) The FLMP, with

truth values estimated from the data, is observationally equiva-

lent as a model of information integration to an optimal model

with Bayesian integration and subjective probabilities esti-

mated from the data, (b) A two-level connectionist model (the

CMP) is mathematically equivalent to the FLMP for experiments

with two response alternatives. Experiments with three or more

response alternatives can distinguish between these two models.

In this case, the CMP model is prescriptively inferior (i.e., non-

optimal) and descriptively inadequate, (c) A LIM-RGR predicts

additive results in both categorical-response and graded-re-

sponse experiments. This prediction is not only nonoptimal, it

gives a poor description of actual behavior, (d) The TSD and a

LIM-CR are observationally equivalent in two-alternative cate-

gorical response experiments. TSD and LIM-CR are not observa-

tionally equivalent to the FLMP but are optimal only under the

further restrictions that the information-evaluation process in-

volves constant-variance normal noise. Multidimensional scal-

ing (MDS) can be formalized to mimic either TSD or the FLMP,

depending on the assumptions that are made about noise and

the distance-integration function.

The point of our analytical and descriptive exercises is to lay

the foundation for valid experimental tests of the models. It

should now be clear that several experimental tasks are incapa-

ble of distinguishing among some of these models. On the other

hand, factorial and expanded factorial experiments with four

response alternatives can distinguish among the models. We

were also successful in distinguishing among the models' de-

scriptions of actual empirical results. The experimental tasks

included factorial designs with two categorical responses, four

categorical responses, and graded responses. This analysis sug-

gested that the FLMP is not only optimal but provides an ade-

quate account of performance in all of these tasks.

We caution to add that predictive superiority in one experi-

mental domain (e.g., G-Q pattern recognition) does not neces-

sarily imply superiority in another domain (e.g., judgment).

Also, predictive power is not the only criterion by which psy-
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chologists choose models; certainly, conceptual appeal also

matters. Nevertheless, we trust that our analysis will help guide

the assessment of the information-integration models we have

presented and ultimately encourage the formulation of more

refined models.
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Appendix

Description of Notation Used in the Analysis of Tasks and Models

Notation

X,Y,---

X,, Y,. • • •

x,y,---

Ak

at

C

c

O

o

L

I

Pr(Ak\X=X,,

Y=Y,)

Description

Sources of information

;th,yth. ... levels of X, Y, • • •

Scale values given by evaluation of A", Y, • • •

Response alternative k

Scale value given by integration, support for^

Closed property of oval of G-gtest letters

Evaluation of C

Oblique property of line o(G-Q test letters

Evaluation of O

Degree of presence of line in G-Q-C-O test

letters

Evaluation of L

Probability of A" response given the /th level of A"

and they'th level of Y. Also written as

P(k\X,Yi)o,P(k\XY)

Notation

s,
d'

d'c

d'co

Etj

at,

RGR

CR

FLMP

TSD

LIM

CMP

MDS

Description

Test stimulus i

d' of theory of signal detectability

d' given the source of information C

d' given the two sources of information Cand O

Exemplary from category k

Goodness of match of test item with exemplary

from category k

Relative goodness rule

Criterion rule

Fuzzy-logical model of perception

Theory of signal detectability

Linear integration model

Connectionist model of perception

Multidimensional scaling
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