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S U M M A R Y

Modelling the geoid has been a widely used and successful approach in constraining flow and

viscosity in the Earth’s mantle. However, details of the viscosity structure cannot be tightly

constrained with this approach. Here, radial viscosity variations in four to five mantle layers

(lithosphere, upper mantle, one to two transition zone layers, lower mantle) are computed with

the aid of independent mineral physics results. A density model is obtained by converting

s-wave anomalies from seismic tomography to density anomalies. Assuming both are of ther-

mal origin, conversion factors are computed based on mineral physics results. From the density

and viscosity model, a model of mantle flow, and the resulting geoid and radial heat flux profile

are computed. Absolute viscosity values in the mantle layers are treated as free parameters and

determined by minimizing a misfit function, which considers fit to geoid, ‘Haskell average’

determined from post-glacial rebound and the radial heat flux profile and penalizes if at some

depth computed heat flux exceeds the estimated mantle heat flux 33 TW. Typically, optimized

models do not exceed this value by more than about 20 per cent and fit the Haskell average well.

Viscosity profiles obtained show a characteristic hump in the lower mantle, with maximum

viscosities of about 1023 Pa s just above the D′′ layer— several hundred to about 1000 times the

lowest viscosities in the upper mantle. This viscosity contrast is several times higher than what

is inferred when a constant lower mantle viscosity is assumed. The geoid variance reduction

obtained is up to about 80 per cent—similar to previous results. However, because of the use

of mineral physics constraints, a rather small number of free model parameters is required, and

at the same time, a reasonable heat flux profile is obtained. Results are best when the lowest

viscosities occur in the transition zone. When viscosity is lowest in the asthenosphere, variance

reduction is about 70–75 per cent. Best results were obtained with a viscous lithosphere with a

few times 1022 Pa s. The optimized models yield a core-mantle boundary excess ellipticity sev-

eral times higher than observed, possibly indicating that radial stresses are partly compensated

due to non-thermal lateral variations within the lowermost mantle.

Key words: geoid, heat flow, mantle convection, mantle viscosity, mineralogy, tomography.

1 I N T RO D U C T I O N

Mantle rheology is still one of the rather poorly known properties of

the Earth. It is widely agreed upon that, below a brittle lithospheric

layer, mantle rocks behave, on timescales of thousands or millions

of years, like a highly viscous fluid. Viscous flow in the Earth’s

mantle is presumably the principal way how the Earth transports

heat through the bulk mantle, and an underlying cause for gravity

and geoid undulations, tectonic plate motions as well as stresses in

the Earth’s lithosphere.

Research efforts to determine mantle viscosity can be broadly

divided into three areas: (i) mineral physics, (ii) post-glacial rebound

and (iii) large-scale mantle flow.

Determining viscosity from mineral physics alone is difficult, be-

cause different deformation mechanisms—diffusion creep and dis-

location creep—may play a role. For either mechanism, the effec-

tive viscosity depends on a number of factors—such as temperature,

grain size, water content, etc., and many of these are poorly known.

Measurement of post-glacial rebound has been the classical

method of determining mantle viscosity ever since the canonical

value of 1021 Pa s was established by Haskell (1935). Newer results

(e.g. Mitrovica 1996; Lambeck & Johnston 1998) confirm this, and

additionally also indicate a viscosity increase with depth; however,

they also show that post-glacial rebound cannot resolve details of

mantle viscosity structure, and is particularly insensitive to viscosity

below about 1400 km depth.
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1462 B. Steinberger and A. R. Calderwood

Mantle flow can be computed, if density field, viscosity structure,

etc., are known, and comparison of computed advected heat flux,

plate motions, geoid, stresses, etc., with observations can help to as-

sess the ‘success’ of the model, and thus help to constrain viscosity

and other properties on which the results depend. For simplicity and

computational efficiency, the assumption of radial viscosity varia-

tions only is frequently made. In this case, density and flow field

can be expanded in spherical harmonics, and computed separately

for each degree and order, using a formalism developed by Hager

& O’Connell (1979, 1981). This formalism was extended by Ricard

et al. (1984) and Richards & Hager (1984) to the computation of

the geoid. Since then, the geoid (which is extremely well known

compared to other quantities that can be used) has been taken as a

constraint to mantle viscosity and flow in numerous publications.

These essentially show that large parts of the geoid can be explained

based on viscous flow models with radial viscosity variations only.

Thoraval & Richards (1997) review this body of publications; how-

ever, they also show that the geoid alone cannot give a very tight

constraint on mantle flow and the quantities on which it depends,

such as viscosity and density anomalies, and the only robust result

is, that a substantial viscosity increase with depth is required to fit

the geoid data. Including lateral variations in viscosity was found

not improve the fit to the geoid (Zhang & Christensen 1993). More

recently, Čadek & Fleitout (2003, 2006), however, found that the

fit can be improved by including lateral viscosity variations in the

top 300 km, and close to the core–mantle boundary (CMB). Also

on a regional scale, lateral viscosity variations appear to be im-

portant in determining the mantle flow field (Albers & Christensen

2001).

Because of the limitations of each individual method, the need to

jointly fit several observations and incorporate other data to con-

strain viscosity and other properties that determine flow in the

Earth’s mantle became apparent. Mitrovica & Forte (1997) jointly

fit the geoid and post-glacial rebound observables, and confirm a

significant increase of viscosity with depth. Pari & Peltier (1995)

use heat flow constraints in addition to the geoid. Other quanti-

ties considered include plate motions (e.g. Ricard & Vigny 1989;

Lithgow-Bertelloni & Richards 1998; Becker & O’Connell 2001;

Conrad & Lithgow-Bertelloni 2002, 2004), dynamic surface topog-

raphy (Lithgow-Bertelloni & Silver 1998; Kaban et al. 1999; Pari

& Peltier 2000; Panasyuk & Hager 2000; Steinberger et al. 2001;

Čadek & Fleitout 2003), CMB topography and ellipticity (Forte et al.

1993, 1995) and lithospheric stresses (Ricard et al. 1984; Bai et al.

1992; Steinberger et al. 2001; Lithgow-Bertelloni & Guynn 2004)

or a combination of several of these (Mitrovica & Forte 2004). How-

ever, none of these quantities is as accurately known as the geoid.

In order to optimize the fit to these various observations, a large

number of parameters can be adjusted, and the task of mantle flow

modelling with observational constraints can thus become rather

complex. In order to reduce the number of parameters it is, therefore,

useful to consider constraints from mineral physics as well.

Here we will derive flow models making these simplifying as-

sumptions: (1) Both lateral density and seismic velocity variations

are due to temperature variations; the conversion factors between

these variations depend only on depth, hence tomography models

can be converted to density models. (2) Mantle viscosity only de-

pends on depth. We will then use an adiabatic thermal profile with

boundary layers and results from mineral physics to derive viscos-

ity and conversion factors as a function of depth. We will derive

relative viscosity variations in mantle layers with approximately

constant mineralogy (upper mantle, one or two layers in transition

zone, lower mantle) and leave absolute values as free parameters. In

addition, we will keep the lithospheric viscosity as a free parameter.

This is necessary in order to compensate for the fact that the viscous

rheology used here is not appropriate for the lithosphere. A more

realistic treatment is difficult, we still lack a detailed knowledge of

lithospheric rheology, and self-consistent models of plate tectonics

are only beginning to emerge. The optimized lithospheric viscos-

ity obtained in that way represents an effective viscosity along plate

boundaries, where most of the lithospheric deformation occurs. This

is much less than what is generally thought to be appropriate for plate

interiors. We will then use density models inferred from seismic to-

mography in combination with viscosity models to compute mantle

flow. The geoid is computed from density anomalies and deforma-

tion of boundaries caused by the flow. The radial heat flux profile

is computed from the flow and density variations converted back to

temperature variations. Our optimization is done by minimizing a

misfit function that is computed based on

(i) the difference between predicted and observed geoid

(ii) compatibility of viscosity structure with post-glacial rebound

results

(iii) compatibility of radial heat flux profile with observations

Plate velocity predictions as well as predictions of lithospheric

stress and dynamic topography turn out to be rather insensitive

to variations of viscosity with depth (Becker & O’Connell 2001;

Steinberger et al. 2001); therefore, we do not use these in our opti-

mization. For models with lateral viscosity variations, though, Con-

rad & Lithgow-Bertelloni (2006) recently showed that deeply pen-

etrating continental roots increase the magnitude of shear tractions

that mantle flow exerts on the base of Earth’s lithosphere by a factor

of 25, compared to a 100-km-thick lithosphere.

Obviously, there are also other uncertainties than absolute viscos-

ity values, which are free parameters of our optimization. We will

treat those by modifying other model parameters relative to the ref-

erence model and discussing how results change. Model parameters

are listed in Table 1.

In the next chapter, we will discuss how we derive the viscos-

ity and scaling factor profiles from mineral physics. After this, the

computation of mantle flow, geoid and advected heat flux, and how

the misfit function is constructed, is explained. We will then present

results. We will also discuss some ‘a posteriori’ predictions of quan-

tities that were not used in the optimization—surface motion and

CMB excess ellipticity (Mathews et al. 2002). This will point to-

wards shortcomings of this work, and future improvements.

In particular, there has been recently increasing evidence

(e.g. Masters et al. 2000; Trampert et al. 2004; Ishii & Tromp 2004)

that probably not all seismic velocity anomalies are due to tempera-

ture anomalies, as assumed here. The approach taken here is to test

how well observations can be fit under the assumption that seismic

velocity anomalies are caused by temperature anomalies, and how

we have to choose modelling parameters in order to obtain an op-

timum fit. We test a range of s-wave tomographic models (Becker

& Boschi 2002; Ritsema & van Heijst 2000; Masters et al. 2000;

Grand 2002; Mégnin & Romanowicz 2000; Su et al. 1994; Gu et al.

2001). This approach actually yields additional evidence for chem-

ical heterogeneities, as will be explained in more detail below, and

discussed further elsewhere (Steinberger & Holme 2006).

2 M I N E R A L P H Y S I C S T H E O RY

In this chapter we discuss (if adopted from elsewhere) or derive

parameters used in our model. They are assumed either constant or

depth dependent and listed alphabetically in Table 1. We will first

C© 2006 The Authors, GJI, 167, 1461–1481
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Large-scale mantle flow and mineral physics 1463

Table 1. Model parameters. For constant parameters, values are given for reference model, followed by alternative values (model number

in brackets), followed by range covered in contour plots, unless they are allowed to vary in the optimization.

Symbol Value Depth (range) Name and/or comment

a0 2.9; 3.5 (M2); 2–4 >660 km Thermal expansivity coefficient (eq. 17)

a1 0.9 >660 km Thermal expansivity coefficient (eq. 17)

b 1.4; 0 (M4) >660 km Specifies depth dependence of α (eq. 15)

0 <660 km

Cp 1250 J kg−1 K−1 Specific heat

d D′′ 200 km; 100–350 km >2541 km Thickness of bottom thermal boundary layer

d lith 100 km <100 km Thickness of top thermal boundary layer

(∂ ln v s,0/∂T ) p Fig. 5 See Section 2.5
dμ0
dT

27 MPa K−1 >660 km Temperature derivative of shear modulus at p = 0

F l 0.5; 0–1 <220 km Conversion factor reduction relative to Fig. 6

g 12; 30; 20 (M2,5); 4–70 >660 km Relates H and T m (eq. 10), thus influences

scaling factor profile through eq. (22)

g′(= g/n) 12; 20 (M5); 4–20 >660 km Determines steepness of viscosity profile (eq. 11)

H Fig. 1 Activation enthalpy

n 1; 2.5 (M2); 1–3.5 >660 km Stress exponent

3.5 <660 km

p Pressure

q i Allowed to vary in optimization Determine absolute viscosity (eq. 19)

Q See Section 2.5 Seismic Q-factor

R 8.3144 J K−1 mol−1 Universal gas constant

T Fig. 2 (Laterally averaged) temperature

T 0 285 K 0 km Surface temperature

T CMB 3500 K; 3000–4000 K 2891 km Temperature at core–mantle boundary

T lm,0 See Section 2.5 >660 km Lower mantle potential surface temperature

T m Figs. 1, 2 Melting temperature

T um,0 1613 K <400 km (Upper mantle) potential surface temperature

α Fig. 3 Thermal expansivity

γ From PREM gravity

Ŵ�ρ −0.3 · 103 MPa K−1 · kg m−3 660 km Product of Clapeyron slope and density jump

0.5 · 103 MPa K−1 · kg m−3 400 km at phase boundary

δT 0 5.5 Specifies depth dependence of α (eq. 15)

η̃ Fig. 4 Normalized viscosity

μ From PREM Shear modulus

ρ From PREM Actual density

ρ0 See Section 2.3 Density extrapolated to zero pressure

discuss the viscosity law in general (Section 2.1.1) and restricted

to only radial viscosity variations (Section 2.1.2). This is followed

by a discussion of the parameters involved. These include the stress

exponent n, activation enthalpy H , melting temperature T m and

the factors g and g′ (Section 2.2), as well as a number of further

parameters that determine the radial profiles of laterally averaged

temperature T and thermal expansivity α (derived jointly in Sec-

tion 2.3), as well as the viscosity scaling factors (Section 2.4) which

are treated as free parameters in the optimization. We further dis-

cuss parameters affecting the relation between seismic velocity and

temperature anomalies (Section 2.5) and the factor F l used to adjust

the relation between seismic velocity and density variations in the

uppermost mantle.

2.1 Mantle viscosity

Our numerical flow model will only consider radially varying, New-

tonian viscosity, however, in order to derive the appropriate viscosity

profile, and in order to make our derivation extendable to more re-

alistic rheologies, we keep it rather general.

2.1.1 General rheological model

We adopt the frequently used approach of assuming a power-law

rheology, where the relation between strain rate ǫ̇ and stress σ (more

specifically, the square root of the second invariant of the respective

tensors) is of the form

ǫ̇ = C1σ
n exp

(

−
H

RT

)

, (1)

whereby H is activation enthalpy, R is the universal gas constant,

T is temperature and C1 is a constant. Solving the equation for σ

gives

σ = ǫ̇
1
n ·

1

C
1
n

1

exp

(

H

n RT

)

. (2)

With the usual definition of viscosity η, it follows

η =
σ

2ǫ̇
= ǫ̇

1
n −1 ·

1

2C
1
n

1

exp

(

H

n RT

)

. (3)

In order to avoid the singularity η −→ ∞ for ǫ̇ −→ 0 we replace

ǫ̇
1
n −1 with ( ǫ̇2

〈ǫ̇2〉(z)
+ ǫ̇2

0)
1−n
2n · (〈ǫ̇2〉(z))

1−n
2n . Here 〈ǫ̇2〉(z) is the laterally

averaged second invariant of the strain rate tensor which only de-

pends on the radial coordinate z, and ǫ̇0 is a number smaller than 1.

T is split up into a laterally averaged part T (z) which only depends

on z, and the ‘temperature anomaly’ δT :

1

T
=

1

T + δT
=

1

T
−

δT

T (T + δT )
. (4)
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1464 B. Steinberger and A. R. Calderwood

We can then write viscosity as

η = ηi · VrT (z) · Vrs(z) · VlT · Vls, (5)

VlT = exp

(

−
HδT

n RT (T + δT )

)

and Vls =

(

ǫ̇2

〈ǫ̇2〉(z)
+ ǫ̇2

0

)
1−n
2n

,

(6)

are the lateral variation of viscosity due to lateral temperature and

strain rate variations and are not considered in our flow computation.

We continue now with discussing η i , V rT and V rs which determine

the radial viscosity profile.

2.1.2 Radial viscosity profile—equations

η i are called ‘anchor viscosities’ and are adjusted such as to mini-

mize the misfit between model predictions and observations as de-

scribed below. They are determined independently for various depth

ranges for which different phase assemblages occur (upper mantle,

one to two layers in transition zone, lower mantle).

VrT (z) = exp

(

H (z)

n RT (z)

)

, (7)

is the radial variation of viscosity due to radial temperature and

pressure variations at constant strain rate and

Vrs(z) = (〈ǫ̇2〉(z))
1−n
2n , (8)

is the radial variation of viscosity due to strain rate variations.

Similarly, it can be shown that for constant stress η ∼

exp(H/(RT)) and for constant dissipation rate η ∼ exp(2H/((n +

1)RT)). In other words, effective viscosity can be expressed in the

form

η ∼ exp

(

r H

RT

)

, (9)

with r = 1/n for constant strain rate, r = 2/(n + 1) for constant dis-

sipation rate and r = 1 for constant stress. For Newtonian viscosity

(n = 1) it is r = 1 in all cases. Christensen (1983) showed for 2-D

numerical experiments that the properties of non-Newtonian flow

with n = 3 can be closely imitated by Newtonian flow with activa-

tion enthalpy reduced by a factor r = 0.3–0.5. Thus the appropriate

viscosity dependence appears to be somewhere between constant

strain rate and constant dissipation rate. Here we use the constant

strain rate formulation, that is, eq. (7) and V rs = 1. We consider this

appropriate for the purpose of this paper, for the following reasons:

(i) For the lower mantle, we will explicitly discuss the depen-

dence of results on the reduction factor r (expressed in terms of g′).

Our reference case is with n = 1 (Newtonian viscosity), however,

given the results of Christensen (1983), our results are probably

applicable to the case of non-Newtonian viscosity as well.

(ii) For the mantle above 660 km it will turn out that the result-

ing optimized viscosity profile is mainly determined by the anchor

viscosities, and results are rather insensitive to the factor r. In par-

ticular, we will show that results remain rather similar regardless

of whether variations in viscosity due to variations in temperature

and activation enthalpy in the upper mantle and transition zone lay-

ers are considered or whether constant viscosity is assumed within

these layers.

We will now discuss the stress exponent n and profiles H(z) and

T (z).

2.2 Stress exponent, activation enthalpy

and melting temperature

2.2.1 Stress exponent

The appropriate value for the stress exponent n is not well known,

since solid-state flow in the mantle can be achieved through both

dislocation creep and diffusion creep. For dislocation (or power-law)

creep, n ≈ 3.5 is usually considered appropriate, whereas n = 1 for

diffusion creep. Power-law creep is favoured for high stresses, large

grain sizes, high temperatures and low pressures, whereas diffusion

creep for low stresses, small grain sizes, low temperatures and high

pressures. It is thought that both mechanisms may contribute to flow

in the upper mantle, with composite viscosity intermediate, but lab-

oratory studies favour dislocation creep in the shallow upper mantle

(Ranalli 1995; Schubert et al. 2001). Further evidence for disloca-

tion creep in the upper mantle comes from geodynamic modelling

(van Hunen et al. 2005). Ranalli (1995) concludes on p. 390 that ‘if

there is no thermal boundary layer (TBL) between upper and lower

mantle (mantle-wide convection) power-law creep is predominant

in the lower mantle’. On the other hand, the fact that the lower mantle

is nearly isotropic, has been interpreted such that diffusion creep is

the dominant deformation mechanism (Karato et al. 1995), at least

above the D′′ layer. As reference case will use eq. (7) with n = 3.5

above 660 km and n = 1 below.

2.2.2 Activation enthalpy

Activation enthalpy H is the sum of activation energy plus pressure

times activation volume. Kohlstedt and Goetze (1974) determined

activation energy 525 kJ mol−1 for dislocation (power-law) creep in

dry olivine. Activation volume is more uncertain. Above 660 km,

we will use the continuous line in Fig. 1 as reference case profile

2500
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Figure 1. Solid line—upper scale: activation enthalpy profile based on

Calderwood (1999) used in the upper mantle. dashed line—lower scale:

lower mantle melting temperature profile used, intermediate between the

curves determined for MgSiO3 perovskite (Wang 1999) and MgO (Zerr &

Boehler 1994). The two scales differ by a factor gR = 100 J mol−1 K corre-

sponding to g = 12. In this way, the curve for the lower mantle can be also

used with the upper scale and upper mantle viscosity law to determine lower

mantle viscosity and vice versa.
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Large-scale mantle flow and mineral physics 1465

for activation enthalpy. It is based on Calderwood (1999) and very

similar to a H(z) profile given by Ranalli (1995).

For zero depth, it equals the value determined by Kohlstedt &

Götze (1974). Its increase with depth corresponds to an activa-

tion volume of about 12 cm3 mol−1 at depth 100 km, decreasing to

10 cm3 mol−1 at depth 660 km—within the range of experimental

results. Since upper mantle viscosities are mainly determined by the

anchor viscosities, and rather insensitive to the activation enthalpy

profile, we shall not discuss it in more detail.

2.2.3 Melting temperature

The activation enthalpy profile is mainly important for determining

the viscosity profile in the lower mantle. Weertman & Weertman

(1975) give an empirical relation

H = gRTm, (10)

whereby g is a dimensionless constant, and T m is melting tempera-

ture. Then eq. (7) becomes

FrT (z) = exp

(

g′ · Tm(z)

T (z)

)

, (11)

with g′ = g/n. In the reference case for the lower mantle, we will

use eq. (11) with g′ = 12, the arithmetic mean of values determined

by Yamazaki & Karato (2001) for silicon diffusion in MgSiO3 per-

ovskite and MgO. However, we will consider other values as well,

and emphasize that our reference value may also correspond to ef-

fective viscosity for power-law creep with larger g.

Experimental values exist for the the melting curves of lower man-

tle constituents MgSiO3 perovskite (Wang 1999) and MgO (Zerr

& Boehler 1994). Yamazaki & Karato (2001) consider using the

melting curves of these constituents—which both look similar—

appropriate. Here, a melting curve intermediate between those two

curves (see Fig. 1) is used.

2.3 Mantle temperature and thermal expansivity

The radial temperature profile is also required to derive viscosity

as a function of depth. We assume here the temperature profile is

adiabatic except for TBLs. This is not standard practice in the geo-

dynamical literature—the adiabatic gradient is generally removed

because it does not influence the dynamics directly. However, it

does influence the mineral physics constraints on material proper-

ties, which is why it is included here. A number of further parame-

ters are involved here. These can be grouped into those determining

the adiabatic temperature gradient (thermal expansivity α(z), grav-

ity γ (z), specific heat C p and mantle potential surface temperature

T um,0; Section 2.3.1), further parameters determining thermal ex-

pansivity (a0, a1, b, δT 0, ρ 0, ρ; symbols explained in Section 2.3.2),

the product of Clapeyron slope and density jump Ŵ�ρ determining

jumps in the adiabatic temperature profile across phase boundaries

(Section 2.3.3), and parameters T CMB, T 0, d D′′ and d lith defining

thermal structure of TBLs (Section 2.3.4).

2.3.1 Adiabatic temperature profile

An adiabatic temperature profile can be computed by integration of

dT

dz
= T (z) · α(z) · γ (z)/C p(z). (12)

Starting point is mantle potential surface temperature (i.e. extrapo-

lation of the mantle adiabat to the surface) T um,0. We use T um,0 =

1340◦C = 1613 K based on decompression melt studies of MORBs

(White & McKenzie 1995; Iwamori et al. 1995). The gravity profile

γ (z) can be computed from the Earth’s radial density distribution and

is, therefore, known rather accurately. For heat capacity, we adopt C p

≈ 1250 J kg−1 K−1 (e.g. Stacey 1992; Schubert et al. 2001), which

is also considered to be known rather accurately. Since α also de-

pends on temperature, the radial profiles for α and T are determined

jointly.

2.3.2 Thermal expansivity

The relation between thermal expansivity and density (along

isotherms) can be expressed in the form
(

∂ ln α

∂ ln ρ

)

T

= −δT . (13)

In the upper mantle, a constant δT = 5.5 is used here as reference

case. Chopelas & Boehler (1989) experimentally determined δT =

5.5 ± 0.5. In this case, integration yields

α(p, T ) = α0(T )

(

ρ(p, T )

ρ0(T )

)−δT

, (14)

whereby α0(T ) and ρ 0(T ) are thermal expansivity and density as

a function of temperature at zero pressure. Experimental results

exist for both α0(T ) and ρ(p, T )/ρ 0(T ). We follow here Schmeling

et al. (2003) where explicit formulae and original references were

given. Their treatment is simplified, in that they do not consider the

effect of phase transitions. Therefore, we also use the profile derived

by Calderwood (1999) for a pyrolite mineral phase assemblage for

comparison.

In the lower mantle, depth dependence of δT may play a role. The

relation between δT and ρ was found to be

δT = δT 0

(

ρ0(T )

ρ(p, T )

)b

, (15)

with δT 0 ≈ 5.5 and b ≈ 1.4 (Anderson et al. 1992; Schubert et al.

2001). In this case, integration along isotherms yields

α(p, T ) = α0(T ) exp

{

−
δT 0

b

[

1 −

(

ρ0(T )

ρ(p, T )

)b
]}

. (16)

We will use this equation in the lower mantle in the reference case,

however, we will additionally show results with constant δT = 5.5

in the entire mantle, in order to assess how large the effect of the

depth dependence of δT on our results is. We use

α0(T ) = (a0 + a1T/1000 K) · 10−5 K−1, (17)

with a0 = 2.9 and a1 = 0.9 in the reference case. This is inter-

mediate between various experimental results and ab initio calcu-

lations for MgSiO3 perovskite, the main lower mantle constituent

(Oganov et al. 2001). For magnesiowüstite (MgO), another ma-

jor lower mantle constituent, α0(T ) is probably similar but slightly

higher (e.g. Duffy & Anderson 1989, fig. 5). Because of the con-

siderable uncertainty, we consider cases for higher or lower α0 as

well.

Actual density in the lower mantle is reasonably well known,

and ρ 0 can, for example, be determined by extending the PREM

(Dziewonski & Anderson 1981) lower mantle density profile to the

surface. However, the PREM profile is approximately adiabatic, and

not isothermal. Hence, the PREM value has to be corrected for adia-

batic temperature difference. Transition of the majorite phase, which

constitutes about 30 per cent of mantle material, is not abrupt but

C© 2006 The Authors, GJI, 167, 1461–1481

Journal compilation C© 2006 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
6
7
/3

/1
4
6
1
/2

0
7
2
6
2
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1466 B. Steinberger and A. R. Calderwood

Figure 2. Computed adiabatic temperature profiles (dashed lines), and temperature profiles with thermal boundary layers (solid lines). Black lines: reference

case; orange lines: computation using thermal expansivity profile of Calderwood (1999) (see Fig. 3); brown line: computation with constant δT , all other

assumptions as in reference case. Labels indicate model numbers (Table 2) here and in the following figures. The dotted line shows again the assumed lower

mantle melting temperature.

occurs gradually between about 660 and 730 km (e.g. Akaogi & Ito

1999). Therefore, within this depth range, we use a linear superposi-

tionα(z)=α lm(z)+0.3 · (αum(z)−α lm(z)) · (z −730 km)/(660 km–

730 km) whereby αum and α lm are determined with eqs (14) and (16),

respectively.

2.3.3 Temperature jumps at phase boundaries

Temperature jumps at phase boundaries are smeared out due to dif-

fusion, but the jump between adiabatic profiles above and below

phase boundaries is

�TL = QL/C p = Ŵ�ρTpb/
(

ρ2
pbC p

)

. (18)

Hereby is Q L the latent heat release per unit mass, Ŵ is the Clapey-

ron slope, �ρ is the density jump across the phase boundary, T pb is

the average temperature below and above the phase boundary, and

ρ pb is the average density above and below the phase boundary. Two

phase transitions at depths 400 and 660 km are considered here. In

the reference case, for depth 400 km, Ŵ�ρ = 0.5 · 103 MPa K−1 ·

kg m−3 is used, based on Akaogi et al. (1989) for a pyrolite man-

tle with 60 per cent olivine content, for depth 660 km, Ŵ�ρ =

−0.3 · 103 MPa K−1 · kg m−3 is used, as given by Akaogi & Ito

(1999). Besides the spinel–perovskite transition, this value also in-

cludes the effects of the majorite–perovskite transition, which occurs

at a similar depth with positive Clapeyron slope.

2.3.4 Temperatures at the top and bottom of the mantle

At the top and bottom of the mantle are two TBLs with larger tem-

perature gradient. Temperature at the CMB is T CMB = 4000 ± 600 K

according to Boehler (1996) and Schubert et al. (2001). The thick-

ness of the TBL is estimated to be about 200 km (Schubert et al.

2001), but it may be thicker, if there are chemical variations at the

base of the mantle. We use T CMB = 3500 K, bottom TBL thick-

ness d D′′ = 200 km, surface temperature T 0 = 285 K and top TBL

thickness d lith = 100 km in the reference case. For the difference

between adiabatic and actual temperature profile at distance x from

a thermal boundary with total non-adiabatic temperature drop �T 0

and thickness d we use �T = �T 0 · [1 − erf (x/d)].

2.3.5 Temperature and thermal expansivity profiles

Resulting temperature profiles are shown in Fig. 2. The effect of

using different thermal expansivity profiles, and of phase boundaries

are both rather small.

Corresponding thermal expansivity profiles are shown in Fig. 3.

The black ‘reference profile’ features a decrease from ≈2.5 ·

10−5 K−1 below 670 km to ≈1.0 · 10−5 K−1 at the base of the man-

tle, in agreement with Schubert et al. (2001). For comparison, the

profile of Calderwood (1999), derived from a pyrolite mineral phase

assemblage and thermal expansivities of individual phases is also

shown. It agrees with the reference profile qualitatively, but de-

creases somewhat less with depth in the lower mantle. Differences

Figure 3. Thermal expansivity profiles for the same cases as shown in Fig. 2.

Additionally, the dashed line shows the profile with α0 reduced by 0.6 ·

10−5 K−1, the dotted line with α0 increased by the same amount.
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Large-scale mantle flow and mineral physics 1467

do not exceed ≈20 per cent. Thermal expansivity decreases more

strongly with depth, if a constant δT is assumed. The dashed line is

obtained, if α0(T ) = (2.3 + 0.9 T /1000 K) · 10−5 K−1 is used in-

stead, the dotted line for α0(T ) = (3.5 + 0.9 T /1000 K) · 10−5 K−1.

Both values are still within the range of results proposed (Oganov

et al. 2001). All profiles show an overall decrease with depth, but an

increase with depth across the 660 km discontinuity. Qualitatively,

this jump corresponds to α0 being larger for lower mantle materials

than for upper mantle materials (see e.g. Duffy & Anderson 1989,

fig. 5).

2.4 Normalized radial viscosity profile—results

We can now express

η(z) = qi · η0 · η̃(z). (19)

η0 is a constant scaling viscosity. η̃(z) shown in Fig. 4 is the normal-

ized viscosity profile proportional to F rT (z) from eqs (7) and (11),

but adjusted by adding a constant to H in the lower mantle such that

the jump in H(z)/nR between upper and lower mantle is removed.

This adjustment is of no consequence to the results, and merely

serves to make the factors q i more easily interpretable. Without the

adjustment, η̃(z) would increase by a factor ∼2000 from above to

below 660 km because of the different viscosity law assumed above

and below. This jump would be smaller for a lower value of g′, and

approximately removed for g′ = 8. Our results will show that such a

lower value of g′ (corresponding to a less steep profile in the lower

mantle) also increases the fit to the geoid. Factors q i in individual

layers (lithosphere, upper mantle, one to two layers transition zone,

lower mantle) are treated as free parameters in the optimization dis-

cussed below. Figuratively speaking, the optimization consists of

shifting corresponding parts of the curves in Fig. 4 to the left or

right. η̃(z) is only shown below depth 70 km, because the mecha-

nisms discussed here are not appropriate to model deformation of the

lithosphere, and lithospheric viscosity is treated as a free parameter.

It is shown for the same three cases as in Fig. 2. All profiles shown

Figure 4. Black and brown lines: non-optimized, normalized viscosity pro-

files for for the same cases as shown in Fig. 2. Additionally, the violet line

shows the profile computed with g′ = 20 instead, and the orange line shows

the profile of Calderwood (1999). Dashed lines are adiabatic profiles, solid

lines are with thermal boundary layers. During the optimization, parts of

the profiles are shifted left or right relative to each other, yielding optimized

profiles as in Figs 9, 13, 14 and 15.

feature a characteristic hump in the lower mantle, like the profiles

derived by Ranalli (1995) for whole-mantle flow. The curvature of

the hump depends on the curvature of the assumed melting curve.

For example, the profile derived by Calderwood (1999) in a similar

manner is less curved in most of the lower mantle. The height of this

hump strongly depends on the value of g′ and also depends on man-

tle potential surface temperature. Variations in the shape of the η̃(z)

profile in the lower mantle as a result of changing potential surface

temperature by ±100 K can be closely mimicked by appropriate

(small) changes in g′ and are, therefore, not considered separately.

Whereas in the reference case, the viscosity increase from below

660 km to the maximum in the lower mantle is about a factor 40,

it is about a factor 100 for the brown line, although the only dif-

ference is a slightly smaller temperature increase towards the base

of the mantle, and it is even about a factor 500 for the violet line

with g′ = 20. We, therefore, discuss the effect of g′ on our model,

and which range of g′ gives best results. Additionally, we discuss

the effect of d D′′ and T CMB, corresponding to the thickness of the

basal mantle layer where viscosity is decreased, and to the total vis-

cosity decrease, and which combinations of T CMB and d D′′ yield

optimal results. Steinberger & Holme (2006) extend this discussion

to include the effect of a basal layer with chemical variations.

2.5 Relation between seismic velocity variations

and temperature variations

If variations in seismic s wave speed are of thermal origin, they

relate to temperature variations through

δT = (δvs/vs(z))/(∂ ln vs/∂T )p. (20)

δv s/v s(z) are relative seismic wave speed variations, for which a

number of global tomography models exist. (∂ln v s/∂T ) p is the

partial derivative of the logarithm of seismic s wave speed with re-

spect to temperature at constant pressure. Following Karato (1993),

it can be written as

−

(

∂ ln vs

∂T

)

p

= −

(

∂ ln vs,0

∂T

)

p

+ F(α) ·
Q−1

π
·

H

RT 2
, (21)

whereby the first term is the anharmonic part and the second one

the anelastic part. Q is the seismic Q-factor, and we set F(α) = 1.

With eq. (10) this becomes

−

(

∂ ln vs

∂T

)

p

= −

(

∂ ln vs,0

∂T

)

p

+ F(α) ·
Q−1

π
·

gTm

T 2
, (22)

in the lower mantle.

2.5.1 Anelastic part

We consider two Q profiles here: The first one follows Anderson &

Hart (1978) except that a continuous instead of a stepwise profile is

used. It is similar in shape to the logarithm of the non-dimensional

viscosity profiles η̃(z) in Fig. 4, which makes intuitively sense, since

both anelasticity and viscosity are caused by similar mechanisms.

Because of this similarity, we use the Anderson & Hart (1978) profile

rather than a newer one. For the second profile, we choose the shape

to exactly coincide with log(η̃(z)), hence we choose a, b and c such

that Q2(z) = a + bz + clog(η̃(z)) agrees with Anderson & Hart

(1978) at depths 250 km, 2400 km and the base of the mantle. Both

profiles for the anelastic part are shown in Fig. 5. In the reference

case, we use an anelastic part that is the arithmetic average for the two

cases described. Q is also expected to depend on temperature, hence
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1468 B. Steinberger and A. R. Calderwood

Figure 5. Profiles of −(∂ ln v s/∂T ) p , and contributing parts. Red line:

anharmonic part. Green lines: anelastic part. The dotted line is for the Q-

profile of Anderson & Hart (1978), the dashed line for Q2(z). Black line:

anharmonic plus anelastic part in the reference case (arithmetic average of

two green lines). Orange line: profile derived by Calderwood (1999). The

blue line uses g = 30 for the anelastic part (eq. 22) instead. Brown line:

same case as in Figs 2 to 4. Other model assumptions are as in the reference

case.

a more accurate treatment should also consider lateral variations of

Q, for which models exist, at least in the upper mantle (Gung &

Romanowicz 2004).

2.5.2 Anharmonic part

For (∂ln v s,0/∂T ) p we adopt the profile given by Goes et al. (2004) in

the upper mantle. It is based on values for individual phases and the

mantle phase diagram of Ita & Stixrude (1992) for a pyrolite mantle,

using a geotherm similar to the reference case geotherm in Fig. 2.

In the lower mantle, (∂ln v s,0/∂T ) p is recomputed to ensure con-

sistency with our profile of α(z). We follow Duffy & Anderson

(1989) in assuming that radial derivatives of shear modulus μ for

different temperatures are related through

dμ

dz
(T (z) ± �T (z)) =

dμ

dz
(T (z))(1 ± α(z)�T (z)). (23)

This is based on the observation that in the PREM (Dziewonski &

Anderson 1981) lower mantle approximately

d ln
(

dμ

dp

)

d ln ρ
≈ −1, (24)

and the implicit assumption that this also holds along isobars.

μ(T (z) ± �T (z)) is determined by integrating eq. (23) along

adiabats, while computing temperature and thermal expansion co-

efficients along the same adiabats. Starting point is

μ(Tlm,0 ± �T0) = μ(Tlm,0) ± �T0 ·
dμ0

dT
, (25)

at z = 0. Based on parameters compiled by Cammarano et al. (2003)

and the pyrolite phase diagram of Ita & Stixrude (1992) it is es-

timated dμ0

dT
= 27 MPa K−1 for lower mantle mineralogy. T (z)

and α(z) are computed for the entire mantle with the lower man-

tle formulation described above. ‘Lower mantle potential surface

temperature’ T lm,0 is found iteratively by matching the previously

determined lower mantle temperatures. dμ

dz
(T (z)) and μ(T lm,0) are

determined from the parameters of PREM layer 4, which comprises

most of the lower mantle. Thus

∂μ

∂T

∣

∣

∣

∣

p

≈
μ(T (z) + �T (z)) − μ(T (z) − �T (z))

2�T (z)
, (26)

is found, and with this (∂ ln v s,0/∂T ) p can be computed (Fig. 5).

2.5.3 Sum of anharmonic and anelastic part

For the sum of anharmonic and anelastic part, agreement between

our reference case and Calderwood (1999) is good in the upper

mantle (Fig. 5), and would be even better if Q2(z) was used, but

our reference profile is lower in the lower mantle: There, we choose

the factor g = 12 in the relation between activation enthalpy and

melting temperature. This value is much lower than previous es-

timates of g = 20–40 (Karato 1993) and thus leads to a smaller

anelastic contribution: The blue curve where g = 30 is used for

computation of the anelastic part (eq. 22) is higher in the lower man-

tle. The brown curve corresponds to somewhat lower temperatures

in the lowermost mantle (see Fig. 2) and is, therefore, also some-

what higher in the lowermost mantle. On the other hand, because

of the different way of computation, we compute a larger anhar-

monic part than Karato (1993) in the lower mantle. In our model,

the anharmonic part is larger below 660 km than above 660 km, be-

cause of larger values of dμ0

dT
(Cammarano et al. 2003). Differences

for anharmonic and anelastic parts between our results and those

of Karato (1993) partly compensate each other, such that the sum

curve we obtain in our reference model is similar to that of Karato

(1993).

2.6 Relation between seismic velocity variations and

density variations

The scaling factor (∂ ln ρ/∂ ln v s) p is then obtained by dividing

thermal expansivity through −(∂ln v s/∂T ) p (Fig. 6). In the refer-

ence case, it is similar to Calderwood (1999) in the upper man-

tle, but, corresponding to differences in Figs 3 and 5 somewhat

larger in the lower mantle. Again, the overall shape is similar to that

of Karato (1993). For the profiles derived here, the scaling factor

somewhat decreases with depth in the lower mantle, whereas the

Figure 6. Profiles of scaling factors (∂ ln ρ/∂ ln v s ) p for the same cases

as in Figs 3 and 5. Additionally, the dotted blue line is with a0 = 3.5 and

g = 30.
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Large-scale mantle flow and mineral physics 1469

profile derived by Calderwood (1999) is almost constant over most

of the lower mantle, due to a smaller decrease of thermal expan-

sivity with depth. In the case with constant δT (brown line), the

two effects of stronger decrease of thermal expansivity with depth

(Fig. 3) and less decrease of the −(∂ln v s/∂T ) p profile (Fig. 5)

combine to a much stronger decrease of scaling factor with depth.

A lower scaling factor in the lower mantle is obtained if either

a lower α0 (black dashed line) or a larger g (blue lines) is as-

sumed. Changing potential surface temperature shifts the scaling

factor profile (less than about ±10 per cent change for ±100 K po-

tential temperature change), and similar changes would also occur

if a different Q-factor profile was used. Because we obtain simi-

lar changes also by changing F l , a0 and/or g, changes in poten-

tial surface temperature and Q-factor profile are not considered

separately.

In the reference model, the scaling factor is arbitrarily reduced,

compared Fig. 6, by a factor F l = 0.5 in the uppermost 220 km,

in order to account for the fact that density variations within the

lithosphere are probably only partly of thermal origin. Similarly,

other studies set density anomalies at lithospheric depths to zero

(Lithgow-Bertelloni & Silver 1998; Becker et al. 2003; Behn et al.

2004). However, we also consider the effect of varying F l on our

results and discuss which values give best results. In most cases,

and unless mentioned otherwise, we use tomography model smean

(Becker & Boschi 2002) for seismic velocity variations. Other to-

mography models are also considered.

3 O P T I M I Z AT I O N P RO C E D U R E

3.1 Mantle flow computation

We can now combine a scaling factor profile as derived in the pre-

vious section with an s-wave tomography model to obtain a density

model. With a viscosity profile as described above, mantle flow can

be computed. Equations of viscous flow are solved with a spectral

method originally developed by Hager & O’Connell (1979, 1981):

Only radial viscosity variations are considered, thus the equations

decouple in the spherical harmonic domain and can be solved sep-

arately for each spherical harmonic. In the reference case, and if

not mentioned otherwise, spherical harmonic expansion is done up

to l max = 15, but cases with l max = 31 are considered as well. The

original method was modified to consider depth-dependent gravity

(from PREM), and to include the effects of compressibility (as de-

scribed in Steinberger 2000, following Panasyuk et al. 1996), and

of deflections δz of phase boundaries at depth 400 and 660 km in

thermal equilibrium. The latter effect was included as sheet mass

anomalies

δz · �ρ =
Ŵ�ρ

ρ2
pbγpbαpb

· δρ, (27)

whereby δρ is the density anomaly as inferred from the tomogra-

phy model, at the depth of the phase transition. ρ pb, γ pb and αpb

are density, gravity and thermal expansivity at the phase bound-

ary. Values for Ŵ�ρ were given in the previous chapter. For ρ pb,

the average value between above and below the phase boundary

(from the PREM model) is used, for αpb, we use 2.079 · 10−5 K−1 at

660 km and 2.378 · 10−5 K−1 at 400 km—approximate average val-

ues between above and below the phase boundary from the reference

case in the previous chapter.

3.2 Variables in optimization

The optimization consists of finding the minimum of a misfit func-

tion in parameter space. Parameter space consists of the viscosity

factors q i , i = 1 . . . nvis in eq. (19). nvis is the number of layers where

viscosity is considered to vary independently. In most cases, we use

nvis = 4, in which case i = 1 corresponds to the lithosphere (0–

100 km), i = 2 the upper mantle (100–400 km), i = 3 the transition

zone (400–660 km) and i = 4 the lower mantle (below 660 km). In

some cases, the upper part of the transition zone (400–520 km) and

its lower part are considered separately. In this case, it is nvis = 5, i =

3 corresponds to the upper part of the transition zone, i = 4 its lower

part and i = 5 the lower mantle. Besides these parameters allowed

to vary within each optimization, variations are also considered for

a number of further parameters. These are kept constant within

each optimization, and the optimization is performed for several

sets of parameter values, and several 2-D grids in parameter space.

These further parameters include a0, b, g, g′, T CMB, d D′′ and F l

(see Table 1).

3.3 Haskell constraint

The Haskell constraint states that the logarithmic average of vis-

cosity, weighted with an appropriate sensitivity kernel equals about

1021 Pa s. We express it in the form

∫ CMB

120 km

log10

(

η(r )

1 Pa s

)

· K (r ) dr/

∫ CMB

120 km

K (r ) dr = 21, (28)

and use the sensitivity kernel for the Angerman River site given by

Mitrovica (1996) for K(r) (Fig. 7). If we choose η0 such that, in

eq. (19) η0 · η̃(z) satisfies the Haskell constraint, we find that η(z)

also does if 1.67 ·q 2 + 1.33 ·q 3 + q 4 ≈ 0 in the case of one transition

zone layer, and 1.67 ·q 2 + 0.67 ·q 3 + 0.66 ·q 4 + q 5 ≈ 0 in the case

of two. We, therefore, choose the penalty function

P1 = (1.67 · q2 + 1.33 · q3 + q4)2, (29)

in the first case, and a corresponding function in the second.
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Figure 7. Kernel showing the sensitivity of post-glacial rebound to viscosity

at various depths. From Mitrovica (1996) for Angerman River.
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1470 B. Steinberger and A. R. Calderwood

3.4 Heat flux constraint

For each density field and corresponding flow field, the advected

heat flux is computed by integrating radial velocity vr times heat

anomaly δT · C p · ρ = δ ln v s/(∂ ln v s/∂T ) p · C p · ρ over spherical

surfaces at given depths:

(r ) = C p · ρ/(∂ ln vs/∂T )p ·

∫

S

δ ln vs · vr d A. (30)

For this computation present-day surface plate motions (DeMets

et al. 1990) are used as boundary condition. This curve should ap-

proximately fall between theoretical steady-state profiles for an in-

ternally heated mantle and a basally heated mantle. Here we imple-

ment this constraint by penalizing if (r ) > bh or (r ) < ih(r ).

For bh we use a constant value 33 TW representing our estimate

for the mantle heat flux (Calderwood 1999), which is global heat

flux minus heat produced in the crust. Pollack et al. (1993) compute

a global heat flux 44 TW. By subtracting estimated heat production

in the continental crust from it, Schubert et al. (2001) estimate a

mantle heat flux 37 TW. More recently, Hofmeister (2005) com-

puted a smaller global heat flux 31 ± 1 TW, corresponding to only

about 24 TW mantle heat flux. However, another recent analysis

(Wei & Sandwell 2006) yielded 42–44 TW. ih(r ) has been modi-

fied from the theoretical steady-state profile for an internally heated

mantle with constant heat production rate per unit mass in order to

account for the fact that conduction is the dominant heat transport

mechanism close to the surface (see Fig. 8). We use the penalty

function

P2 =

∫ max
(

(r )−bh

bh
, 0

)2

+ max
(

ih (r )−(r )

bh
, 0

)2

2891 km
dr. (31)

Obviously, the assumption that heat flux at any depth does not change

with time, which is implicitly made here, is not exactly satisfied for

the Earth. (r) is time variable and the present-day surface heat flux

may be anomalously high or low. Hence we do not require P 2 = 0

exactly.

Figure 8. Optimized viscosity profiles (left) and advected heat flux profiles (right), for cases where not all constraints are imposed. Orange lines: only heat

flux and Haskell constraint. Violet lines: only geoid and Haskell constraint. Green lines: only geoid and heat flux constraint. Red lines: viscosity profile not

based on mineral physics but constant in lithosphere, upper mantle, transition zone and lower mantle. Continuous lines are with parameters as in the reference

case, dotted lines as in model 2. bh and ih (r ) are shown as grey dashed lines. The heat flux profiles should approximately lie in between.

3.5 Geoid constraint

For each density field and corresponding flow field, the inferred

geoid is computed; flow deforms boundaries, and both the density

anomalies that drive flow and the deformed boundaries contribute

to the geoid. The inferred geoid is, therefore, quite sensitive to the

assumed viscosity structure. The fit between computed and actual

geoid is expressed in terms of the penalty function

P3 =
Var(Predicted–Observed)

Var(Observed)
. (32)

1 − P 3 is referred to as (geoid) variance reduction. For the geoid

computation, stress-free boundaries at the Earth’s surface and CMB

are assumed in the reference case; however, other boundary condi-

tions at the Earth’s surface are considered as well.

3.6 Misfit function

We optimize the model in parameter space by minimizing a misfit

function using a downhill simplex method (Press et al. 1986). This

method finds a local, not necessarily global minimum in parameter

space. In most cases, we will either minimize

�1 = c1 · P1 + c2 · P2 + P3, (33)

(misfit criterion 1) or require the Haskell constraint to be fit exactly,

and minimize

�2 = c2 · P2 + P3, (34)

under the additional constraint P 1 = 0 (misfit criterion 2, corre-

sponding to criterion 1 with c1 −→ ∞). Cases indicated with a

star in Table 2 use criterion 2 (except for M17, M17b in Section 4.9

which use a modified criterion), all others (including those in Figs 11

and 12, but except for cases M19 and M19b in Table 1 and Sec-

tion 4.2) use criterion 1. In most cases, we will use c1 = 1, c2

= 4. We find that results remain very similar with both criteria,

and hence do not strongly depend on c1, as the Haskell constraint

is always fit very well. The value for c2 is discussed in the next

section.
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Large-scale mantle flow and mineral physics 1471

Table 2. List of numerical models. The ‘comments’ column indicates differences to the reference model, except for ‘b’ models, where it

indicates the difference to models without ‘b’. VR is geoid variance reduction, P2 heat flow misfit (eq. 31). Numbers in brackets indicate

either results with expansion up to l max = 31 (M1–M3b), or with model 2 parameters (M7–21). Stars indicate cases where an exact fit

to the Haskell constraint has been prescribed. UM-upper mantle, TZ-transition zone, LM-lower Mantle.

Model # comment VR [per cent] P2

M1∗ Reference case 75.9 (74.7) 0.0165 (0.0133)

M1b∗ Lowest viscosity in asthenosphere 71.6 (70.5) 0.0125 (0.0090)

M2∗ a0 = 3.5, g = 30 79.7 (78.6) 0.0133 (0.0099)

M2b Lowest viscosity in asthenosphere 76.0 (75.4) 0.0109 (0.0078)

M3∗ Based on Calderwood (1999) 79.5 (78.5) 0.0122 (0.0093)

M3b Lowest viscosity in asthenosphere 75.3 (74.6) 0.0105 (0.0076)

M4∗ δT = 5.5 constant 65.7 0.0044

M4b∗ Lowest viscosity in transition zone 52.8 0.0140

M5∗ g′ = 20 −15.5 0.0356

M6∗ η = const in UM, TZ; model 2 parameters 79.6 0.0138

M7 (M7b) η = const in UM, TZ, LM 81.2 (80.8) 0.0163 (0.0143)

M8∗ (M8b∗) Independent η in upper, lower TZ 80.0 (79.7) 0.0164 (0.0131)

M9∗ (M9b∗) Tomography model S20RTS 74.2 (76.1) 0.0129 (0.0114)

M10∗ (M10b∗) Tomography model SB4L18 47.9 (64.6) 0.0175 (0.0052)

M11∗ (M11b∗) Tomography model Grand (2002) 67.7 (69.0) 0.0250 (0.0296)

M12∗ (M12b∗) Tomography model SAW24B16 64.7 (74.3) 0.0187 (0.0154)

M13∗ (M13b∗) Tomography model S12WM13 44.3 (56.0) 0.0188 (0.0086)

M14∗ (M14b∗) Tomography model S362D1 55.9 (69.3) 0.0116 (0.0066)

M15∗ (M15b∗) Fixed surface 38.4 (45.8) 0.0138 (0.0194)

M16 (M16b) Plates moving half free speed 11.2 (19.1) 0.0082 (0.0052)

M17∗ (M17b∗) Plates free speed, tractions at surface, v rms penalty 24.1 (31.0) 0.0068 (0.0130)

M18∗ (M18b) Prescribed plate motions 13.9 (14.8) 0.0029 (0.0034)

M19 (M19b) Only heat flux and Haskell constraint −3140.3 (−1923.6) 0.0000 (0.0001)

M20∗ (M20b∗) Only geoid and Haskell constraint 78.0 (79.7) 0.1133 (0.0134)

M21 (M21b) Only geoid and heat flux constraint 78.0 (79.5) 0.0173 (0.0138)

4 R E S U LT S

4.1 Overview

We first show optimized viscosity and heat flux profiles (Fig. 8), as

well as variance reduction and heat flow misfit P2 for cases where

the constraints are not all imposed simultaneously (M7, 7b, 19–21b

in Table 2). This includes one case with constant viscosities in dif-

ferent mantle layers instead of profiles based on mineral physics.

We then go on to imposing all constraints simultaneously and show

Figure 9. Optimized viscosity profiles (left) and advected heat flux profiles (right). Colour and type of lines correspond to Figs 4 and 6. bh and ih (r ) are

shown as grey dashed lines. Per diagram there are two black, orange and blue lines: one, with higher heat flux values in the upper mantle, was computed with

l max = 31, the other with l max = 15.

results for our reference model (M1; Figs 9 and 10), further ‘pre-

ferred’ models (M2 with a0 = 3.5 and g = 30, and M3 with profiles

from Calderwood (1999)) and further models (M4, M4b and M5)

with stronger depth dependence of either lower mantle viscosity

or thermal expansivity (Fig. 9). We then systematically vary pa-

rameters a0, g, g′, n = g/g′, T CMB, d D′′ and F l within bounds as

listed in Table 1, and present contour plots of optimized variance

reduction (Fig. 11) and heat flow misfit P2 (Fig. 12) as a function

of two of these parameters. Subsequently, we consider results with
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1472 B. Steinberger and A. R. Calderwood

observed

predicted

-100 -80 -60 -40 -20 0 20 40 60 80 100

geoid in m

Figure 10. Above: geoid computed for the reference case. below: observed geoid.

the further constraint that viscosity is lowest in the asthenosphere

(M1b, M2b, M3b), with constant viscosity in the upper mantle and

transition zone (M6) viscosity in the upper and lower part of the

transition zone varying independently (M8, 8b) (all in Fig. 13), dif-

ferent tomography models (M9–14b; Fig. 14), and different surface

boundary conditions (M15–18b; Fig. 15).

4.2 Cases where not all constraints are imposed

simultaneously

Discussing model cases where not all constraints have been im-

posed helps clarifying which features of the results are due to which

constraints. Since the geoid fit is only affected by relative viscosity

variations, we need at least one additional constraint for the abso-

lute viscosity level—either the Haskell or the heat flux constraint.

If we impose geoid and Haskell constraint (use misfit criterion 2

with c2 = 0) we obtain a geoid variance reduction of 78 per cent or

80 per cent with other assumptions as in the reference case (M20)

or in case M2 (M20b). Resulting viscosity structure (violet lines in

Fig. 8, left-hand side panel) is very similar in both cases. For M20,

the computed heat flux is too large in the lower mantle (continuous

violet line in Fig. 8, right-hand side panel), whereas for M20b (dot-

ted violet line) it matches the observation-based estimate of mantle

heat flux quite well, even without imposing any heat flux constraint.

If we impose instead geoid and heat flux constraint (use misfit cri-

terion 1 with c1 = 0 and c2 = 4), we obtain heat flux profiles (green

lines in Fig. 8, right-hand side panel) similar to M20b. The opti-

mized viscosity structure in case M21b (dotted green line in Fig. 8,

left-hand side panel) remains very similar to case M20b, that is, the

Haskell constraint is matched well in M21b even without impos-

ing it. In case M21 (continuous green line), viscosity is somewhat

higher than in case M20 by approximately a factor 1.6 throughout

the mantle. Geoid variance reduction (78 per cent in M21 and 79

per cent in M21b) remains similar to cases M20 and M20b, hence

with this relative weighting of geoid and heat flux constraint (c2 =

4) the latter is not overly constraining.

We find that both Haskell and heat flux constraint can be simul-

taneously fit almost perfectly (M19 and M19b); therefore, there is

no benefit in looking at cases with only one of them imposed. Re-

sulting viscosity and heat flux profiles if we impose Haskell and

heat flux constraint (i.e. minimize �1 in eq. (33) with c1 = 1,

c2 = 4, and without the term P3) are shown as continuous (M19) and

dotted (M19b) orange lines in Fig. 8. However, there is a huge misfit

between predicted and observed geoid. Thus, the geoid constraint

is the most essential one.

Finally, with constant viscosities in upper mantle, transition zone

and lower mantle we are able to obtain geoid variance reduc-

tion 81 per cent and reasonable heat flux profiles (cases M7 and

M7b), with lower mantle viscosity of about 3 · 1022 Pa s. This is

similar to results obtained in previous work. The main objective

of this paper is to find out whether we can replace the assump-

tion of layers with constant viscosities (in particular in the lower

mantle) with viscosity profiles based on mineral physics without

substantially degrading the fit to the geoid, heat flux and Haskell

constraints.
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Large-scale mantle flow and mineral physics 1473

Figure 11. Geoid variance reduction as a function of a0 and g (but g′ = 12 constant) (top left), of g′ and n = g/g′ (top right), of g = g′ and T CMB (centre right),

of d D′′ and T CMB (centre left), and of d D′′ and F l (bottom left); other parameters as in the reference case. These are cross-sections through a 5-D parameter

space intersecting along the grey lines S1, S2, S3 and S4. For each point, the model has been optimized by minimizing the misfit function P 1 + 4P 2 + P 3 in

a 4-D parameter space. The thick black line divides regions where the lowest viscosity occurs in the transition zone from where it occurs in the asthenosphere

(indicated by the letter ‘a’). Location of models M1, M2 and M5 is also indicated.

4.3 Reference case

Fig. 10 compares the predicted geoid with the observed one in the

reference case (M1). The variance reduction is 76 per cent. This is

slightly less than in cases M20 and M21 above—as more constraints

are imposed simultaneously, the fit to the geoid is somewhat reduced.

The optimized viscosity model and corresponding advected heat

flux profiles for cases given in Figs 4 and 6 are shown in Fig. 9; for

the reference case (black lines), the difference between the lowest

viscosity (in the transition zone) and the highest viscosity at the base

of the mantle is about a factor 700. With the relative weighting of

geoid and heat flux constraint c2 = 4 variance reduction decreases

by only a few per cent compared to the case without any heat flux

constraint. At the same time the heat flux constraint is probably

fit well enough considering possible time variations in heat flux

mentioned above. We will hence maintain this relative weighting in

what follows.

4.4 Dependence on thermal expansivity and relation

between s wave speed and temperature

We can achieve an even higher variance reduction with a somewhat

higherα and larger g in eq. (22) while keeping g′ =12 in the viscosity

law eq. (11), resulting in higher values of −(∂ln v s/∂T ) p and lower

values of (∂ ln ρ/∂ ln v s) p . For example, the model with a0 = 3.5

and g = 30 (M2; blue dotted lines) gives a variance reduction of

80 per cent. Also, the heat flux profile now fits even better, as it

stays below 34 TW throughout the mantle. We saw above for cases

M20b and M21b that with these parameters a good fit to the heat

flux or Haskell constraint is obtained even without applying those

constraints. Hence it is not surprising that results stay very similar

if, in case M2, we apply these constraints simultaneously.

Also, if both profiles for thermal expansivity and −(∂ ln v s/∂T ) p

are adopted from Calderwood (1999), a variance reduction of

80 per cent is achieved along with a suitable heat flux profile
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1474 B. Steinberger and A. R. Calderwood

Figure 12. Misfit P2, as defined in eq. (31), of the heat flux profile for the same cross-sections and models as in Fig. 11, where further explanations are given.

(M3; orange lines). However, heat flux in the uppermost few 100 km

below the lithosphere is under-predicted in all three models dis-

cussed so far—and this is in fact a general problem with all models

that give otherwise a good fit. Likely explanations for this misfit

are discussed in the last section. This misfit is somewhat less with

l max = 31. In this case geoid variance reduction is slightly reduced

to 75, 79 and 78 per cent, respectively, for the three cases M1, M2

and M3 considered thus far.

The dependence of variance reduction and misfit function on g

used in the velocity-temperature relation eq. (22) and a0, but keeping

g′ = 12 in the viscosity law eq. (11) is further illustrated in the top

left panels of Figs 11 and 12: If a0 and g are both increased relative to

the reference case g = 12, both geoid variance reduction and the heat

flux profile are somewhat improved. For g = 12 the highest variance

reduction is obtained with somewhat smaller a0 ≈ 3 whereas for

g =42 it is obtained with somewhat larger a0 ≈4; both combinations

yield values of (∂ ln ρ/∂ ln v s) p ≈ 0.3 in the lower mantle, which

appears to work best for achieving a good fit to the geoid.

The better fit of the heat flux profile for larger g is a result of

the higher values of −(∂ ln v s/∂T ) p in the lower mantle, resulting

in lower temperature anomalies inferred from seismic tomography,

thus lower inferred heat flux. Probably the improved variance reduc-

tion for larger g is due to the same reason; once the heat flux con-

straint becomes less difficult to satisfy, the optimization can rather

focus on optimizing the fit to the geoid.

In the case of a stronger decrease of α with depth (no depth

dependence of δT , that is, b = 0; M4; brown lines in Fig. 9) variance

reduction is reduced to 66 per cent. Both the resulting optimum

viscosity structure with a rather high transition zone viscosity and

heat flux profile look somewhat unrealistic. If, in this case, the lowest

viscosity is restricted to occur in the transition zone, profiles look

more realistic, but variance reduction in this case (M4b) is further

reduced to 52 per cent. Thus, the smaller decrease of α with depth in

the reference case appears more appropriate to achieve good results.

This is probably partly due to the fact that a constant δT leads to less

temperature increase with depth, hence a steeper viscosity profile.
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Large-scale mantle flow and mineral physics 1475

4.5 Dependence on lower mantle viscosity

A steeper viscosity profile is also obtained with a larger value of

g′. With g′ = 20 (M5; violet lines in Fig. 9), we obtained a vari-

ance reduction of only −15 per cent and the heat flux profile also

looks unrealistic. The dependence of variance reduction and heat

flux misfit on the steepness of the viscosity profile is further illus-

trated in the centre right panels of Figs 11 and 12: The viscosity

increase through the lower mantle becomes larger with increasing

g′, the viscosity drop at the base of the mantle becomes larger with

increasing T CMB. An increase of either of them relative to the ref-

erence case leads to substantial deterioration of both the predicted

geoid and heat flux profile, but decrease does not yield substantial

improvement. In fact, low values of g tend to also give a larger misfit

of the heat flow profile; this arises, as the viscosity hump in the lower

mantle is then less high, and thus the heat flux predicted tends to be

too high in part of the lower mantle.

The top right panels of Figs 11 and 12 show that the deteriorating

fit with increasing g and g′ in the centre right panels is in fact due to

the viscosity profile; if we leave g′ constant in the viscosity relation

eq. (11) but increase g = g′n in eq. (22) through increasing n, the fit

rather tends to improve—for reasons already discussed for the top

left panels.

There is also a trade-off between the assumed temperature at

the base of the mantle and the thickness of the thermal boundary

layer d D′′ at its base, as shown in the centre left panels of Figs 11

and 12: For d D′′ ≈ 350 km, the highest geoid variance reduction

is obtained with T CMB ≈ 3000 K, for d D′′ ≈ 200 km with T CMB ≈

3500 K (reference case), and for d D′′ ≈125 km with T CMB ≈4000 K.

The smallest heat flow misfit tends to occur with somewhat smaller

thermal boundary layer thicknesses and/or CMB temperatures, as

this gives smaller predicted heat flux in the lowermost mantle, which

is too high in the reference model.

4.6 Dependence on upper mantle velocity

to density scaling

In the reference model, the scaling factor is arbitrarily reduced by

a factor F l = 0.5 in the uppermost 220 km, in order to account

Figure 13. Optimized viscosity profiles (left) and heat flux profiles (right). Black, orange and dotted blue lines (two per diagram) correspond to Figs 9, but

with the restriction that lowest viscosities are to occur in the asthenosphere. Light green and dark green dotted lines are for the same models as black and blue

dotted lines, but with viscosities in the upper and lower transition zone independently varying. bh and ih (r ) are shown as grey dashed lines. Red dotted lines

are for the same case as blue dotted, but with constant viscosities 100–410 and 410–660 km.

for the fact that density variations within the lithosphere are prob-

ably only partly of thermal origin. The bottom left panel of Fig. 11

shows that this is in fact an appropriate choice; the highest variance

reduction occurs for intermediate values of F l around 0.5, but the

fit to the geoid does not strongly depend on F l . On the other hand,

the bottom left panel of Fig. 12 shows that a better fit to the heat

flow profile is obtained with larger F l , because this increases the

computed heat flow below the lithosphere, thus reducing the misfit

there, particularly in cases where the lowest viscosity occurs in the

asthenosphere.

4.7 Dependence on upper mantle and transition

zone viscosity

The resulting optimized viscosity structure remains very similar

in all three cases included in Fig. 9 that give good results—the

reference case, model 2 and the case with profiles from Calderwood

(1999); it shows a pronounced viscosity decrease in the transition

zone—about one order of magnitude relative to above or below.

In order to assess whether the result that the lowest viscosity in

our reference model occurs in the transition zone is of significance,

we also include an optimization restricted to models with transition

zone viscosities higher than in the upper mantle. The variance re-

duction is then slightly reduced to 72 per cent (71 per cent) with

reference case parameters (M1b), 76 per cent (75 per cent) with

model 2 parameters (M2b), and 75 per cent (75 per cent) with the

profiles from Calderwood (1999) (M3b) (numbers in brackets with

l max = 31). The heat flux profile remains very similar, and the vis-

cosity maximum in the lower mantle remains similar at about, or

slightly below 1023 Pa s for all three models (Fig. 13). We find a

general tendency that models with lowest viscosity in the transition

zone tend to yield somewhat higher variance reduction than models

with the lowest viscosity in the asthenosphere (Fig. 11). It is hard

to judge whether this slightly reduced variance reduction warrants

attaching significance to the result that the lowest viscosity occurs

in the transition zone. The best fit of the heat flux profile is obtained

for cases where the lowest viscosity occurs in the asthenosphere,

since this allows for a higher heat flux in the uppermost few 100 km

below the lithosphere, thus reducing the misfit there (Fig. 12).
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1476 B. Steinberger and A. R. Calderwood

Results stay very similar, if the viscosity is kept constant in the

upper mantle, and constant in the transition zone (Fig. 13, red dotted

lines). This confirms that results—as stated in Section 2.2.2—do

not strongly depend on the activation enthalpy profile in the upper

mantle. Furthermore, we consider the case that viscosity in the upper

and lower part of the transition zone, that is, above/below 520 km,

varies independently; in the reference case, this leads to an increase

in variance reduction to 80 per cent, with a rather strong viscosity

contrast between the upper and lower part of the transition zone. In

model 2, variance reduction remains 80 per cent, and the optimized

viscosity structure remains very similar. We, therefore, regard the

constraints of our method as insufficient to resolve details of the

viscosity structure such as the difference between the upper and

lower part of the transition zone. We also computed results without

consideration of phase boundaries, for an incompressible mantle,

and for the two different Q profiles; in all cases results stay very

similar, and are therefore not shown.

4.8 Dependence on tomography model

Fig. 14 shows results for different tomography models with model

2 parameters. In most cases, the smallest misfit occurs with the

lowest viscosity in the transition zone, only for SB4L18 (M10b) the

smallest misfit occurs with the lowest viscosity in the asthenosphere.

With reference case parameters, this happens with SB4L18 (M10),

Grand’s model (M11), SAW24B16 (M12) and S362D1 (M14). The

resulting maximum viscosity in the lower mantle is very similar for

all models—around, or slightly below 1023 Pa s. There are quite

large differences between the heat flux profiles for various models.

Largely these are due to the differences in rms amplitudes versus

depth among the tomography models. For example, Grand’s model

(blue lines) has higher rms amplitudes than S20RTS (red line) in

the lowermost mantle, but lower amplitudes between ≈1500 and

300 km depth. The model smean (black) is an average of Grand’s

model (blue), S20RTS (red) and SB4L18 (green) and gives a heat

flux profile that is approximately constant through much of the man-

tle. Geoid variance reductions and heat flow misfit P2 of optimized

models are listed in Table 2. There is a general tendency for better

Figure 14. Optimized viscosity profiles (left) and heat flux profiles (right) for different tomography models. Other assumptions are as in model 2. Black: smean

(Becker & Boschi 2002)—identical to the blue dotted line in Fig. 9; red: S20RTS (Ritsema & van Heijst 2000); green: SB4L18 (Masters et al. 2000); blue:

model by Grand (2002); violet: SAW24B16 (Mégnin & Romanowicz 2000); orange: S12WM13 (Su et al. 1994); brown: S362D1 (Gu et al. 2001). bh and

ih (r ) are shown as grey dashed lines.

fit with model 2 parameters, which gives smaller density anomalies.

In particular, the difference is pronounced for those models with

comparatively large amplitudes away from the boundaries, that is,

where geoid kernels are larger—such as SB4L18. Such models give

generally lower variance reduction, as they would presumably re-

quire even lower conversion factors from seismic velocity to density

anomalies in order to yield a good fit. Models with lower amplitudes

(S20RTS, Grand) tend to give better fit and the difference between

the fits with reference case parameters and model 2 parameters is

smaller. However, with no individual tomography model we were

able to exceed the variance reductions obtained with the average

model smean.

4.9 Dependence on upper boundary condition

Upper boundary condition for the computation of the geoid in the

models discussed thus far was a free surface. Since this is not entirely

appropriate for a surface broken into plates not well characterized

by viscous rheology, we show in Fig. 15 results for different sur-

face boundary conditions. For fixed surface, variance reduction of

the optimized models with reference case parameters (M15, grey

lines) is 38 per cent, with model 2 parameters (M15b, black lines)

it is 46 per cent. With plates moving freely according to the forces

acting on them due to mantle flow, with tractions applied at the

base of the plates at depth 100 km (see Steinberger et al. 2001,

for a detailed description of the methodology) we obtain a negative

variance reduction—also plates are moving too fast compared to

observations. Thus, we go on to a case with plates moving at half

the speed of free plate motions. In this case (M16, green lines with

reference case parameters; M16b, red lines with model 2 parame-

ters), calculated rms plate motions v rms,c are 5.2 cm yr−1 (M16) and

5.3 cm yr−1 (M16b), similar to the observed v rms,o = 4.4 cm yr−1.

For the difference between predicted and observed plate motions,

rms values are 3.8 cm yr−1 in both cases, corresponding to plate

motion variance reductions of 25 per cent (M16) and 23 per cent

(M16b). Geoid variance reduction remains low at 11 per cent

(M16) and 19 per cent (M16b). A similar geoid variance reduc-

tion is obtained with prescribed plate motions (13.9 per cent and
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Large-scale mantle flow and mineral physics 1477

Figure 15. Optimized viscosity profiles (left) and heat flux profiles (right) for different surface boundary conditions. Fixed surface for reference case (grey)

and model 2 (black); plates moving at half the speed of free plate motions, for tractions applied at the base of the lithosphere at 100 km depth for reference

case (green) and model 2 (red); free plate motions for tractions applied at the surface, with additional penalty added to misfit function if computed rms surface

plate motions differs from observed one for reference case (blue) and model 2 (orange). bh and ih (r ) are shown as grey dashed lines.

14.8 per cent in cases M18 and M18b). This rather poor model per-

formance arises, because plate-like surface motions do not naturally

arise with a viscous rheology, and if they are artificially imposed,

artefacts occur in the computed geoid, which degrade the fit. The

optimized models in this case show rather low viscosities in the up-

per 100 km as in this way artefacts are kept small. Using stresses

at depth 100 km for computing plate motions, if the model does

not contain a high-viscosity lithosphere above, also appears inap-

propriate. We, therefore, go on to a case where we apply stresses

at the surface. For this case, optimized models have very high vis-

cosity in the uppermost 100 km and very slow plate motion; result-

ing sublithospheric viscosity and heat flux profiles are very simi-

lar to the fixed surface case shown. In the last case we, therefore,

add

P4 = (1 − vrms,c/vrms,o)2, (35)

to the misfit function �2 in eq. (34), that is, penalizing if calculated

and observed rms plate motions differ. Then we obtain for reference

case parameters (M17, blue lines) a geoid variance reduction of 24

per cent, v rms,c is 4.0 cm yr−1 and plate motion (i.e. surface velocity)

variance reduction 56 per cent. For model 2 parameters (M17b,

orange lines) corresponding numbers are 31 per cent, 3.8 cm yr−1

and 58 per cent. Viscosities in the upper 100 km are a few times

1022 Pa s—as with a free surface in the three cases discussed that

give a high geoid variance reduction—the reference case M1, model

2 (M2) and the case M3 with profiles from Calderwood (1999). For

these three cases, v rms,c is 3.3, 5.0 and 4.6 cm yr−1, surface velocity

variance reduction is 28, −5 and 4 per cent. Thus, these models with

free surface give approximately correct rms surface velocities even

though these are not used as constraints; lithospheric viscosities (to

be interpreted as effective viscosity along plate boundaries) required

to obtain a good fit to the geoid are in the same range as those

required to obtain appropriate plate speeds. These results do not

change substantially if we penalize a misfit of rms plate motions

as described. The smaller surface velocity variance reduction in

models M1, M2 and M3 can be attributed to the fact that here surface

velocities are not plate-like.

5 D I S C U S S I O N A N D C O N C L U S I O N S

5.1 Resulting viscosity profiles

We have derived here mantle viscosity profiles with a combina-

tion of mineral physics and mantle dynamics. They feature a strong

viscosity increase with depth in the lower mantle up to about

1023 Pa s or slightly less above the D′′ layer, several hundred times

more than the viscosity low in the upper mantle. This is a larger vis-

cosity contrast than previously inferred from the geoid constraint

in global geodynamics (e.g. Thoraval & Richards 1997). We obtain

this larger contrast because our resulting viscosity models have a

characteristic hump in the lower mantle; preferred models feature a

viscosity increase of about a factor 30 from below the 660 km dis-

continuity to the viscosity high in the lower mantle, and a viscosity

decrease of somewhat more than a factor 100 from the viscosity high

to the CMB. Models with much larger viscosity increase through the

lower mantle tend to give a much higher misfit and are, therefore,

considered less likely. Models with much larger viscosity decrease

in the lowermost mantle also tend to give much higher misfit, unless

the thermal boundary layer at the base of the mantle is much thinner.

Because the highest viscosities are restricted to the deep mantle, they

are also compatible with results from post-glacial rebound, which is

rather insensitive to viscosities at that depth.

The combination of mineral physics, geoid and heat flux con-

straints applied here was motivated by the fact that the geoid alone

does not place strong constraints on mantle viscosity structure

(Thoraval & Richards 1997). However, we found that our model

still leaves considerable uncertainties; for example, we cannot reli-

ably distinguish whether the lowest viscosities occur in the astheno-

sphere or in the transition zone; generally, a somewhat better model

fit occurs with lowest viscosities in the transition zone. This was

e.g. also found by Marquart (2006). A possible explanation could

be the presence of water in the transition zone (Smyth et al. 2004;

Kavner 2003). Such a viscosity low serves to somewhat decouple

flow in the upper and lower mantle, which appears to improve the

fit to the geoid. However, this can also be achieved by narrow lay-

ers of low viscosity (Panasyuk & Hager 2000; Mitrovica & Forte

2004).
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1478 B. Steinberger and A. R. Calderwood

If we require the lowest viscosities to occur in the asthenosphere,

then best-fit viscosity models look similar to the profile obtained

by Mitrovica & Forte (2004) without mineral physics constraints. A

difference is the narrow layer of low viscosity above depth 670 km

which occurs in the model of Mitrovica & Forte (2004), and which

is not possible with our parametrization.

With alternative surface boundary conditions (fixed or plate-like)

the best-fit models have the lowest viscosity in the asthenosphere.

Any indication of a viscosity low in the transition zone could, there-

fore, merely reflect the inappropriate surface boundary condition

and neglect of lateral variations in rheology. However, this will need

to be addressed by future studies.

5.2 Fit to the geoid

Our best-fit models with viscosity and scaling factor profiles based

on mineral physics give a geoid variance reduction of about 80 per

cent. This is similar to values achieved by previous authors, how-

ever, we were able to obtain this result in a parameter space that is

rather small, as we use mineral physics to pre-constrain the viscosity

structure and conversion factor from seismic velocities to densities.

A variance reduction close to 80 per cent could be achieved for a

range of modelling parameters, but not be substantially exceeded.

With constant viscosities in upper mantle, transition zone and

lower mantle, we obtain a slightly higher geoid variance reduction

(81 per cent). However, we want to replace ad hoc assumptions

(such as constant viscosities) by models based on mineral physics.

We regard the outcome that this only leads to a slightly worse fit to

the geoid, while at the same time a realistic heat flux profile (see

discussion below) is maintained as quite satisfactory.

A geoid variance reduction of slightly more than 80 per cent ap-

pears to be the approximate limit that can be achieved with the inter-

pretation of seismic wave speed anomalies purely in terms of thermal

anomalies, and without consideration of lateral viscosity variations.

Like Thoraval & Richards (1997), we obtained the best result with

a free-slip surface boundary condition—probably, because this is

the boundary condition that is consistent with the purely viscous

rheology without lateral variations that we also use to model the

lithosphere; plate-like surface velocities without lateral variations

in rheology in the lithosphere lead to artefacts in the computed

geoid.

The good fit to the geoid obtained is indicative that at depths

where the geoid kernels (showing the sensitivity of the geoid to den-

sity variations) are comparatively large—away from the surface and

CMB—seismic anomalies are primarily due to temperature anoma-

lies. This leaves the regions close to the surface and close to the

CMB as potential regions for large chemical variations: Our finding

that the fit to the geoid is somewhat improved, if the conversion fac-

tor from seismic velocities to densities is reduced by about a factor

0.5 in the upper 220 km, may be additional evidence that part of

the density anomalies in the uppermost mantle are due to compo-

sitional, rather than thermal anomalies. A more detailed treatment

of the shallowest mantle would need to consider the non-linear de-

pendence of seismic velocity on temperature anomalies; the same

temperature variation causes larger s wave speed variation at lower

temperature than at higher temperature (Cammarano et al. 2003).

On the other hand, surface velocity variance reduction obtained

is highest with plate-like surface motions. This points towards the

need of combining mineral physics constraints with geodynamic

models that include lateral variations in rheology—particularly in

the uppermost mantle (Čadek & Fleitout 2003).

5.3 Heat flux

In addition to a high geoid variance reduction, our best-fit models

also give heat flux profiles that are compatible with the observation-

based mantle heat flux. Heat flux profiles are quite variable for

different density models—based on different mantle tomography

models—used, but our best-fit models have a roughly constant heat

flux through much of the mantle, corresponding to a mantle largely

heated from below. The rather small fraction of plume heat flux

compared to total surface heat flux has frequently been taken as

evidence for a largely internally heated mantle. However, much

higher values of plume flux have recently been inferred with the

help of seismic tomography (Nolet et al. 2005). Experimental re-

sults (Jellinek et al. 2003) have shown that a significant fraction of

core heat flux can be drawn into large-scale upwellings and is thus

not observed at hotspots. A large part of core heat flux may be due

to warming of slabs settling on the CMB (Yoshida & Ogawa 2005;

Mittelstaedt & Tackley 2006). If seismic velocity anomalies are

due to temperature anomalies, the skewness of s-wave tomography

models suggests significant basal heating (Yanagisawa & Hamano

1999).

Predicted heat flux is generally too low in the uppermost few

hundred km. This may be due to a number of reasons:

(i) The scaling factor in the uppermost 220 km has been arbi-

trarily reduced by a factor F l = 0.5; the misfit becomes smaller for

larger F l (Fig. 12).

(ii) Heat flow in the lithosphere is dominated by diffusion, which

is not included in our computation, and in many places the litho-

sphere is probably considerably thicker than the 100 km assumed

here.

(iii) Probably a substantial fraction of heat flux occurs through

subduction of lithospheric slabs, and those are not fully resolved

in our model (expansion up to degree 31), especially in the upper

mantle. Heat flow misfit P2 for expansion up to degree l max = 31 is

less than for l max = 15. The largest differences occur in the upper

part of the mantle. Most density models used here to drive mantle

flow are expanded to degree 31 or less, and we expect that P2 would

be further reduced if density and flow models were expanded to

larger l max.

(iv) Further heat flux at shorter wavelength may occur through

small-scale convection, primarily in the regions with lowest vis-

cosity. Since the remaining heat flux misfit is primarily in the depth

region 100–400 km, small-scale convection could explain part of the

misfit, especially if the lowest viscosities also occur in that depth

range.

In our reference model, heat flux in the lower mantle tends to be

somewhat too high. Better results are obtained in model 2, where

temperature anomalies are less. While the amplitude of tomography

models is currently not well constrained and the somewhat lower

amplitudes required to obtain a better heat flux profile are probably

within the range of uncertainties, this might also be an additional

indication that some of the anomalies observed by seismic tomog-

raphy are due to compositional, rather than temperature variations

(Trampert et al. 2004).

5.4 Lowermost mantle

Lower boundary condition for the flow computations is a free sur-

face at the CMB. For the optimized models we compute CMB to-

pography and in particular excess ellipticity, which is constrained
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by observations (Mathews et al. 2002). In the reference case, com-

puted CMB excess ellipticity is eight times as large as observed, for

both model 2 and the case with profiles from Calderwood (1999) it

is seven times. We find generally that models that match heat flux

profile and geoid well tend to imply CMB excess ellipticity several

times larger than observed. We can reduce it to values compatible

with observations if we choose sufficiently low viscosities of the

lowermost mantle. However, in this case both the heat flux profile

and geoid fit deteriorate to an unacceptable level. Within the model

space considered, we were not able to obtain an acceptable fit to the

geoid, heat flux profile and CMB excess ellipticity at the same time;

for example, in the centre right panels of Figs 11 and 12 accept-

able CMB excess ellipticity is only found in the top right corner,

where both geoid and heat flux do not fit well. Results do not signif-

icantly change even if the excess ellipticity misfit is penalized in the

optimization. Among the models considered we found the largest

variation in predicted CMB excess ellipticity to be due to choosing

different density models; among the tomography models included if

Fig. 14, with other assumptions as in the reference case and model

2, predicted CMB topography varies between three and eight times

the observed value. Forte et al. (1995) showed, using an older to-

mography model, that it is possible to modify the tomography model

to fit excess ellipticity without significantly degrading the fit to the

seismological data, and it remains to be tested whether this is still

possible for the more recent tomography models considered here.

The discrepancy may, however, also be due to chemical variations at

the base of the mantle; if they occur close to the CMB they would be

largely isostatically compensated and thus not strongly contribute

to the geoid. On the other hand, stresses from overlying mantle flow

could be largely compensated due to these chemical variations, and

the topography at the CMB could be reduced to values compatible

with the observed excess ellipticity (Steinberger & Holme 2006).

Our preferred models have a temperature at the lower boundary of

3500 K, and a TBL thickness of 200 km. 3500 K is within the uncer-

tainties of CMB temperatures inferred from experiments (Boehler

1996), but at the lower end. A possible explanation for this rather

low temperature is again that there is chemically distinct material

at the base of the mantle which is not, or only partly, entrained in

flow in the overlying mantle, and the preferred temperature of about

3500 K does not actually correspond to CMB temperature, but tem-

perature around the top of the chemically distinct material. The in-

ferred high proportion of basal heating would not only include heat

from the core but also from the chemically distinct layer. However,

if dislocation creep is the dominant mechanism in the D′′ layer, the

same viscosity drop could result from a larger temperature increase

in the D′′ layer. Steinberger & Holme (2006) extend this geody-

namic model to consider chemical variations within the lowermost

≈ 300 km of the mantle. In this case, the optimal TBL thickness

shifts towards somewhat higher values around 300 km. Implications

of the model presented here for the lowermost mantle are further

complicated by the occurrence of a phase boundary recently found

(Murakami et al. 2004). As its Clapeyron slope is currently not

well known, it is, at present, difficult to implement into geodynamic

models.
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