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1 INTRODUCTION

SUMMARY

Modelling the geoid has been a widely used and successful approach in constraining flow and
viscosity in the Earth’s mantle. However, details of the viscosity structure cannot be tightly
constrained with this approach. Here, radial viscosity variations in four to five mantle layers
(lithosphere, upper mantle, one to two transition zone layers, lower mantle) are computed with
the aid of independent mineral physics results. A density model is obtained by converting
s-wave anomalies from seismic tomography to density anomalies. Assuming both are of ther-
mal origin, conversion factors are computed based on mineral physics results. From the density
and viscosity model, a model of mantle flow, and the resulting geoid and radial heat flux profile
are computed. Absolute viscosity values in the mantle layers are treated as free parameters and
determined by minimizing a misfit function, which considers fit to geoid, ‘Haskell average’
determined from post-glacial rebound and the radial heat flux profile and penalizes if at some
depth computed heat flux exceeds the estimated mantle heat flux 33 TW. Typically, optimized
models do not exceed this value by more than about 20 per cent and fit the Haskell average well.
Viscosity profiles obtained show a characteristic hump in the lower mantle, with maximum
viscosities of about 1023 Pa s just above the D" layer— several hundred to about 1000 times the
lowest viscosities in the upper mantle. This viscosity contrast is several times higher than what
is inferred when a constant lower mantle viscosity is assumed. The geoid variance reduction
obtained is up to about 80 per cent—similar to previous results. However, because of the use
of mineral physics constraints, a rather small number of free model parameters is required, and
at the same time, a reasonable heat flux profile is obtained. Results are best when the lowest
viscosities occur in the transition zone. When viscosity is lowest in the asthenosphere, variance
reduction is about 7075 per cent. Best results were obtained with a viscous lithosphere with a
few times 10?2 Pa s. The optimized models yield a core-mantle boundary excess ellipticity sev-
eral times higher than observed, possibly indicating that radial stresses are partly compensated
due to non-thermal lateral variations within the lowermost mantle.

Key words: geoid, heat flow, mantle convection, mantle viscosity, mineralogy, tomography.

Determining viscosity from mineral physics alone is difficult, be-
cause different deformation mechanisms—diffusion creep and dis-

Mantle rheology is still one of the rather poorly known properties of
the Earth. It is widely agreed upon that, below a brittle lithospheric
layer, mantle rocks behave, on timescales of thousands or millions
of years, like a highly viscous fluid. Viscous flow in the Earth’s
mantle is presumably the principal way how the Earth transports
heat through the bulk mantle, and an underlying cause for gravity
and geoid undulations, tectonic plate motions as well as stresses in
the Earth’s lithosphere.

Research efforts to determine mantle viscosity can be broadly
divided into three areas: (i) mineral physics, (ii) post-glacial rebound
and (iii) large-scale mantle flow.
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location creep—may play a role. For either mechanism, the effec-
tive viscosity depends on a number of factors—such as temperature,
grain size, water content, etc., and many of these are poorly known.

Measurement of post-glacial rebound has been the classical
method of determining mantle viscosity ever since the canonical
value of 10?! Pa s was established by Haskell (1935). Newer results
(e.g. Mitrovica 1996; Lambeck & Johnston 1998) confirm this, and
additionally also indicate a viscosity increase with depth; however,
they also show that post-glacial rebound cannot resolve details of
mantle viscosity structure, and is particularly insensitive to viscosity
below about 1400 km depth.
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Mantle flow can be computed, if density field, viscosity structure,
etc., are known, and comparison of computed advected heat flux,
plate motions, geoid, stresses, etc., with observations can help to as-
sess the ‘success’ of the model, and thus help to constrain viscosity
and other properties on which the results depend. For simplicity and
computational efficiency, the assumption of radial viscosity varia-
tions only is frequently made. In this case, density and flow field
can be expanded in spherical harmonics, and computed separately
for each degree and order, using a formalism developed by Hager
& O’Connell (1979, 1981). This formalism was extended by Ricard
et al. (1984) and Richards & Hager (1984) to the computation of
the geoid. Since then, the geoid (which is extremely well known
compared to other quantities that can be used) has been taken as a
constraint to mantle viscosity and flow in numerous publications.
These essentially show that large parts of the geoid can be explained
based on viscous flow models with radial viscosity variations only.
Thoraval & Richards (1997) review this body of publications; how-
ever, they also show that the geoid alone cannot give a very tight
constraint on mantle flow and the quantities on which it depends,
such as viscosity and density anomalies, and the only robust result
is, that a substantial viscosity increase with depth is required to fit
the geoid data. Including lateral variations in viscosity was found
not improve the fit to the geoid (Zhang & Christensen 1993). More
recently, Cadek & Fleitout (2003, 2006), however, found that the
fit can be improved by including lateral viscosity variations in the
top 300 km, and close to the core-mantle boundary (CMB). Also
on a regional scale, lateral viscosity variations appear to be im-
portant in determining the mantle flow field (Albers & Christensen
2001).

Because of the limitations of each individual method, the need to
jointly fit several observations and incorporate other data to con-
strain viscosity and other properties that determine flow in the
Earth’s mantle became apparent. Mitrovica & Forte (1997) jointly
fit the geoid and post-glacial rebound observables, and confirm a
significant increase of viscosity with depth. Pari & Peltier (1995)
use heat flow constraints in addition to the geoid. Other quanti-
ties considered include plate motions (e.g. Ricard & Vigny 1989;
Lithgow-Bertelloni & Richards 1998; Becker & O’Connell 2001;
Conrad & Lithgow-Bertelloni 2002, 2004), dynamic surface topog-
raphy (Lithgow-Bertelloni & Silver 1998; Kaban et al. 1999; Pari
& Peltier 2000; Panasyuk & Hager 2000; Steinberger et al. 2001;
Cadek & Fleitout 2003), CMB topography and ellipticity (Forte et al.
1993, 1995) and lithospheric stresses (Ricard et al. 1984; Bai et al.
1992; Steinberger et al. 2001; Lithgow-Bertelloni & Guynn 2004)
or a combination of several of these (Mitrovica & Forte 2004). How-
ever, none of these quantities is as accurately known as the geoid.

In order to optimize the fit to these various observations, a large
number of parameters can be adjusted, and the task of mantle flow
modelling with observational constraints can thus become rather
complex. In order to reduce the number of parameters it is, therefore,
useful to consider constraints from mineral physics as well.

Here we will derive flow models making these simplifying as-
sumptions: (1) Both lateral density and seismic velocity variations
are due to temperature variations; the conversion factors between
these variations depend only on depth, hence tomography models
can be converted to density models. (2) Mantle viscosity only de-
pends on depth. We will then use an adiabatic thermal profile with
boundary layers and results from mineral physics to derive viscos-
ity and conversion factors as a function of depth. We will derive
relative viscosity variations in mantle layers with approximately
constant mineralogy (upper mantle, one or two layers in transition
zone, lower mantle) and leave absolute values as free parameters. In

addition, we will keep the lithospheric viscosity as a free parameter.
This is necessary in order to compensate for the fact that the viscous
rheology used here is not appropriate for the lithosphere. A more
realistic treatment is difficult, we still lack a detailed knowledge of
lithospheric rheology, and self-consistent models of plate tectonics
are only beginning to emerge. The optimized lithospheric viscos-
ity obtained in that way represents an effective viscosity along plate
boundaries, where most of the lithospheric deformation occurs. This
is much less than what is generally thought to be appropriate for plate
interiors. We will then use density models inferred from seismic to-
mography in combination with viscosity models to compute mantle
flow. The geoid is computed from density anomalies and deforma-
tion of boundaries caused by the flow. The radial heat flux profile
is computed from the flow and density variations converted back to
temperature variations. Our optimization is done by minimizing a
misfit function that is computed based on

(1) the difference between predicted and observed geoid

(i1) compatibility of viscosity structure with post-glacial rebound
results

(i) compatibility of radial heat flux profile with observations

Plate velocity predictions as well as predictions of lithospheric
stress and dynamic topography turn out to be rather insensitive
to variations of viscosity with depth (Becker & O’Connell 2001;
Steinberger et al. 2001); therefore, we do not use these in our opti-
mization. For models with lateral viscosity variations, though, Con-
rad & Lithgow-Bertelloni (2006) recently showed that deeply pen-
etrating continental roots increase the magnitude of shear tractions
that mantle flow exerts on the base of Earth’s lithosphere by a factor
of 25, compared to a 100-km-thick lithosphere.

Obviously, there are also other uncertainties than absolute viscos-
ity values, which are free parameters of our optimization. We will
treat those by modifying other model parameters relative to the ref-
erence model and discussing how results change. Model parameters
are listed in Table 1.

In the next chapter, we will discuss how we derive the viscos-
ity and scaling factor profiles from mineral physics. After this, the
computation of mantle flow, geoid and advected heat flux, and how
the misfit function is constructed, is explained. We will then present
results. We will also discuss some ‘a posteriori’ predictions of quan-
tities that were not used in the optimization—surface motion and
CMB excess ellipticity (Mathews et al. 2002). This will point to-
wards shortcomings of this work, and future improvements.

In particular, there has been recently increasing evidence
(e.g. Masters et al. 2000; Trampert et al. 2004; Ishii & Tromp 2004)
that probably not all seismic velocity anomalies are due to tempera-
ture anomalies, as assumed here. The approach taken here is to test
how well observations can be fit under the assumption that seismic
velocity anomalies are caused by temperature anomalies, and how
we have to choose modelling parameters in order to obtain an op-
timum fit. We test a range of s-wave tomographic models (Becker
& Boschi 2002; Ritsema & van Heijst 2000; Masters et al. 2000;
Grand 2002; Mégnin & Romanowicz 2000; Su et al. 1994; Gu et al.
2001). This approach actually yields additional evidence for chem-
ical heterogeneities, as will be explained in more detail below, and
discussed further elsewhere (Steinberger & Holme 2006).

2 MINERAL PHYSICS THEORY

In this chapter we discuss (if adopted from elsewhere) or derive
parameters used in our model. They are assumed either constant or
depth dependent and listed alphabetically in Table 1. We will first

© 2006 The Authors, GJI, 167, 1461-1481
Journal compilation © 2006 RAS

220z 1snbny 9| uo1senb Aq £29z2.20Z/191 L/E/L9)/e1o1eB/woo dno-ojwepeoe//:sdiy woli papeojumoq



Large-scale mantle flow and mineral physics 1463

Table 1. Model parameters. For constant parameters, values are given for reference model, followed by alternative values (model number
in brackets), followed by range covered in contour plots, unless they are allowed to vary in the optimization.

Symbol Value Depth (range) Name and/or comment
ag 2.9;3.5(M2); 24 >660 km Thermal expansivity coefficient (eq. 17)
ai 0.9 >660 km Thermal expansivity coefficient (eq. 17)
b 1.4; 0 (M4) >660 km Specifies depth dependence of « (eq. 15)
0 <660 km
C, 1250 T kg~ K~! Specific heat
dpr 200 km; 100-350 km >2541 km Thickness of bottom thermal boundary layer
dlith 100 km <100 km Thickness of top thermal boundary layer
(0 Inv0/0T), Fig. 5 See Section 2.5
‘y—‘T" 27 MPa K~! >660 km Temperature derivative of shear modulus at p = 0
F 0.5; 0-1 <220 km Conversion factor reduction relative to Fig. 6
g 12; 30; 20 (M2,5); 4-70 >660 km Relates H and T, (eq. 10), thus influences
scaling factor profile through eq. (22)
g'(=g/n) 12; 20 (M5); 4-20 >660 km Determines steepness of viscosity profile (eq. 11)
H Fig. 1 Activation enthalpy
n 1;2.5(M2); 1-3.5 >660 km Stress exponent
35 <660 km
P Pressure
qi Allowed to vary in optimization Determine absolute viscosity (eq. 19)

o See Section 2.5

R 8.3144 J K~! mol~!

T Fig. 2

Ty 285K

T cmB 3500 K; 3000-4000 K

T im0 See Section 2.5

Tm Figs. 1,2

Tum() 1613 K

o Fig. 3

14 From PREM

T'Ap —0.3-10°MPaK~! . kgm™3
0.5-10° MPaK~! - kgm—3

310 5.5

Ul Fig. 4

1% From PREM

14 From PREM

PO See Section 2.3

Seismic O-factor
Universal gas constant
(Laterally averaged) temperature

0 km Surface temperature
2891 km Temperature at core—-mantle boundary
>660 km Lower mantle potential surface temperature
Melting temperature
<400 km (Upper mantle) potential surface temperature
Thermal expansivity
gravity
660 km Product of Clapeyron slope and density jump
400 km at phase boundary

Specifies depth dependence of « (eq. 15)
Normalized viscosity

Shear modulus

Actual density

Density extrapolated to zero pressure

discuss the viscosity law in general (Section 2.1.1) and restricted
to only radial viscosity variations (Section 2.1.2). This is followed
by a discussion of the parameters involved. These include the stress
exponent 7, activation enthalpy H, melting temperature 7',, and
the factors g and g’ (Section 2.2), as well as a number of further
parameters that determine the radial profiles of laterally averaged
temperature 7 and thermal expansivity o (derived jointly in Sec-
tion 2.3), as well as the viscosity scaling factors (Section 2.4) which
are treated as free parameters in the optimization. We further dis-
cuss parameters affecting the relation between seismic velocity and
temperature anomalies (Section 2.5) and the factor F'; used to adjust
the relation between seismic velocity and density variations in the
uppermost mantle.

2.1 Mantle viscosity

Our numerical flow model will only consider radially varying, New-
tonian viscosity, however, in order to derive the appropriate viscosity
profile, and in order to make our derivation extendable to more re-
alistic rheologies, we keep it rather general.

2.1.1 General rheological model
We adopt the frequently used approach of assuming a power-law

rheology, where the relation between strain rate é and stress o (more

© 2006 The Authors, GJI, 167, 1461-1481
Journal compilation © 2006 RAS

specifically, the square root of the second invariant of the respective
tensors) is of the form

R 1)
= € _—— ,

é 10" exp | —

whereby H is activation enthalpy, R is the universal gas constant,

T is temperature and C; is a constant. Solving the equation for o

gives

T ( il ) @
o = €n «—leXp .
C]; nRT

With the usual definition of viscosity », it follows

A 3)
1

In order to avoid the singularity  —> oo for é —> 0 we replace
én!with (5= +€3)' 5 - ((€2)(2)) 7 . Here (¢2)(2) is the laterally
averaged second invariant of the strain rate tensor which only de-

pends on the radial coordinate z, and € is a number smaller than 1.
T is split up into a laterally averaged part 7'(z) which only depends
on z, and the ‘temperature anomaly’ §7":
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We can then write viscosity as

n=mni-Vir(@) - Vis(2)- Vir - Vis, (5)

v ( HST ) i 7 ( 6'2 N .2) 2n
= €X T an s=\| —Q7>—— € s
=\ T RT(T 4 67T . €@ " °
(6)

are the lateral variation of viscosity due to lateral temperature and
strain rate variations and are not considered in our flow computation.
We continue now with discussing 1;, V,r and Vs which determine
the radial viscosity profile.

2.1.2 Radial viscosity profile—equations

n; are called ‘anchor viscosities’” and are adjusted such as to mini-
mize the misfit between model predictions and observations as de-
scribed below. They are determined independently for various depth
ranges for which different phase assemblages occur (upper mantle,
one to two layers in transition zone, lower mantle).

H(z)
Vir(z) = exp (nRT(z)) , (M

is the radial variation of viscosity due to radial temperature and
pressure variations at constant strain rate and

Vio(2) = ()27, ®)

is the radial variation of viscosity due to strain rate variations.

Similarly, it can be shown that for constant stress n ~
exp(H /(RT)) and for constant dissipation rate n ~ exp(2H /((n +
1)RT)). In other words, effective viscosity can be expressed in the
form

7~ exp (%) ©)

with» = 1/n for constant strain rate, » = 2/(n + 1) for constant dis-
sipation rate and » = 1 for constant stress. For Newtonian viscosity
(n =1)itisr =1 in all cases. Christensen (1983) showed for 2-D
numerical experiments that the properties of non-Newtonian flow
with n = 3 can be closely imitated by Newtonian flow with activa-
tion enthalpy reduced by a factor » = 0.3—0.5. Thus the appropriate
viscosity dependence appears to be somewhere between constant
strain rate and constant dissipation rate. Here we use the constant
strain rate formulation, that is, eq. (7) and V., = 1. We consider this
appropriate for the purpose of this paper, for the following reasons:

(i) For the lower mantle, we will explicitly discuss the depen-
dence of results on the reduction factor » (expressed in terms of g’).
Our reference case is with » = 1 (Newtonian viscosity), however,
given the results of Christensen (1983), our results are probably
applicable to the case of non-Newtonian viscosity as well.

(i) For the mantle above 660 km it will turn out that the result-
ing optimized viscosity profile is mainly determined by the anchor
viscosities, and results are rather insensitive to the factor r. In par-
ticular, we will show that results remain rather similar regardless
of whether variations in viscosity due to variations in temperature
and activation enthalpy in the upper mantle and transition zone lay-
ers are considered or whether constant viscosity is assumed within
these layers.

_ We will now discuss the stress exponent 7 and profiles /(z) and
T(z2).

2.2 Stress exponent, activation enthalpy
and melting temperature

2.2.1 Stress exponent

The appropriate value for the stress exponent # is not well known,
since solid-state flow in the mantle can be achieved through both
dislocation creep and diffusion creep. For dislocation (or power-law)
creep, n ~ 3.5 is usually considered appropriate, whereas n = 1 for
diffusion creep. Power-law creep is favoured for high stresses, large
grain sizes, high temperatures and low pressures, whereas diffusion
creep for low stresses, small grain sizes, low temperatures and high
pressures. It is thought that both mechanisms may contribute to flow
in the upper mantle, with composite viscosity intermediate, but lab-
oratory studies favour dislocation creep in the shallow upper mantle
(Ranalli 1995; Schubert et al. 2001). Further evidence for disloca-
tion creep in the upper mantle comes from geodynamic modelling
(van Hunen ef al. 2005). Ranalli (1995) concludes on p. 390 that ‘if
there is no thermal boundary layer (TBL) between upper and lower
mantle (mantle-wide convection) power-law creep is predominant
in the lower mantle’. On the other hand, the fact that the lower mantle
is nearly isotropic, has been interpreted such that diffusion creep is
the dominant deformation mechanism (Karato et al. 1995), at least
above the D” layer. As reference case will use eq. (7) withn = 3.5
above 660 km and n = 1 below.

2.2.2 Activation enthalpy

Activation enthalpy H is the sum of activation energy plus pressure
times activation volume. Kohlstedt and Goetze (1974) determined
activation energy 525 kJ mol~! for dislocation (power-law) creep in
dry olivine. Activation volume is more uncertain. Above 660 km,
we will use the continuous line in Fig. 1 as reference case profile

activation enthalpy [kJ mol=1]
0 200 400 600 800

500 N

1000

1500 5

depth [km]

ﬂ'-

2000

2500 v

0 1000 2000 3000 4000 5000 6000 7000 8000
temperature [K]

Figure 1. Solid line—upper scale: activation enthalpy profile based on
Calderwood (1999) used in the upper mantle. dashed line—lower scale:
lower mantle melting temperature profile used, intermediate between the
curves determined for MgSiO3 perovskite (Wang 1999) and MgO (Zerr &
Boehler 1994). The two scales differ by a factor gR = 100 J mol~! K corre-
sponding to g = 12. In this way, the curve for the lower mantle can be also
used with the upper scale and upper mantle viscosity law to determine lower
mantle viscosity and vice versa.
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for activation enthalpy. It is based on Calderwood (1999) and very
similar to a H(z) profile given by Ranalli (1995).

For zero depth, it equals the value determined by Kohlstedt &
Gotze (1974). Its increase with depth corresponds to an activa-
tion volume of about 12 cm?® mol~"! at depth 100 km, decreasing to
10 cm® mol~! at depth 660 km—within the range of experimental
results. Since upper mantle viscosities are mainly determined by the
anchor viscosities, and rather insensitive to the activation enthalpy
profile, we shall not discuss it in more detail.

2.2.3 Melting temperature

The activation enthalpy profile is mainly important for determining
the viscosity profile in the lower mantle. Weertman & Weertman
(1975) give an empirical relation

H = gRT,, (10)

whereby g is a dimensionless constant, and 7, is melting tempera-
ture. Then eq. (7) becomes

g/ ) Tm (Z))

T@ /)
with g’ = g/n. In the reference case for the lower mantle, we will
use eq. (11) with g’ = 12, the arithmetic mean of values determined
by Yamazaki & Karato (2001) for silicon diffusion in MgSiO; per-
ovskite and MgO. However, we will consider other values as well,
and emphasize that our reference value may also correspond to ef-
fective viscosity for power-law creep with larger g.

Experimental values exist for the the melting curves of lower man-
tle constituents MgSiO; perovskite (Wang 1999) and MgO (Zerr
& Boehler 1994). Yamazaki & Karato (2001) consider using the
melting curves of these constituents—which both look similar—
appropriate. Here, a melting curve intermediate between those two
curves (see Fig. 1) is used.

For(z) = exp ( (11)

2.3 Mantle temperature and thermal expansivity

The radial temperature profile is also required to derive viscosity
as a function of depth. We assume here the temperature profile is
adiabatic except for TBLs. This is not standard practice in the geo-
dynamical literature—the adiabatic gradient is generally removed
because it does not influence the dynamics directly. However, it
does influence the mineral physics constraints on material proper-
ties, which is why it is included here. A number of further parame-
ters are involved here. These can be grouped into those determining
the adiabatic temperature gradient (thermal expansivity «(z), grav-
ity y(z), specific heat C , and mantle potential surface temperature
T um.0; Section 2.3.1), further parameters determining thermal ex-
pansivity (ag, a1, b, d 7o, po, p; symbols explained in Section 2.3.2),
the product of Clapeyron slope and density jump I' A p determining
jumps in the adiabatic temperature profile across phase boundaries
(Section 2.3.3), and parameters 7 cvp, 70, dpr and dyy, defining
thermal structure of TBLs (Section 2.3.4).

2.3.1 Adiabatic temperature profile

An adiabatic temperature profile can be computed by integration of

dT —
= =TE)- 1) 7@/ C,). (12)
Starting point is mantle potential surface temperature (i.e. extrapo-
lation of the mantle adiabat to the surface) T, 0. We use T 0 =

© 2006 The Authors, GJI, 167, 1461-1481
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1340°C = 1613 K based on decompression melt studies of MORBs
(White & McKenzie 1995; Iwamori et al. 1995). The gravity profile
y (z) can be computed from the Earth’s radial density distribution and
is, therefore, known rather accurately. For heat capacity, we adopt C,
~ 1250 Tkg™' K~! (e.g. Stacey 1992; Schubert et al. 2001), which
is also considered to be known rather accurately. Since « also de-
pends on temperature, the radial profiles for « and 7 are determined
jointly.

2.3.2 Thermal expansivity

The relation between thermal expansivity and density (along
isotherms) can be expressed in the form

dlna
= —4r. 13
(Mlp)r , (13)

In the upper mantle, a constant §7 = 5.5 is used here as reference
case. Chopelas & Boehler (1989) experimentally determined 6 7 =
5.5 = 0.5. In this case, integration yields

p(p, T ))"‘”
00(T) ’

whereby ao(7) and po(T) are thermal expansivity and density as
a function of temperature at zero pressure. Experimental results
exist for both a(7") and p(p, T)/po(T). We follow here Schmeling
et al. (2003) where explicit formulae and original references were
given. Their treatment is simplified, in that they do not consider the
effect of phase transitions. Therefore, we also use the profile derived
by Calderwood (1999) for a pyrolite mineral phase assemblage for
comparison.

In the lower mantle, depth dependence of 6 y may play a role. The
relation between & 7 and p was found to be

_ po(T) '\’
o =om (p(p, T)) ’ ()

with § 79 ~ 5.5 and b &~ 1.4 (Anderson et al. 1992; Schubert et al.
2001). In this case, integration along isotherms yields

b
a(p, T) = ao(T) exp {—‘Sbﬂ [1 - (p’z"p(?)) “ . (16)

We will use this equation in the lower mantle in the reference case,
however, we will additionally show results with constant § ; = 5.5
in the entire mantle, in order to assess how large the effect of the
depth dependence of § 7 on our results is. We use

ao(T) = (ap +a; T/1000K) - 107 K™, amn

op. T) = ao(T)< (14)

with ayg = 2.9 and a; = 0.9 in the reference case. This is inter-
mediate between various experimental results and ab initio calcu-
lations for MgSiO; perovskite, the main lower mantle constituent
(Oganov et al. 2001). For magnesiowiistite (MgO), another ma-
jor lower mantle constituent, a((7") is probably similar but slightly
higher (e.g. Duffy & Anderson 1989, fig. 5). Because of the con-
siderable uncertainty, we consider cases for higher or lower « as
well.

Actual density in the lower mantle is reasonably well known,
and pg can, for example, be determined by extending the PREM
(Dziewonski & Anderson 1981) lower mantle density profile to the
surface. However, the PREM profile is approximately adiabatic, and
not isothermal. Hence, the PREM value has to be corrected for adia-
batic temperature difference. Transition of the majorite phase, which
constitutes about 30 per cent of mantle material, is not abrupt but
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Figure 2. Computed adiabatic temperature profiles (dashed lines), and temperature profiles with thermal boundary layers (solid lines). Black lines: reference
case; orange lines: computation using thermal expansivity profile of Calderwood (1999) (see Fig. 3); brown line: computation with constant 6 7, all other
assumptions as in reference case. Labels indicate model numbers (Table 2) here and in the following figures. The dotted line shows again the assumed lower

mantle melting temperature.

occurs gradually between about 660 and 730 km (e.g. Akaogi & Ito
1999). Therefore, within this depth range, we use a linear superposi-
tiona(z) = &0 (2) + 0.3 - (&t (2) — ot ju(2)) - (z — 730 km) /(660 km—
730 km) whereby «,,, and «,,, are determined with eqs (14) and (16),
respectively.

2.3.3 Temperature jumps at phase boundaries

Temperature jumps at phase boundaries are smeared out due to dif-
fusion, but the jump between adiabatic profiles above and below
phase boundaries is

AT, = Q1/C, =T ApTp/(07,Cp)- (18)

Hereby is QO the latent heat release per unit mass, I" is the Clapey-
ron slope, Ap is the density jump across the phase boundary, 7' is
the average temperature below and above the phase boundary, and
Ppb is the average density above and below the phase boundary. Two
phase transitions at depths 400 and 660 km are considered here. In
the reference case, for depth 400 km, 'Ap = 0.5 - 10> MPaK~! .
kgm™3 is used, based on Akaogi et al. (1989) for a pyrolite man-
tle with 60 per cent olivine content, for depth 660 km, TAp =
—0.3 - 10° MPaK™" - kgm™ is used, as given by Akaogi & Ito
(1999). Besides the spinel-perovskite transition, this value also in-
cludes the effects of the majorite—perovskite transition, which occurs
at a similar depth with positive Clapeyron slope.

2.3.4 Temperatures at the top and bottom of the mantle

At the top and bottom of the mantle are two TBLs with larger tem-
perature gradient. Temperature at the CMB is 7' ¢y = 4000 £ 600 K
according to Boehler (1996) and Schubert ef al. (2001). The thick-
ness of the TBL is estimated to be about 200 km (Schubert et al.
2001), but it may be thicker, if there are chemical variations at the
base of the mantle. We use T cyp = 3500 K, bottom TBL thick-
ness dpr = 200 km, surface temperature 7'y = 285 K and top TBL
thickness dj;;, = 100 km in the reference case. For the difference
between adiabatic and actual temperature profile at distance x from

a thermal boundary with total non-adiabatic temperature drop AT
and thickness d we use AT = AT, - [1 —erf(x/d)].

2.3.5 Temperature and thermal expansivity profiles

Resulting temperature profiles are shown in Fig. 2. The effect of
using different thermal expansivity profiles, and of phase boundaries
are both rather small.

Corresponding thermal expansivity profiles are shown in Fig. 3.
The black ‘reference profile’ features a decrease from ~2.5 -
107> K1 below 670 km to ~1.0 - 107> K~! at the base of the man-
tle, in agreement with Schubert ez al. (2001). For comparison, the
profile of Calderwood (1999), derived from a pyrolite mineral phase
assemblage and thermal expansivities of individual phases is also
shown. It agrees with the reference profile qualitatively, but de-
creases somewhat less with depth in the lower mantle. Differences
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Figure 3. Thermal expansivity profiles for the same cases as shown in Fig. 2.
Additionally, the dashed line shows the profile with «( reduced by 0.6 -
105 K1, the dotted line with ¢ increased by the same amount.
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do not exceed ~20 per cent. Thermal expansivity decreases more
strongly with depth, if a constant 6§ 7 is assumed. The dashed line is
obtained, if a¢(7) = (2.3 + 0.9 T/1000K) - 10> K~! is used in-
stead, the dotted line for a¢(7) = (3.5 4+ 0.9 T/1000K) - 1075 K1,
Both values are still within the range of results proposed (Oganov
etal. 2001). All profiles show an overall decrease with depth, but an
increase with depth across the 660 km discontinuity. Qualitatively,
this jump corresponds to o being larger for lower mantle materials
than for upper mantle materials (see e.g. Duffy & Anderson 1989,
fig. 5).

2.4 Normalized radial viscosity profile—results

We can now express

n(z) = q; - no - 7(2). (19)

1o is a constant scaling viscosity. 7j(z) shown in Fig. 4 is the normal-
ized viscosity profile proportional to F,7(z) from eqs (7) and (11),
but adjusted by adding a constant to H in the lower mantle such that
the jump in H(z)/nR between upper and lower mantle is removed.
This adjustment is of no consequence to the results, and merely
serves to make the factors ¢; more easily interpretable. Without the
adjustment, 7)(z) would increase by a factor ~2000 from above to
below 660 km because of the different viscosity law assumed above
and below. This jump would be smaller for a lower value of g/, and
approximately removed for g’ = 8. Our results will show that such a
lower value of g’ (corresponding to a less steep profile in the lower
mantle) also increases the fit to the geoid. Factors ¢; in individual
layers (lithosphere, upper mantle, one to two layers transition zone,
lower mantle) are treated as free parameters in the optimization dis-
cussed below. Figuratively speaking, the optimization consists of
shifting corresponding parts of the curves in Fig. 4 to the left or
right. 7(z) is only shown below depth 70 km, because the mecha-
nisms discussed here are not appropriate to model deformation of the
lithosphere, and lithospheric viscosity is treated as a free parameter.
It is shown for the same three cases as in Fig. 2. All profiles shown
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Figure 4. Black and brown lines: non-optimized, normalized viscosity pro-
files for for the same cases as shown in Fig. 2. Additionally, the violet line
shows the profile computed with g’ = 20 instead, and the orange line shows
the profile of Calderwood (1999). Dashed lines are adiabatic profiles, solid
lines are with thermal boundary layers. During the optimization, parts of
the profiles are shifted left or right relative to each other, yielding optimized
profiles as in Figs 9, 13, 14 and 15.

© 2006 The Authors, GJI, 167, 1461-1481
Journal compilation © 2006 RAS

Large-scale mantle flow and mineral physics 1467

feature a characteristic hump in the lower mantle, like the profiles
derived by Ranalli (1995) for whole-mantle flow. The curvature of
the hump depends on the curvature of the assumed melting curve.
For example, the profile derived by Calderwood (1999) in a similar
manner is less curved in most of the lower mantle. The height of this
hump strongly depends on the value of g’ and also depends on man-
tle potential surface temperature. Variations in the shape of the 7j(z)
profile in the lower mantle as a result of changing potential surface
temperature by £100 K can be closely mimicked by appropriate
(small) changes in g’ and are, therefore, not considered separately.
Whereas in the reference case, the viscosity increase from below
660 km to the maximum in the lower mantle is about a factor 40,
it is about a factor 100 for the brown line, although the only dif-
ference is a slightly smaller temperature increase towards the base
of the mantle, and it is even about a factor 500 for the violet line
with g’ = 20. We, therefore, discuss the effect of g’ on our model,
and which range of g’ gives best results. Additionally, we discuss
the effect of dp» and