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A 1D model of space-charge impedance, assuming a transversely uniform beam with circular cross
section, has been proposed and is being extensively used in the modeling of the microbunching instability
of relevance for the beam delivery systems of x-ray free-electron lasers. In this paper we investigate the
limitation of the model when applied to studying the effect of shot noise—one of the sources of the
microbunching instability. We make comparison with a fully 3D calculation and identify the upper end of
the frequency spectrum for applicability of the 1D model. Relaxation of the assumptions regarding axis
symmetry and uniformity of the transverse density is also reviewed.

DOI: 10.1103/PhysRevSTAB.11.034401 PACS numbers: 29.27.Bd, 41.60.Ap

I. INTRODUCTION

A successful design of the beam delivery systems for x-
ray free-electron lasers (FELs) requires control and hence
reliable and efficient modeling of the microbunching in-
stability [1]. At present, two distinct approaches are being
pursued for modeling: macroparticle simulations [2– 4]
and direct solution of the Vlasov equation (in its full
[5,6] or linearized form [7,8]).

Macroparticle simulations in combination with particle
in cell techniques allow for accurate determination of the
fields for a given charge density but are sensitive to the
unphysical fluctuations arising from using a number of
macroparticles smaller than the bunch population. Direct
methods to solve the full Vlasov equation are attractive in
that they are immune from this source of noise but have
limitations on their own. Because of the strong dependence
of the computational load on the dimensionality of the
system, they are most efficient in a reduced phase space.
Indeed, solvers implemented so far have been limited to a
2D (longitudinal) phase space [5,6] and are necessarily
based on a simplified model of beam dynamics and, in
particular, of space-charge effects.

In this paper we discuss the simplified model of space
charge proposed in [9] and adopted in [2,5,6]. This model
assumes an infinitely long beam in free space with uniform
transverse density and circular cross section and yields an
on-axis longitudinal electric field in Fourier space ~Ez�k� �
�Z�k�~I�k�, which is exclusively determined by the beam
current I and an impedance Z�k� [10].

The model has the pleasant feature that Z�k� can be cast
into a handy analytical expression but has two obvious
limitations: (i) the reduced dimensionality (1D); (ii) the
assumption regarding uniformity and symmetry of the
transverse density. Our main goal here is to address (i)
with regard to the electric field generated by shot noise, the
most fundamental source of density fluctuations seeding
the microbunching instability. At high frequency one may

expect that an evaluation of ~Ez�k� based on a 1D beam
model would fail when the wavelength of the charge
perturbation (in the beam frame) becomes comparable to
the beam transverse size. In Sec. IV we identify this critical
wavelength by making a comparison between the expec-
tation values hj ~Ez�k�j2i as calculated from a 3D and the 1D
model. We find that the two quantities start to diverge
significantly for krb=� * 0:5, where rb is the radius of
the beam transverse cross section. This is the regime where
the transverse correlation length for ~Ez�k� becomes com-
parable to, or smaller than, the beam transverse size. (In the
above equation the average h�i is taken over the random
realizations of the charge density due to shot noise.)

As for the remainder of the paper, in Sec. III we review
the 1D model of space-charge (SC) impedance for uniform
axis-symmetric beam, while in the last two sections we
briefly discuss beams with transverse Gaussian densities
and non-axis-symmetric profiles, and for completeness we
review the well-known effect of conducting walls (which
limits the validity of simplified 1D models of space charge
in free space from the low-frequency side of the frequency
spectrum).

II. BASIC EQUATIONS FOR THE ELECTRIC
FIELD

Consider an infinitely long electron beam with density
���x; y; z�, where � is the (uniform) linear particle
density. More specifically, we will consider densities of
the form ��x; y; z� � �?�x; y��z�z� with normalizationR
�?�x

0; y0�dx0dy0 � 1 and
RL=2
�L=2 dz�z�z� � L for L!

1. The beam moves in free space with constant velocity
�c in the z direction (we shall assume � ’ 1). In the lab
frame the longitudinal electric field generated by such a
beam is given by Ez�x� � �e�=4�"0�

R
G�x; x0���x0�d3x0

with Green function G�x; x0� � �z� z0��=��x� x0�2 �
�y� y0�2 � �z� z0�2�2�3=2. When working in cylindrical
coordinates it is convenient to make use of the expansion
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where following Jackson’s notation r< (r>) denotes the
smaller (larger) between r and r0, and Im and Km are the
modified Bessel functions. The Fourier component
~Ez�k� � �2���1

R
1
�1 Ez�x�e

�ikzdz of wave number k
then reads
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e

4�"0

�

��2

X1
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dV 0��r0; �0; z0�keim����

0�

	 e�ikz
0
kI<mK>

m; (2)

with obvious meaning of the shorthand notation I<m and
K>
m .

III. 1D MODEL OF SHOT NOISE

Assume a transversely uniform density with circular
cross section of radius rb and an observation point located
on-axis (r � 0). Only the m � 0 term in (2) contributes,
while the radial integration can be carried out explicitly
using

R�
0 xK0�x�dx � �1� �K1����. An impedance (per

unit length) Z�k� is defined as

 

~E z�k� � �Z�k�~I�k�; (3)

where ~I�k� is the Fourier transform of the current I�z� �
ec��z�z�, with ~�z�k� � �2��

�1
R
1
�1 �z�z�e

�ikzdz. We
have

 Z�k� � i
Z0

��rb

1� �bK1��b�
�b

; (4)

where �b � krb=�. It is interesting to report the limiting
form of (4) at high and low frequencies. For x! 1, K1�x�
decreases exponentially, and therefore Z�k!1� �
iZ0=�kr

2
b. For small x we have K1�x� ’ 1=x�

x�log�x=2� � �E � 1=2�=2, where �E ’ 0:577 is the
Euler constant, yielding

 Z�k! 0� � �i
Z0

4�
k

�2

�
log
�2
b

4
� 2�E � 1

�
: (5)

The granularity of the elementary charge gives rise to
random fluctuations of the beam current (shot noise). We
are interested in investigating how charge density fluctua-
tions translate into electric field fluctuations and determin-
ing their statistics.

For convenience of calculation consider a beam with
long (i.e. longer than any length scale involved in the
problem) but finite length L. Consider a subdivision of L
into N intervals of length �z � L=N . Denote withNb �
�L the total number of electrons in the beam and Nj the
population of electrons in the interval z 2 �z�j� 1; j�.
The occupation number Nj is a random process obeying

the Poisson statistics, which we model as [12]

 Nj � hNji � hNji
1=2�j; (6)

where the expectation value over noise realizations is
hNji � ��z � Nb��z=L� and �j is a univariate normal
random process with vanishing average and variance equal
to unity h�ji � 0, h�i�ji � 	ij. The last equation ex-
presses the assumed lack of correlation between the num-
ber of electrons populating different intervals. From
��z�zj��z � Nj it follows

 �z�zj� � 1�
�j
hNji

1=2
(7)

and h�z�zi��z�zj�i � 1� 	ij=hNji. As for the correspond-
ing Fourier transforms (for k � 0, k0 � 0) we have

 h~�z�k�i � 0; h~�z�k�~�


z�k
0�i � �2���2�L2=Nb�	k;k0 ;

(8)

where 
 denotes complex conjugation. Because L is finite
it is understood that only a spectrum of discrete wave
numbers is allowed: k � kn � 2�n=L.

From (3) and (8), h ~Eki � 0 follows, and after taking the
limit L! 1

 h ~Ek ~E
k0 i �
�ec�2

�2��2
NbjZ�k�j2	k;k0

�
e2

�2�2"0�rb�
2 Nb

�
1� �bK1��b�

�b

�
2
	k;k0 ; (9)

where for brevity we have introduced the notation ~Ek �
~Ez�k�. At low frequency �b ! 0, we have the limiting form
�1� �bK1��b��2=�2

b ! �2
b�log�4�2

b� � 2�E � 1�2=16.

IV. A 3D MODEL OF SHOT NOISE

Next, we want to contrast (9) to the result obtained from
a 3D model of the shot noise. Again, we consider a beam
with circular cross section but with transverse density that
is uniform only on average: h�?�r�i? � �?0 � 1=�rb for
r < rb (and vanishing for r > rb). Consider an elementary
cell of volume ri�r���z centered at ri, �‘, zj. Denote
with Ni‘j the number of electrons populating this volume
cell. Similarly to (6) we have

 Ni‘j � hNi‘ji � hNi‘ji
1=2�i�‘�j (10)

with the average number of electrons given by hNi‘ji �
��?0ri�r���z.

To calculate h ~Ek ~E
k0 i we first discretize the volume in-
tegral in (2),

R
dV0 !

P
i‘jri�r���z, make use of

h��ri; �‘; zj���ri0 ; �‘0 ; zj0 �i � 1� 	ii0	jj0	‘‘0=hNi‘ji, and
take the limit L! 1 in the end. We find (for k � 0 and
k0 � 0)
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 h ~Ek ~E
k0 i �
�

e

2�2"0�rb

�
2
Nb

1� �2
b�K

2
0��b� � K

2
1��b��

4
	k;k0 :

(11)

For �b ! 0, we have �1� �bK1��b��2=�2
b !

�2
bf�log�4�2

b� � 2�E � 1�2=16� 1=16g.
The relative difference between (9) and (11) vanishes in

the zero-frequency limit and becomes significant only for
�b * 0:5 (see Fig. 1). In the high-frequency limit (11)
tends to a constant, f1� �2

b�K
2
0��b� � K

2
1��b��g=4! 1=4,

in contrast to (9), which decreases as 1=�2
b. We conclude

that the 1D model gives a good approximation of the field
fluctuations for long wavelengths down to � ’ 4�rb=�.

An interesting quantity is the radial correlation
h ~Ek�r� ~E



k�0�i. Again, from (2) we have

 

h ~Ek�r� ~E


k�0�i �

e2

�2�2"0�rb�
2

Nb
2

	

�
K0���

Z �

0
xI0�x�K0�x�dx

� I0���
Z �b

�
xK2

0�x�dx
�
; (12)

where � � kr=�, indicating that the radial correlation of
the Fourier spectrum components of the longitudinal fields
decreases exponentially at high frequencies (�b � 1), see
Fig. 2 where the quantity h ~Ek�r� ~E



k�0�i=hj ~Ek�0�j

2i is plotted
as a function of r=rb (solid lines).

Equation (12) should be contrasted to the radial corre-
lation from the 1D model (see dashed lines in Fig. 2):

 

h ~Ek�r� ~E


k�0�i �

e2

�2�2"0�rb�2
Nb

�
1� �bK1��b�I0���

�b

�

	

�
1� �bK1��b�

�b

�
: (13)

At low frequencies (�b  1) the correlation (13) tends
to (12) and they both tend to unity—a confirmation of the
validity of the 1D model in this regime.

For (�b � 1) the limiting form of (12) is well approxi-
mated by h ~Ek�r� ~E



k�0�i=hj ~Ek�0�j

2i ’ �K1���, where the
modified Bessel function K1��� ’

������������
�=2�

p
e�� for � of the

order of, or larger than, unity. If we define the correlation
length ‘c as the radial distance over which the correlation
decreases by 1=e, we find ‘c ’ 1:66�=k ’ 0:26��. The 3D
effects start to become important when the correlation ‘c is
comparable to or smaller than the beam transverse size rb.

The model considered in this section presupposes a
frozen beam where interparticle distances do not change
significantly in comparison with the correlation length ‘c.
In contrast, the 1D model of the previous section only
assumes that the longitudinal projection of the interparticle
distance does not vary. The time scales over which these
assumptions hold are different. Outside dispersive regions
of the lattice, the time scale for longitudinal density varia-
tions is set by the longitudinal plasma oscillations. In a
relativistic regime (� * 100), say past the injection section
in a 4th generation light source, the time scale as measured
in terms of the distance traveled by the beam is of the order
of 100 m [2]. On the other hand, the 3D model is also
sensitive to thermal motion in the transverse plane. One
can expect that this may affect transverse correlations of
length ‘c over a time of the order ‘c=v? [or equivalently
over a distance sc ’ c�‘c=v?�], where v? is the magnitude
of the particles transverse velocity. For example, assuming
that ‘c be a fraction of the transverse beam size, say ‘c �
rb=5, with rb ’

���������������
"�x=�

p
and v? ’ c

���������������
"=��x

p
, we find sc ’

�x=5. For typical values of the betatron function �x, sc
would be at most of the order of a few meters. This
relatively short distance, however, could be sufficient in
certain circumstances to induce detectable 3D effects.
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FIG. 1. (Color) The two curves are proportional to the expecta-
tion value hj ~Ekj2i as determined from the 1D model [black curve,
Eq. (9)] and 3D model [red curve, Eq. (11)]. The relative
difference is less than 10% up to �b � rbk=� ’ 0:5.
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FIG. 2. (Color) At large frequencies (�b � 1) the 3D model of
shot noise yields an exponentially decreasing radial correlation
for the longitudinal electric field (solid red curve), whereas the
1D model gives a strong correlation up to the edge of the beam
(dashed red line). At low frequencies (�b  1), the correlations
from the 3D (solid black curve) and the 1D model (dashed black
curve) are similar and tend to unity.
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V. BEAMS WITH NONUNIFORM TRANSVERSE
DENSITY

For an axis-symmetric beam with Gaussian transverse
density given by �?�x; y� � e��x

2�y2�=2
2
=2�
2, the on-

axis Fourier component of the longitudinal electric field of
wave number k reads

 

~E k � i
e

2�"
�

�

�
e
�2

=2Ei���2


=2�; (14)

where �
 � k
=� and Ei�x� � �
R
1
�x dte

�t=t is the
exponential-integral function, yielding the impedance

 Z�k� � �i
Z0

��

�

4
e�

2

=2Ei

�
�
�2



2

�
: (15)

In deriving (14) we made use of the result [13]R
1
0 xK0�x�e�x

2=2�2
dx � ���2=2�e�

2=2Ei���2=2�.
At large frequencies Z�k! 1� � iZ0=2�
2k [having

used the asymptotic expansion Ei��x� � e�x�x�1 � . . .�,
valid for large x]. In the low-frequency limit, since
Ei��x� ’ �E � log�x� for small x, we find

 Z�k! 0� � �i
Z0

4�
k

�2

�
log
�2



2
� �E

�
; (16)

which gives a good approximation for Z�k� up to �
 ’ 0:5.
By comparing (5) and (16), one can define an ‘‘equivalent‘‘
uniform beam with radius rb � 


���
2
p
e�1��E�=2 ’ 1:747
 to

represent the longitudinal impedance for a Gaussian beam
with rms size 
, see Fig. 3.

If the Gaussian beam has unequal horizontal and vertical
rms sizes, similar considerations show that the on-axis 1D
space-charge impedance can be approximated with that of
a round uniform beam [14] with rb ’ 1:747�
x � 
y�=2,
which is close to the prescription rb � 1:7�
x � 
y�=2
proposed in [2] on the basis of numerical fitting.

VI. EFFECT OF BOUNDARIES

To estimate the effect of boundaries consider again a
model of beam with transverse uniform density and round
cross section. In the presence of a perfectly conducting
pipe of radius rp concentric with the charge distribution,
one can easily show that the impedance reads

 Z�k� � i
Z0

��rb

1

�b

�
1� �b

�
K1��b� � K0��brp=rb�

	
I1��b�

I0��brp=rb�

��
: (17)

The high-frequency limit k! 1 is the same as for the
free-space case since both K0��brp=rb� and the ratio
I1��b�=I0��brp=rb� decrease exponentially with �b (as
rp=rb > 1). The low-frequency limit yields the more fa-
miliar expression [15]

 Z�k! 0� � i
Z0

2�
k

�2

�
2 log

�rp
rb

�
� 1

�
; (18)

which can be recovered from (17) using the limiting ex-
pressions K0�x� ’ ���E � log�x=2��, I1�x� ’ x=2, and
I0�x� ’ 1, in addition to that for K1�x� reported in
Sec. III, for x! 0. The effect of the boundary becomes
significant at low frequencies below �b ’ rb=rp or wave-
lengths � * 2�rp=�. For typical pipe apertures this latter
quantity is generally larger than the scale of the wavelength
of interest for microbunching.

VII. CONCLUSIONS

We have shown that charge density fluctuations due to
shot noise in the transverse plane of the beam can translate
into significant fluctuations of the longitudinal electric field
with wavelengths smaller than 2�rb=� (measured in the
laboratory frame). This effect is missed by a purely 1D
model of impedance, which yields a longitudinal electric
field that responds exclusively to variations in the longitu-
dinal line density. In this paper we have quantified these
fluctuations, using a beam model with uniform averaged
transverse density and circular cross section, for which a
calculation can be carried out analytically. We found that
the on-axis expectation value for j ~Ekj2 generated by shot
noise tends to a constant at large wave number k. In
contrast, in the same limit the 1D model predicts a
power-law decay as 1=k2. At low frequencies j ~Ekj2 is
largely correlated in the transverse plane while at small
wavelengths the correlation length ‘c ’ 0:26�� can be-
come a small fraction of the transverse beam size. The
divergence in the behavior between the 3D and 1D models
sets a frequency range delimited by krb=� & 0:5 for the
validity of the 1D model.

On the low end of the frequency spectrum where the 1D
model is accurate, we showed that the impedance derived
for a beam with transversely uniform density and circular

0.01 0.05 0.1 0.5 1 5 10

ξσ kσ γ

0.03

0.05

0.07

0.1

0.15

0.2

Im
Z

πγ
σ

Z
0

Uniform beam

with rb 1.747σ
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FIG. 3. (Color) The longitudinal (on-axis) impedance for an
axis-symmetric Gaussian beam with rms size 
 (solid black
curve) at low frequencies is very close to that of a uniform beam
of radius rb � 1:747
 (red curve). The dashed curve is the low-
frequency limiting form (16).
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cross section of radius rb can be used to reproduce with
good accuracy the on-axis longitudinal field of a Gaussian
beam provided that the parameter rb be adjusted
appropriately.

We end with a few words about the practical implica-
tions of these findings.

In applications to 4th generation light sources, beam
density fluctuations of very small length scale may be
ignored if the smoothing effect of finite uncorrelated en-
ergy spread and horizontal emittance are significant. If this
is the case, the frequency upper limit we have identified
may not pose a particularly restrictive limitation to the
applicability of the 1D model of space charge for
microbunching.

For example, for FERMI [16] right after injection where
� ’ 200 and rb ’ 200 �m, the 1D model is valid for
wavelengths longer than � � 4�rb=� ’ 12 �m.

This is below the wavelength range of the microbunch-
ing gain function through the bunch compressors, which is
peaked at about � � 60 �m and negligible below � �
20�m [6], provided that the relative uncorrelated energy
spread, as resulting from use of a laser heater, is not smaller
than about 10�4. However, turning off the laser heater [17]
would move the range of significant microbunching gain to
a region well below � � 20 �m, where the applicability of
the 1D model could become questionable. The validity of
the 1D model is also in doubt at the end of the FERMI linac
where the relative uncorrelated energy spread is small
(because of the large beam energy) and microbunching
on the 1 �m scale could develop in the spreader [18]
region. (For a discussion see [19].) Finally, we should
mention that evidence of microbunching in medium-
energy, longitudinally cold beams that appears to be in-
consistent with a simple 1D model of longitudinal space
charge has been gathered in recent measurements of co-
herent transition radiation signals at Linac Coherent Light
Source (LCLS) [20]. These measurements point to the
presence of correlations in the beam transverse plane
with correlation lengths smaller than the beam transverse
size [21].
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