
Models of natural computation : gene assembly and membrane
systems
Brijder, R.

Citation
Brijder, R. (2008, December 3). Models of natural computation : gene assembly and
membrane systems. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/13345

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13345

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13345

Chapter 4

The Fibers and Range of

Reduction Graphs

Abstract
The biological process of gene assembly transforms a nucleus (the MIC) into a
functionally and physically different nucleus (the MAC). For each gene in the MIC
(the input), recombination operations transform the gene to its MAC form (the
output). Here we characterize which inputs obtain the same output, and moreover
characterize the possible forms of the outputs. We do this in the abstract and more
general setting of so-called legal strings.

4.1 Introduction

Ciliates form a large group of one-cellular organisms that are able to transform
one nucleus, called the micronucleus (MIC), into an astonishing different one,
called the macronucleus (MAC). This intricate DNA transformation process is
called gene assembly. Each gene occurs both in the MIC and MAC, but in very
different forms. During gene assembly each gene is transformed from its MIC form
to its MAC form.

Formally, the gene in MIC form (the input) can be described by a so-called
legal string [12], while the gene in MAC form, including additionally generated
structures, (the output) can be described by a so-called reduction graph [6, 5].
The reduction graph is based on the notion of breakpoint graph in the theory of
sorting by reversal [17, 1, 23].

Given the function R that assigns to each legal string u its reduction graph
Ru, we (1) characterize the range of R (up to graph isomorphism) in terms of
easy-to-check conditions on graphs (cf. Theorem 24), and (2) characterize the
fiber R−1(Ru) (modulo graph isomorphism) for each reduction graph Ru (cf.
Theorem 34). In fact we show that R−1(Ru) is the ‘orbit’ of u under two types

74 Introduction

of string rewriting rules.
Result (1) characterizes which graphs are (isomorphic to) reduction graphs.

Obviously, these graphs should have the ‘look and feel’ of reduction graphs. For
instance, each vertex label should occur exactly four times, and the second type of
edges connect vertices of the same label. Once these elementary and easy-to-check
properties are satisfied, reduction graphs are characterized as having a connected
pointer-component graph — a graph which represents the distribution of the
vertex labels over the connected components, originally defined in [4]. This last
condition can also be efficiently verified. The characterization implies restrictions
on the form of the MAC structures that can possibly occur.

Result (2) determines, given two legal strings, whether or not they have the
same reduction graph. This may allow one to determine which MIC genes obtain
the same MAC structure. It turns out that two legal strings obtain the same
reduction graph (up to isomorphism) exactly when they can be transformed into
each other by two types of string rewriting rules. We will see that, surprisingly,
these rules are in a sense dual to string rewriting rules in a model of gene assembly
called string pointer reduction system (SPRS) [12].

The latter characterization has additional uses for the specific model SPRS as
well. In this model, gene assembly is assumed to be performed by three types of
recombination (splicing) operations that are modeled as types of string rewriting
rules. The string negative rules form one of these types. It has been shown that
the reduction graph allows for a complete characterization of applicability of the
string negative rules during the transformation process [6, 4]. Moreover, it has
been shown that the reduction graph does not retain much information about the
applicability of the other two types of rules [4]. Therefore, the legal strings that
obtain the same reduction graph are exactly the legal strings that have similar
characteristics concerning the string negative rule.

To establish both main results, we augment the (abstract) reduction graph
with a set of merge-legal edges. We will show that some “valid” sets of merge-legal
edges for a reduction graph allows one to “go back” to a legal string corresponding
to this (abstract) reduction graph. In this way the existence of such valid set
determines which graphs are (isomorphic to) reduction graphs. The first main
result shows that the existence of such valid set is computationally easy to verify.
Moreover, the set of all sets of merge-legal edges can be transformed into each
other by flip operations. These flip operations can be defined in terms of the above
mentioned dual string pointer rules on legal strings. This will establish the other
main result.

This chapter is organized as follows. Section 4.2 fixes notation of basic math-
ematical notions. In Section 4.3 we recall notions related to legal strings, in Sec-
tion 4.4 we recall the reduction graph and the pointer-component graph, and in
Section 4.5 we generalize the notion of reduction graph and give an extension
through merge-legal edges. In Section 4.6 we provide a preliminary characteriza-
tion that determines which graphs are (isomorphic to) reduction graphs. In the
next three sections, we strengthen the result to allow for efficient algorithms: in

Chapter 4 75

Section 4.7 we define the flip operation on sets of merge-legal edges, in Section 4.8
we show that the effect of flip operation corresponds to merging or splitting of
connected components, and in Section 4.9 we prove the first main result, cf. Theo-
rem 24. In Sections 4.10 and 4.11 we prove the second main result, cf. Theorem 34.
We conclude this chapter with a discussion. A conference edition of this chapter,
containing selected results without proofs, was presented at DLT ’07 [2].

4.2 Mathematical Notation and Terminology

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to fix the basic notation and terminology.

The symmetric difference of sets X and Y , (X\Y) ∪ (Y \X), is denoted by
X ⊕ Y . As ⊕ is associative, one may define the symmetric difference of a finite
family of sets (Xi)i∈A – it is denoted by

⊕
i∈A Xi. The composition of functions

f : X → Y and g : Y → Z is the function gf : X → Z such that (gf)(x) = g(f(x))
for every x ∈ X . The restriction of f to a subset A of X is denoted by f |A. The
range f(X) of f will be denoted by rng(f). The fiber (or preimage) of y ∈ Y
under f , denoted by f−1(y), is {x ∈ X | f(x) = y}. The fibers form a partition of
X . If Y = X , then f is called self-inverse if f2 is the identity function. We will
use λ to denote the empty string.

We now turn to graphs. A (undirected) graph is a tuple G = (V, E), where V
is a finite set and E ⊆ {{x, y} | x, y ∈ V }. The elements of V are the vertices of
G and the elements of E are the edges of G. In this chapter we allow x = y, and
therefore edges can be of the form {x, x} = {x} — an edge of this form should
be seen as an edge connecting x to x, i.e., a ‘loop’ for x. The restriction of G to
E′ ⊆ E, denoted by G|E′ , is the subgraph (V, E′). The order |V | of G is denoted
by o(G).

A multigraph is a (undirected) graph G = (V, E, ε), where parallel edges are
possible. Therefore, E is a finite set of edges and ε : E → {{x, y} | x, y ∈ V } is
the endpoint mapping. Note that for multigraphs, E is not specified in terms of
V – the relationship between V and E is specified by ε.

A coloured base B is a 4-tuple (V, f, s, t) such that V is a finite set, s, t ∈ V ,
and f : V \{s, t} → Γ for some Γ. The elements of V , {{x, y} | x, y ∈ V, x �= y},
and Γ are called vertices, edges, and vertex labels for B, respectively.

An n-edge coloured graph, n ≥ 1, is a tuple G = (V, E1, E2, · · · , En, f, s, t)
where B = (V, f, s, t) is a coloured base and, for i ∈ {1, . . . , n}, Ei is a set of edges
for B. We also denote G by B(E1, E2, · · · , En). We define dom(G) = rng(f).

The previously defined notions and notation for graphs carry over to multi-
graphs and n-edge coloured graphs. Isomorphisms between graphs are defined
in the usual way: graphs are considered isomorphic when they are equal mod-
ulo the identity of the vertices. However, the labels of the identified vertices in
n-edge coloured graphs must be equal. Therefore n-edge coloured graphs G =
(V, E1, .., En, f, s, t) and G′ = (V ′, E′1, ..., E

′
n, f ′, s′, t′) are isomorphic, denoted

by G ≈ G′, if there is a bijection q : V → V ′ such that q(s) = s′, q(t) = t′,

76 Legal strings

f(v) = f ′(q(v)) for all v ∈ V , and {x, y} ∈ Ei iff {q(x), q(y)} ∈ E′i, for all
x, y ∈ V , and i ∈ {1, . . . , n}. Also, multigraphs G = (V, E, ε) and G′ = (V ′, E, ε′)
are isomorphic, denoted by G ≈ G′, if there is a bijection α : V → V ′ such that
αε = ε′, or more precisely, for e ∈ E, ε(e) = {v1, v2} implies ε′(e) = {α(v1), α(v2)}.
We assume the reader is familiar with the notions of cycle and connected com-
ponent in a graph. A graph is called connected if it has exactly one connected
component, and it is called acyclic when it does not contain cycles.

4.3 Legal strings

Gene assembly transforms each gene from its MIC form to its MAC form. For-
mally, the MIC form of a gene (the input) is represented by a legal string u, while
the MAC form of that gene, including the additionally generated structures, (the
output) is represented by the reduction graph of u. We define the notion of legal
string and some accompanying notions in this section, and the notion of reduction
graph in the next section. We refer to [12] for a detailed motivation of the notions
of this section.

We fix κ ≥ 2, and define the alphabet Δ = {2, 3, . . . , κ}. For D ⊆ Δ, we define
D̄ = {ā | a ∈ D} and Π = Δ∪Δ̄. The elements of Π will be called pointers. We use
the ‘bar operator’ to move from Δ to Δ̄ and back from Δ̄ to Δ. Hence, for p ∈ Π,
¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π, the inverse of u is the string

ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π, we define p =

{
p if p ∈ Δ

p̄ if p ∈ Δ̄
, i.e., p is the ‘unbarred’

variant of p. The domain of a string v ∈ Π∗ is dom(v) = {p | p occurs in v}. A
legal string is a string u ∈ Π∗ such that for each p ∈ Π that occurs in u, u contains
exactly two occurrences from {p, p̄}. For a pointer p and a legal string u, if both
p and p̄ occur in u then we say that both p and p̄ are positive in u; if on the other
hand only p or only p̄ occurs in u, then both p and p̄ are negative in u.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π such that {xi, xj} ⊆ {p, p̄} and 1 ≤ i < j ≤ n, the p-interval of u is
the substring xixi+1 · · ·xj . Two distinct pointers p, q ∈ Π overlap in u if both
q ∈ dom(Ip) and p ∈ dom(Iq), where Ip (Iq , resp.) is the p-interval (q-interval,
resp.) of u.

We say that legal strings u and v are equivalent, denoted by u ≈ v, if there is
homomorphism ϕ : Π∗ → Π∗ with ϕ(p) ∈ {p, p̄} and ϕ(p̄) = ϕ(p) for all p ∈ Π
such that ϕ(u) = v.

Example 1
Legal strings 22̄33 and 2̄233 are equivalent, while 22̄33 are 22̄3̄3 are not.

Note that ≈ is an equivalence relation. Equivalent legal strings are character-
ized by their ‘unbarred version’ and their set of positive pointers.

Chapter 4 77

s 2 2 7 7 4 4 7 7 3 3 5 5 3 3 4 4 2 2 6 6 5 5 6 6 t

Figure 4.1: The reduction graph Ru of u in Example 2.

4.4 Reduction Graph

We now recall the definition of reduction graph. This definition is equal to the
one in [4], and is in slightly less general form compared to the one in [6]. We
refer to [6], where it was introduced, for a more detailed motivation and for more
examples and results. The notion of reduction graph uses the intuition from the
notion of breakpoint graph (or reality-and-desire diagram) known from another
branch of DNA processing theory called sorting by reversal, see e.g. [23, 21]. From
a biological point of view, the reduction graph represents the MAC form of a gene
(including the additionally generated structures) given its MIC form. As the MIC
form of a gene is represented by a legal string, reduction graphs are defined on
legal strings.

Definition 1
Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The reduction graph of
u, denoted by Ru, is a 2-edge coloured graph (V, E1, E2, f, s, t), where

V = {I1, I2, . . . , In} ∪ {I ′1, I
′
2, . . . , I

′
n} ∪ {s, t},

E1 = {e0, e1, . . . , en} with ei = {I
′
i, Ii+1} for 0 < i < n, e0 = {s, I1}, en = {I

′
n, t},

E2 = {{I ′i, Ij}, {Ii, I
′
j} | i, j ∈ {1, 2, . . . , n} with i �= j and pi = pj} ∪

{{Ii, Ij}, {I
′
i, I

′
j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called the
desire edges. Notice that for each p ∈ dom(u), the reduction graph of u has exactly
two desire edges containing vertices labelled by p. It follows from the construction
of the reduction graph that, given legal strings u and v, u ≈ v iff Ru = Rv.

In depictions of reduction graphs, we will represent the vertices (except for s
and t) by their labels, because the exact identity of the vertices is not essential
for the problems considered in this chapter. We will also depict reality edges as
‘double edges’ to distinguish them from the desire edges.

78 Reduction Graph

s 2 2 6 6 t 6 6

2 7 7 7 7 3 5 5

2 4 4 4 4 3 5 5

3 3

Figure 4.2: The reduction graph of Figure 4.1 obtained by rearranging the vertices.

Example 2
The reduction graph of u = 27̄473534̄2656 is depicted in Figure 4.1. Note how
positive pointers are connected by crossing desire edges, while those for negative
pointers are parallel. By rearranging the vertices we can depict the graph as shown
in Figure 4.2.

Reality edges follow the linear order of the legal string, whereas desire edges
connect positions in the string that will be joined when performing reduction
rules, see [6].

We now recall the definition of pointer-component graph of a legal string,
introduced in [4]. The graph represents how the labels of a reduction graph are
distributed among its connected components. Surprisingly, this graph has different
uses in this chapter compared to its original uses in [4]. There it was used in a
specific model of gene assembly (which we do not assume here) to characterize a
type of splicing operation called loop recombination.

Definition 2
Let u be a legal string. The pointer-component graph of u (or of Ru), denoted by
PCu, is a multigraph (ζ, E, ε), where ζ is the set of connected components of Ru,
E = dom(u) and ε is, for e ∈ E, defined by ε(e) = {C ∈ ζ | C contains vertices
labelled by e}.

Since for each e ∈ dom(u), there are exactly two desire edges connecting vertices
labelled by e, 1 ≤ |ε(e)| ≤ 2, and therefore ε is well defined (recall that the case
|ε(e)| = 1 corresponds to a loop).

Example 3
The pointer-component graph of the reduction graph from Figure 4.2 is shown in
Figure 4.3.

Chapter 4 79

C1

5

6
R

2

C2

3
4

C3

7

Figure 4.3: The pointer-component graph of the reduction graph from Figure 4.2.

4.5 Abstract Reduction Graphs and Extensions

In this section we generalize the notion of reduction graph as a starting point to
consider which graphs are (isomorphic to) reduction graphs. Moreover, we extend
the reduction graphs by a set of edges, called merge edges, such that, along with
the reality edges, the linear structure of the legal string is preserved in the graph.

We will now define a set of edges for a given coloured base which has features
in common with desire edges of a reduction graph.

Definition 3
Let B = (V, f, s, t) be a coloured base. We say that a set of edges E for B is
desirable if

1. for all {v1, v2} ∈ E, f(v1) = f(v2),

2. for each v ∈ V \{s, t} there is exactly one e ∈ E such that v ∈ e.

We now generalize the concept of reduction graph.

Definition 4
A 2-edge coloured graph B(E1, E2) with B = (V, f, s, t) is called an abstract
reduction graph if

1. rng(f) ⊆ Δ, and for each p ∈ rng(f), |f−1(p)| = 4,

2. for each v ∈ V there is exactly one e ∈ E1 such that v ∈ e,

3. E2 is desirable for B.

The set of all abstract reduction graphs is denoted by G.
Clearly, if G ≈ Ru for some u, then G ∈ G. Therefore, for abstract reduction

graphs G = B(E1, E2), the edges in E1 are called reality edges and the edges in
E2 are called desire edges. For graphical depictions of abstract reduction graphs
we will use the same conventions as we have for reduction graphs. Thus, edges in
E1 will be depicted as “double edges”, vertices are represented by their label, etc.

Example 4
The 2-edge coloured graph in Figure 4.4 is an abstract reduction graph.

80 Abstract Reduction Graphs and Extensions

2 2 5 5 9 8 8 s

5 5 4 4 9 7 7 9

2 2 3 3 8 8 3 3 9

4 4 7 7 6 6 6 6 t

Figure 4.4: An abstract reduction graph.

s 2 2 7 7 4 4 7 7 3 3 5 5 3 3 4 4 2 2 6 6 5 5 6 6 t

Figure 4.5: The extended reduction graph Eu of u given in Example 2.

Note that conditions (1) and (3) in the previous definition imply that for each
p ∈ rng(f), there is a partition {e1, e2} of f−1(p), denoted by CG,p or Cp when G
is clear from the context, such that e1, e2 ∈ E2.

We now introduce an extension to reduction graphs such that the ‘generic’
linear order of the vertices s, I1, I

′
1, . . . , In, I ′n, t is retained, even when we consider

the graphs up to isomorphism.

Definition 5
Let u be a legal string. The extended reduction graph of u, denoted by Eu, is a
3-edge coloured graph B(E1, E2, E3), where Ru = B(E1, E2) and E3 = {{Ii, I

′
i} |

1 ≤ i ≤ n} with n = |u|.

The edges in E3 are called the merge edges of u, denoted by Mu. In this way,
the reality edges and the merge edges form a unique path which passes through
the vertices in the generic linear order. This is illustrated in the next example. In
figures merge edges will be depicted by “dashed edges”.

Example 5
The extended reduction graph Eu of u given in Example 2 is shown in Figure 4.5,
cf. Figure 4.1.

Remark
The notion of merge edges for (extended) reduction graphs is more closely related
to the notion of reality edges for breakpoint graphs in the theory of sorting by
reversal [17] compared to the notion of reality edges for (extended) reduction
graphs. Thus in a way it would be more natural to call the merge edges reality

Chapter 4 81

s 2 2 3 3 t

2 3

2 3

Figure 4.6: An abstract reduction graph.

s 2 2 3 3 t

2 3

2 3

Figure 4.7: The abstract reduction graph of Figure 4.6 with a set of merge-legal
edges.

edges for (extended) reduction graphs, and the other way around. However, to
avoid confusion with earlier work, we do not change this terminology.

We now generalize this extension of reduction graphs to abstract reduction
graphs.

Definition 6
Let G = B(E1, E2) ∈ G, and let E be a set of edges for B. We say that E is
merge-legal for G if E is desirable for B, and E2 ∩ E = ∅. We denote the set
{E | E merge-legal for G} by MLG. The set of all E ∈ MLG where B(E1, E) is
connected is denoted by CONG.

For legal string u, we also denote MLRu
and CONRu

by MLu and CONu, respec-
tively. Notice that Mu ∈ CONu ⊆MLu. Therefore, merge-legal edges will also be
depicted by “dashed edges”.

Example 6
Let us consider the abstract reduction graph G = B(E1, E2) of Figure 4.6. This
graph is again depicted in Figure 4.7 including a merge-legal set E for G. In
this way Figure 4.7 depicts the 3-edge coloured graph B(E1, E2, E). Notice that
E �∈ CONG. In Figure 4.8, the abstract reduction graph is depicted with a merge-
legal set in CONG.

We now define a natural abstraction of the notion of extended reduction graph.

82 Abstract Reduction Graphs and Extensions

s 2 2 3 3 t

2 3

2 3

Figure 4.8: The abstract reduction graph of Figure 4.6 with another set of merge-
legal edges.

s 2 2 6 6 t 6 6

2 7 7 7 7 3 5 5

2 4 4 4 4 3 5 5

3 3

Figure 4.9: A extended abstract reduction graph obtained by augmenting the
reduction graph of Figure 4.2 with merge edges.

Definition 7
Let G = B(E1, E2) ∈ G and E ∈ CONG. Then G′ = B(E1, E2, E) is called a
extended abstract reduction graph.

For each legal string u, Eu is an extended abstract reduction graph, since Mu ∈
CONu. Therefore, the edges in E (in the previous definition) are called the merge
edges (of G′). Since E ∈ CONG, B(E1, E) has the following form:

s p1 p1 p2 p2 · · · pn pn t

Thus the property that reality and merge edges in an extended reduction graph
induce a unique path from s to t that alternatingly passes through reality edges
and merge edges is retained for extended abstract reduction graphs G in general.

Chapter 4 83

Example 7
If we consider the reduction graph Ru = B(E1, E2) of Example 2 shown in Fig-
ure 4.2, then, of course, B(E1, E2, Mu) = Eu shown in Figure 4.5 is a extended
abstract reduction graph. In Figure 4.9 another extended reduction graph is shown
– it is Ru augmented with a set of merge edges E in CONu. It is easy to see that
indeed E ∈ CONu: simply notice that the path from s to t induced by the reality
and merge edges will go through every vertex of the graph.

4.6 Back to Legal Strings

In this section we show that for extended abstract reduction graphs G we can ‘go
back’ in the sense that there are legal strings u such that G is isomorphic to Eu.
Moreover we show how to obtain the set LG of all legal strings that corresponds
to G. We will show that the legal strings in LG are equivalent, and thus that
extended reduction graphs retain all essential information of the legal strings.

As extended abstract reduction graphs have a natural linear order of the ver-
tices given by their reality edges and merge edges, we can infer whether or not
desire edges ‘cross’ or not – thereby providing a way to define negative and positive
pointers for extended abstract reduction graphs. This is formalized as follows.

Definition 8
Let G = B(E1, E2, E3) be an extended abstract reduction graph, let G′ = B(E1, E2),
and let π = (s, v1, v

′
1, · · · , vn, v′n, t) be the path from s to t in B(E1, E3). We

say that p ∈ dom(G) is negative in G iff CG′,p = {{vi, v
′
j}, {v

′
i, vj}} for some

i, j ∈ {1, . . . , n} with i �= j. Also, we say that p ∈ dom(G) is positive in G if p is
not negative in G.

Clearly, p ∈ dom(G) is positive in G iff CG′,p = {{vi, vj}, {v
′
i, v

′
j}} for some

i, j ∈ {1, . . . , n} with i �= j. It is easy to see that p is negative in legal string u iff
p is negative in Eu.

Next, we assign to each extended abstract reduction graph G a set of legal
strings LG. We subsequently show that these strings are precisely the legal strings
u such that Eu ≈ G.

Definition 9
Let G = B(E1, E2, E3) be an extended abstract reduction graph, and let H =
B(E1, E3) be as follows:

s p1 p1 p2 p2 · · · pn pn t

The legalization of G, denoted by LG, is the set of legal strings u = p1p2 · · · pn

with pi ∈ {pi,pi} and pi is negative in u iff pi is negative in G.

Example 8
Let us consider the extended abstract reduction graph G of Figure 4.9. By re-
arranging the vertices we obtain Figure 4.10. From this figure it is clear that
v = 274265̄374356 ∈ LG.

84 Back to Legal Strings

s 2 2 7 7 4 4 2 2 6 6 5 5 3 3 7 7 4 4 3 3 5 5 6 6 t

Figure 4.10: The extended abstract reduction graph G given in Example 8.

It is easy to see that, for a legal string u, we have u ∈ LEu
.

Note that LG, for extended abstract reduction graph G, is an non-empty
equivalence class w.r.t. to the ≈ relation (for legal strings). Since the definition
of LG does not depend on the exact identity of the vertices of G, we have, for
extended abstract reduction graphs G and G′, G ≈ G′ implies LG = LG′ .

Theorem 10
1. Let G and G′ be extended abstract reduction graphs. Then G ≈ G′ iff

LG = LG′ .

2. Let u and v be legal strings. Then u ≈ v iff Eu ≈ Ev.

Proof
We first consider statement 1. We have already established the forward impli-
cation. We now prove the reverse implication. Let G = B(E1, E2, E3), G′ =
B′(E′1, E

′
2, E

′
3), and LG = LG′ . By the definition of legalization, B(E1, E3) ≈

B′(E′1, E
′
3) and p is negative in G iff p is negative in G′ for p ∈ dom(G) = dom(G′).

Therefore, G ≈ G′.
We now consider statement 2. We have u ≈ v iff u, v ∈ LEu

= LEv
(since

legalizations are equivalence classes of legal strings w.r.t ≈) iff Eu ≈ Ev (by the
first statement).

Let G be an extended abstract reduction graph, and take u ∈ LG (such a u
exists since LG is nonempty). Since u ∈ LEu

and legalizations are equivalence
classes, we have LEu

= LG and therefore G ≈ Eu. Thus every extended abstract
reduction graph G is isomorphic to an extended reduction graph. In fact, it is iso-
morphic to precisely those extended reduction graphs Eu with u ∈ LG. Therefore,
this u is unique up to equivalence.

Corollary 11
Let u and v be legal strings. If Ru ≈ Rv, then there is a E ∈ CONu such that
Ev ≈ B(E1, E2, E) with Ru = B(E1, E2).

Proof
Since Ru ≈ Rv, there is a set of edges E for Ru such that Ev ≈ B(E1, E2, E).
Since Mv ∈ CONv, we have E ∈ CONu.

We end this section with a graph theoretical characterization of reduction
graphs.

Chapter 4 85

v1 v3

v2 v4

↔

v1 v3

v2 v4

Figure 4.11: Flip operation for p. All vertices are labelled by p

Theorem 12
Let G be a 2-edge coloured graph. Then G is isomorphic to a reduction graph iff
G ∈ G and CONG �= ∅.

Proof
Let G ≈ Ru for some legal string u. Then clearly, G ∈ G. Also, Mu ∈ CONu and
hence CONu �= ∅. Therefore, CONG �= ∅.

Let E ∈ CONG. Then G′ = B(E1, E2, E) is an extended abstract reduction
graph with G = B(E1, E2). By the paragraph below Theorem 10, G′ ≈ Eu for
some legal string u (take u ∈ LG′). Hence, G ≈ Ru.

4.7 Flip Edges

In this section and the next two we provide characterizations of the statement
CONG �= ∅. This allows, using Theorem 12, for a characterization that corre-
sponds to an efficient algorithm that determines whether or not a given G ∈ G
is isomorphic to a reduction graph. Moreover, it allows for an efficient algorithm
that determines a legal string u for which G ≈ Ru.

Let G ∈ G. Then a merge-legal set for G is easily obtained as follows. For each
p ∈ dom(G) with Cp = {{v1, v2}, {v3, v4}}, a merge-legal set for G must have
either the edges {v1, v3} and {v2, v4} or the edges {v1, v4} and {v2, v3}, see both
sides in Figure 4.11. By assigning such edges for each p ∈ dom(G) we obtain a
merge-legal set for G. Thus, MLG �= ∅ for each G ∈ G. Note that in particular,
if dom(G) = ∅, then MLG = {∅}. However, CONG can be empty as the next
example illustrates.

Example 9
It is easy to see that the abstract reduction graph G of Figure 4.12 does not have
a merge-legal set in CONG.

We now formally define a type of operation that in Figure 4.11 transforms the
situation on the left-hand side to the situation on the right-hand side, and the
other way around. Informally speaking it “flips” edges of merge-legal sets.

Definition 13
Let G = B(E1, E2) ∈ G, let f be the vertex labeling function of G, and let p ∈
dom(G). The flip operation for p (w.r.t. G) is the function flipG,p : MLG → MLG

86 Flip Edges

s 2 2 2 2 t

3 3

3 3

Figure 4.12: An abstract reduction graph G for which CONG = ∅.

defined, for E ∈ MLG, by:

flipG,p(E) = {{v1, v2} ∈ E | f(v1) �= p �= f(v2)} ∪ {e1, e2},

where e1 and e2 are the two edges with vertices labelled by p such that e1, e2 �∈
E2 ∪ E.

When G is clear from the context, we also denote flipG,p by flipp.
Since by Figure 4.11, there are exactly two edges e1 and e2 with vertices

labelled by p that are not parallel to both the edges in E2 ∪ E, flipp is well
defined. It is now easy to see that indeed flipp(E) ∈MLG for E ∈MLG.

Example 10
Let G be the abstract reduction graph of Figure 4.6. If we apply flipG,2 to the set
of merge-legal edges depicted in Figure 4.7, then we obtain the set of merge-legal
edges depicted in Figure 4.8.

The next theorem follows directly from the previous definition and from the
fact that Figure 4.11 contains the only possible ways in which edges in merge-legal
sets for G can be connected.

Theorem 14
Let G ∈ G, and denote by F be the group generated by the flip operations w.r.t.
G under function composition. Then each element of F is self-inverse, thus F is
Abelian, and F acts transitively on MLG.

Let D = {p1, . . . , pl} ⊆ dom(G). Then we define flipD = flippl
· · · flipp1

. Since
F is Abelian, flipD is well defined. Moreover, since each each element in F is
self-inverse, F = {flipD | D ⊆ dom(G)}. Also, if D1, D2 ⊆ dom(G) and D1 �= D2,
then flipD1

(E) �= flipD2
(E). Thus the following holds.

Theorem 15
Let G ∈ G. Then there is a bijection Q : 2dom(G) → F given by Q(D) = flipD.
Moreover, for each E ∈MLG, MLG = {flipD(E) | D ⊆ dom(G)}.

Chapter 4 87

C1
5

C3

9

C4

3 6

7

C2

2
4

R C5

8

Figure 4.13: The pointer-component graph of the abstract reduction graph from
Figure 4.4.

4.8 Merging and Splitting Connected Components

Let G = B(E1, E2) be an abstract reduction graph and let E ∈ MLG. In this
section we consider the effect of the flip operation on the pointer-component graph
defined on the abstract reduction graph H = B(E1, E). If we are able to obtain,
using flip operations, a pointer-component graph consisting of one vertex, then
CONG �= ∅, and consequently by Theorem 12, G is isomorphic to a reduction
graph.

However, first we need to define the notion of pointer-component graph for
abstract reduction graphs in general. Fortunately, this generalization is trivial.

Definition 16
Let G ∈ G. The pointer-component graph of G, denoted by PCG, is a multigraph
(ζ, E, ε), where ζ is the set of connected components of G, E = dom(G), and ε is,
for e ∈ E, defined by ε(e) = {C ∈ ζ | C contains vertices labelled by e}.

Example 11
The pointer-component graph of the graph from Figure 4.4 is shown in Figure 4.13.

Note that when G = B(E1, E2) ∈ G and E ∈MLG, then E is desirable for B.
Hence, H = B(E1, E) is also an abstract reduction graph. Therefore, e.g., PCH

is defined.
It is useful to distinguish the pointers that form loops in the pointer-component

graph. Therefore, we define, for G ∈ G, bridge(G) = {e ∈ E | |ε(e)| = 2} where
PCG = (V, E, ε). In [4], bridge(G) is denoted as snrdom(G). However, this notation
does not make sense for its uses in this chapter.

Example 12
From Figure 4.13 it follows that bridge(G) = dom(G)\{3, 6} for the abstract
reduction graph G depicted in Figure 4.4.

Merge rules have been used for multigraphs, and pointer-component graphs in
particular in [4]. The definition presented here is slightly different from the one in
[4] – here the pointer p on which the merge rule is applied remains present after
the rule is applied.

88 Merging and Splitting Connected Components

Definition 17
For each edge p, the p-merge rule, denoted by mergep, is a rule applicable to
(defined on) multigraphs G = (V, E, ε) with p ∈ bridge(G). It is defined by

mergep(G) = (V ′, E, ε′),

where V ′ = (V \ε(p)) ∪ {v′} with v′ �∈ V , and ε′(e) = {h(v1), h(v2)} iff ε(e) =
{v1, v2} where h(v) = v′ if v ∈ ε(p), otherwise it is the identity.

It is easy to see that merge rules commute. We are now ready to state the following
result which is similar to Theorem 27 in [4].

Theorem 18
Let G = B(E1, E2) ∈ G, let E ∈MLG, let H = B(E1, E), and let, for p ∈ dom(G),
Hp = B(E1, flipp(E)).

• If p ∈ bridge(H), then PCHp
≈ mergep(PCH)

(and therefore o(PCHp
) = o(PCH)− 1).

• If p ∈ dom(H)\bridge(H), then o(PCH) ≤ o(PCHp
) ≤ o(PCH) + 1.

Proof
First let p ∈ bridge(H). Let CH,p = {{v1, v2}, {v3, v4}}. Then, H has the following
form, where each of the two edges in CH,p are from different connected components
in H and where, unlike our convention, we have depicted the vertices by their
identity instead of their label:

. . . v1 v2 . . .

. . . v3 v4 . . .

Now, either {{v1, v4}, {v2, v3}} ⊆ E2 or {{v1, v3}, {v2, v4}} ⊆ E2. Thus Hp is of
either

. . . v1 v2 . . .

. . . v3 v4 . . .

or

. . . v1 v2 . . .

. . . v3 v4 . . .

form, respectively. Thus in both cases, the two connected components are
merged, and thus PCHp

can be obtained (up to isomorphism) from PCH by ap-
plying the mergep operation.

Chapter 4 89

Now let p ∈ dom(H)\bridge(H). Then the edges in CH,p belong to the same
connected component. Thus H has the following form

· · · v1 v2 · · · v3 v4 · · ·

where CH,p = {{v1, v2}, {v3, v4}}. Again, we have either {{v1, v4}, {v2, v3}} ⊆ E2

or {{v1, v3}, {v2, v4}} ⊆ E2. Thus Hp is of either

· · · v1 v2 · · · v3 v4 · · ·

or

· · · v1 v2 · · · v3 v4 · · ·

form, respectively. Thus, Hp has either the same number of connected com-
ponents of H or exactly one more, respectively. Thus, o(PCH) ≤ o(PCHp

) ≤
o(PCH) + 1.

Example 13
Let G = B(E1, E2) ∈ G be as in Figure 4.6. If we take E ∈ MLG as in Figure 4.7,
then 2 ∈ bridge(H) with H = B(E1, E). Therefore, by Theorem 18 and the
fact that G has exactly two connected components, H2 = B(E1, flip2(E)) is a
connected graph. Indeed, this is clear from Figure 4.8 (by ignoring the edges from
E2).

Informally, the next lemma shows that by applying flip operations, we can
shrink a connected pointer-component graph to a single vertex. In this way, the
underlying abstract reduction graph is a connected graph.

Remark
The next lemma appears to be similar to Lemma 29 in [4]. Although the flip
operation (defined on graphs) and the rem operation (defined on strings) are
quite distinct, they do have a similar effect on the pointer-component graph.

Lemma 19
Let G = B(E1, E2) ∈ G, let E ∈MLG, let H = B(E1, E), and let D ⊆ dom(G) =
dom(H). Then PCH |D is a tree iff B(E1, flipD(E)) and H have 1 and |D| + 1
connected components, respectively.

Proof
Let D = {p1, . . . , pn}. We first prove the forward implication. If PCH |D is a tree,
then it has |D| edges, and thus |D| + 1 vertices. Therefore, PCH has |D| + 1

90 Connectedness of Pointer-Component Graph

vertices, and consequently, H has |D|+1 connected components. Since PCH |D is
acyclic, by Theorem 18,

PCB(E1,flipD(E)) = PCB(E1,(flippn
··· flipp1

)(E)) ≈ (mergepn
· · · mergep1

)(PCH).

Now, applying |D| merge operations on a graph with |D| + 1 vertices, results in
a graph containing exactly one vertex. Thus B(E1, flipD(E)) has one connected
component.

We now prove the reverse implication. Moving from H = B(E1, E) to graph
B(E1, flipD(E)) reduces the number of connected components in |D| steps from
|D|+ 1 to 1. By Theorem 18, each flip operation of flipD corresponds to a merge
operation. Therefore (mergepn

· · · mergep1
) is applicable to PCH . Consequently,

PCH |D is acyclic. Since this graph has |D|+ 1 vertices, PCH |D is a tree.

4.9 Connectedness of Pointer-Component Graph

In this section we use the results of the previous two sections to prove our first
main result, cf. Theorem 24, which strengthens Theorem 12 by replacing the
requirement CONG �= ∅ by a simple test on PCG. We now characterize the
connectedness of PCG.

Definition 20
Let B = (V, f, s, t) be a coloured base. We say that a set of edges E for B is well-
coloured (for B) if for each partition ρ = (V1, V2) of V with f(V1) ∩ f(V2) = ∅,
there is an edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2.

We call G = B(E1, E2) ∈ G well-coloured if E1 is well-coloured for B.

Lemma 21
Let G ∈ G. Then PCG is a connected graph iff G is well-coloured.

Proof
Let G = B(E1, E2) with B = (V, f, s, t). We first prove the forward implication.
Let G be not well-coloured. Then there is a partition ρ = (V1, V2) of V with
f(V1) ∩ f(V2) = ∅ such that for each e ∈ E1, either e ⊆ V1 or e ⊆ V2. Since
for each {v1, v2} ∈ E2 we have f(v1) = f(v2), we have either {v1, v2} ⊆ V1

or {v1, v2} ⊆ V2. Therefore V1 and V2 induce two non-empty sets of connected
components which have no vertex label in common. Therefore, PCG is not a
connected graph.

We now prove the reverse implication. Assume that PCG = (ζ, E, ε) is not a
connected graph. Then, by the definition of pointer-component graph, there is a
partition (C1, C2) of ζ such that C1 and C2 have no vertex label in common. Let
Vi be the set of vertices of the connected components in Ci (i ∈ {1, 2}). Then for
partition ρ = (V1, V2) of V we have f(V1) ∩ f(V2) = ∅ and for each e ∈ E1 ∪ E2,
either e ⊆ V1 or e ⊆ V2. Therefore G is not well-coloured.

Chapter 4 91

Clearly, if G = B(E1, E2) ∈ G is well-coloured and E is desirable for B (e.g., one
could take E ∈ MLG), then H = B(E1, E) ∈ G and H is well-coloured. Therefore,
by Lemma 21, PCG is a connected graph iff PCH is a connected graph.

By Theorem 12 the next result is essential to efficiently determine which ab-
stract reduction graphs are isomorphic to reduction graphs.

Theorem 22
Let G ∈ G. Then PCG is a connected graph iff CONG �= ∅.

Proof
Let G = B(E1, E2). We first prove the forward implication. Let PCG be a con-
nected graph and let E ∈ MLG. Then PCH with H = B(E1, E) is a connected
graph. Thus there exists a D ⊆ dom(G) such that PCH |D is a tree. By Lemma 19,
B(E1, flipD(E)) is a connected graph, and consequently flipD(E) ∈ CONG.

We now prove the reverse implication. Let E ∈ CONG. Thus, H = B(E1, E)
is a connected graph, and hence PCH is a connected graph. Therefore, PCG is
also a connected graph.

We can summarize the last two results as follows.

Corollary 23
Let G ∈ G. Then the following conditions are equivalent:

1. G is well-coloured,

2. PCG is a connected graph, and

3. CONG �= ∅.

Example 14
By Figure 4.3 and Corollary 23, for (abstract) reduction graph G1 in Figure 4.2
we have CONG1

�= ∅. On the other hand, by Figure 4.13 and Corollary 23, for
abstract reduction graph G2 in Figure 4.4 we have CONG2

= ∅.

By Corollary 23 and Theorem 12 we obtain the first main result of this chapter.
It shows that one needs to check only a few computationally easy conditions to
determine whether or not a 2-edge coloured graph is (isomorphic to) a reduction
graph. Surprisingly, the ‘high-level’ notion of pointer-component graph is crucial
in this characterization.

Theorem 24
Let G be a 2-edge coloured graph. Then G isomorphic to a reduction graph iff
G ∈ G and PCG is a connected graph.

Note that in the previous theorem we can equally well replace “PCG is a connected
graph” by one of the other equivalent conditions in Corollary 23.

In Theorem 21 in [4] it is shown that the pointer-component graph of each
reduction graph is a connected graph. We did not use that result here – in fact it
is now a direct consequence of Theorem 24.

92 Flip and the Underlying Legal String

Not only is it computationally efficient to determine whether or not a 2-edge
coloured graph G is isomorphic to a reduction graph, but, when this is the case,
then it is also computationally easy to determine a legal string u for which G ≈
Ru. Indeed, we can determine such a u from G = B(E1, E2) as follows:

1. Determine an E ∈ MLG. As we have mentioned before, such an E is easily
obtained.

2. Compute PCH with H = B(E1, E), and determine a set of edges D such
that PCH |D is a tree.

3. Compute G′ = B(E1, E2, flipD(E)), and determine a u ∈ LG′ .

As a consequence, pointer-component graphs of legal strings can, surprisingly,
take all imaginable forms.

Corollary 25
Every connected multigraph G = (V, E, ε) with E ⊆ Δ is isomorphic to a pointer-
component graph of a legal string.

4.10 Flip and the Underlying Legal String

We now move to the second part of this chapter, where we characterize the fibers
R−1(Ru) modulo graph isomorphism. Thus, we describe the set of strings that
have the same reduction graph (up to isomorphism) as u. First we consider the
effect of flip operations on the set of merge edges.

Lemma 26
Let u be a legal string and let p ∈ dom(u). If p is negative in u, then flipp(Mu) ∈
CONu. If p is positive in u, then flipp(Mu) �∈ CONu. In other words, flipp(Mu) ∈
CONu iff p is negative in u.

Proof
Let Ru = B(E1, E2). By the definition of flipp, flipp(Mu) ∈ MLu. It suffices to
prove that G = B(E1, flipp(Mu)) is a connected graph when p is negative in u
and not a connected graph when p is positive in u. Graph B(E1, Mu) has the
following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Now if p is negative in u, then G has the following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Thus in this case G is connected.

Chapter 4 93

If p is positive in u, then G has the following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Thus in this case G is not connected.

Lemma 27
Let u be a legal string and let p, q ∈ dom(u). If p and q are overlapping in u and
not both negative in u, then flip{p,q}(Mu) ∈ CONu.

Proof
Let Ru = B(E1, E2). Then B(E1, Mu) has the following form (we can assume
without loss of generality that p appears before q in the path from s to t):

s · · · p p · · · q q · · · p p · · · q q · · · t

Assume that p is positive in u – the other case (q is positive in u) is proved
similarly. By the proof of Lemma 26 it follows that B(E1, flipp(Mu)) has the
following form:

s · · · p p · · · q q · · · p p · · · q q · · · t

Therefore, q ∈ bridge(B(E1, flipp(Mu))). By Theorem 18, the pointer-component
graph of B(E1, flip{p,q}(Mu)) has only one vertex. Hence, B(E1, flip{p,q}(Mu)) is
connected and thus flip{p,q}(Mu) ∈ CONu.

Lemma 28
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then either there is a p ∈ D negative in u or there are p, q ∈ D positive and
overlapping in u.

Proof
Let Eu = B(E1, E2, Mu) and let flipD(Mu) ∈ CONu. Then B(E1, flipD(Mu)) is a
connected graph. Assume to the contrary that all elements in D are positive and
pairwise non-overlapping in u. Then there is a p ∈ D such that the domain of
the p-interval does not contain an element in D\{p}. By the proof of Lemma 26,
B(E1, flipp(Mu)) consists of two connected components, one of which does not
have vertices labelled by elements in D\{p}. Therefore B(E1, flipD(Mu)) also
contains this connected component, and thus B(E1, flipD(Mu)) has more than
one connected component – a contradiction.

By the previous lemmata, we have the following result.

94 Dual String Pointer Rules

Theorem 29
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then either there is a p ∈ D negative in u with flipp(Mu) ∈ CONu or there are
p, q ∈ D positive and overlapping in u with flip{p,q}(Mu) ∈ CONu.

4.11 Dual String Pointer Rules

We now define the dual string pointer rules. These rules will be used to charac-
terize the effect of flip operations on the underlying legal string. For all p, q ∈ Π
with p �= q, we define

• the dual string positive rule for p by dsprp(u1pu2pu3) = u1pū2pu3,

• the dual string double rule for p, q by dsdrp,q(u1pu2qu3p̄u4q̄u5) =
u1pu4qu3p̄u2q̄u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π. Notice that the
dual string pointer rules are self-inverse.

The names of these rules are due to their strong similarities with the two
of the three types of string rewriting rules of a specific model of gene assembly,
called string pointer reduction system (SPRS) [12]. In this model, gene assembly
is performed by three types of recombination (splicing) operations that are sub-
sequently modeled as string rewriting rules. For convenience we now recall these
string rewriting rules.

For all p, q ∈ Π with p �= q, we define

• the string negative rule for p by snrp(u1ppu2) = u1u2,

• the string positive rule for p by sprp(u1pu2p̄u3) = u1ū2u3,

• the string double rule for p, q by sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π.
Notice the strong similarities between dspr and spr, and between dsdr and

sdr. Both dsprp and sprp invert the substring between the two occurrences of
p or p̄. However, dsprp is applicable when p is negative, while sprp is applicable
when p is positive. Also, sprp removes the occurrences of p and p̄, while dspr
does not. A similar comparison can be made between dsdr and sdr.

The domain of a dual string pointer rule ρ, denoted by dom(ρ), is defined by
dom(dsprp) = {p} and dom(dsdrp,q) = {p,q} for p, q ∈ Π. For a composition
ϕ = ρn · · · ρ2 ρ1 of such rules ρ1, ρ2, . . . , ρn, the domain, denoted by dom(ϕ), is
dom(ρ1)∪dom(ρ2)∪ · · · ∪dom(ρn). Also, we define odom(ϕ) =

⊕
1≤i≤n dom(ρi).

Thus, odom(ϕ) ⊆ dom(ϕ) consists of the pointers that are used an odd number of
times. We call ϕ reduced if every p ∈ dom(ϕ) is used exactly once, i.e., dom(ρi)∩
dom(ρj) = ∅ for all 1 ≤ i < j ≤ n. Note that if ϕ is reduced, then dom(ϕ) =
odom(ϕ).

Chapter 4 95

Definition 30
Let u and v be legal strings. We say that u and v are dual, denoted by ≈d if there
is a (possibly empty) sequence ϕ of dual string pointer rules applicable to u such
that ϕ(u) ≈ v.

Notice that ≈d is an equivalence relation. Clearly,≈d is reflexive. It is symmetrical
since dual string pointer rules are self-inverse, and it is transitive by function
composition: if ϕ1(u) ≈ v and ϕ2(v) ≈ w, then (ϕ2 ϕ1)(u) ≈ w.

Since dsprp is applicable when p is negative in u and dsdrp,q is applicable
when p and q are positive and overlapping, the following result is a direct corollary
to Lemma 28.

Corollary 31
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then there is a dual string pointer rule ρ with dom(ρ) ⊆ D applicable to u.

Let G = B(E1, E2, E3) be an extended abstract reduction graph, and let
D ⊆ dom(G). Then we define flipD(G) = B(E1, E2, flipG′,D(E3)), where G′ =
B(E1, E2).

Lemma 32
Let u be a legal string, and let ϕ be a sequence of dual string rules applicable to
u. Then Eϕ(u) ≈ flipD(Eu) with D = odom(ϕ). Consequently, Rϕ(u) ≈ Ru.

Proof
It suffices to prove the result for the case ϕ = dsprp with p ∈ Π and for the case
ϕ = dsdrp,q with p, q ∈ Π. We first prove the case where ϕ = dsprp for some
p ∈ Π is applicable to u. Then by the second figure in the proof of Lemma 26
we see that the inversion of the substring between the two occurrences of p in u
accomplished by ϕ faithfully simulates the corresponding effect of flipp on Eu. We
only need to verify that p is negative in flipp(Eu). To do this, we depict Eu such
that the vertices are represented by their identity instead of their label:

s · · · v1 v2 · · · v3 v4 · · · t

where the vertices vi, i ∈ {1, 2, 3, 4}, are labelled by p. Then flipp(Eu) is

s · · · v1 v3 · · · v2 v4 · · · t

Therefore p is indeed negative in flipp(Eu), and consequently Eϕ(u) ≈ flipp(Eu).
We now prove the case where ϕ = dsdrp,q with p, q ∈ Π. Let Eu =B(E1, E2, E3),

then Eu has the following form

s · · · p p · · · q q · · · p p · · · q q · · · t

96 Dual String Pointer Rules

where we omitted the edges in E2. Since p and q are positive in u, flip{p,q}(Eu)
has the following form:

s · · · p p · · · q q · · · p p · · · q q · · · t

where we again omitted the edges in E2. Thus, we see that interchanging the sub-
string in u between p and q and the substring in u between p̄ and q̄ accomplished
by ϕ faithfully simulates the corresponding effect of flipp,q on Eu. We only need
to verify that both p and q are positive in flipp,q(Eu). To do this, we depict Eu

such that the vertices are represented by their identity instead of their label:

s · · · v1 v2 · · · w1 w2 · · · v3 v4 · · · w3 w4 · · · t

where the vertices vi and wi, i ∈ {1, 2, 3, 4}, are labelled by p and q, respectively.
Then flipp,q(Eu) is

s · · · v1 v4 · · · w3 w2 · · · v3 v2 · · · w1 w4 · · · t

Therefore both p and q are indeed positive in flipp,q(Eu), and consequently Eϕ(u) ≈
flipp,q(Eu).

Thus, if ϕ1 and ϕ2 are sequences of dual string pointer rules applicable to a legal
string u with odom(ϕ1) = odom(ϕ2), then Eϕ1(u) ≈ Eϕ2(u) and thus ϕ1(u) ≈
ϕ2(u).

Lemma 33
Let u be a legal string, and let D ⊆ dom(u). There is a reduced sequence ϕ of dual
string pointer rules applicable to u such that dom(ϕ) = D iff flipD(Mu) ∈ CONu.

Proof
The forward implication follows directly from Lemma 32. We now prove the re-
verse implication. If D = ∅, we have nothing to prove. Let D �= ∅. By Corol-
lary 31, there is a dual string pointer rule ρ1 with D1 = dom(ρ1) ⊆ D applicable
to u. By Lemma 32, Eρ1(u) ≈ flipD1

(Eu) and D1 = odom(ρ1) = dom(ρ1). Thus,
flipD\D1

(Mρ1(u)) ∈ CONρ1(u). Now by iteration, there is a reduced sequence ϕ of
dual string pointer rules applicable to u such that odom(ϕ) = dom(ϕ) = D.

Chapter 4 97

It follows from Lemmata 32 and 33 that reduced sequences of dual string pointer
rules are a normal form of sequences of dual string pointer rules. Indeed, by
Lemma 32, if ϕ is a sequence of dual string pointer rules applicable to a legal
string u with D = odom(ϕ), then flipD(Mu) ∈ CONu. By Lemma 33, there
is a reduced sequence ϕ′ of dual string pointer rules applicable to u such that
dom(ϕ′) = odom(ϕ′) = D. By the paragraph below Lemma 32, we have ϕ(u) ≈
ϕ′(u).

We are now ready to prove the second (and final) main result of this chapter.
It shows that the fiber R−1(Ru) for each legal string u is the ‘orbit’ of u under
the dual string pointer rules. Hence, the partition of the set of all legal strings
induced by the fibers under R, and the one induced by ≈d coincide. Equivalently,
the legal strings obtained from u by applying dual string pointer rules are exactly
those legal strings that have the same reduction graph as u (up to isomorphism).

Theorem 34
Let u and v be legal strings. Then Ru ≈ Rv iff u ≈d v.

Proof
The reverse implication follows directly from Lemma 32. We now prove the for-
ward implication. Let Ru ≈ Rv. By Corollary 11, there is a E ∈ CONu such that
Ev ≈ B(E1, E2, E) with Ru = B(E1, E2). By Theorem 15, E = flipD(Mu) for
some D ⊆ dom(u). Since flipD(Mu) ∈ CONu, by Lemma 33, there is a reduced
sequence ϕ of dual string pointer rules applicable to u such that dom(ϕ) = D. Now
by Lemma 32, Eϕ(u) ≈ flipD(Eu) ≈ Ev, and therefore, by Theorem 10, ϕ(u) ≈ v.

4.12 Discussion

This chapter characterizes, letting R be the function that assigns to each legal
string u its reduction graph Ru, the range of R (Theorem 24) and each fiber
R−1(Ru) (Theorem 34) modulo graph isomorphism.

The first characterization corresponds to a computationally efficient algorithm
that determines whether or not a graph G is isomorphic to a reduction graph.
Moreover, if this is the case, then the algorithm given below Theorem 24 allows
for an efficient determination of a legal string u such that G ≈ Ru. The first
characterization relies on the notion of merge-legal edges and its flip operation in-
troduced in this chapter. In particular, the connected components in the subgraph
induced by the reality edges and the merge-legal edges and the flip operation turn
out to be relevant in this context.

The second characterization determines, given u, the whole set R−1(Ru). It
turns out that R−1(Ru) is the orbit of u under the dual string pointer rules.
Moreover, each two legal strings u and v in such a fiber can be transformed into
each other by a sequence ϕ of dual string pointer rules without using any pointer
more than once. Therefore, the number of dual string pointer rules in ϕ can be
bounded by the size of the domain of u (and v). Surprisingly, the dual string

98 Discussion

pointer rules are very similar to those used in a specific model of gene assembly
called SPRS.

The second characterization has additional uses for SPRS. The reduction graph
of a legal string u in a certain sense retains all information regarding applicability
of string negative rules (defined in SPRS) in transformations of u to its end result,
while discarding almost all other information regarding the applicability of the
other rules, see [4]. Therefore, the fibers in a sense provide the equivalence classes
of legal strings having the same properties regarding the application of string
negative rules.

From a biological point of view, the first characterization provide requirements
on the structure of MAC genes, while the second characterization determines
which types of MIC genes obtain the same MAC structure.

