
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Models of Parallel Computation:

A Survey and Synthesis

B.M. Maggs * L.R. Matheson R.E. Tarjan t
Carnegie-Mellon University NEC Research Institute Princeton University

Pittsburgh, Pa 15213 Princeton, NJ 08540 NEC Research Institute &

Princeton, NJ 08540

Abstract

In the realm of sequential computing the random

access machine has successufully provided an underly-

ing model of computation that promoted consistency

and coordination among algorithm developers, com-

puter architects and language experts. In the realm of

parallel com~puting, however, there has been no similar

success. The need for such a unifying parallel model

or set of models is heightened by the greater demand

for performance and the greater diversity among ma-

chines. Yet the modeling of parallel computing still

seems to be mired in controversy and chaos.

This paper is an excerpt from a study which presents

broad range of models of parallel computation and the

different roles they serve in algorithm, language and

machine design. The objective is to better understand

which model characteristics are important to each de-

sign communiiy in. order to elucidate the requirements

of a unifying paradigm. As an impetus for discussion,

we conclude by suggesting a model of parallel compu-

tation which, is consistent with a model design philos-

ophy which balances simplicity and descriptivity with

prescriptivity.

Space constraints allow only the presentation of the

survey of abstract computational models. It is our hope

that the introduction provides insights into the rich

array of relevant issues in other disciplines, inspiring

the interested reader to examine the full paper.

*Research partially supported by NSF National Young In-

vestigator Award and ARPA Grant Nos. F33615-93-1-1330,
N00014-91-J-1698, N00014-92-J-1799

+Princeton research partially supported by NSF grant no.
CC&8920505 and Offke of Naval Research Contract No.
N0014-91-J-1463

1 Introduction

Modeling complex phenomena is as old as science
itself, perhaps as old as art itself. Choosing the right
characteristics to model and incorporating them sim-
ply, elegantly and accurately requires as much artistic
creativity as scientific methodology. Even the early
Greek mathematicians, who were primarily interested
in geometry, dealt with the issues of modeling. In-
deed, Pythagoras discovered that the set of rational
numbers (ratios of whole numbers) were inadequate
to describe the length of a diagonal of a square hav-
ing sides of length 1 [31]. This made it necessary to
augment the rationals to create a more powerful and
expressive tool: the real numbers. Since the time of
the Greeks, the art and science of modeling has mush-
roomed. Today models are ubiquitous - controlling
large portions of our financial markets, routing our
air traffic, explaining the nature of our genetic make-
up, tracking our weather, and predicting our overall
economic health.

Why Model?

Broadly stated the purpose of modeling is to cap-
ture the salient characteristics of phenomena with
clarity and the right degree of accuracy to facilitate
analysis and prediction. Computer scientists use mod-
els in a myriad of ways to help design efficient prob-
lem solving tools. These tools include fast algorithms,
effective programming environments and powerful ex-
ecution engines. Usually the alternatives to modeling
are resource-intensive. Implementation, for example,
is time consuming and provides information which is
accurate but too narrowly focused to support general
conclusions. Models, on the other hand, can provide a
broader view inexpensively, illuminating general pat-
terns and issues, but they suffer from a lack of specific
accuracy. Modeling can be used interactively with im-
plementation in a symbiotic process of problem solu-
tion which is far more efficient than using either ap-

proach separately.

61
1060-3425/X5$4.0001995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

An Objective and a General Framework

In this paper we examine how computer scientists
are using models to better solve problems on parallel
computers. The goal is to promote discussion of the
characteristics and objectives of these models to bet-
ter determine which ones are essential and how uni-
fication might be achieved. To accomplish this we
first present a selected survey of models from several
of these disciplines. The survey is presented within a
simple logical framework, first proposed by Snyder in
[30]. This framework allows the wide array of mod-
els used in computer science to be viewed somewhat
systematically.

The solution to any given task begins with the de-
sign of a set of steps (an algorithm) which will real-
ize the computat,ional solution to an abstract problem
specification. Problems can be come from many dif-
ferent domains: e.g. mathematical, biological, logical.
In each domain translation from problem to computa-
tional algorithm requires a model of computation. For
example, the development of serial computing has pro-
duced, among others, the widely accepted Von Neu-
mann model, expressed elegantly in the random access
machine model (RAM) [9]. Such a computational

model1 must clearly define an execution engine pow-
erful enough to produce a solution to the relevant class
of problems. In addition such a model needs to re-
flect the salient computing characteristics of practical
computing platforms. These objectives, one prescrip-
tive and the other descriptive combine to enable the
translation from abstract formulation to an algorithm
which gives the desired solution.

An algorithmic specification is then translated into
a sequence of machine-independent software instruc-
tions. This translation process is facilitated by a pro-

gramming model2 Formally, a programming model
provides a set of rules or relationships that defines
the meaning of a set of programming abstractions.
These abstractions are manifested in a programming
language which is an instantiation of that program-
ming model. A primary objective is to allow reasoning
about program meaning and correctness. For exam-
ple the rules of lambda calculus define the meaning
of functions and applications which serve as the basis
for the abstractions found in several functional pro-

‘Terminology is an immediate, recurrent, labyrinthine prob-
lem in any discussion of models. Computational models are
alternatively called abstract machine models, cost models and
performance models. In this paper, the terms computational

model and abstract machine model are used interchangeably
and synonymously.

‘The term programming model persistently defies precise
definition.

gramming languages. Practical programming models
often lack such rigor and the definition of a program-
ming model has evolved to imply a set of language
constructs that can be used to express an algorith-
mic concept in a programming language. For exam-
ple, the imperative-procedural model posits constructs
such as arrays, control structures, procedures and re-
cursion and the programming languages Pascal and C
are designed within this model, while the constructs
Lists, Cons, Apply are encompassed by a functional
programming model.3

Historically, the primary focus of programming lan-
guage development has been on expressibility, provid-
ing constructs which elegantly, and perhaps provably,
translate and preserve algorithmic intentions. But lan-
guage development also requires the translation of the
high level language constructs into machine-dependent
executable instructions. This translation process is
usually facilitated by not by the use of a progamming
model but by the use of a model of the execution en-
gine. These machine models are used to tune the per-
formance of a programming language and typically ex-
press the cost of crucial machine operations. Thus, in
the realm of parallel computing the demand for per-
formance has begun to realign the focus of language
development to include both goals: expressability and
performance.

Low level machine models or architectural

models4 describe a class of models used for a broad
range of design purposes such as language implemen-
tation and machine design. These models need to re-
flect the detailed execution characteristics of actual
or envisioned computers. These models-cover a wide
range: from fairly high level representations on an ar-
chitectural level to instruction execution models or
even detailed component models. These models are
primarily used in machine design and the objective of
the models is almost exclusively performance. These
models are commonly used in parallel computing to
compare alternative architectures, often for a given
class of problems or alternatively predicting the per-
formance of a specific machine on a set of algorithmic
strategies. Performance analysis using these models
expresses the design characteristics and concerns of
evolving technologies and provides feedback into many
aspects of task solution including the design of the ma-
chine itself.

3The astute reader will recognize this as a broad generaliza-
tion used for illustrative purposes only as many programming
laxiguages possess characteristics attributable to both of these

programming models.
‘These are also called cost models, performance models, and

hardware models.

62

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii Intemational Conference on System Sciences - 1995

While this framework provides a tool to view some
of the models used in computer science and their ob-
jectives, it also illuminates the need for model consis-
tency. The greater the distance between these classes
of models and actual platforms, the more difficult and
inefficient each of the design and translation processes
becomes and the poorer the results. While the rewards
for consistency are fairly apparent, much less appar-
ent is the means of achieving this consistency. To date
there seems to be some consensus on the importance
of the problem [29] yet there has been no single model
or set of models which has achieved widespread acc-
ceptance and managed to achieve this consistancy.

Serial vs. Parallel Models of Computation:

Why the Chaos?

The history of serial computing has demonstrated
that a simple abstract ma.chine model can facilitate
consistency by providing a clear and simple rendering
of the execution engine. Unfortunately the search for
such a unifying parallel paradigm has been far less suc-
cessful. One reason is the high standard of simplicity
instantiated by the RAM. The natural parallel analog,
the parallel random access machine (PRAM) model,
meets this sta.ndard but is by no means as accurate:
unmodeled characteristics, most importantly the cost
of a non-local memory reference, have a great impact
on performance. The RAM was accurate enough to
enable the use of asymptotic performance measures.
This was in part due to a balance among the unmod-
eled machine characteristics such the cost of a memory
access and a.n arithmetic instruction. Parallel com-
puters, however, lack this balance, and asymptotic
analysis is a far less effective design tool. But the
standard of a.symptotic analysis set by the RAM has
made problematic the broad acceptance of a parallel
model complicated by constant factors. The develop-
ment of a unifying paradigm also requires a somewhat
unified and stable technological environment. In par-
allel computing, not only are there intra-generational
variations but there are broad architectural changes
between generations. Put simply, the development of
a unifying abstract machine model requires unifying
several different moving ta.rgets.

Descriptive vs. Prescriptive Models

The modest convergence towards a common set of
architectura,l cha.ract8eristics in the current generation
of massively parallel computers provides some stabil-
ity on which to ba.se an effective computational model.
Recent modeling efforts have introduced more com-
plexity of description and constant factors. But while
these models tend to more accurately describe actual
computers, the current generation of machines has

some marked deficiencies which hinder their ability to
be efficient platforms for the solution of certain classes
of problems.

There is a strong motivation for a model design
philosophy which balances the need for descriptive ac-
curacy with the need to provide a medium which pre-
scribes machine characteristics which will promote ef-
ficient solution of classes of important problems. An
integration of descriptivity and prescriptivity is more
effective than either as an exclusive modeling philos-
ophy. Portraying an inefficient computational plat-
form accurately provides distorted design incentives.
Rather than assisting the development of clean solu-
tion ideas, the model tends to focus resources on clever
ways to circumvent or cloak the platform inefficien-
cies. On the other hand designing effective solutions
for the ideal platform with no consideration of real-
izablity is equally as counterproductive. Optimally,
a model should provide clear, productive design in-
centives while providing strong messages to platform
designers about the quality of characteristics required
for efficient solution.

Summary

In the realm of parallel computing there is a com-
pelling need for models of parallel computation which
facilitate an efficient design process and produce effi-
cient designs. This requires an underlying consistency
throughout the models used for different design and
implementation tasks. This consistency, though dif-
ficult to achieve in a rapidly changing environment,
may be best promoted by the development of a pow-
erful abstract machine model. But this model needs
to answer to a tall order in balancing simplicity with
accuracy, abstraction with practicality, and descrip-
tivity with prescriptivity. To help understand what
such a model should look like, the following sections
selectively survey existing parallel computing models.

2 Computational Models

The Family of PRAMS

The success of the serial random access machine
model spawned a family of parallel random access
models in the search for a simple unifying abstraction
to guide design. In its simplest form the parallel ran-
dom access machine (PRAM) model [20] posits a set
of P processors, with global shared memory, executing
the same program in lockstep. Though there is some
variability between PRAM definitions, the standard
PRAM is a MIMD computer where each processor can
execute its own instruction stream. Every processor

63

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hmvaii tntemationul Conference on System Sciences - 1995

can access any memory location in one time step re-
gardless of the memory location. The main difference
among PRAM models is in how they deal with read
or write memory contention. This is discussed more
fully below.

Despite its impressive dissimilarity to practical par-
allel computers the PRAM can provide useful design
information. By ignoring any (and all) costs associ-
ated with exploiting parallelism, the incentives in the
model lead the designer to expose the maximum pos-
sible computational parallelism in a given task. Thus
the PRAM provides a meaSure of the ideal parallel
time complexity.

Stalwart PRAM critics do not share this favorable
view. Instead they point to economic externality ar-
guments [25]. Without associating a reasonable and
practical cost to the use of a resource (computational
parallelism), there is an incentive to use the resource
abusively. In other words the aspects of practical com-
puting hidden by the PRAM serve only to distort the
design process and including some of these aspects
early in this process can only increase the potential
for efficient solutions.

The critical question to pose to these critics then
is: which characteristics should be incorporated and
by what means? There have been a profusion of pro-
posed answers to this question. There have been many
surveys of the proposed vnriations on the PRAM, for
example ([17, 281). P resented below is a representative
subset that illus(.ra.te which practical machine charac-
teristics have been the focus of efforts to improve the
PRAM.

l.Memory Access. Among basic variants of the
PRAM, the most powerful is the CRCW PRAM [20]
which allows concurrent reading or writing of any
memory location, with some rule to resolve concur-
rent writes, such as randomization, prioritization, or
combining. Concurrent memory access at unit cost
is perhaps the most egregious aspect of this model,
and many variants have been developed to restrict this
idealization. The EREW and CREW PRAMS [20] re-
strict access to a given memory location to one proces-
sor at a time, either for both reads and writes (EREW)
or just for writes (CREW). This preserves unit access
cost but enforces some notion of serial access. Another
PRAM varia.nt which arbitrates memory access is the
Module Parallel Con&ter (MPC) [27]. In this model
shared global memory is broken into m modules. Only
one memory access can occur within each module per
time step. The LPRAM (or Local-memory PRAM)
proposed in [3] augments the CREW PRAM by as-
sociating with each processor an unlimited amount of

local private memory. The QRQW PRAM [16] pro-
vides an intermediary, a queue, to arbitrate and man-
age memory accesses, while charging a memory access
cost which is a function of the queue length. These
arbitration devices all tend to provide the incentive to
avoid target memory location contention.

S.Synchronization. The standard PRAM posits a
rigid execution pattern in which all processors are syn-
chronized by a global clock. Several variants ease this
restriction. Examples which allow asynchronous ex-
ecution with irregular synchronization points include
the APRAM [lo] and the Asynchronous PRAM [15].
Periodic synchronization between intervals of asyn-
chronous execution is incorporated in the XPRAM
[34]. While these models incorporate synchronization,
they do not charge an explicit cost. Although the only
cost is implicit, (the loss of processor utilization while
waiting for other processors to complete) these mod-
els still provide an incentive to synchronize only when
necessary.

3.Latency. As it became clear that the cost of
non-local memory accesses has a severe effect on
performance in massively parallel computers, several
PRAMS were designed to remedy the unit-memory
cost idealization. It was suggested that the LPRAM
could be aumented by charging a cost of 1 units to ac-
cess global memory [3]. An elaboration of this model,
the BPRAM [4], au g mented this by charging 1 units for
the first message from global memory and a variable
cost, b, for each additional memory access in a con-
tiguous block. Thus the BPRAM provides incentives
for one level of reference locality and for block transfer,
a form of data parallelism. Oddly enough this model
was proposed in 1989-90, before the current genera-
tion of massively parallel computers existed. It is in
this new generation, as opposed to the previous gen-
eration, that a very high fixed communication cost is
incurred and usually coupled with a low variable cost
per byte.

4. Bandwidth. Another example of a PRAM variant
which assumes two classes of memory and includes
a mechanism for assigning a non-unit cost to a re-
mote access is the DRAM [23]. The DRAM is im-
portant because it eliminates the paradigm of global
shared memory and replaces it with only private dis-
tributed memory. While the topology of the commu-
nication network is ignored, the DRAM incorporates
the notion of limited bandwidth. This model proposes
a cost function for a non-local memory access which
is based on the maximum possible congestion for a
given data partition and execution sequence. While
the function is somewhat complicated it attempts to

64

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

provide scheduling incentives to respect limited access
to non-local data. A recent PRAM variant proposed
in [36], the PRAM() m incorporates bandwidth limita-
tions by restricting the size of global shared memory to
m memory locations. The model is a CRCW PRAM
except that in say given step only m accesses can be
serviced.

5.Primitives. The examples above include some of
the proposed modifications to the PRAM which better
reflect the characteristics of actual computers. Many
other variants have been developed which enhance the
standard PRAM. Some for example include additional
unit-cost primitive operations such as scans [7]. Such
models can be considered to be designed to be pre-
scriptive, suggest.ing feat,ures, some more realizable
than others, which could potentially make a parallel
platform efficient for a given class of problems.

Other Distributed Models

The perceived technical infeasibilty of constant-
time access to a global address space led to de-
velopment of many PRAM variants. A fundamen-
tal paradigm shift, however, was the introduction of
models in which modules of memory are associated
with processors. An ea.rly example of this type of
model is used by Upfa.l in [32]. Later referred to as
the Distributed Memory Model (DMM), it posits pri-
vate memory modules associated with processors in a
bounded degree network. Computation and nearest
neighbor communicat,ion require one time step.

Another more recent example of a distributed mem-
ory model is the Postal Model [6] deriving its name
from an analogy to the US mail system. In this model
to accomplish a non-local memory access a proces-
sor posts a message int.o the network and goes about
its business (posting other messages) while the first
is being delivered. This model is notable for its ex-
plicit mechanism and incent,ive for latency hiding. The
model is strictly a model of communication and pro-
vides no descript.ion of computation. A related model
which includes computation but introduces quite a
bit more complcsit,y is the Atomic Model for Message

Passing developed in [24].

Low-Level Models

Many abstract models have been recently devel-
oped which incorporate a more detailed view of the
machine components and behavior. The objective of
these Low-level models is often to assess the feasibility
and efficiency of a particular machine or component
design, sometimes for a. particular class of algorithms,
or to understa.nd which particular algorithm or imple-
mentation may be most efGcient on a given machine
or component design. For example, in [7] Blelloch et

al. develop a detailed model of the CM-2 by Think-
ing Machines Inc., a fine-grained hypercube-connected
massively parallel computer, in order to better under-
stand which sorting algorithms and implementations
perform best on this platform. Their model includes a
two level memory hierarchy and four primitives which
closely correspond to the actual machine primitives.
The cost of the primitive operations is approximated
using actual machine timings and the analysis consid-
ers constant factors. The model incorporates the cost
of an arithmetic operation, a nearest neighbor com-
munication, a general communication and a scan op-
eration. A similar analysis is performed using a model

developed to reflect the MasPar MPl computer in [19].
This model, also used to draw conclusions about the
efficiency of alternative sorting algorithms, employs a
very similar set of parameters.

Hierarchical Memory Models

Because data storage in a computer is accomplished
through a variety of different physical units and me-
dia and access time is very different among these me-
dia, there has been a sustained interest in modeling
this phenomenon. In most such models the concept
of random access is irretrievably altered. Two early
examples of serial hierarchical memory models are the
HMM [l] model and the BT [2] model. In the HMM
model there are L levels of memory each of which con-
tains 2” memory locations; access to memory location
z takes f(z) time for some function f. The BT model,
(the HMM model with block transfer), incorporates
the possibility of moving data in large blocks.

While serial models such as these can provide prac-
tical design tools for special classes of problems which
involve large amounts of data movement, they are not
widely used as general design tools. Yet several argu-
ments exist, such as the need for massive amounts of
data movement in many current and envisioned paral-

lel applications, to motivate the inclusion of a memory
hierarchy in a general purpose model of parallel com-
putation. The parallel versions of these models, the P-
HMM and P-BT models, replicate the serial model P
times and connect the processors and memory through
a network which allows parallel data movement.

Generally, this class of models seeks to provide a
more refined and practical reflection of memory ac-
cess cost by defining a hierarchy with monotonically
increasing sizes and access costs for each subsequent
level. In these models data movement is a valued re-
source, and the models provide performance rewards
for exploiting both types of data movement paral-
lelism: block transfer and parallel transfer. A per-
spective on the potential benefits of data movement

65

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

parallelism can be found in [5] and a survey of paral-
lel hierarchical memory models can be found in [37’J.
For problems which involve the movement of large
amounts of data these models may be particularly ef-
fective in producing efficient algorithms. An example
of algorithm design using these models can be found
in [38].

Network Models

Both classes of models discussed above ignore the
possible impacts of the topology of the communica-
tion network. Network models of parallel computa-
tion reflect a focus of concern in the early genera-
tion of parallel computers. These computers tended
to be fine-grained, composed of a large number of rel-
atively small processors. Network models generally
ascribe some amount of local memory to each proces-
sor. The cost of a remote memory access is a function
of both the topology and the access pattern. The cost
functions tend to be completely variable with no fixed
start-up costs for communication. These models pro-
vide design incentives for efficient data mappings and
communication routings. There are at least as many
models as there are proposed network topologies. A
survey and analysis with an exhaustive bibliography
can be found in [22].

While the standard PRAM presents an uncluttered
and appealing design platform, it presents little op-
portunity for optimization with respect to practical
machine attributes. Each of the classes of models dis-
cussed subsequently introduces some practical aspect
to the user, thereby conferring some responsiblity for
optimization. The interested reader is urged to con-
sider the models not included here because of space
constraints.

Bridging Models

The notion of a bridging model was effectively cap-
tured by Valiant when he described the von Neumann
model as “a connecting bridge that enables programs
to run efficiently on machines from the diverse and
chaotic world of hardware” [33]. In [35] Valiant pro-
vides compelling arguments for an abstract parallel
machine model which provides a unifying and consis-
tant design paradigm to facilitate portable parallel al-
gorithm design and pr0gra.m translation.

In an early multidisciplinary effort Snyder proposed
one possible bridging model, the Candidate Type Ar-
chitecture model [30]. This model posits a finite num-
ber of sequential von Neumann computers executing
asynchronously, with a global synchronization mecha-
nism, connected in a network of tied bounded degree.
The model specifies communication cost, but synchre
nization, achieved through the global controller, is

free, and there are no bandwidth constraints. This
simple two parameter model (communication cost L
and number of processors P), with a two-level mem-
ory hierarchy, provides incentives for reference local-
ity. The model does not provide explicit incentives
for latency hiding, bandwidth management, or syn-
chronization avoidance. It assumes the opportuiiity to
exploit these optimizations will be recognized by the
programmer and provides explicit constructs for these
optimizations in an associated programming model.

Valiant’s own bulk Synchronous Parallel (BSP)
model posits a distributed memory with three param-
eters. The model provides P processors with local
memory, a router, and facilities for periodic global
synchronization. Computation can be synchronized at
most every 1 steps and the ratio of local units of com-
putation to the steps required to transmit or receive a
message is a parameter g.

These three parameters serve several functions.
First, the parameter 1 reflects the cost of invoking a
synchronization operation. It also implies a commu-
nication latency because remote memory accesses do
not take effect until after the execution of a synchro-
nization. Second the parameter g enforces bandwidth
limitations. It requires that messages be sent at most
once every g arithmetic operations.

The BSP model is notable for those attributes
which it does not incorporate. For example, the model
does not charge overhead for a message to be injected
into the network. Unlike communication overhead,
the travel time of a message can be hidden by per-
forming local computation which does not involve re-
mote memory accesses. By not modeling overhead
there is a strong incentive for latency hiding because
all communication costs can be effectivelyhidden with
enough parallel slackness in the program. The model
also does not include any notion of processor topology,
effectively removing the onus of performing data place-
ment and describing explicit communication patterns
and the potential for topology-based optimization.

Another example of a bridging model which has fo-
cused on more accurately reflecting existing machine
attributes is the LogP model [12]. This model, though
closely related to the BSP model, is distinct in two
ways. First, it models asynchronous execution. The
parameter L (now a capital for proper acronym forma-
tion) used to enforce bulk synchrony in the BSP model
is used in the LogP model strictly as a measure of the
message latency. Second, the model adds a new pa-
rameter, o, which captures the length of time required
for a processor to inject a message into the network
or receive a message from the network. This parame-

66

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

ter, in essence, mea.sures the dead time, lost processor
cycles which cannot be captured with latency hiding
techniques.

The development of the LogP model is notable in
another s&se: it. is t,he product of efforts by a di-
verse group of researchers from theoretical, software
and hardware disciplines suggesting the mutual bene-
fits to be reaped with a unifying paradigm. The CTA
model, the BSP model and the LogP model are rep-
resentative of a recent trend to develop a consistant
view of execution engines aud programming models
which can facilitate clear a.lgorithm designs, efficient
translations and high performance compilations.

Summary

The computa.t.ional models presented above were
chosen to be representative subset of the numerous
proposed a.bst,ract, models of parallel computation.
The sheer volume of proposed models is sufficient tes-
timony to both the lack of consensus and the perceived
need for a unifying model, or set of models.

The survey suggests that evaluated individually, no
single model seems to be acceptable. Evaluated as a
group, however, t.hey suggest that a small number of
machine cha.ract.eristics are the focus of the majority
of the models. They include Computational Par-

allelism, Communication Latency, Communi-

cation Overhead, Communication Bandwidth,

Execution Synchronization, Memory Hierar-

chy, and Network Topology.
These characteristics reflect the perspective of those

whose prima.ry objective is the design of efficient algo-
rithms and clarity in the design process. Yet a unifying
computational mode1 must also address the require-
ments of those whose objectives are programming, im-
plementation and machine design. A similar survey of
the development. and use of models in these communi-
ties was performed but due to space limitations cannot
be presented here. The survey of these areas also sug-
gested that within ca.ch area, ou the whole, the models
focused on a relatively small set of machine character-
istics. The sect.ion below attempts to synthesize the
results of the broader survey and present the implica-
tions for the development of a. unifying computational
paradigm.

3 A Case for a Simple, Prescriptive

Model

The processes of designing solutions, encoding them
in software, translating the machine independent soft-
ware in to efficient executable instructions, and design-

ing powerful execution hardware have many distinct
modeling requirements. Yet these processes share
common performance objectives. This commonality
motivates the development of a unifying abstract ma-
chine model which can help coordinate these pro-
cesses. To unify disparate disciplines the model must
be simple, without sophisticated concepts from any
single discipline yet incorporating the performance
metrics of common interest.

Simplicity is also essential for an effective design

process. To ensure clarity of focus a model which fa-
cilitates design can only address a few characteristics.
While augmenting a simple model with ancillary ma-
chine characteristics and incentives may increase its

descriptivity, it can clutter the design platform, ob-
scuring primary characteristics.

To unify and coordinate, an abstract machine
model needs to facilitate feedback to the machine de-
sign process itself. In addition to providing a clean de-
sign paradigm, the model should provide insight into
what software or platform characteristics would enable
efficient solutions for different classes of problems. It
is with this philosophy of simplicily and descriptivity

balanced with prescriptivity that the following sections
discuss candidate model characteristics.

1. Computational Parallelism

To quantify parallelism most models include the

number of physical processors, P, as a parameter.
Though this seems straightforward, the issue of static
versus dynamic parallelism complicates things. In
problems with irregular or uncertain (non-oblivious)
parallelism, designing a problem solution and encod-
ing it becomes easier if one has the ability to create
virtual parallel processes to be assigned to different
tasks which may arise as the computation proceeds.
This, however, leaves design of the means to exploit
the parallelism entirely to the software and machine
designers. Alternatively, allowing only a fixed num-
ber of physical processors leaves the task of schedul-
ing parallel computation under uncertainty to the al-
gorithm designer.

2. Latency

The inevitable physical separation of processing
and memory elements in a scalable parallel computer
creates a significant time delay when obtaining data
from non-local memory. Though there is general

agreement on the existence of this delay, there is less
agreement on how to quantify it.

The simplest cost mechanism is to assume that all
messages are of fixed constant length and incur a con-
stant number, I units, of time delay. This simple
choice provides an incentive for one-level reference lo-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

cality but ignores other aspects of communication la-
tency such as topology and the fixed and variable cost
components of message transmission.

The current argument to ignore topology is to a
great extent an artifact of high fixed overhead on
the current generation of massively parallel comput-
ers. Overhead costs suc11 as message formation and
packet injection are so high that they swamp variable
communication c0st.s. Yet this overhead severly re-
stricts the classes of programs that can run efficiently
on these machines. If the goal is general purpose par-
allel computing, the overhead must be driven down
to more reasonable ranges. One optimization tech-
nique to reduce the impact of high overhead is to facil-
itate the transmission of large, variable-length mes-

sages. By bundling messages the high fixed overhead

can be amortized over a. large number of bytes. But
the inclusion of va.ria.ble length messages in a model,
though it ca.ptures this data parallelism, complicates
the model. This optimizatiou is likely to work for sev-
eral classes of problems but. should probably be con-
sidered an a.lgorithm design optimization.

In response t.o the incentives to reduce communica-
tion overhead in parallel computers several machines
have been envisioned in which more of the network
communication mechanisms are handled in hardware,
e.g. the M-machine [13]. Such decreases in the over-
head of a communication increase the relative impor-
tance of network topology. Yet contention-based la-
tency is a. complicat,ed function of topology and the
communication pattern, and while toplogical consider-
ations may provide performance optimizations, adding
topology to a7. simple alxt,ract machine model compli-
cates it. Perhaps the ability for this kind of algorithm
refinement could he incorporated in a more refined
special purpose model.

portunity for latency hiding. Latency hiding is an
optimization technique which could be important in
the current generation of high latency massively par-
allel computers. Unfortunately this technique does
not cloak the fixed overhead component of commu-
nication costs. Thus on computers with high com-
munication overhead the importance of latency hiding
diminishes. If there are substantial decreases in over-
head, latency hiding could have more practical im-
pact. Yet to realize substantial benefits from latency
hiding requires software mechanisms such as non-
blocking asynchronous communication mechanisms,
very lightweight threads, or hardware support mecha-
nisms which are still non-standard. (This is in addi-
tion to the availibility of lots of slackness.) In addition,
including latency hiding mechanisms in a computa-
tional model runs the risk of distracting the algorithm
designer from more substantive ideas for elegant and
efficient design. Thus, the uncertain potential gain
must be weighed against the risk of design obfusca-
tion and the general burden of working within a more
complicated model. It appears more reasonable to vest
the incentives for latency hiding in the programming
model. In this environment more informed choices can
be made on the closely related issues of process gmnu-
larity which depends on the characteristics of the soft-
ware system such as the cost of a context switch, the
cost of process creation, and the underlying mecha-
nisms which support interprocess communication.

3. Bandwidth

The disparity between the speed of on-chip events
and network events in the current generation of mas-
sively pa.rallel computers motivates the simplification
of an abstract ma.chine model to include only a two-
level memory hierarchy. Though this disparity may
decrease, the ut,ilit,y of including a multi-level hierar-
chy is high only in problems which involve the move-
ment of a significant amount of data. In these prob-
lems it can be advnntagcous t.o exploit data movement
parallelism. But again, models including memory hi-
erarchy erode the simplicit,y of a model unacceptably
for general usage. Hierarchical models could be viewed
as refinements to guide data movement optimization
for special classes of algorithms.

With low communication overhead, latency hiding
could become an important optimization. Yet incen-
tives for latency hiding can also provide incentives to
flood the network with messages. Bandwidth is a lim-
ited resource. In the current generaion of massively
parallel computers, bandwidth limitations constrain
the classes of problems which can be efficiently im-
plemented on these platforms. Thus there are strong
motivations to include bandwidth constraints in an
abstract machine model.

There is a focus in hardware development on reduc-
ing the slope of the bandwidth hierarchy in parallel
computers. Cost considerations as well as scalabil-
ity issues make flat bandwidth hierarchies like those
in older vector machines or the more recent Cray C-
90 somewhat impractical. It is reasonable to assume
that newer machines will seek to correct the band-
width cliffs of the current generation and present a
more tapered hierarchy.

The stra.tegy of assuming that any communication
incurs a loss of I unit.s of processor time ignores the op-

It seems reasonable to conjecture that steep band-
width hierarchies will be mitigated because machine
designers have strong motivation to correct any bind-

66

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

ing constraint t.l~at, severely limits the functionality
of the computer. This balance conjecture essentially
posits that machines will he designed so that no im-
pediment to high performance computation or com-
munication will be severely out of line relative to any
other in the machine. In addition, if this is not actu-
ally the case one could argue that this should be the
prescriptive input from algorithm designers if general
purpose parallel computing is to be realized. Con-
sistant with this conjecture is the idea that both la-
tency and bandwidth constraints can be captured by
the same model pammeter. That is, one can charge I
steps as lat,ency for every remote access and prohibit
more than one remote access every I steps.

As throughput, approaches the network threshold,
the relationship between message throughput and la-
tency changes drastically. The use of one parameter
would have to correspond to a bandwidth value which
avoids extreme situa.tions. With this caveat, the inter-
val I would be a function of a given class of machines,
set according to observed values. Therefore using the
same paramenter, (I, the int,erval) to capture both con-
straints is a. reasonable al~l~roacl~ from the standpoint
of descript.ivit,y, as well as simplicity and prescriptiv-
ity.

4. Syncl~ronization

Synchronous esecution is an unreasonably rigid as-
sumption in current or envisioned massively parallel
computers. The ability to be effective platforms for
many computationally intensive problems will require
the ability to exploit irregu1a.r or asynchronous par-
allelism. The cost of synchronizing a subset of pro-
cesses is related to the cost of communication. At a
minimum. assuming no global synchronization mech-
anism, a synchronization entails at least one commu-
nication. Thus iT 011ly one parameter is incorporated
in the model, I (the interval), oue idea is use this same
parameter to provide a cost measure for synchroniza-
tion. Namely, allow at a ma.ximum only one synchro-
nization every I steps. Coupling these parameters also
simplifies the model by avoiding the introduction of
more concepts such a.s supersteps or phases.

While t,here is compelling motivation for the de-
velopment of a unifying parallel machine model, the
standards of simplicity and asymptotic analysis set by
the RAM model Innlie tllis diflicult, expecially in an
environment. which is inherently more complicated and
still evolving. Co~lll)rltat~iollal models no longer appear
to be the exclusive domain of the algorithm designer.
Both soft.ware and hardware designer have stronger
motivations to focus on performance measures. This
makes the task of developing a unifying model even

more difficult (and more necessary): there are poten-
tial users from disparate disciplines with different ob-
jectives. Thus, to develop a model which is unifying
the demands of these disciplines must be heeded.

To design an appropriate model requires that a set
of characteristics be distilled which combine the needs
and constraints of different domains and that they be
incorporated in a simple but descriptive manner. Our
tentative conclusion is that it may suffice to use a
model with only two parameters: P, the number of
processors and I, the communication interval. The in-
terval is set to the binding constraint, the maximum
of the latency, bandwidth or synchronization costs. In
addition to simplicity, the justification for using only
one parameter lies in the supposition or prescription
that machine design will or should seek to balance the
cost of these attributes, as the absense of balance can
severly restrict the classes of applications that can per-
form well. Combining latency measures, bandwidth
constraints and synchronization costs in one param-
eter, the model becomes simple and prescriptive, yet
only somewhat less descriptive than other proposed
models.

Acknowledgements

We would like to express our appreciation for the
many insights provided by Larry Snyder, Kai Li, and

Suresh Jagannathan, and to thank to Satish Rae for
providing the inspiration.

References

PI

PI

[31

[41

151

PI

Aggarwal, A., Alpern, B., Char&a, A., Snir, M., “A Model
for Hierarchical Memory”, Proc. of the 19th Annual ACM
Symp. on Theory of Compuling, ACM, pp. 305-314, May
(1987).

Aggarwal, A., Chandra, A., and Snir, M., “Hierarchi-
cal Memory with Block Transfer”, Proc. of Ihe 28th An-
nual IEEE Symp. on Foundations of Compuler Science,
pp. 204-216, (1987).

Aggarwal, A., Char&a, A., and Snir, M., “Communica-
tions Complexity of PRAMS”, Theoretical Compuler Sci-
ence , Vol. 71, pp. 3-28, (1990).

Aggarwal. A., Chandra, A., and Snir, M., “On Commu-
nications Latencies in PRAM Computations”, Proc. of
the 1st Symp. on Parallel Algorithms and Architectures,

pp. 11-21, (1989).

Akl, S., “Memory Access in Models of Parallel Compu-
tation: From Folklore to Synergy and Beyond”, Proc. of

the 2nd Workshop on Algorilhms and Data Structures,
Springer-Verlag, Berlin, pp. 92-104, (1991).

Barney, A., and Kipnis, S., “Designing Algorithms in the

Postal Model for Message Passing Systems”, Proc. of Ihe
4th Annual ACM Symposium on Parallel Algorithms and
Archilectures, pp. 1322, (1992).

69

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii Internatiorud Conference on System Sciences - 1995

[7] BleIIoch, G., “Scans as Primitive Operations”, IEEE
Transactions on Compalers, vol. 38, pp. 15261538,
November (1989).

[8] BleIIoch, G., Leiserson, C., Maggs, B., PIaxton, G., Smith,
S., Zagha, M., “A Comparison of Sorting Algorithms for
the Connection Machine CM-2”, Proc. of the 3rd Annual

ACM Sgmposium on Parallel Algorithms and Archilec-
tures, pp. 3-16, (1991).

[S] Cook, S.. and Reckhow, R., “Time Boundend Random Ac-

cess Machines”, Journal of Compuler and Systems Sci-
ences, Vol. 7, pp. 354-375, (1973).

[lo] Cole, R., and Zajicek, O., “The APRAM: Incorporating
Asynchrony into the PRAM Model”, Proc. of the 1st An-
nual ACM Symposium on Parallel Algoritms and Archi-
b?clures, pp. 158-168, (1989).

[ll] Cole, R., and Zajicek, O., “The Expected Value of Asyn-

chrony”, Proc. of Ihe 2nd Annual ACM Symposium on
Parallel Algorithms and Architeclures, pp. 85-94, (1990).

[12] CuIIer, D., Karp, R., Patterson, D., Sahay, A., Schauser,

K., Santos, E., van Eicken, T., “LogP: Towards a Realistic
Model of Parallel Computation”, Proc. of Ihe ACM SIG-

PLAN Symposivm on Principles and Practices of Parallel
Programming, pp. l-12, (1993).

[13] DaIIy, W., KeckIer, S., Carter, N., Chang, A., FiIIo, M.,
Lee, W., “M-Machine Archit.ecture ~1.0” , MIT Concurrent
VLSI Architecture Memo 58, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, (1994).

[14] de Torre, P., and KrusM, C., “Towards a Single Model of

Efficient Computation in Real Machines”, Proc. of Parallel
Architectures and Languages Europe (PARLESI), Lecture

Notes in Computer Science, Springer-Verlag, (1991).

[15] Gibbons, P., “A More Practical PRAM Model”, Proc. of
Ihe 1st Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 158-168, (1989).

[16] Gibbons, P., Matias, Y., and Ramachandran, V., “The
QRQW PRAM: Accounting for Contention in Parallel Al-
gorithms”, Proc. of the 6th Anvlual Symposium on Parallel

Algorithms and Archileciures, pp. 638-648, (1994), to ap-

pear.

[17] Goodrich, M., “Parallel Algorithms Column 1: Models of

Computation”, SIGACT News, vol. 24, pp. 16-21, Decem-
ber (1993).

[18] Heywood, T., and Ranka, S., “A Practical Hierarchical

Model of Parallel Computation: 1. The Model”, Journal
of Parallel and Distributed Computing, Vol. 16, pp. 212-
232, (1992).

[19] Hightower, W., Prins, J., and Reif, J., “Implementations

of Randomized Sorting Algorithms on Large ParaIIel Ma-
chines”, Proc. of the Fourth Annual ACM Symposium on
Parallel Algorilhms and Archiledures, pp. 158-167, (1992).

[ZO] Jaja, J., “An Introduction to Parallel Algorithms”,
Addison- Wesley, (1992).

[21] KNS~~, C., Rudolph, L., and Snir, M., “A Complexity

Theory of Efficient Parallel Algorithms”, Theoretical Com-
puter Science, Vol. 71, pp. 95-132, (1990).

[22] Leighton, T. “Introduction to ParaIIel Architectures: Ar-
rays, Trees, Hypercubes”, Morgan Kaufmann, San Mateo,
CA (1992).

[23] Leiserson, C., and Maggs, B., “Communication-Efficient
ParaIIel Algorithms for Distributed Random-Access Ma-
chines”, Algorithmica, Vol. 3, pp. 53-77, (1988).

[24] Liu, P., AieIIo, W., and Bhatt, S., “An Atomic Model for
Message Passing”, Proc. of the 5th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pp. 154-
163, (1993).

[25] Mansfield, E., “Microeconomics”, Third Edition, Norton
and Co., New York, (1979).

[26] Martel, C., Subramonian, R., and Park, A., “Asyn-
chronous PRAM Algorithms for List Ranking and Transi-
tive Closure”, Proc. of the 31 st IEEE Symposium on Foun-

dations of Computer Science, pp. 590-599, (1990).

[27] MeIhom, K., and Vi&kin, U., “Randomized and Deter-

ministic Simulations of PRAMS by Parallel Machines with
Restricted Granularity of ParaIIel Memory”, Acta Infor-
matica, vol. 21, pp. 339-374, (1984).

[28] McCoII, W., “General Purpose Parallel Computing”, Tech-

nical Report, NEC Research Institute, Princeton, NJ,
April (1992).

[29] SiegaI H., Abraham, S., Bain, W., Batcher, K., Casavant,
T., DeGroot, D., Dennis, J., Douglas, D., Feng, T., Good-
man, J., Huang, A., Jordan, H., Jump, Ft., P&t, Y., Smith,
A., Smith, J., Snyder, L., Stone, H., ‘&ck, Ft., and Wah,

B . , “Report of the Purdue Workshop on Grand Challenges
in Computer Architecture for the Support of High Perfor-

mance Computing”, Journal of Parallel and Distributed
Compuling, Vol. 16, pp. 199-211, (1992).

[30] Snyder, L., “Type Architectures, Shared Memory and the
Corollary of Modest Potential”, Annual Review of Com-

puter Science, AnnuaI Review, Inc. pp. 289-318, (1986).

[31] Stromberg, K.,“An Introduction to Classical Reel AnaIy-

sis”, Wadsworth, Belmont, California, (1981).

[32] UpfaI, E., “Efficient Schemes for Parallel Communication”,

Journal of the Association for Computing Machinery, Vol.
31, pp. 507-517, (1984).

[33] Valiant, L., “A Bridging Model for ParaIIel Computation”,

Commanicalions of the ACM, Vol. 33, pp. 103-111, (1990).

[34] valiant, L., “General Purpose ParaIIel Architectures”, van
Leeuwen, J., ed. Handbook of Computer Science, MIT

Press, (1990).

[35] Valiant, L., “Why BSP Computers”, Technical Report TR-
2692, Aiken Computation Laboratory, Harvard Univer-
sity, Cambridge, MA (1992).

[36] Mansour, Y., Nisan, N., Vi&kin, U., “Tradeoffs Between
Communication Throughput and Parallel Time”, Pwc. of
the Mth Symporium on Theory of Computing, Montreal,
Quebec, Canada, pp. 372-380,1994.

[37] Vitter, J., “Efficient Memory Access in Large Scale Com-
putation”, Proc. of the 1991 Symposium on Theoretical
Aspects of Computes Science (STACS), Lecture Notes in
Computer Science, Springer-Verlag, pp. 2641, (1991).

[38] Vitter, J., and Shriver, E., “AIgorithms for ParaUel Mem-

ory I: Two Level Memories”, and “Algorithms for ParaIIel
Memory II: Hierarchical Multilevel Memories”, Technical
Reports, CS-1993-01 and CS-199302, Department of Com-
puter Science, Duke University, Jan- (1993). (to appear
in a special issue of Algorithmica on the subject of Iarge
scale memories; a summan ‘sed version of this research was
presented at the 22nd AmmaI Symposium on Theory of
Computing, Baltimore, MD, May 1990).

70

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

