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Abstract 

In the realm of sequential computing the random 

access machine has successufully provided an underly- 

ing model of computation that promoted consistency 

and coordination among algorithm developers, com- 

puter architects and language experts. In the realm of 

parallel com~puting, however, there has been no similar 

success. The need for such a unifying parallel model 

or set of models is heightened by the greater demand 

for performance and the greater diversity among ma- 

chines. Yet the modeling of parallel computing still 

seems to be mired in controversy and chaos. 

This paper is an excerpt from a study which presents 

broad range of models of parallel computation and the 

different roles they serve in algorithm, language and 

machine design. The objective is to better understand 

which model characteristics are important to each de- 

sign communiiy in. order to elucidate the requirements 

of a unifying paradigm. As an impetus for discussion, 

we conclude by suggesting a model of parallel compu- 

tation which, is consistent with a model design philos- 

ophy which balances simplicity and descriptivity with 

prescriptivity. 

Space constraints allow only the presentation of the 

survey of abstract computational models. It is our hope 

that the introduction provides insights into the rich 

array of relevant issues in other disciplines, inspiring 

the interested reader to examine the full paper. 

*Research partially supported by NSF National Young In- 

vestigator Award and ARPA Grant Nos. F33615-93-1-1330, 
N00014-91-J-1698, N00014-92-J-1799 

+Princeton research partially supported by NSF grant no. 
CC&8920505 and Offke of Naval Research Contract No. 
N0014-91-J-1463 

1 Introduction 

Modeling complex phenomena is as old as science 
itself, perhaps as old as art itself. Choosing the right 
characteristics to model and incorporating them sim- 
ply, elegantly and accurately requires as much artistic 
creativity as scientific methodology. Even the early 
Greek mathematicians, who were primarily interested 
in geometry, dealt with the issues of modeling. In- 
deed, Pythagoras discovered that the set of rational 
numbers (ratios of whole numbers) were inadequate 
to describe the length of a diagonal of a square hav- 
ing sides of length 1 [31]. This made it necessary to 
augment the rationals to create a more powerful and 
expressive tool: the real numbers. Since the time of 
the Greeks, the art and science of modeling has mush- 
roomed. Today models are ubiquitous - controlling 
large portions of our financial markets, routing our 
air traffic, explaining the nature of our genetic make- 
up, tracking our weather, and predicting our overall 
economic health. 

Why Model? 

Broadly stated the purpose of modeling is to cap- 
ture the salient characteristics of phenomena with 
clarity and the right degree of accuracy to facilitate 
analysis and prediction. Computer scientists use mod- 
els in a myriad of ways to help design efficient prob- 
lem solving tools. These tools include fast algorithms, 
effective programming environments and powerful ex- 
ecution engines. Usually the alternatives to modeling 
are resource-intensive. Implementation, for example, 
is time consuming and provides information which is 
accurate but too narrowly focused to support general 
conclusions. Models, on the other hand, can provide a 
broader view inexpensively, illuminating general pat- 
terns and issues, but they suffer from a lack of specific 
accuracy. Modeling can be used interactively with im- 
plementation in a symbiotic process of problem solu- 
tion which is far more efficient than using either ap- 

proach separately. 
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An Objective and a General Framework 

In this paper we examine how computer scientists 
are using models to better solve problems on parallel 
computers. The goal is to promote discussion of the 
characteristics and objectives of these models to bet- 
ter determine which ones are essential and how uni- 
fication might be achieved. To accomplish this we 
first present a selected survey of models from several 
of these disciplines. The survey is presented within a 
simple logical framework, first proposed by Snyder in 
[30]. This framework allows the wide array of mod- 
els used in computer science to be viewed somewhat 
systematically. 

The solution to any given task begins with the de- 
sign of a set of steps (an algorithm) which will real- 
ize the computat,ional solution to an abstract problem 
specification. Problems can be come from many dif- 
ferent domains: e.g. mathematical, biological, logical. 
In each domain translation from problem to computa- 
tional algorithm requires a model of computation. For 
example, the development of serial computing has pro- 
duced, among others, the widely accepted Von Neu- 
mann model, expressed elegantly in the random access 
machine model (RAM) [9]. Such a computational 

model1 must clearly define an execution engine pow- 
erful enough to produce a solution to the relevant class 
of problems. In addition such a model needs to re- 
flect the salient computing characteristics of practical 
computing platforms. These objectives, one prescrip- 
tive and the other descriptive combine to enable the 
translation from abstract formulation to an algorithm 
which gives the desired solution. 

An algorithmic specification is then translated into 
a sequence of machine-independent software instruc- 
tions. This translation process is facilitated by a pro- 

gramming model2 Formally, a programming model 
provides a set of rules or relationships that defines 
the meaning of a set of programming abstractions. 
These abstractions are manifested in a programming 
language which is an instantiation of that program- 
ming model. A primary objective is to allow reasoning 
about program meaning and correctness. For exam- 
ple the rules of lambda calculus define the meaning 
of functions and applications which serve as the basis 
for the abstractions found in several functional pro- 

‘Terminology is an immediate, recurrent, labyrinthine prob- 
lem in any discussion of models. Computational models are 
alternatively called abstract machine models, cost models and 
performance models. In this paper, the terms computational 

model and abstract machine model are used interchangeably 
and synonymously. 

‘The term programming model persistently defies precise 
definition. 

gramming languages. Practical programming models 
often lack such rigor and the definition of a program- 
ming model has evolved to imply a set of language 
constructs that can be used to express an algorith- 
mic concept in a programming language. For exam- 
ple, the imperative-procedural model posits constructs 
such as arrays, control structures, procedures and re- 
cursion and the programming languages Pascal and C 
are designed within this model, while the constructs 
Lists, Cons, Apply are encompassed by a functional 
programming model.3 

Historically, the primary focus of programming lan- 
guage development has been on expressibility, provid- 
ing constructs which elegantly, and perhaps provably, 
translate and preserve algorithmic intentions. But lan- 
guage development also requires the translation of the 
high level language constructs into machine-dependent 
executable instructions. This translation process is 
usually facilitated by not by the use of a progamming 
model but by the use of a model of the execution en- 
gine. These machine models are used to tune the per- 
formance of a programming language and typically ex- 
press the cost of crucial machine operations. Thus, in 
the realm of parallel computing the demand for per- 
formance has begun to realign the focus of language 
development to include both goals: expressability and 
performance. 

Low level machine models or architectural 

models4 describe a class of models used for a broad 
range of design purposes such as language implemen- 
tation and machine design. These models need to re- 
flect the detailed execution characteristics of actual 
or envisioned computers. These models-cover a wide 
range: from fairly high level representations on an ar- 
chitectural level to instruction execution models or 
even detailed component models. These models are 
primarily used in machine design and the objective of 
the models is almost exclusively performance. These 
models are commonly used in parallel computing to 
compare alternative architectures, often for a given 
class of problems or alternatively predicting the per- 
formance of a specific machine on a set of algorithmic 
strategies. Performance analysis using these models 
expresses the design characteristics and concerns of 
evolving technologies and provides feedback into many 
aspects of task solution including the design of the ma- 
chine itself. 

3The astute reader will recognize this as a broad generaliza- 
tion used for illustrative purposes only as many programming 
laxiguages possess characteristics attributable to both of these 

programming models. 
‘These are also called cost models, performance models, and 

hardware models. 
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While this framework provides a tool to view some 
of the models used in computer science and their ob- 
jectives, it also illuminates the need for model consis- 
tency. The greater the distance between these classes 
of models and actual platforms, the more difficult and 
inefficient each of the design and translation processes 
becomes and the poorer the results. While the rewards 
for consistency are fairly apparent, much less appar- 
ent is the means of achieving this consistency. To date 
there seems to be some consensus on the importance 
of the problem [29] yet there has been no single model 
or set of models which has achieved widespread acc- 
ceptance and managed to achieve this consistancy. 

Serial vs. Parallel Models of Computation: 

Why the Chaos? 

The history of serial computing has demonstrated 
that a simple abstract ma.chine model can facilitate 
consistency by providing a clear and simple rendering 
of the execution engine. Unfortunately the search for 
such a unifying parallel paradigm has been far less suc- 
cessful. One reason is the high standard of simplicity 
instantiated by the RAM. The natural parallel analog, 
the parallel random access machine (PRAM) model, 
meets this sta.ndard but is by no means as accurate: 
unmodeled characteristics, most importantly the cost 
of a non-local memory reference, have a great impact 
on performance. The RAM was accurate enough to 
enable the use of asymptotic performance measures. 
This was in part due to a balance among the unmod- 
eled machine characteristics such the cost of a memory 
access and a.n arithmetic instruction. Parallel com- 
puters, however, lack this balance, and asymptotic 
analysis is a far less effective design tool. But the 
standard of a.symptotic analysis set by the RAM has 
made problematic the broad acceptance of a parallel 
model complicated by constant factors. The develop- 
ment of a unifying paradigm also requires a somewhat 
unified and stable technological environment. In par- 
allel computing, not only are there intra-generational 
variations but there are broad architectural changes 
between generations. Put simply, the development of 
a unifying abstract machine model requires unifying 
several different moving ta.rgets. 

Descriptive vs. Prescriptive Models 

The modest convergence towards a common set of 
architectura,l cha.ract8eristics in the current generation 
of massively parallel computers provides some stabil- 
ity on which to ba.se an effective computational model. 
Recent modeling efforts have introduced more com- 
plexity of description and constant factors. But while 
these models tend to more accurately describe actual 
computers, the current generation of machines has 

some marked deficiencies which hinder their ability to 
be efficient platforms for the solution of certain classes 
of problems. 

There is a strong motivation for a model design 
philosophy which balances the need for descriptive ac- 
curacy with the need to provide a medium which pre- 
scribes machine characteristics which will promote ef- 
ficient solution of classes of important problems. An 
integration of descriptivity and prescriptivity is more 
effective than either as an exclusive modeling philos- 
ophy. Portraying an inefficient computational plat- 
form accurately provides distorted design incentives. 
Rather than assisting the development of clean solu- 
tion ideas, the model tends to focus resources on clever 
ways to circumvent or cloak the platform inefficien- 
cies. On the other hand designing effective solutions 
for the ideal platform with no consideration of real- 
izablity is equally as counterproductive. Optimally, 
a model should provide clear, productive design in- 
centives while providing strong messages to platform 
designers about the quality of characteristics required 
for efficient solution. 

Summary 

In the realm of parallel computing there is a com- 
pelling need for models of parallel computation which 
facilitate an efficient design process and produce effi- 
cient designs. This requires an underlying consistency 
throughout the models used for different design and 
implementation tasks. This consistency, though dif- 
ficult to achieve in a rapidly changing environment, 
may be best promoted by the development of a pow- 
erful abstract machine model. But this model needs 
to answer to a tall order in balancing simplicity with 
accuracy, abstraction with practicality, and descrip- 
tivity with prescriptivity. To help understand what 
such a model should look like, the following sections 
selectively survey existing parallel computing models. 

2 Computational Models 

The Family of PRAMS 

The success of the serial random access machine 
model spawned a family of parallel random access 
models in the search for a simple unifying abstraction 
to guide design. In its simplest form the parallel ran- 
dom access machine (PRAM) model [20] posits a set 
of P processors, with global shared memory, executing 
the same program in lockstep. Though there is some 
variability between PRAM definitions, the standard 
PRAM is a MIMD computer where each processor can 
execute its own instruction stream. Every processor 
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can access any memory location in one time step re- 
gardless of the memory location. The main difference 
among PRAM models is in how they deal with read 
or write memory contention. This is discussed more 
fully below. 

Despite its impressive dissimilarity to practical par- 
allel computers the PRAM can provide useful design 
information. By ignoring any (and all) costs associ- 
ated with exploiting parallelism, the incentives in the 
model lead the designer to expose the maximum pos- 
sible computational parallelism in a given task. Thus 
the PRAM provides a meaSure of the ideal parallel 
time complexity. 

Stalwart PRAM critics do not share this favorable 
view. Instead they point to economic externality ar- 
guments [25]. Without associating a reasonable and 
practical cost to the use of a resource (computational 
parallelism), there is an incentive to use the resource 
abusively. In other words the aspects of practical com- 
puting hidden by the PRAM serve only to distort the 
design process and including some of these aspects 
early in this process can only increase the potential 
for efficient solutions. 

The critical question to pose to these critics then 
is: which characteristics should be incorporated and 
by what means? There have been a profusion of pro- 
posed answers to this question. There have been many 
surveys of the proposed vnriations on the PRAM, for 
example ([17, 281). P resented below is a representative 
subset that illus(.ra.te which practical machine charac- 
teristics have been the focus of efforts to improve the 
PRAM. 

l.Memory Access. Among basic variants of the 
PRAM, the most powerful is the CRCW PRAM [20] 
which allows concurrent reading or writing of any 
memory location, with some rule to resolve concur- 
rent writes, such as randomization, prioritization, or 
combining. Concurrent memory access at unit cost 
is perhaps the most egregious aspect of this model, 
and many variants have been developed to restrict this 
idealization. The EREW and CREW PRAMS [20] re- 
strict access to a given memory location to one proces- 
sor at a time, either for both reads and writes (EREW) 
or just for writes (CREW). This preserves unit access 
cost but enforces some notion of serial access. Another 
PRAM varia.nt which arbitrates memory access is the 
Module Parallel Con&ter (MPC) [27]. In this model 
shared global memory is broken into m modules. Only 
one memory access can occur within each module per 
time step. The LPRAM (or Local-memory PRAM) 
proposed in [3] augments the CREW PRAM by as- 
sociating with each processor an unlimited amount of 

local private memory. The QRQW PRAM [16] pro- 
vides an intermediary, a queue, to arbitrate and man- 
age memory accesses, while charging a memory access 
cost which is a function of the queue length. These 
arbitration devices all tend to provide the incentive to 
avoid target memory location contention. 

S.Synchronization. The standard PRAM posits a 
rigid execution pattern in which all processors are syn- 
chronized by a global clock. Several variants ease this 
restriction. Examples which allow asynchronous ex- 
ecution with irregular synchronization points include 
the APRAM [lo] and the Asynchronous PRAM [15]. 
Periodic synchronization between intervals of asyn- 
chronous execution is incorporated in the XPRAM 
[34]. While these models incorporate synchronization, 
they do not charge an explicit cost. Although the only 
cost is implicit, (the loss of processor utilization while 
waiting for other processors to complete) these mod- 
els still provide an incentive to synchronize only when 
necessary. 

3.Latency. As it became clear that the cost of 
non-local memory accesses has a severe effect on 
performance in massively parallel computers, several 
PRAMS were designed to remedy the unit-memory 
cost idealization. It was suggested that the LPRAM 
could be aumented by charging a cost of 1 units to ac- 
cess global memory [3]. An elaboration of this model, 
the BPRAM [4], au g mented this by charging 1 units for 
the first message from global memory and a variable 
cost, b, for each additional memory access in a con- 
tiguous block. Thus the BPRAM provides incentives 
for one level of reference locality and for block transfer, 
a form of data parallelism. Oddly enough this model 
was proposed in 1989-90, before the current genera- 
tion of massively parallel computers existed. It is in 
this new generation, as opposed to the previous gen- 
eration, that a very high fixed communication cost is 
incurred and usually coupled with a low variable cost 
per byte. 

4. Bandwidth. Another example of a PRAM variant 
which assumes two classes of memory and includes 
a mechanism for assigning a non-unit cost to a re- 
mote access is the DRAM [23]. The DRAM is im- 
portant because it eliminates the paradigm of global 
shared memory and replaces it with only private dis- 
tributed memory. While the topology of the commu- 
nication network is ignored, the DRAM incorporates 
the notion of limited bandwidth. This model proposes 
a cost function for a non-local memory access which 
is based on the maximum possible congestion for a 
given data partition and execution sequence. While 
the function is somewhat complicated it attempts to 
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provide scheduling incentives to respect limited access 
to non-local data. A recent PRAM variant proposed 
in [36], the PRAM( ) m incorporates bandwidth limita- 
tions by restricting the size of global shared memory to 
m memory locations. The model is a CRCW PRAM 
except that in say given step only m accesses can be 
serviced. 

5.Primitives. The examples above include some of 
the proposed modifications to the PRAM which better 
reflect the characteristics of actual computers. Many 
other variants have been developed which enhance the 
standard PRAM. Some for example include additional 
unit-cost primitive operations such as scans [7]. Such 
models can be considered to be designed to be pre- 
scriptive, suggest.ing feat,ures, some more realizable 
than others, which could potentially make a parallel 
platform efficient for a given class of problems. 

Other Distributed Models 

The perceived technical infeasibilty of constant- 
time access to a global address space led to de- 
velopment of many PRAM variants. A fundamen- 
tal paradigm shift, however, was the introduction of 
models in which modules of memory are associated 
with processors. An ea.rly example of this type of 
model is used by Upfa.l in [32]. Later referred to as 
the Distributed Memory Model (DMM), it posits pri- 
vate memory modules associated with processors in a 
bounded degree network. Computation and nearest 
neighbor communicat,ion require one time step. 

Another more recent example of a distributed mem- 
ory model is the Postal Model [6] deriving its name 
from an analogy to the US mail system. In this model 
to accomplish a non-local memory access a proces- 
sor posts a message int.o the network and goes about 
its business (posting other messages) while the first 
is being delivered. This model is notable for its ex- 
plicit mechanism and incent,ive for latency hiding. The 
model is strictly a model of communication and pro- 
vides no descript.ion of computation. A related model 
which includes computation but introduces quite a 
bit more complcsit,y is the Atomic Model for Message 

Passing developed in [24]. 

Low-Level Models 

Many abstract models have been recently devel- 
oped which incorporate a more detailed view of the 
machine components and behavior. The objective of 
these Low-level models is often to assess the feasibility 
and efficiency of a particular machine or component 
design, sometimes for a. particular class of algorithms, 
or to understa.nd which particular algorithm or imple- 
mentation may be most efGcient on a given machine 
or component design. For example, in [7] Blelloch et 

al. develop a detailed model of the CM-2 by Think- 
ing Machines Inc., a fine-grained hypercube-connected 
massively parallel computer, in order to better under- 
stand which sorting algorithms and implementations 
perform best on this platform. Their model includes a 
two level memory hierarchy and four primitives which 
closely correspond to the actual machine primitives. 
The cost of the primitive operations is approximated 
using actual machine timings and the analysis consid- 
ers constant factors. The model incorporates the cost 
of an arithmetic operation, a nearest neighbor com- 
munication, a general communication and a scan op- 
eration. A similar analysis is performed using a model 

developed to reflect the MasPar MPl computer in [19]. 
This model, also used to draw conclusions about the 
efficiency of alternative sorting algorithms, employs a 
very similar set of parameters. 

Hierarchical Memory Models 

Because data storage in a computer is accomplished 
through a variety of different physical units and me- 
dia and access time is very different among these me- 
dia, there has been a sustained interest in modeling 
this phenomenon. In most such models the concept 
of random access is irretrievably altered. Two early 
examples of serial hierarchical memory models are the 
HMM [l] model and the BT [2] model. In the HMM 
model there are L levels of memory each of which con- 
tains 2” memory locations; access to memory location 
z takes f(z) time for some function f. The BT model, 
(the HMM model with block transfer), incorporates 
the possibility of moving data in large blocks. 

While serial models such as these can provide prac- 
tical design tools for special classes of problems which 
involve large amounts of data movement, they are not 
widely used as general design tools. Yet several argu- 
ments exist, such as the need for massive amounts of 
data movement in many current and envisioned paral- 

lel applications, to motivate the inclusion of a memory 
hierarchy in a general purpose model of parallel com- 
putation. The parallel versions of these models, the P- 
HMM and P-BT models, replicate the serial model P 
times and connect the processors and memory through 
a network which allows parallel data movement. 

Generally, this class of models seeks to provide a 
more refined and practical reflection of memory ac- 
cess cost by defining a hierarchy with monotonically 
increasing sizes and access costs for each subsequent 
level. In these models data movement is a valued re- 
source, and the models provide performance rewards 
for exploiting both types of data movement paral- 
lelism: block transfer and parallel transfer. A per- 
spective on the potential benefits of data movement 
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parallelism can be found in [5] and a survey of paral- 
lel hierarchical memory models can be found in [37’J. 
For problems which involve the movement of large 
amounts of data these models may be particularly ef- 
fective in producing efficient algorithms. An example 
of algorithm design using these models can be found 
in [38]. 

Network Models 

Both classes of models discussed above ignore the 
possible impacts of the topology of the communica- 
tion network. Network models of parallel computa- 
tion reflect a focus of concern in the early genera- 
tion of parallel computers. These computers tended 
to be fine-grained, composed of a large number of rel- 
atively small processors. Network models generally 
ascribe some amount of local memory to each proces- 
sor. The cost of a remote memory access is a function 
of both the topology and the access pattern. The cost 
functions tend to be completely variable with no fixed 
start-up costs for communication. These models pro- 
vide design incentives for efficient data mappings and 
communication routings. There are at least as many 
models as there are proposed network topologies. A 
survey and analysis with an exhaustive bibliography 
can be found in [22]. 

While the standard PRAM presents an uncluttered 
and appealing design platform, it presents little op- 
portunity for optimization with respect to practical 
machine attributes. Each of the classes of models dis- 
cussed subsequently introduces some practical aspect 
to the user, thereby conferring some responsiblity for 
optimization. The interested reader is urged to con- 
sider the models not included here because of space 
constraints. 

Bridging Models 

The notion of a bridging model was effectively cap- 
tured by Valiant when he described the von Neumann 
model as “a connecting bridge that enables programs 
to run efficiently on machines from the diverse and 
chaotic world of hardware” [33]. In [35] Valiant pro- 
vides compelling arguments for an abstract parallel 
machine model which provides a unifying and consis- 
tant design paradigm to facilitate portable parallel al- 
gorithm design and pr0gra.m translation. 

In an early multidisciplinary effort Snyder proposed 
one possible bridging model, the Candidate Type Ar- 
chitecture model [30]. This model posits a finite num- 
ber of sequential von Neumann computers executing 
asynchronously, with a global synchronization mecha- 
nism, connected in a network of tied bounded degree. 
The model specifies communication cost, but synchre 
nization, achieved through the global controller, is 

free, and there are no bandwidth constraints. This 
simple two parameter model (communication cost L 
and number of processors P), with a two-level mem- 
ory hierarchy, provides incentives for reference local- 
ity. The model does not provide explicit incentives 
for latency hiding, bandwidth management, or syn- 
chronization avoidance. It assumes the opportuiiity to 
exploit these optimizations will be recognized by the 
programmer and provides explicit constructs for these 
optimizations in an associated programming model. 

Valiant’s own bulk Synchronous Parallel (BSP) 
model posits a distributed memory with three param- 
eters. The model provides P processors with local 
memory, a router, and facilities for periodic global 
synchronization. Computation can be synchronized at 
most every 1 steps and the ratio of local units of com- 
putation to the steps required to transmit or receive a 
message is a parameter g. 

These three parameters serve several functions. 
First, the parameter 1 reflects the cost of invoking a 
synchronization operation. It also implies a commu- 
nication latency because remote memory accesses do 
not take effect until after the execution of a synchro- 
nization. Second the parameter g enforces bandwidth 
limitations. It requires that messages be sent at most 
once every g arithmetic operations. 

The BSP model is notable for those attributes 
which it does not incorporate. For example, the model 
does not charge overhead for a message to be injected 
into the network. Unlike communication overhead, 
the travel time of a message can be hidden by per- 
forming local computation which does not involve re- 
mote memory accesses. By not modeling overhead 
there is a strong incentive for latency hiding because 
all communication costs can be effectivelyhidden with 
enough parallel slackness in the program. The model 
also does not include any notion of processor topology, 
effectively removing the onus of performing data place- 
ment and describing explicit communication patterns 
and the potential for topology-based optimization. 

Another example of a bridging model which has fo- 
cused on more accurately reflecting existing machine 
attributes is the LogP model [12]. This model, though 
closely related to the BSP model, is distinct in two 
ways. First, it models asynchronous execution. The 
parameter L (now a capital for proper acronym forma- 
tion) used to enforce bulk synchrony in the BSP model 
is used in the LogP model strictly as a measure of the 
message latency. Second, the model adds a new pa- 
rameter, o, which captures the length of time required 
for a processor to inject a message into the network 
or receive a message from the network. This parame- 
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ter, in essence, mea.sures the dead time, lost processor 
cycles which cannot be captured with latency hiding 
techniques. 

The development of the LogP model is notable in 
another s&se: it. is t,he product of efforts by a di- 
verse group of researchers from theoretical, software 
and hardware disciplines suggesting the mutual bene- 
fits to be reaped with a unifying paradigm. The CTA 
model, the BSP model and the LogP model are rep- 
resentative of a recent trend to develop a consistant 
view of execution engines aud programming models 
which can facilitate clear a.lgorithm designs, efficient 
translations and high performance compilations. 

Summary 

The computa.t.ional models presented above were 
chosen to be representative subset of the numerous 
proposed a.bst,ract, models of parallel computation. 
The sheer volume of proposed models is sufficient tes- 
timony to both the lack of consensus and the perceived 
need for a unifying model, or set of models. 

The survey suggests that evaluated individually, no 
single model seems to be acceptable. Evaluated as a 
group, however, t.hey suggest that a small number of 
machine cha.ract.eristics are the focus of the majority 
of the models. They include Computational Par- 

allelism, Communication Latency, Communi- 

cation Overhead, Communication Bandwidth, 

Execution Synchronization, Memory Hierar- 

chy, and Network Topology. 
These characteristics reflect the perspective of those 

whose prima.ry objective is the design of efficient algo- 
rithms and clarity in the design process. Yet a unifying 
computational mode1 must also address the require- 
ments of those whose objectives are programming, im- 
plementation and machine design. A similar survey of 
the development. and use of models in these communi- 
ties was performed but due to space limitations cannot 
be presented here. The survey of these areas also sug- 
gested that within ca.ch area, ou the whole, the models 
focused on a relatively small set of machine character- 
istics. The sect.ion below attempts to synthesize the 
results of the broader survey and present the implica- 
tions for the development of a. unifying computational 
paradigm. 

3 A Case for a Simple, Prescriptive 

Model 

The processes of designing solutions, encoding them 
in software, translating the machine independent soft- 
ware in to efficient executable instructions, and design- 

ing powerful execution hardware have many distinct 
modeling requirements. Yet these processes share 
common performance objectives. This commonality 
motivates the development of a unifying abstract ma- 
chine model which can help coordinate these pro- 
cesses. To unify disparate disciplines the model must 
be simple, without sophisticated concepts from any 
single discipline yet incorporating the performance 
metrics of common interest. 

Simplicity is also essential for an effective design 

process. To ensure clarity of focus a model which fa- 
cilitates design can only address a few characteristics. 
While augmenting a simple model with ancillary ma- 
chine characteristics and incentives may increase its 

descriptivity, it can clutter the design platform, ob- 
scuring primary characteristics. 

To unify and coordinate, an abstract machine 
model needs to facilitate feedback to the machine de- 
sign process itself. In addition to providing a clean de- 
sign paradigm, the model should provide insight into 
what software or platform characteristics would enable 
efficient solutions for different classes of problems. It 
is with this philosophy of simplicily and descriptivity 

balanced with prescriptivity that the following sections 
discuss candidate model characteristics. 

1. Computational Parallelism 

To quantify parallelism most models include the 

number of physical processors, P, as a parameter. 
Though this seems straightforward, the issue of static 
versus dynamic parallelism complicates things. In 
problems with irregular or uncertain (non-oblivious) 
parallelism, designing a problem solution and encod- 
ing it becomes easier if one has the ability to create 
virtual parallel processes to be assigned to different 
tasks which may arise as the computation proceeds. 
This, however, leaves design of the means to exploit 
the parallelism entirely to the software and machine 
designers. Alternatively, allowing only a fixed num- 
ber of physical processors leaves the task of schedul- 
ing parallel computation under uncertainty to the al- 
gorithm designer. 

2. Latency 

The inevitable physical separation of processing 
and memory elements in a scalable parallel computer 
creates a significant time delay when obtaining data 
from non-local memory. Though there is general 

agreement on the existence of this delay, there is less 
agreement on how to quantify it. 

The simplest cost mechanism is to assume that all 
messages are of fixed constant length and incur a con- 
stant number, I units, of time delay. This simple 
choice provides an incentive for one-level reference lo- 
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cality but ignores other aspects of communication la- 
tency such as topology and the fixed and variable cost 
components of message transmission. 

The current argument to ignore topology is to a 
great extent an artifact of high fixed overhead on 
the current generation of massively parallel comput- 
ers. Overhead costs suc11 as message formation and 
packet injection are so high that they swamp variable 
communication c0st.s. Yet this overhead severly re- 
stricts the classes of programs that can run efficiently 
on these machines. If the goal is general purpose par- 
allel computing, the overhead must be driven down 
to more reasonable ranges. One optimization tech- 
nique to reduce the impact of high overhead is to facil- 
itate the transmission of large, variable-length mes- 

sages. By bundling messages the high fixed overhead 

can be amortized over a. large number of bytes. But 
the inclusion of va.ria.ble length messages in a model, 
though it ca.ptures this data parallelism, complicates 
the model. This optimizatiou is likely to work for sev- 
eral classes of problems but. should probably be con- 
sidered an a.lgorithm design optimization. 

In response t.o the incentives to reduce communica- 
tion overhead in parallel computers several machines 
have been envisioned in which more of the network 
communication mechanisms are handled in hardware, 
e.g. the M-machine [13]. Such decreases in the over- 
head of a communication increase the relative impor- 
tance of network topology. Yet contention-based la- 
tency is a. complicat,ed function of topology and the 
communication pattern, and while toplogical consider- 
ations may provide performance optimizations, adding 
topology to a7. simple alxt,ract machine model compli- 
cates it. Perhaps the ability for this kind of algorithm 
refinement could he incorporated in a more refined 
special purpose model. 

portunity for latency hiding. Latency hiding is an 
optimization technique which could be important in 
the current generation of high latency massively par- 
allel computers. Unfortunately this technique does 
not cloak the fixed overhead component of commu- 
nication costs. Thus on computers with high com- 
munication overhead the importance of latency hiding 
diminishes. If there are substantial decreases in over- 
head, latency hiding could have more practical im- 
pact. Yet to realize substantial benefits from latency 
hiding requires software mechanisms such as non- 
blocking asynchronous communication mechanisms, 
very lightweight threads, or hardware support mecha- 
nisms which are still non-standard. (This is in addi- 
tion to the availibility of lots of slackness.) In addition, 
including latency hiding mechanisms in a computa- 
tional model runs the risk of distracting the algorithm 
designer from more substantive ideas for elegant and 
efficient design. Thus, the uncertain potential gain 
must be weighed against the risk of design obfusca- 
tion and the general burden of working within a more 
complicated model. It appears more reasonable to vest 
the incentives for latency hiding in the programming 
model. In this environment more informed choices can 
be made on the closely related issues of process gmnu- 
larity which depends on the characteristics of the soft- 
ware system such as the cost of a context switch, the 
cost of process creation, and the underlying mecha- 
nisms which support interprocess communication. 

3. Bandwidth 

The disparity between the speed of on-chip events 
and network events in the current generation of mas- 
sively pa.rallel computers motivates the simplification 
of an abstract ma.chine model to include only a two- 
level memory hierarchy. Though this disparity may 
decrease, the ut,ilit,y of including a multi-level hierar- 
chy is high only in problems which involve the move- 
ment of a significant amount of data. In these prob- 
lems it can be advnntagcous t.o exploit data movement 
parallelism. But again, models including memory hi- 
erarchy erode the simplicit,y of a model unacceptably 
for general usage. Hierarchical models could be viewed 
as refinements to guide data movement optimization 
for special classes of algorithms. 

With low communication overhead, latency hiding 
could become an important optimization. Yet incen- 
tives for latency hiding can also provide incentives to 
flood the network with messages. Bandwidth is a lim- 
ited resource. In the current generaion of massively 
parallel computers, bandwidth limitations constrain 
the classes of problems which can be efficiently im- 
plemented on these platforms. Thus there are strong 
motivations to include bandwidth constraints in an 
abstract machine model. 

There is a focus in hardware development on reduc- 
ing the slope of the bandwidth hierarchy in parallel 
computers. Cost considerations as well as scalabil- 
ity issues make flat bandwidth hierarchies like those 
in older vector machines or the more recent Cray C- 
90 somewhat impractical. It is reasonable to assume 
that newer machines will seek to correct the band- 
width cliffs of the current generation and present a 
more tapered hierarchy. 

The stra.tegy of assuming that any communication 
incurs a loss of I unit.s of processor time ignores the op- 

It seems reasonable to conjecture that steep band- 
width hierarchies will be mitigated because machine 
designers have strong motivation to correct any bind- 
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ing constraint t.l~at, severely limits the functionality 
of the computer. This balance conjecture essentially 
posits that machines will he designed so that no im- 
pediment to high performance computation or com- 
munication will be severely out of line relative to any 
other in the machine. In addition, if this is not actu- 
ally the case one could argue that this should be the 
prescriptive input from algorithm designers if general 
purpose parallel computing is to be realized. Con- 
sistant with this conjecture is the idea that both la- 
tency and bandwidth constraints can be captured by 
the same model pammeter. That is, one can charge I 
steps as lat,ency for every remote access and prohibit 
more than one remote access every I steps. 

As throughput, approaches the network threshold, 
the relationship between message throughput and la- 
tency changes drastically. The use of one parameter 
would have to correspond to a bandwidth value which 
avoids extreme situa.tions. With this caveat, the inter- 
val I would be a function of a given class of machines, 
set according to observed values. Therefore using the 
same paramenter, (I, the int,erval) to capture both con- 
straints is a. reasonable al~l~roacl~ from the standpoint 
of descript.ivit,y, as well as simplicity and prescriptiv- 
ity. 

4. Syncl~ronization 

Synchronous esecution is an unreasonably rigid as- 
sumption in current or envisioned massively parallel 
computers. The ability to be effective platforms for 
many computationally intensive problems will require 
the ability to exploit irregu1a.r or asynchronous par- 
allelism. The cost of synchronizing a subset of pro- 
cesses is related to the cost of communication. At a 
minimum. assuming no global synchronization mech- 
anism, a synchronization entails at least one commu- 
nication. Thus iT 011ly one parameter is incorporated 
in the model, I (the interval), oue idea is use this same 
parameter to provide a cost measure for synchroniza- 
tion. Namely, allow at a ma.ximum only one synchro- 
nization every I steps. Coupling these parameters also 
simplifies the model by avoiding the introduction of 
more concepts such a.s supersteps or phases. 

While t,here is compelling motivation for the de- 
velopment of a unifying parallel machine model, the 
standards of simplicity and asymptotic analysis set by 
the RAM model Innlie tllis diflicult, expecially in an 
environment. which is inherently more complicated and 
still evolving. Co~lll)rltat~iollal models no longer appear 
to be the exclusive domain of the algorithm designer. 
Both soft.ware and hardware designer have stronger 
motivations to focus on performance measures. This 
makes the task of developing a unifying model even 

more difficult (and more necessary): there are poten- 
tial users from disparate disciplines with different ob- 
jectives. Thus, to develop a model which is unifying 
the demands of these disciplines must be heeded. 

To design an appropriate model requires that a set 
of characteristics be distilled which combine the needs 
and constraints of different domains and that they be 
incorporated in a simple but descriptive manner. Our 
tentative conclusion is that it may suffice to use a 
model with only two parameters: P, the number of 
processors and I, the communication interval. The in- 
terval is set to the binding constraint, the maximum 
of the latency, bandwidth or synchronization costs. In 
addition to simplicity, the justification for using only 
one parameter lies in the supposition or prescription 
that machine design will or should seek to balance the 
cost of these attributes, as the absense of balance can 
severly restrict the classes of applications that can per- 
form well. Combining latency measures, bandwidth 
constraints and synchronization costs in one param- 
eter, the model becomes simple and prescriptive, yet 
only somewhat less descriptive than other proposed 
models. 
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