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We review particle physics model building in type IIB string theory and F-theory. This is a region in the
landscape where in principle many of the key ingredients required for a realistic model of particle physics can be
combined successfully. We begin by reviewing moduli stabilisation within this framework and its implications for
supersymmetry breaking. We then review model building tools and developments in the weakly coupled type IIB

limit, for both local D3-branes at singularities and global models of intersecting D7-branes. Much of recent model
building work has been in the strongly coupled regime of F-theory due to the presence of exceptional symmetries

which allow for the construction of phenomenologically appealing Grand Unified Theories. We review both local
and global F-theory model building starting from the fundamental concepts and tools regarding how the gauge
group, matter sector and operators arise, and ranging to detailed phenomenological properties explored in the
literature.
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1. Introduction

String theory remains the most promising avenue towards a quantum theory of gravity currently in the-

oretical physics. Among its many celebrated properties which make it so appealing in this respect are

perturbative finitness, a microscopic theory of black hole entropy, an impressive handling of spacetime

singularities, and an in-built realisation of gauge/gravity duality. However the theory would not receive

as much attention if it was only a theory of gravity and one of the primary motivations for studying

string theory is that it is potentially a unified theory of all the forces and matter in the universe. It is

quite remarkable that a theory of gravity should so naturally incorporate the key elements of the other

interactions in nature: gauge theories, chiral matter, and spontaneously broken symmetries. As well as

these elements of the Standard Model (SM) string theory realises some of the most appealing ideas for

extensions of it such as Grand Unified Theories (GUTs) and supersymmetry. The ability of the theory to

reproduce realistic low energy physics was realised directly after its self-consistency was demonstrated,

as part of the first superstring revolution, within the Heterotic string context [1]. One of the impor-

tant insights that drove the second superstring revolution is the concept of dualities, and within string

phenomenology the implications were that the Heterotic string is not unique in its phenomenological

aptitude. Indeed it is by now appreciated that these key aspects of particle physics are somewhat uni-

versal within the full structure that is termed as M-theory. However as string phenomenology advances,

and more realistic models are sought, certain regions of the M-theory framework prove more fruitful

in realising certain phenomenological properties than others. Although frequently this is more down to

our ability to calculate within the theory than its innate properties, pragmatically in constructing ever

more realistic models the community is naturally drawn to those regions. One particularly interesting

region in the landscape is that of type IIB string theory and its strongly coupled generalisation termed

F-theory, and the subject of this review article is the study of models of particle physics within this

framework.

Perhaps the most important question in the subject of string phenomenology is which particular

vacuum of M-theory is the universe in? Since our current understanding of the theory lacks a top-

down vacuum selection principle the best we can do is attempt to answer this question by extracting

phenomenological properties of vacua and ruling them out through observations and potentially various

aesthetic criteria. Of course this procedure first requires defining a specific vacuum and in this respect

vacuum degeneracies, or moduli, are a serious problem. Type IIB and F-theory [2] are regions in which

the moduli stabilisation problem is well understood enough so as to be able to specify vacua that are

potentially phenomenologically realistic and have all the moduli fixed. There has been much work on

this part of the theory over the last decade and reviewing this aspect is the subject of section 2.

One of the important ideas to come out form the study of the vacuum structure of type IIB string

theory is the idea of the string landscape [3, 4]. It can be argued that it is possible to obtain sets of

vacua where the values of certain observables, in particular the cosmological constant, are extremely

finely spaced. This has opened up the possibility of making use of environmental selection as a guiding

principle for an explanation of the size of the cosmological constant. The downside of this is that, even

restricting to the type IIB setting, it appears difficult to extract universal phenomenological properties

from the landscape. However there are two key facts that make the task of string phenomenology a

plausible one even in this setting. The first is that we have a vast array of observational constraints on

models of particle physics, and it is clear that as each layer of such constraints is imposed vast regions
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in the landscape can be ruled out. So much so that it is difficult to argue for a single known model that

is compatible with all current observations. The second fact is that not all aspects of models depend

on the full vacuum configuration. This is particularly the case in type IIB and F-theory because gauge

interactions and matter are localised on submanifolds of the full extra dimensions. This implies that

some aspects of the models, such as the chiral spectrum and Yukawa couplings, can depend, to a decent

approximation, only on the details of the local geometry within a spatial region in the extra dimensions.

Therefore such local aspects of models are in fact universal within a large class of global models realising,

at least to some degree, the idea of studying general properties of type IIB and F-theory models.

Perhaps the ultimate realisation of locality in a type IIB setting are models based on D3-branes on

singularities [5]. In this class of models many phenomenological properties are attributed to a single

singular point in the extra dimensions. They are the subject of section 3 in this review. These models

highlight another advantage of local models which is that they are much simpler to work with than full

global constructions. The key aspect of this simplification is that many of the complications of geometry

are associated to the global structure over compact manifolds of high dimensions, and restricting to

lower dimensions or disregarding compactness is a significant technical simplification.

Although D3-branes on singularities offer a range of appealing theories, the most sophisticated model

building within the type IIB framework often involves D7-branes. Chiral matter arises as a result of

D7-branes passing through singular loci or the intersection of D7-branes in the presence of world-volume

flux and therefore such brane configurations are the framework within which string phenomenology in

the type IIB regime is set. We review the key aspects of intersecting brane constructions in section 4.

A very appealing aspect of type IIB string theory is that we have a good understanding of its

strongly coupled limit through the structure of F-theory. Within F-theory the dilaton profile over the

extra dimensions is accounted for by combining it with the geometry of the extra dimensions into an

elliptically fibered Calabi-Yau four-fold, with the complex structure of the torus fibre playing the role

of the dilaton. This is important not only because it allows for a deeper understanding of the theory

but also because the strongly coupled regime can be genuinely motivated by observations. This follows

because within GUT theories Yukawa couplings are associated to exceptional gauge groups which can

not be realised in the weakly coupled regime. This and other attractive phenomenological properties of

exceptional groups have been a significant driving force behind a resurgence in work on F-theory and its

applications to model building. We review developments in constructing full F-theory models in section

5.

Although our understanding of full F-theory constructions is developing rapidly it is as yet not

advanced enough to realise all the phenomenological features that are expected to be possible in F-

theory. In this context the simplifications of local models can be utilised and using the local approach

phenomenologically sophisticated models have been developed addressing issues such as GUT breaking,

the chiral spectrum, gauge coupling unification, Yukawa couplings, proton decay, neutrino masses and

many others. We review the tools used in constructing local F-theory models and the applications to

phenomenology in section 6.

Type IIB string theory has proved to be a fruitful region in the landscape for string phenomenology.

In principle the main ingredients for constructing a string vacuum which is consistent with all current

observations are present. The aim of this review is to summarise the wide range of tools and approaches

that have been developed in order to address the different components that come together to paint the

big picture of a realistic vacuum. Although the main ideas are present the actual implementation of
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them to ever more realistic model building is the subject of contemporary research. Whether a fully

realistic vacuum can be constructed remains to be seen, and although even if such a vacuum is found

we may not yet be able to answer why that one could be favoured over others, it is certainly a required

stepping stone towards a full understanding of the role string theory plays in the universe. Therefore

this review is aimed at setting the scene for cutting edge research on model building in the type IIB

framework. Our aim is to be comprehensive in covering the main ideas explored and offering at least

a brief discussion on the tools and techniques used to explore them. Hence the review will not be

structured like a text book with detailed derivations of all the equations from first principles but rather

in the form of a collection of results and ideas with a comprehensive bibliography for those wishing to

pursue any particular direction in more detail. Of course some introduction to the tools and techniques

is indispensable in order to understand the key aspects of the various results and we hope to have

provided those to a sufficient level. Finally, note that we will not review developments in cosmology

models based on the IIB/F-theory framework. Of course it is difficult to completely separate cosmology

from particle physics but we will refrain from referring to papers whose main subject are models of

cosmology.

2. Moduli Fields and Their Stabilisation

Calabi-Yau compactifications of superstrings do not have a unique ground state. The space of vacua is

a finite dimensional manifold – the moduli space. In the supergravity regime, the moduli space is the

set of continuous deformations of the background fields which map vacuum configurations to vacuum

configurations. Since the energy associated with such deformations vanishes, they give rise to massless

scalar fields upon Kaluza Klein reduction. These scalars are called the moduli.

Massless moduli are a phenomenological disaster. Firstly, moduli couple universally to all matter with

gravitational strength. This makes massless moduli in direct contradiction with fifth force experiments.

There is also a loss in the ability to make predictions. Moduli vevs determine the vacuum configuration;

they are needed as input for computing various quantities in the visible sector. The gauge couplings,

Yukawa couplings, unification scale etc. all depend on the moduli vevs. Presence of a moduli space by

definition implies that these vevs cannot be determined.

Thus, realistic phenomenology requires a potential for moduli fields. Knowledge of the precise form

of the potential is also necessary; so that moduli vevs can be computed by minimising it and used to

determine quantities of phenomenological interest. Masses generated from the potential have to be large

enough to evade bounds from fifth force experiments and cosmology [6, 7].

Flux compactifications: supergravity solutions with background values of the NS-NS and RR form

fields [8–11] are central to moduli stabilisation in type IIB. Our discussion of the subject shall be brief,

as there are already many excellent reviews [12–17]. We begin by describing backgrounds involving the

five form, three form fluxes and D3 and O3 planesa. Following [11] the ten dimensional metric takes the

form

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)g̃mndy

mdyn (2.1)

aThe construction can be generalised to F-theory. Moduli stabilisation in F-theory will be discussed in section 6.
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with g̃mn a Ricci flat metric on a Calabi-Yau. The five form

F̃5 = (1 + ∗)d(e4A(y)) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (2.2)

The three forms F3 and H3 thread non-trivial three cycles of the Calabi-Yau (satisfying Dirac quanti-

sation conditions) with the complex combination G3 = F3 − τH3 imaginary self dual,

∗G3 = iG3. (2.3)

This requires that G3 be expressible as a linear combination of (0,3) and (2,1) harmonic forms of the

Calabi-Yau. Here we introduce the axio-dilaton τ = C0 + ie−φ with C0 being the RR scalar and φ

the dilaton of type IIB strng theory. In addition to the background fields there can be space filling D3

branes and O3 planes which are point like on the Calabi-Yau.

The function A(y), which appears in the metric (2.1) and five form (2.2) is determined by a Poisson

equation on the Calabi-Yau

− ∇̃2e−4A(y) =
GmnpG̃

mnp

12Imτ
+ 2κ10T3ρ3, (2.4)

where ρ3 is the local contribution to D3 charge from the D3 branes and 03 planes, κ10 the ten dimensional

Newton’s constant and T3 the D3 brane tension. For (2.4) to have a solution the integral of the right

hand side over the compact manifold has to vanish. The requirement follows from D3 charge tadpole

cancellation

0 =

∫

dF̃ =

∫ (

H3 ∧ F3 + 2κ210ρ
loc
3

)

.

Since the flux contribution to the right hand side of (2.4) is positive semi-definite non-trivial G3 flux re-

quires a negative contribution from the local sources. This in turn necessitates the presence of orientifold

three planes, the carriers of negative D3 charge (or wrapped D7 branes in F-theory).

The orientifold projection reduces the number of supersymmetries to N = 1 in four dimensions and

truncates the moduli space [18, 19]. The moduli arise as complex scalars, lowest components of N = 1

chiral superfields. Moduli associated with metric deformations fall into two classes – complex structure

and Kahler moduli, classified according to the nature of perturbation of the Calabi-Yau they describe.

The parameters that describe complex structure deformations of a Calabi-Yau are complex numbers,

hence one can naturally associate a complex scalar with these perturbations. On the other hand, the

parameters associated with Kahler deformations are real. These combine with axions that arise from the

dimensional reduction of the RR four form to form complex scalars. The number of complex structure

and Kahler moduli is given by the betti numbersb h2,1− and h1,1+ . The axio-dilaton also survives the

projection and appears as a modulusc.

For fixed flux quanta, the imaginary self dual condition (2.3) can be thought of as equations imposed

in addition to the requirement of a constant dilaton and Ricci flatness; i.e a set of equations on the

moduli space. In the language of d = 4 N = 1 supergravity, these equations are captured by the

superpotential [8]

W =

∫

G ∧ Ω (2.5)

bThe orientifold action induces a Z2 grading on the cohomology of the Calabi-Yau.
c An additional h1,1

−
scalars arise from fluctuations of B2 and C2 in the presence of O7 planes.
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where Ω is the holomorphic three form; and the Kahler potential [19] (to leading order in the inverse

volume expansion)

K = −2 log(V)− log

(

i

∫

Ω ∧ Ω̄

)

− log(−i(τ − τ̄)), (2.6)

where V is the Einstein frame volume of the compactification in string units (expressed in terms of the

Kahler moduli). The superpotential (2.5) depends on the complex structure moduli (via the holomorphic

three form) and the axio-dilaton but is independent of the Kahler moduli.d Furthermore, the Kahler

potential (2.6) satisfies the no-scale criterion of [20]. Thus while the complex structure and the axio-

dilaton acquire masses due to fluxes the Kahler moduli remain massless. Computing the F-terms,

one finds that the presence of (0,3) flux implies that the vacuum is non-supersymmetric. To preserve

supersymmetry, the flux has to be purely (2,1). But the cosmological constant and (soft) masses for D3

brane position moduli vanish for all choices of flux quanta – a consequence of the no-scale structure. e

The mass generated for the complex structure moduli is

mcs ∼
Mpl

V .

In the presence of (0,3) flux, the gravitino mass is also of this magnitude. This is parametrically smaller

than the Kaluza-Klein scale in the large radius limit, justifying a description in terms of four dimensional

supergravity. Explicit examples of the stabilisation of complex structure moduli and axio-dilaton can

be found in [22–27].

Before moving on to Kahler moduli stabilisation we would like to discuss two aspects of these

compactifications which will be important in later sections. Firstly, by making suitable choices of flux

quanta one can have regions where the warp factor is extremely small compared to the average value in

the compactification. For a Calabi-Yau with a conifold singularity whose A and B cycles are threaded

by M and K units of flux, the local geometry is given by the Klebanov-Strassler [28] solution. The warp

factor on the minimal area three sphere is exponentially small in the flux quanta [11]

eAmin = e−2πK/gsM .

This provides the possibility to generate hierarchies in four dimensional scalesf along the lines of Randall

and Sundrum [34].

Fluxes lift the continuous degeneracy associated with the complex structure moduli. But they intro-

duce a new kind of degeneracy: associated with the integers needed to specify the flux quanta. These

integers are constrained by the D3 charge tadpole cancellation condition (2.4). Since fluxes always make

a positive contribution to the tadpole, the number of vacua is controlled by the value of the negative con-

tribution. Large values of the negative contribution can be obtained in F-theory compactifications [35].

This implies an enormous degeneracy, and also the possibility to tune the vacuum expectation value of

the superpotential (2.5) for phenomenological applications [36–38].

d This follows from the shift symmetry of the axionic components of the Kahler moduli. The superpotential has to be
holomorphic, on the other hand the shift symmetry requires that it is a function of the sum of the field and its conjugate.

The shift symmetry holds to all orders in string perturbation theory, is broken non-perturbatively.
eSee [21] for the form of the Kahler potential in the presence of mobile D3 branes. From the ten dimensional perspective,
the vanishing occurs due to the “pseudo-BPS condition” of [11].
f The redshifting of scales in terms of corrections to the N=1 Kahler potential is still not completely understood. The
effective field theory in the presence of highly warped regions has been studied in [21, 29–33].
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2.1. Kahler Moduli Stabilisation

KKLT construction

The KKLT construction [39] provided the first examples of compactifications with all moduli stabilised.

The simplest examples involve a single Kahler modulus

T = τ + iθ

where τ is the Einstein frame volume of the four cycle dual to the Kahler form measured in string units

and θ the integral of the RR four form over the cycle. Note that we henceforth use τ for the Kahler

modulus and not the axio-dilaton. The complex structure and axio-dilaton are stabilised by three

form flux; integrated out leaving a constant superpotential W0. A non-perturbative superpotential is

generated for the Kahler modulusg by gaugino condensation on a stack of N D7 branes. Thus

W =W0 +Ae−aT

where a = 2π
N and A an order one constant. The Kahler potential is given by (2.6) with

V =

(

τ + τ̄

2

)3/2

The potential for T has a supersymmetric minimum with the value of τ at the critical point given by

−Ae−aτ (1 +
2

3
aτ) =W0 (2.7)

The vacuum energy at the minimum is negative with

Vmin ≈ −|W0|2
V2

(2.8)

Control over α′ corrections requires τ ≫ 1, while to justify the use of the leading term in the instanton

expansion one needs aτ > 1. These conditions can be satisfied if the number of D7 branes N is large

and W0 ≪ 1. Generic choices for flux quanta yield W0 ∼ 1, hence control over the effective field theory

requires fine tuning W0.

Explicit constructions on toric Calabi-Yaus and the generalisation to multiple Kahler moduli was

presented in [40]. Examples on toroidal orientifolds and in F-theory were constructed in [41–43]. Vari-

ations of the scenario by incorporating α′ and gs corrections were discussed in [44–47]. More recently,

it has been proposed that all Kahler moduli can be stabilised using a single gauge instanton [48].

Large Volume Scenario

The Large Volume Scenario (LVS) [49] provides a mechanism to stabilise the overall volume of the

compactification at an exponentially large value in the ratio of flux quanta. The key ingredient is the

leading α′ correction from IIB string theory. This is captured in the four dimensional effective action

by a modification of the first term in the Kahler potential (2.6) [50]

−2 log(V) → −2 log

(

V +
ξ

g
3/2
s

)

gThis breaks the non-scale structure.



Models of Particle Physics from Type IIB String Theory and F-Theory 9

where ξ is proportional to the Euler number of the Calabi-Yau. On incorporating this correction (along

with a non-perturbative superpotential for the Kahler moduli), one is led to an interesting scenario for

moduli stabilisation in a broad class of Calabi-Yaus. For Calabi-Yaus with negative Euler number and

at least one Kahler modulus which is the blow up of a point like singularity; the moduli are stabilised

with the overall volume of the compactification given by the exponential of the volume of a blow up

cycle [51, 52]. The size of the blow up cycle is given by a ratio of flux quanta. The minimum exists for

W0 ≈ 1. The vacuum breaks supersymmetry and has a negative cosmological constant

Vmin ≈ − 1

V3
.

A universal feature is that the volume modulus acquires the smallest mass with

mV ≈ Mpl

V3/2
(2.9)

The systematics and some variations of this scenario have been explored in [51–60]. The mass spectrum

of axions and U(1) fields were studied in [61–65]. It has been possible to obtain models of TeV scale

strings with anisotropic extra dimensions [66, 67].

DeSitter Vacua

The vacua discussed above have a negative cosmological constant. It was argued by KKLT [39] that

DeSitter vacua can be obtained if an anti-brane is included in such a compactification with a Klebanov

Strassler throat. It is energetically favourable for the anti-brane to be located at the bottom of the

throat. The τ dependence of its energy can be obtained from the DBI action

ED3 =
e4Amin

τ2
. (2.10)

If such a term is added to the low energy action, the effect on the critical point (2.7) is an increase

in the vacuum energy with a small change in the value of τ . It is therefore often referred to as the

uplift term. A DeSitter solution with a small cosmological constant is obtained by tuning the minimum

value of the warp factor so that the uplift term approximately cancels the vacuum energy of the AdS

minimum (2.8). Furthermore, by varying W0 (achieved by varying the flux quanta) one obtains vacua

whose cosmological constants are finely spaced – a dense discretuum as described in [3].

Dynamics of the anti-brane at the bottom of the throat in the probe approximation was studied

in [68] (see also [69]). The configuration was found to be metastable; connected to the Klebanov Strassler

throat with mobile D3 branes by brane-flux annihilation. This supports the inclusion of (2.10) in the

low energy effective action. There has been much recent work [70–75] to test the consistency of the

entire setup – search for a supergravity solution which includes the back reaction of the anti-branes and

has no irrelevant perturbation of the Klebanov Strassler throat excited.

Another avenue [76–81] is to try to obtain the uplift term in the effective action from more con-

ventional hidden sector field theory dynamics. The major challenge is to generate the uplift term at a

low scale (so that it does not destabilise the moduli); and yet be able to tune it so as to cancel the

vacuum energy of the AdS minimum. Recently, [81] proposed a mechanism involving dilaton dependent

non-perturbative effects.
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2.2. Soft Supersymmetry Breaking

Moduli stabilisation plays a central role in understanding visible sector supersymmetry breaking. The

moduli potential determines F-terms of the moduli dynamically. These together with the matter-moduli

couplings determine the strength of the gravity mediated contribution to soft massesh. The backgrounds

of [11] exhibit sequestering; soft-masses vanish even in the presence of supersymmetry breaking fluxes.

Thus non-trivial contributions to soft masses arise as a consequence of the inclusion of the effects that

break the no-scale structure (the non-perturbative superpotential for the Kahler moduli and α′, gs
corrections to the Kahler potential). Often, various phenomenologically interesting characteristics (such

as mass hierarchies) of the soft parameters are independent of the precise manner in which the standard

model is embedded into the comactification and depend only on certain broad features.

In the KKLT setting, the AdS vacuum preserves supersymmetry. The source of supersymmetry

breaking is uplifting. As discussed earlier, the state with an anti-brane at the bottom of a warped throat

is related to the supersymmetric minimum by brane flux annihilation - a non-perturbative process. Thus

the description of the supersymmetry breaking vacuum in terms of elementary field excitations of the

theory is expected to be highly complicatedi. This makes the analysis of supersymmetry breaking by

conventional four dimensional effective field theory methods extremely difficult. A promising approach

is to make use of the AdS/CFT correspondence [83,89].

A model description of the anti-brane in the language of N=1 supergravity was proposed in [90].

This led to “mirage mediation” [91–95] phenomenology, a scenario with competing contributions from

gravity mediation and anomaly mediation. The gaugino masses are compressed and unify at a fictitious

scale above the GUT scale called the mirage scale.

In LVS, the minimum of the moduli potential breaks supersymmetry with non-vanishing F-terms

for the Kahler moduli. The pattern of supersymmetry breaking depends on whether the visible sector

is localised on the blow-up cycle that supports the non-perturbative effects (the dominant source of

supersymmetry breaking) or is physically separatedj. In the first case, the phenomenology has been

extensively studied [53, 84, 96–98]. Apart from the F-terms of the LVS minimumk a key input is the

modular weights of the Kahler metric of matter fields [97,99]. Using these, for a semi-realistic standard

model sector one finds

m3/2 ≈ Mpl

V and mgaugino ≈ mscalar ≈
Mpl

V log(V) (2.11)

Thus the hierarchy problem motivates (for W0 ≈ 1) V = 1015−16, i.e

Mstring ≈ 1012−13GeV

hThus to construct a viable model of gauge mediation, one is faced with the challenge to ensure that these contributions
are well below the TeV scale. On the other hand, gravity mediated contributions usually lead to dangerous flavour violating
contributions; see [82–87] for discussion and possible mechanisms for the suppression of flavour violating terms in the type
IIB context.
iSee [88] for a recent discussion.
jThe distinction arises as separation in the extra dimensions controls the strength of coupling between the visible sector
and the source of supersymmetry breaking, see for example [53].
kIt can be argued that uplifting to a solution with approximately vanishing cosmological constant leads to a small
correction to the soft terms in the inverse volume expansion.
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Such a scenario implies that the unification exhibited by the low energy couplings of the MSSM at the

GUT scale under renormalization group flow is an accident. This can be considered as a shortcoming. But

cosmologically, the scenario suffers from a serious problem. The soft masses in (2.11) are significantly

greater than the mass of the lightest modulus (2.9), TeV scale supersymmetry makes the modulus

extremely dangerous from the point of view of the cosmological moduli problem [6,7].

Supersymmetry breaking for models where the visible sector is physically separated from the blow-

up cycles which support non-perturbative effects (such as the models in which the standard model is

realised from branes at singularities) was studiedl in [101]. This led to a scenario with

m3/2 ≈ Mpl

V and mgaugino ≈ Mpl

V2
(2.12)

The scalar masses depend on yet to be determined α′ corrections to the Kahler potential of matter fields.

But their size can be estimated, scalars are at least as heavy as gauginos. TeV scale supersymmetry

motivates V = 106, this gives a unification scale closer to the GUT scale. The scenario also offers a

solution to the cosmological moduli problem. The lightest modulus is much heavier than the lightest

sparticle in the visible sector, making it compatible with TeV scale supersymmetry. Unfortunately,

unlike the previous setting, soft masses in this scenario are highly sensitive to the precise form of the

uplift potential [101] and loop corrections [102, 103]. These effects can alter the mass hierarchies and

reinstate the cosmological moduli problem; thus deserve systematic exploration.

A complementary approach [104–110] is to study supersymmetry breaking from the ten dimensional

perspective. This involves computing the backreaction of the no-scale breaking effects on the ten-

dimensional solution. This leads to backgrounds which violate the “psuedo-BPS condition” of [11]; one

then uses the DBI action to determine the soft parameters. One advantage is that symmetries associated

with the extra-dimensions are more manifest.

3. Branes at Singularities

The world volume dynamics of D-branes probing a singularity in a Calabi-Yau is described by an N=1

supersymmetric gauge theory with chiral matter. This makes branes at singularities an attractive arena

for model building in particle physics. All the standard model degrees of freedom arise from a single

point in the extra-dimensions; the models provide the quintessential realisation of the idea of local

model building. These models are best understood from the type IIB perspective, F-theory methods

are not well developed for a singular base.

3.1. Orbifold Models

Given a manifold with a discrete symmetry, one can always construct a new manifold by identifying

points under the action of the symmetry. If the action of the symmetry group has fixed points, the

new manifold is singular in the neighbourhood of the fixed points. Such singularities are called orbifold

singlarities. In spite of their simplicity, it has been possible to obtain various semi-realistic models

lThis was motivated by the tension between having chiral matter fields from wrapped D7 branes on a cycle and the

topological criterion for generating non-perturbative effects [100] on the same cycle. Subsequent discussion on the issue
can be found in [52].
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from orbifolds. The models admit description by world sheet methods; thus it is possible to obtain

detailed information about couplings. The intuition gained is extremely valuable in the study of more

complicated models.

Our interest shall be in orbifolds with D3 branes localized at the singular point and D7 branes

extended in a four dimensional hypersurface of the extra dimensions and intersecting the D3 branes at

the singularity. The gauge degrees of freedom will arise from 3-3 strings and matter from both 3-3 and

3-7 strings. We begin our discussion with R6/ZN , closely following [5]. The spectrum and interactions

can be obtained by carrying out a projection on the theory on M3,1 ×R6.

The low energy dynamics of N D3 branes in flat space is described by N=4 super Yang-Mills with

gauge group U(N). In light cone NSR formalism, the gauge bosons and scalars arise from the NS sector

Aµ = λψµ|0〉NS, µ = 2, 3 φm = λψm|0〉NS, r = 4..9

where λ is the Chan-Paton matrix. The fermions arise from the Ramond sector ground state

λ|s23, s45, s67, s89|0〉R (3.1)

where sij = ±1/2 is the spin of the state in the ij plane. The GSO projection requires the sum of

the spins to be odd. States of opposite four dimensional spin combine to form Weyl fermions in four

dimensions.

A R6/ZN orbifold is specified by a ZN action on SU(4) (double cover of rotations in R6) and an

action on the Chan-Paton factors. The SU(4) action can be encoded in a matrix giving the action on

the fundamental representation

Diag(e2πia1/N , e2πia2/N , e2πia3/N , e2πia4/N ) (3.2)

where ai ∈ Z mod N , and a1 + a2 + a3 + a4 = 0. The Chan-Paton action is given by

λ→ γ−1λγ

with γ an N ×N block diagonal matrix

γ = diag(In0
ω0, In1

ω1, ....., InN−1
ωN−1), (3.3)

where Inj
is the nj × nj unit matrix and ω the Nth root of unity.

Spectrum

The spectrum of the orbifold theory consists of states invariant under the combination of the SU(4)

and Chan-Paton actions. The vector bosons are inert under SU(4); thus the Chan-Paton factors of the

vector bosons in the orbifold theory satisfy γλγ−1 = λ. The invariant states are the nj × nj diagonal

blocks in the block structure of (3.3). This gives the gauge group to be U(n0)×U(n1)× ......×U(nN−1).

The SU(4) action (3.2) acts diagonally on the complexified scalars via

Diag(e2πib1/N , e2πib2/N , e2πib3/N ) (3.4)

with b1 = a2 + a3, b2 = a3 + a1 and b3 = a1 + a2. Thus scalar states that survive the orbifold projection

satisfy e−2πibr/Nγλγ−1 = λ. These are the nj ×nj−br off diagonal blocks in the block structure of (3.3).

The (j, j − br) block transforms in the fundamental of U(nj) and anti-fundamental of U(nj−br ). The

four Weyl fermions that arise from (3.1) transform in the fundamental of SU(4); the invariant states
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satisfy e2πiar/Nγλγ−1 = λ. These are the nj×nj+ar
blocks, they transform in the fundamental of U(nj)

and anti-fundamental of U(nj+ar
). In summary, the 3-3 spectrum is

• Vector bosons with gauge group U(n0)× U(n1)× ....× U(nN−1).

• Bifundamental scalars with quantum numbers (ni, n̄i−br ), where i = 0....(N−1) and r = 1, 2, 3.

• Bifundamental fermions with quantum numbers (ni, n̄i+as), where i = 0....(N−1) and s = 1..4.

Additional massless states charged under the 3-3 gauge groups appear in the presence of seven branes

passing through the origin. Let us consider a stack of M D7 branes extended along the hypersurface

z3 = 0 (we use complex coordinates z1, z2, z3 on R6). As in the case of D3 branes, the action on Chan-

Paton factors is specified by a M ×M matrix with diagonal blocks of size m0,m1...mN−1. This gives a

U(m0)×U(m1)×......U(mN−1) world volume gauge theory. The spectrum of 3-7 strings can be obtained

by following exactly the same procedure as abovem, one finds

• For b3 even, bifundamental fermions in (ni, m̄i+ 1
2
b3), (mi, n̄i+ 1

2
b3) and scalars in

(ni, m̄i− 1
2
(b1+b2)), (mi, n̄i− 1

2
(b1+b2)).

• For b3 odd, bifundamental fermions in (ni, m̄i+ 1
2
(b3−1)), (mi, n̄i+ 1

2
(b3+1)) and scalars in

(ni, m̄i− 1
2
(b1+b2+1)), (mi, n̄i− 1

2
(b1+b2−1)).

Since the world volume of the 7-branes is non-compact, all 7-7 states are non-dynamical from the

perspective of a four dimensional observer on the three branes. The U(mi) symmetries are seen as

flavour symmetries, the vevs of 7-7 matter fields appear as parameters in the four dimensional effective

action. The fields become dynamical once the system is embedded in a compactification.

In general, the spectrum of the four dimensional theory is not free from anomaliesn. The vanishing of

non-abelian SU(ni) anomalies is equivalent to the vanishing of the RR tadpoles in the twisted sector and

is necessary for the consistency of the theory. Thus, consistency requires relations between the number

of D3 and D7 branes, these have been discussed in detail in [5]. One also has anomaly cancelation

conditions associated with the D7 gauge groups. Unlike the D3 gauge groups, massless fields charged

under these gauge groups do not have to be localised at the singularity. Thus, we will not demand that

these anomalies are canceled in the local model; although the issue has to be addressed in any global

embedding. For typical solutions of non-abelian anomalies associated with the 3-3 gauge groups, the

spectrum is non-anomalous with respect to only a single linear combination of the diagonal U(1) factors

in U(ni). The associated charge is

Qano−free =
∑ Qi

ni
(3.5)

where Qi are charges with respect to the diagonal U(1) factors in U(ni). Other linear combinations

acquire a mass by a Stueckelberg term; their anomalies are canceled by the four dimensional analogue

of the Green-Schwarz mechanism. The mass generated is of the order of the string scale.

mSee [5] for details.
nThe orbifold projection does not guarantee that global consistency conditions such as anomaly cancellation are auto-
matically satisfied.
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Phenomenological Considerations

Let us examine the spectrum, with the goal of obtaining the standard model or its extensions.

• Family Triplication: To account for the generation structure in the standard model one needs

triplication in the quantum numbers of states. For 3-3 states this implies degeneracy in the

values of as. Since their sum must also vanish, one has a bound on the number of families. The

maximum number of families is threeo, attained for

~a = (1, 1, 1,−3).

Later, we shall see that a similar statement can be made for general toric singularities. Tripli-

cation of 7-3 states can be obtained by introducing multiple stacks of seven branes; extended

along the hypersurfaces zi = 0, i=1..3.

• Supersymmetry: To preserve N=1 supersymmetry in four dimensions the holonomy of the orb-

ifold has to be SU(3). This requires the vanishing of one of the as. When combined with the

condition for three families, one is led to a unique abelian orbifold: C3/Z3 with

~a = (1, 1, 1,−3) ≡ (1, 1, 1, 0).

• Absence of SU(5)/SO(10) GUT Models : The 3-3 matter states are bifundamentals, while the

7-3 states are either fundamentals or anti-fundamentals. Thus it is impossible to obtain GUT

models, which require antisymmetric/spinorial representations. At the level of the spectrum,

this can be ameliorated for SU(5) by orientifoldingp but as we will see in section 5 it is not

possible to obtain SU(5) models with realistic Yukawa couplings in the perturbative IIB setting.

• Left Handed Quarks and Hypercharge: The left handed quarks are charged under both the non-

abelian gauge groups of the Standard Models. Thus they have to arise as bifundamental 3-3

states. The hypercharge assignments for these are given by that of the anomaly free abelian

charge (3.5).

Keeping the above considerations in mind, [5] explored the possibility of constructing realistic mod-

els in this setting. It was not possible to embed the standard model in any of the non-supersymmetric

orbifolds. On the other hand, the supersymmetric C
3/Z3 orbifold was found to be interesting for phe-

nomenology.

C
3/Z3 : Spectrum and Interactions

Let us use our discussion in the previous section to analyse the spectrum for D3 and D7 branes probing

the supersymmetric C3/Z3 singularity. Note that the condition for supersymmetry (a4 = 0) implies that

the 3-3 Weyl fermions with quantum numbers (ni, n̄i+a4
) are charged under a single gauge group and

transform as gauginos. These combine with the gauge bosons to form vector multiplets. The remaining

fermions have the same quantum numbers as the scalars; they combine to form chiral multiplets. The

spectrum can be summarised using a quiver diagram, as shown in figure 1. We use white nodes to

oExceptions are Z2 and Z4 singularities where it is possible to obtain four families. Since for these cases ~a = (1, 1, 1,−3) ≡
(1, 1, 1, 1).
pFor work in this direction see [111–115].
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Fig. 1. The quiver for D3 and D7 branes probing a C3/Z3 singularity.

indicate D3 gauge groups (both the gauge field and the associated gaugino). Seven branes are indicated

by dark nodes. They are characterised by the divisor they wrap and for each such divisor an associated

Chan-Paton action. The spectrum is insensitive to the former (since b1 = b2 = b3 for the orbifold); we

do not distinguish between seven branes wrapping different divisors in the quiver diagram. Also, with

a slight abuse of notation we use mi to denote the sum of the ranks of the i th identity block of the

Chan-Paton actions for the various divisors. Matter is indicated by directed arrows between the nodes;

each arrow corresponds to a bifundamental chiral multiplet. As mentioned earlier, one sees that there is

family triplication for 3-3 states. For three brane gauge groups U(n1)×U(n2)×U(n3) the chiral matter

spectrum is

3[(n1, n̄2, 1) + (1, n2, n̄3) + (n̄1, 1, n3)] +m1[(1, n2, 1) + (1, 1, n̄3)]+

m2[(1, 1, n3, ) + (n̄1, 1, 1)] +m3[(n1, 1, 1) + (1, n̄2, 1)] (3.6)

The condition for cancellation of non-abelian anomalies is

m2 = 3(n3 − n1) +m1, m3 = 3(n3 − n2) +m1, (3.7)

with the constraint mi ≥ 0. This necessitates the presence of seven branes for unequal gauge groups ni.

Given the three brane gauge groups, the general solution for mi can be obtained by ordering (without

loss of generality) the ni as n3 ≥ n2 ≥ n1; making an arbitrary choice for m1 ≥ 0 and then determining

m2,3 from (3.7).

The interactions can be inferred from the superpotential of N=4 super Yang-Mills. The C
3/Z3

geometry has a manifest SU(3)×U(1) symmetry - a unitary transformation of the complex coordinates

zi → U i
jz

j .

This is reflected as a global symmetry in the interactions of the 3-3 states which interact by a superpo-

tential

W = ǫijkTr(X
i
12X

j
23X

k
31)

where Xi
12, Y

j
23, Z

k
31 are the chiral multiplets with quantum numbers (n1, n̄2, 1), (1, n2, n̄3) and (n̄1, 1, n3)

respectively. Each transforms in the fundamental of the global SU(3). The presence of seven branes
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breaks the SU(3) × U(1) symmetry of the configuration. This is reflected in the 7-3 interactions. For

seven branes warping the divisor z3 = 0, the superpotential is

W = ǫijkTr(X
i
12X

j
23X

k
31) + Tr(Y1̄X12Y2)

where Y1 and Y2 are the 7-3 fields with quantum numbers (n̄1, 1, 1) and (1, n2, 1). Note that the super-

potential retains the residual SU(2) × U(1) symmetry of the background. For seven branes wrapping

sufficiently many divisors, the SU(3)× U(1) is completely broken.

C
3/Z3: Models

3.1.1. Standard Model

This was proposed in [5]. The phenomenological discussion follows [116,117]. We use a quiver diagram

in figure 2 to show how the Standard Model degrees of freedom arise.

32

1

Q
L

u UR

ER

D
Rd

HL,
i

Yj

m  3+m

6+m

Z

Z

Z

H

,X

12

3

N

l

Fig. 2. The Standard Model at C3/Z3

Some important features are:

• The total number of D7 branes is related to the free parameter m1. For the simplest case of

m1 = 0 one has nine seven branes.

• The unique non-anomalous U(1) associated with (3.5), provides the hypercharge. This has a

non-standard normalisation [5]. Using TrT2 = 1/2 for the U(n) generators, the hypercharge

normalisation is k1 = 11/3. This gives the Weinberg angle to be sin2 θw = 1/(1 + k1) = 3/14,

close to the experimental value.

• The left handed quarks QL, right handed up quarks UR and the down Higgs Hu come in three

copies and couple with a superpotential ǫijkQ
i
LU

j
RH

k
u . This gives masses to up-quarks.

• A general vev of the Higgs fields can be brought to the form (0,0,M) by performing a global

SU(3) rotation. The quark mass matrix then takes the form

Mij =





0 M 0

−M 0 0

0 0 0



 , (3.8)
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This has mass eigenvalues (M,M,0); there are two heavy generations and one light. The mass

hierarchies are highly unrealistic. Later, we will see that this problem can be evaded in singu-

larities closely related to C
3/Z3; the del Pezzo singularities.

• All leptons are 3-7 states; left-handed ones (L) have the same origin as the down Higgsses and

interact with QL and X as QLLX. If the field X acquires a high mass and is integrated out; the

interaction is irrelevant for low-energy physics. The 3+m right-handed electrons ER couple to

UR and Y . There are m extra fields N, l that couple to Hu. Yukawa couplings are not induced

for the leptons; we will again find that this can be ameliorated when one considers models on

del Pezzo singularities.

• The right handed down quarks DR and the (three) down Higgs Hd are 3-7 states. The 7-3-7

coupling QLDRHd provides masses to down quarks.

• There are (m + 3) extra SU(3) vector-like triplets Xi, Yi which can acquire a mass if the

standard model singlets Z1,2,3 get a vev. The spectrum then reduces to three copies of:

QL, UR, DR, L,ER, Hu, Hd which is precisely the MSSM spectrum; with two additional Higgs

pairsq.

• If the blow up mode is stabilised at the singularity, the anomalous U(1)s that survive at low

energies as global symmetries can be responsible for the stability of the proton; by forbidding

all dangerous R-parity violating operators [119] (see also [116,120]).If the Fayet-Iliopoulos (FI)

parameter is stabilised at a finite value, R-parity violating operators can be generated in the

effective action. The coefficients of these operators are expected to be suppressed by powers

of the blow-up vev in string units. The operators would lead to proton decay via sfermion

exchange. The decay rate is

Γ ∼
( |φ|
Mstring

)2(p+q) m5
proton

16π2M4
susy

, (3.9)

where Msusy is the SUSY breaking scale, φ the vev of the blow up, and p and q the suppression

powers of the two MSSM vertices involved in the process. Comparing with the current bounds

on the proton lifetime, one requires
( 〈|φ|〉
Mstring

)(p+q)

< 10−27. (3.10)

• Another mechanism is the presence of discrete symmetries that forbid proton decay. A concrete

example was found in [116] where a Z2 symmetry arising from the fact that 7-3 states couple

in pairs combined with a residual Z2 from the breaking of the gauge symmetry to yield an

effective R-parity symmetry.

• There are no distinct candidates for right-handed neutrinos. They could arise as standard model

singlets Z1,2,3 or other heavy singlets such as KK excitations of moduli fields.

3.1.2. Left-Right Symmetric Models

It is also possible to obtain the left-right symmetric models with gauge symmetry SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L [5, 116]. Figure 3 represents the general class of the models. We highlight some of

qFor attempts to obtain just the standard model see [118].
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Fig. 3. The Left-Right symmetric model at C3/Z3

the important features:

• The anomaly free combination (3.5) corresponds to U(1)B−L, with a normalisation factor

kB−L = 32/3. Once the breaking to the Standard Model is implemented, the Weinberg an-

gle is same as in the Standard Model like construction discussed earlier.

• Both left-handed and right handed quarks QL, UR, DR arise from 3-3 states. The right handed

quarks form an SU(2)R doublet QR. The Higges Hu, Hd form an SU(2)R doublet H and come

in three families. Unlike the Standard Model case, they are clearly distinguished from leptons.

• The Yukawa couplings for all quarks arise from the superpotential term ǫijkQ
i
LQ

j
RH

k.

• The leptons L,R arise from the 3-7 sector. Again, lepton Yukawas are absent. The right handed

leptons R include right-handed neutrinos νR.

• There are m+3 pairs of vector-like triplets X,Y that can acquire a mass if the left-right singlet

Z1 gets a vev.

• If all Z1,2,3 get a vacuum expectation value, the model reduces to the supersymmetric version

of the left-right model with two extra Higgs.

• The breaking SU(2)R × U(1)B−L → U(1)Y can be achieved by giving the field R a vev.

Hypercharge is related to SU(2)R and QB−L by Y = T 3
R +QB−L.

• U(1)B−L forbids proton decay, this can survive as a global symmetry if the blow-up mode is

stabilised at the singular point.

• It was found in [116] that the models lead to gauge coupling unification at the intermediate

scale ∼ 1012 GeV with the same level of precision as the MSSM.

• An extension of this model to a singular F-theory compact model with the left right symmetric

model realised by seven D3 branes and six D7 branes at a Z3 singularity was presented in [5].

Realisation of the models at C3/Z3 in highly warped geometries was discussed in [121]

3.1.3. Pati-Salam Models

Variants of the Pati-Salam model (figure 4) with gauge group SU(4)× SU(2)L × SU(2)R × U(1) were

constructed in [122] . The main ingredients of the construction are:
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Fig. 4. Pati-Salam models at a C3/Z3 singularity.
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• The sixteen standard model particles of a single generation, including the right handed neutri-

nos, arise from 3-3 strings. Yukawa couplings for all quarks and leptons can be generated from

the coupling ǫijkQ
i
LQ

j
RH

k.

• The model reduces to the original Pati-Salam model along with six copies of the left(right)

doublets L′(R) if the fields Z1,2,3 acquire a vacuum expectation value.

• Breaking to the standard model can be induced by the right-handed neutrino in (4̄,1,2).

Although this would generate masses for some of the quarks and the leptons.

• There are extra doublets of both SU(2)’s arising from the 3-7 sector. There are also additional

states charged under SU(4)- X and Y . These fields can be used for the breaking SU(4)×U(1)

to SU(3)c × U(1)B−L. A vev of the field Z1 induces a mass for X,Y.

3.1.4. Trinification Models

Trinification models provide another class of interesting extensions; with gauge group SU(3)3. The

quantum number of various matter fields is shown in figure 5.
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• The anomaly free U(1) in (3.5), is a trivial overall U(1) that decouples. Thus the gauge group

is SU(3)c × SU(3)L × SU(3)R; one does not have additional massless U(1)’s. Hypercharge has

to arises as a U(1) subgroup of SU(3)L × SU(3)R.

• Since all the 3-3 gauge groups have equal ranks; D7 branes are not needed to cancel the

anomalies.

• The standard model particles, along with additional matter, arise from the 27 states in the 3-3

sector:

3[(3, 3̄,1) + (1,3, 3̄) + (3̄,1,3)]. (3.11)

These would map to the adjoint in an E6 theory. The first nine states include the left-handed

quarks QL plus one (exotic) triplet D̄′ of hypercharge Y = −1/3. The second nine consist of the

right handed quarks plus an extra down quark, D′. The leptons and Higgs and two right-handed

neutrinos arise from the last nine.

• Gauge symmetry breaking can be induced by the 3-7 states; this consists of m pairs of 3 and

3̄ for each of the SU(3).

In summary, one can construct various supersymmetric extensions of the standard model with three

families all containing the matter content of the MSSM and no chiral exotics. None of the models are

fully realistic. One of the major shortcomings is the absence of lepton Yukawa couplings in the Standard

Model and Left-Right symmetric like models. The vanishing is due to the anomalous U(1)s, the leptons

L and ER arise from different 7-3 sectors, and the orientation of the arrows (which indicate the U(1)

charge of the abelian factor in U(n) = SU(n)×U(1)) forbids a coupling between them. For Pati-Salam

and Trinification models, all the Standard model degrees of freedom arise from 3-3 states thus one has

non-trivial Yukawa couplings for both the quarks and leptons.

However there is a general problem with the Yukawa couplings in the 3-3 sector. The SU(3) global

symmetry requires that the coupling between the matter and Higgs fields involves the epsilon tensor.

This in turn implies that the Yukawa matrix can always be brought to the form (3.8) by a global SU(3)

rotation. Thus the fermion masses have the form (M,M, 0), i.e there are two heavy generations and

one light. Another problem is that the CKM matrix associated with (3.8) does not have the required

hierarchical structure. All these problems can be addressed by considering singularities closely related

to C
3/Z3 – the del Pezzo singularities.

3.2. Models on Del Pezzo and general Toric Singularities

Recall that the C
3/Z3 geometry admits a supersymmetric resolution in which the origin is blown up to

a P
2. The del Pezzo series of surfaces are closely related to P

2, the n-th del Pezzo surface is P
2 blown

up at n points. The reason for unrealistic Yukawas for models on C
3/Z3, is the large global symmetry -

SU(3)× U(1). These are closely related to the geometric isometries of P2. These isometries are broken

in the higher del Pezzo singularities; where the shirking surface is no longer a P
2 but a P

2 with points

blown up. For instance dP1 has a SU(2) × U(1) isometry and dP2 a U(1). This makes it natural to

consider model building on the higher del Pezzo surfaces, and see if it is possible to retain the attractive

features of the models on dP0 while addressing flavour issues. We begin our study with dP1 as this

retains some of the family symmetry. The quivers for lower degree del Pezzos can be obtained from
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Table 1. Table showing the contin-
uous flavour symmetry associated
with 33 states for various del Pezzo

singularities.

singularity flavour symmetry

dP0 SU(3)

dP1 SU(2) × U(1)

dP2 U(1)

dPn>2 none

higgsing higher del Pezzos, so the models we now describe are also closely related to the models that

can be obtained on dPn, n ≥ 2.

The dP1 singularity is a toric singularity. It can be obtained by performing successive blow-ups of

the C
3/Z3 × Z3 singularity [123]. The spectrum of fractional D3 and D7 branes for this model was

computed in [124]. This is summarised in the quiver diagram 6. For every 33 state Xij, there exists a

X ,Xi 3

Yj

Y3

kZ

 Z3

n

nn

m

m

m

m
m

m

1

2

3 4

2

3

4

5

6

n1

Fig. 6. The dP1 quiver

seven brane giving a fundamental Yi and an antifundamental Yj with the Yukawa coupling XijYiYj .

The superpotential for the 33 interactions is

W = ǫijXiYjZ3 − ǫijXiY3Zj +
Φ

Λ
X3ǫijYiZj , (3.12)

where Λ is the UV cutoff. There is an SU(2) flavour symmetry under which Xi, Yi and Zi transform in

the fundamental, and also a U(1) flavour symmetry under which X3 has charge +1 and Φ charge −1.

For D3 brane gauge groups of unequal rank, seven branes are necessary for anomaly cancellation.

The number of D7 branes (mi) have to satisfy

m4 = n4 + n3 − n1 − n2 +m1 −m2 +m3,

m5 = n1 − 2n2 + n4 +m2 −m3,

m6 = n4 − 3n1 + 2n3 +m1 −m2 (3.13)
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Fig. 7. The Standard Model and Left-Right Symmetric Model at dP1.

Thus for fixed D3 brane gauge groups SU(ni), the models have three free parameters m1,2,3, with the

remaining m-s fixed by (3.13). If the field Φ acquires a vacuum expectation value, the matter content

is that of C3/Z3 at low energies. This higgsing is necessary for models on dP1, as this is the only way

to generate family triplication. The mass generated for the Z ′ has to be high enough to evade existing

bounds (see for e.g. [125]).

The reduced family symmetry SU(2)×U(1), allows for realistic mass hierarchies as opposed to the

C
3/Z3 case. Upon diagonalisation of the Yukawa matirx, the mass squared matrix takes the from





M2
1 0 0

0 M2
2 0

0 0 0



 .

with M1 ≫ M2 for 〈Φ〉
Λ ≪ 1. Instanton contributions to Yukawa couplings, which can be relevant to

give the lightest generation a mass have been computed for branes at singularity in [126,127]. Radiative

corrections can also be relevant for the lightest generation to acquire mass [128]. Another mechanism

is the breaking of isometries as a result of compactification [129,130].

Standard and Left-Right Symmetric dP1 Models

We now embed the models of the previous section in the dP1 quiver, giving them a more realistic flavour

structure. Figure 7 shows quivers for an MSSM-like model and a left-right symmetric model on dP1.

In the non-compact limit, the standard model like construction has (anomaly free) gauge group

SU(3)× SU(2)× U(1)Y × U(1)Z . One of these U(1)s corresponds to hypercharge and the other to an

additional U(1)Z . In the non-compact limit, U(1)Z is massless. However, if all 2-cycles of dP1 remain

2-cycles of the Calabi-Yau upon compactification; the U(1) acquires a mass by the Green-Schwarz

mechanism.
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Since it is necessary to vev the dP1 quiver down to the dP0 quiver to obtain the standard model

gauge group at low energies, let us emphasise the role of dP1 in model building. The dP1 quiver reduces

to the dP0 quiver upon higgsing; this represents the fact that if the Z field gets a vacuum expectation

value and supersymmetry is unbroken; the dP1 theory flows to the dP0 theory in the deep infrared.

But if the scale of supersymmetry breaking is well above the scale at which the theory evolves to the

dP0 theory, the interactions of the model are governed by the dP1 quiver and not the dP0 quiver. In

particular the symmetry relevant for flavour is SU(2)× U(1) and not SU(3).

Models on general toric singularities and dP2−3

The constructions on dP1 illustrate that it is possible to obtain semi-realistic models by a judicious choice

of the singularity and brane configuration. This motivates a systematic study of branes at singularities;

with the goal of trying to obtain models which satisfy all phenomenological constraints. One class of

singularities for which the effective field theory is well understood are conical singularitiesr in toric

Calabi-Yaus. For conical singularities, the metric takes the form

ds2 = dr2 + r2gij dx
idxj , (3.14)

where gij is the metric on a Sasaki-Einstein space X. In general, one does not have knowledge of the

explicit form of the metric on X. But, the matter content and superpotential of the gauge theory

describing D3 branes probing the singularity can be determined from the topology of X. This can be

seen via the large volume perspective [132–136]: the matter content and superpotential for D3 branes

can be understood as arising from D5 branes wrapping the two-cycles in the non-singular surface X.

The gauge theory on the D5 branes can be determined in the intersecting brane picture: D5 branes

wrapping distinct cycles correspond to gauge groups, chiral matter arises from intersection of two cycles

and triple intersections give superpotential terms. The theory obtained has gauge groups of equal rank;

unequal ranks can be obtained by including wrapped D7 branes.

For toric Calabi-Yaus, one can use the powerful techniques of toric geometry to extract the gauge

theory [137–139] (the first four del Pezzo surfaces are toric). A systematic study of generic aspects of

model building in toric singularities was carried out in [122], primarily making use of the techniques

in [140]. The key results of the analysis were:

• Three families bound: From the general structure of the gauge theories that arise from toric

singularities and some phenomenological inputs it was argued that the number of families cannot

exceed three. As we have discussed earlier, a similar result was obtained for ZN singularities

in [5]. Given the arbitrariness in the number of families in most string constructions, it is

intriguing that the physical value plays an important role in this class of models. Also, it was

found that the singularities most attractive from the point of view of model building are the

del-Pezzo surfaces.

• Hierarchy of masses: Possible forms of the quark mass matrix were explored. When a physically

realistic choice was made for the quark fields(from the point of view of quantum numbers), the

mass matrix always had a vanishing eigenvalue . Generically it was possible to find hierarchical

masses for the other two eigenstates (except for the zeroth del Pezzo singularity dP0).

rSee [131] for global embeddings of a large class of such singularities.
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• CKM matrix: The CKM matrix was computed for two classes of models at del Pezzo singular-

ities: the first where quarks arise from 3-3 states and the second where quarks arise from both

3-3 and 3-7 states . It was possible to obtain realistic hierarchical structures in the CKM matrix

in both type of models for appropriate values of the additional Higgs vevs. For the first class of

models, the dP1 singularity allowed for the correct form of flavour mixing. In the second class

of models the correct form of mixings could be obtained for the dP2 and dP3 singularities.

A detailed exploration to obtain a model with the goal of satisfying all phenomenological constraints

was carried out in [141]. The most promising candidate is a variant of the Pati-Salam model at the dP3

singularity. Some interesting features from the point of view of phenomenology are:

• The Standard model U(1)Y arises as a subgroup of the non-abelian gauge symmetries. Thus it

cannot acquire a mass by the Green-Schwarz mechanism upon compactification.

• The potential for the heavy higgses allows for hierarchical separation in the quark and lepton

masses.

• FCNC contributions are suppressed due to the additional gauge symmetries of dP3 at the high

scale which constrain the form of the Kahler potential.

A systematic procedure to glue toric singularities has been developed in [142], allowing for modular

model building involving hidden sectors.

Models on dP8

Another interesting class of models have been constructed on cones over dP8. The geometry is non-

toric, but there exists a point in moduli space where the geometry is a non-abelian orbifold - C/∆27.

The spectrum and basic structure of the interaction terms at the orbifold point was discussed in [5].

The minimal consistent set up has gauge group U(6) × U(3) × U(1)9. The overall U(1) decouples and

two of the other U(1)s are anomalous; acquire mass by the Green-Schwarz mechanism. Model building

in this setting was initiated in [143] . The spectrum from the large volume perspective was obtained

in [144], systematic study of the D-terms led to the conclusion that the C/∆27 phase does not allow

for breaking to the standard model gauge groups; although it was shown that a Seiberg dual phase is

attractive for model building. For these models the hypercharge arises as a linear combination of the

abelian factors, it is crucial to ensure that it does not become massive upon compatification. This issue

has been discussed in [145].

Global Models

While the approach of local model building allows to decouple many issues related to the standard model

degrees of freedom from that of moduli stabilisation, once an attractive local model is developed it has

to be embedded in a compact construction. Early work on this subject includes [5, 108, 121, 146, 147].

More recently, a systematic program to carry out global embeddings of IIB constructions with D3/D7-

branes and O3/O7-planes has been initiated [52, 57, 58] . The study exploits the explicit description

of compact Calabi-Yaus by means of toric geometry. Various compact models have been presented,

these satisfy global consistency conditions - D7-tadpole, torsion charges and Freed-Witten anomaly

cancellation. This exhibited how global consistency conditions can be important for model building
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for e.g. tension between moduli stabilisation via non-perturbative effects and chirality (first pointed

out in [100]), tension between moduli stabilisation via non-perturbative effects and the cancellation of

Freed-Witten anomalies. Two classes of models have been studied - the first class [57] with visible sector

D7-branes in the geometric regime: chiral SU(5) or MSSM-like models and the second [58] with visible

sector fractional D3-branes at del Pezzo singularities. Global model building in the F-theory context

will be discussed in section 4.

4. Intersecting 7-branes in IIB

The Standard Model of particle physics is a gauge theory with charged chiral matter and one of the most

satisfying aspects of string theory is that such a sector arises very naturally. Gauge theories are supported

on D-branes and matter representations are supported on intersections of branes. In this section we study

the realisation of realistic matter sectors in type IIB string theory. In particular we limit ourselves to

the geometric regime where all geometric curvature scales are much larger than the string scale and

so we are able to use field-theory techniques to study the open-string sector. We discuss D3-branes

on singularities in section 3.s In the geometric regime of O3/O7 compactifications the supersymmetric

D-branes of type IIB string theory are D3- and D7-branes. Since in the absence of singularities on the

manifold the theory on a D3-brane is non-chiral, realistic chiral theories are associated to the D7-brane

sector. In this section we review the basics of how to construct gauge theories with chiral matter in a

type IIB setting using D7-branes and O7-planes. Such theories can only involve gauge groups of type

U(N), SO(N) and Sp(N) and in particular do not allow for the exceptional gauge groups E6, E7 and

E8. The absence of exceptional group structures can be evaded in the strong coupling regime of type

IIB string theory which can be described using the framework of F-theory [2, 149, 150]. Contemporary

model building makes significant use of this due to attractive phenomenological properties of exceptional

groups as discussed in section 4.4. Therefore the following sections will be concerned with this approach.

In section 5 we review how 7-branes, and their worldvolume fluxes, are described in F-theory through

the geometry of CY four-folds. One of the interesting aspects of studying 7-branes is that they only

wrap a submanifold of the full internal space which means that some aspects of the physics associated

to them can be studied by only considering the local geometry around the 7-brane. In section 6 we

review the tools and results that can be obtained from this approach. Finally in section 6.5 we review

how the ideas and techniques presented can be utilised for detailed phenomenological applications.

For a review, particularly of type I model bulding see [151], while in this section we follow the

discussion of [152] which summarises the rules for D7 model building.

Consider a stack of Na D7 branes wrapping a (four-cycle) divisor Da in a CY 3-fold Y . We denote

the divisor wrapped by the O7-plane DO7 and the orientifold image of Da by D′
a. The gauge group of

such a configuration depends on relative homology classes of of Da and DO7 and is given by U(Na) in

the case where they are not in equivalent homology classes, by SO(2Na) in the case where the brane

stack is on top of the O7 pointwise, and by Sp(2Na) otherwise.
t

The gauge coupling strength or, with supersymmetry, gauge kinetic function for a D7-brane is given

by the size of the 4-cycle that it wraps, see for example [154]. The simplest way to see this is to consider

sAlthough see [148] for work on the singular limit in F-theory.
tNote that the intersection of O7-planes with D7-branes in IIB is always a double point intersection [153].
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the Chern-Simons term in the D7-actionu

SCS
D7 = 2π

∫

M4×Da

∑

2p

C2pTr
[

e
Fa
2π

]

. (4.1)

HereM4 denotes the external space-time, C2p are the closed string RR fields, and Fa is the world-volume

gauge field strength. The particular term of interest is

SCS
D7 ⊃ 1

2

∫

M4

Tr [Fa ∧ Fa]

∫

Da

1

2π
C4 . (4.2)

Within a supersymmetric action this term appears as part of the gauge kinetic function which must be

holomorphic in the fields. The relevant superpartner to C4 appears from the complexification with the

volume of the 4-cycle [19, 22]

Ti =

∫

ω̃i

(

e−φ [−J ∧ J +B ∧B] + iC4

)

, (4.3)

where φ is the dilaton, J is the Kahler form on the CY, B is the NSNS 2-form, and ω̃i denotes a basis

of 4-cycles in the CY. The gauge kinetic function is therefore the appropriate combination of the Ti
according to how Da is decomposed in terms of the basis ω̃i, and so the real part which is the gauge

coupling strength is given by the associated volume.

Massless matter in the adjoint representation arises from strings with both ends on the same brane

along Da. There is the vector multiplet of the gauge group, h(1,0) (Da) chiral multiplets corresponding

to Wilson line moduli, and h(2,0) (Da) chiral multiplets coming from deformations of the brane. Matter

in the bifundamental representation arises from strings stretching between two different D7-branes and

this is only chiral in the presence of background world-volume flux. Therefore such a flux is necessary for

any realistic model building. For a stack of Na D7-branes carrying gauge group U(Na), we can consider

a background flux

Fa = T0
(

f0a + i∗B
)

+
∑

i

f iaTi . (4.4)

Here the Ti denote the generators along which the flux is turned on with T0 denoting the diagonal

U(1)a ⊂ U(Na). i
∗B is the pull-back to the brane of the universal NS-NS anti-symmetric two-form

which always appears in combination with the flux as above. We consider for simplicity only Abelian

flux, see for example [156] for a general discussion of the non-Abelian case in terms of D9-branes. Since

the flux is Abelian it corresponds to line bundles

c1
(

L0
a

)

=
1

2π

(

f0a + i∗B
)

∈ H2 (Da) , c1
(

Li
a

)

=
f ia
2π

∈ H2 (Da) . (4.5)

The flux must satisfy a quantisation condition [152,157]

T0
(

c1
(

L0
a

)

− i∗B
)

+
∑

i

Tic1
(

Li
a

)

+
1

2
T0c1 (KDa

) ∈ H2 (Da,Z) , (4.6)

where KDa is the canonical bundle of Da which is odd for non-Spin manifolds. In such cases one way to

allow for integer fluxes is to turn on a background half-integer B-field. The presence of the orientifold

uFor simplicity we have dropped the Â-roof genus terms though it should be noted that these are important for the
cancellation of gravitational anomalies, see for example [155].
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implies that the fluxes split into even and odd components; for simplicity we do not describe this in

detail but refer to [152] for a discussion of this.

4.1. Tadpoles

The flux is also subject to additional constraints coming from Tadpoles in the closed string sector. The

D7 tadpole limits the brane stacks themselves
∑

a

Na ([Da] + [D′
a]) = 8 [DO7] . (4.7)

While the D5-tadpoles constrain the flux

∑

a

∫

CY

ω ∧ ([Da] ∧ TrFa + [D′
a] ∧ TrF ′

a) = 0 , (4.8)

where we define

TrFa = 2π
∑

I

Tr [TI ] c1
(

LI
a

)

, I = 0, i , (4.9)

and (4.8) must hold for all elements ω ∈ H2 (CY,Z).

The D3 tadpole receives contributions also from closed string fluxes H3 and F3, and any O3/D3-

branes that are present in the compactifications

ND3 +ND3′ +
1

2(2π)2

∫

CY

H3 ∧ F3 −
∑

a

(Qa
D7 +Qa

D7′) =
1

2
NO3 +QO7 . (4.10)

Here

QO7 =
1

6
χ (DO7) =

1

6

∫

CY

c2 (DO7) ∧ [DO7] , (4.11)

where χ is the Euler characteristic. While

Qa
D7 = Na

χ (Da)

24
+

1

8π2

∫

Da

TrF2
a , (4.12)

with

1

8π2
TrF2

a =
1

2

∑

I,J

Tr [TITJ ] c1
(

LI
a

)

∧ c1
(

LJ
a

)

. (4.13)

In the case where [Da] = [D′
a] but not pointwise, the D3-tadpole expression is modified to include

possible pinch points in Da and the expression is given in [152].

4.2. Chiral Spectrum

The presence of flux induces a chiral spectrum of states stretching between D7-branes Da and Db

and their orientifold images in the bi-fundamental, symmetric and anti-symmetric representations. The

spectrum is show in table 2. The appropriate chiral indices Iab can arise from two types of matter:
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Table 2. Table showing the chiral spectrum of
states stretching between Na D7-branes wrapping
a divisor Da with orientifold image D′

a and Nb

D7-branes wrapping divisor Db. HereNa denotes the
fundamental representation of SU(Na) and the sub-
script denotes the diagonal U(1) charge, while A.S
and S denote the anti-symmetric and symmetric rep-
resentations respectively.

Sector U (Na) U (Nb) Chirality

a− b
(

Na

)

−1
(Nb)+1 Iab

a′ − b (Na)+1 (Nb)+1 Ia′b

a′ − a (A.S)+2 1 1
2
(Ia′a + 2IO7a)

a′ − a (S)+2 1 1
2
(Ia′a − 2IO7a)

bulk matter and matter localised on curves. Bulk matter arises when the two D7 stacks wrap the same

divisor Da = Db = D. In this case we have

Ibulkab = −
∫

CY

[D] ∧ [D] ∧ (c1(La)− c1(Lb)) . (4.14)

It is important to note that although this type of matter is denoted bulk matter it is still localised to

some extent within the bulk by the flux.v

The chiral spectrum of matter localised on curves in the CY where two D7-branes wrapping different

divisors intersect is counted by the similar expression

Icurveab = −
∫

CY

[Da] ∧ [Db] ∧ (c1(La)− c1(Lb)) . (4.15)

The relevant index for calculating the symmetric and anti-symmetric representations is given by

IO7a =

∫

CY

[DO7] ∧ [Da] ∧ c1(La) . (4.16)

In the presence of a chiral spectrum the field theory can exhibit gauge and gravitational anomalies.

Within a globally consistent setting these anomalies of the massless spectrum are cancelled by the

Green-Schwarz mechanism. The tadpoles discussed in section 4.1 play an important role in this and

they can be mapped explicitly to the cancellation of anomalies [155]. The appropriate terms for the GS

mechanism arise from the CS term in the D7 action
∫

M4×Da

C4∧Tr [Fa ∧ Fa] =

∫

M4

Ci
2∧Tr

[

Fa

∫

Da

fa

]

∧ i∗ (ωi)+

∫

M4

aiTr [Fa ∧ Fa]

∫

Da

i∗
(

ω̃i
)

. (4.17)

Here we have expanded C4 in a cohomology basis of 4-forms and their 2-from duals C4 = aiω̃
i + Ci

2ωi,

wth i∗ denoting their pullback to the brane. The first term of (4.17) is a Stueckelberg mass for the

anomalous U(1) gauge field and the second term is an axion coupling. Since the cohomology bases of 4-

forms and 2-forms on the CY are not independent but are related by Hodge duality the four-dimensional

fields Ci
2 and ai are not independent degrees of freedom but rather are related by the four-dimensional

vThis follows from general considerations since if the internal wavefunction of a state has additional isometries then corre-
spondingly the state has additional supercharges. So for example a complex one-dimensional isometry in the wavefunction

would imply the state is six-dimensional and preserves 8 supercharges and is therefore non-chiral.
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duality between axions and tensors. The precise relations are such that all cubic anomalies involving

U(1) factors are cancelled.

In the case where the orientifold odd cohomology of the CY, denoted with index α, is non-vanishing

there are additional anomalies and correspondingly an additional contribution to the GS anomaly

cancellation mechanism. The contributing terms this time are
∫

M4×Da

C2 ∧ Tr [Fa ∧ Fa ∧ Fa] +

∫

M4×Da

C6 ∧ Tr [Fa]

=

∫

M4

aα ∧ Tr

[

Fa ∧ Fa

∫

Da

fa

]

∧ i∗ (ωα) +

∫

M4

C2α ∧ Tr [Fa]

∫

Da

i∗ (ω̃α) . (4.18)

An interesting thing about (4.18) is that the Stueckelberg mass term is independent of the internal

flux and in fact can induce a mass of the diagonal U(1) in the U(Na) even in the absence of any flux.

Indeed this will occur in the case where [Da] 6= [D′
a] since then it is possible to make an orientifold odd

combination from the divisor and its image.

4.3. Supersymmetry

Since supersymmetry is expected to only be broken well below the string scale we are mostly interested

in brane and flux configurations that preserve some supersymmetry. Supersymmetric configurations are

also favourable since they are typically stable while non-supersymmetric ones are typically unstable.

This is related to the fact that for a supersymmetric vacuum cancellation of RR tadpoles, as discussed

in section 4.1, implies the cancellation of NSNS tadpoles which in turn are related to vacuum instability.

The conditions for the D7-branes to be supersymmetric themselves is that they must wrap (orien-

tifold even) holomorphic divisors. For the fluxes, being line bundles, we have an induced D-term which

must be satisfied. The Fayet-Iliopoulos (FI) term induced by the flux is

ξa ∼
∫

Da

(i∗J) ∧ c1 (La) , (4.19)

where J is the Kahler form on the CY so that the FI term is a function of the Kahler moduli. Of

course, the D-term also recieves contributions from any charged matter fields that arise in the open-

string sector. Overall the question of finding a field configuration which solves the D-term is intimately

tied to the issue of moduli stabilisation and the most complete studies of this are presented within the

context of explicit global models [57, 58, 158, 159]. A particularly important question to understand in

this context is why the D-terms do not induce vaccum expectation values for fields charged under the

standard model gauge groups.

4.4. Yukawa Couplings: A Motivation for F-theory

So far we have primarily discussed the spectrum of fields in D7-models, however a realistic model

is also expected to recreate the correct interactions between the fields. In particular reproduce the

observed pattern of Yukawa couplings at least approximately. Yukawa couplings for matter arising from

intersecting D7-branes can be studied by modeling the full set of intersecting branes as an 8-dimensional

enhanced gauge theory which is broken to a the actualy gauge group of the intersecting D7-branes by

a spatially varying background Higgs vev. We will describe this in some detail in section 6.4 in an
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F-theory context but the complete discussion will equally apply to type IIB D7-branes. We therefore

refer the reader interested in more detailed aspects of Yukawa couplings on D7-branes to those sections.

However, at this stage, while considering only D7-branes there is a serious problem that arises at much

more fundamental level which is the subject of this subsection.

The problem we are interested in is the presence of a top quark Yukawa coupling for realisations of

Grand Unified Theories (GUTs) in type IIB. GUTs are well motivated from the apparent unification

of the Standard Model gauge couplings in the MSSM. The minimal such unification is to SU(5) ⊃
SU(3) × SU(2) × U(1)Y . The MSSM spectrum fits into the fundamental 5 and anti-symmetric 10

representations of an SU(5) GUT theory broken to the MSSM gauge group

5 → (3,1)− 1
3

+ (1,2) 1
2

,

10 → (3,2) 1
6

+ (3̄,1)− 2
3

+ (1,1)1 . (4.20)

The up Higgs is embedded into a 5Hu multiplet and the top quark Yukawa coupling arises from the

GUT coupling

Ytop ⊂ 5Hu
10 10 . (4.21)

In type IIB O7/D7 constructions such an SU(5) would be realised by a stack of 5 D7-branes wrapping

divisor Da and intersecting a single D7 brane wrapping divisor Db. Then according to table 2 matter

transforming as the 5 of SU(5) arises on the intersection of Da ∩Db and matter in the anti-symmetric

comes from Da ∩ DO7. The Abelian gauge group is U(1)a × U(1)b, and with respect to it the fields

appearing in the Yukawa coupling have the following charges

Ytop ⊂ 5
(1,−1)
Hu

10(2,0) 10(2,0) . (4.22)

It is manifest that the coupling is not gauge invariant under the Abelian gauge group and is therefore

perturbatively forbidden. This is obviously a serious setback for such model building because the top

quark Yukawa coupling is known to be of order 1 at the GUT scale.

A possible solution to this problem was given in [160–163] where it was shown that the coupling

could be generated non-perturbatively with an O(1) E3-instanton. However such an instanton is non-

perturbative in both the string coupling gs and the 4-cycle volume and therefore should not be of order

1 if the perturbative gs and α′ expansion is to hold.

The requirement of a perturbatively allowed top quark Yukawa coupling for type IIB GUT models

necessarily leads to its strong coupling regime and this is described by F-theory. F-theory will be

discussed extensively in the upcoming sections and the solution to the top quark Yukawa problem that

it offers has played no small part in much of the interest that it has attracted recently. The key aspect

of F-theory is that it allows for more states than are present in type IIB and in particular for different

realisations of the anti-symmetric SU(5) representations. One particular such realisation comes from

the presence of exceptional symmetries and in particular from the adjoint of E6 which decomposes to

SU(5)× U(1)a × U(1)b as

78 → 24(0,0) ⊕ 1(0,0) ⊕ 1(0,0) ⊕ 1(−5,−3) ⊕ 1(5,3)

⊕ (5⊕ 5̄)
(−3,3) ⊕ (10⊕ 1̄0)

(−1,−3) ⊕ (10⊕ 1̄0)
(4,0)

. (4.23)

The crucial thing to note is that the 10 representations are charged under 2 separate Abelian symmetries,

and this is something which is not possible in perturbative type IIB since they arise from strings
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stretching between the brane and its orientifold image and so are only charged under the diagonal U(1)

of the brane. The F-theory 10s can instead be thought of as 3-pronged strings which are bound states

of F and D strings that are able to form string junctions. With the new states it is manifest from (4.23)

that a top quark Yukawa coupling can be gauge invariant under all the symmetries of the theory. Hence

we can deduce that the requirement, following substantial phenomenological motivations, of an order

one top quark Yukawa coupling within a GUT model implies that F-theory, and not the weakly coupled

type IIB string, is the more appropriate arena for model building. with this motivation in mind we

proceed to describe the relevant aspects of the F-theory framework.

5. 7-brane description in F-theory

F-theory [2] is not so much a theory as a collection of results regarding type IIB in backgrounds with

spatially varying, and possibly strong, string coupling. The idea is that aspects of the background

geometry, the 7-branes and the dilaton profile can be described in a combined way by the geometry

of an elliptically fibered CY four-fold. The elliptic fiber, which is a torus fibered over every point in

the CY base B, describes the profile of the dilaton, and 7-branes correspond to degenerations of this

fibre. There is no sense in which a 12-dimensional theory is reduced on the four-fold to four dimensions,

but it is possible to define F-theory as a certain limit of the dimensional reduction of M-theory on an

elliptically fibered Calabi-Yau fourfold to three dimensions. The limit is one where one of the internal

dimensions along the torus is shrunk to zero size, and therefore if we T-dualise this to IIB this direction

is decompactified to yield four large dimensions. This is the more working definition since this way we

know, at least the low energy limit of, the higher dimensional theory as 11-dimensional supergravity.

For methodical discussions of this way of approaching F-theory see [164–166] for example. Some of the

more detailed aspects of F-theory can only really be understood in this way.

It is important to note that apart from the phenomenological motivations, such as the top quark

Yukawa discussed in the previous section, F-theory is important for understanding type IIB vacua in the

presence of 7-branes generally. This is because one of the interesting properties of 7-branes is that since

they must wrap an internal 4-cycle they live in (complex) co-dimension 1 of the internal space. This

means that modes that are sourced by them, in particular the axio-dilaton, propagate in two dimensions

and therefore have a logarithmic propagator. Hence the backreaction of 7-branes on the geometry is

not localised and in particular we must keep track of the sourced dilaton profile over the full compact

geometry. This global constraint on the dilaton profile is precisely captured by the CY condition of

F-theory.

In the previous section considering D7-branes in type IIB string theory we were thinking of a

background geometry in which we embed some choice of D7-branes and O7-planes with chosen world-

volume bundles and appropriate intersections to build models. In F-theory the input of background

flux remains but the distinction between 7-branes and the background geometry is blurred. The closest

thing we have to such a separation is to think of the IIB background geometry as corresponding to the

geometry of the base of the elliptic fibration and the 7-branes as being described by the fibre. With

this point of view the analogoue of the discussion on model building in IIB, which did not specify a

particular CY but assumed some general background geometry and instead focused on the configuration

of D7-branes and O7-planes, is studying the structure of the fibration without specifying the base. In

this sense we are learning to redescribe 7-branes in terms of the elliptic fibre and this is the topic of this
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section. To understand all the aspects of the fibration structure it is important to account for its full

global structure over the whole CY four-fold. In this section we will consider such a global approach, but

it is important to state that substantial information can still be learned regarding 7-branes in F-theory

by not considering the full global structure but only the geometry near the 7-brane and this approach

is discussed in section 6. There are a number of nice reviews of the formalism relating F-theory and

7-branes which we refer to for any further details required [17,167–171].

5.1. 7-branes as codimension 1 singularities

Every elliptically fibered CY four-fold can be represented as a Weierstrass model where we consider the

elliptic curve (the torus) to be a hypersurface in the weighted projective space P [2, 3, 1], with respective

homogenous coordinates (x, y, z), and fibre this over the base B with coordinates ui so that the CY is

given by the locus

y2 = x3 + f (ui)x+ g (ui) , (5.1)

with f and g being holomorphic functions of degree 4 and 6 respectively. The elliptic fibre degenerates

whenever the discriminant

∆ = 27g2 + 4f3 , (5.2)

vanishes.aa For generic f and g, the vanishing of the discriminant defines a complex codimension 1

locus of the base, a 4-cycle, and we should associate this to 7-branes wrapping the 4-cycle. There is a

singularity on this locus and the 7-brane configuration is described by the type of singularity. There is

an algorithm for determining the type of singularity from the vanishing orders of f , g and ∆.ab Tate’s

algorithm applies when the elliptic fibration (5.1) can be written in Tate formac

PT = −y2 + x3 − a1xyz + a2x
2z2 − a3yz

3 + a4xz
4 + a6z

6 = 0 . (5.3)

The relation of the coefficients in (5.3) to those of (5.1) is given by

β2 = a21 + 4a2 , β4 = a1a3 + 2a4 , β6 = a23 + 4a6 ,

β8 = β2a6 − a1a3a4 + a2a
2
3 − a24 ,

∆ = −β2
2β8 − 8β3

4 − 27β2
6 + 9β2β4β6 ,

f = − 1

48

(

β2
2 − 24β4

)

, g = − 1

864

(

−β3
2 + 36β2β4 − 216β6

)

. (5.4)

Tate’s algorithm takes into account the refinement of the Kodaira classification of the fibre structure

required to account for possible monodromies. In this case it is possible to read off the gauge group

induced at a singular point from the vanishing order of f , g and ∆ according to table 3 [174].ad The

classification in table 3 is of ADE type (with An = SU(n + 1) and Dn = SO(2n)) and the claim of

aaA nice discussion of why (5.1) describes a torus fibration and why it degenerates at ∆ = 0 can be found in [172].
abIn the case where the determinant vanishes to linear order while f and g do not, the so-called I1 locus, only the fibre
pinches and the CY four-fold is not singular.
acGenerally this is possible but there are some exceptions [173]. For the cases of realistic gauge groups SU(5) and SO(10)
it is always possible [173] at least up to higher order corrections in the vanishing locus which may have meromorphic
coefficients.
adThere actual further refinement in terms of vanishing orders of the ai is presented in [174].
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Table 3. Table showing the fibre structure, as classified by
Kodaira, according to Tate’s algorithm.

ord(f) ord(g) ord(∆) fiber type singularity type

≥ 0 ≥ 0 0 smooth none

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

F-theory is that a singularity of specific type describes a stack of 7-branes carrying the associated gauge

group. The fibre type I1 describes a single D7 brane. To see how the associated gauge group arises

we should go to the M-theory side by compactifying the special F-theory direction of space-time and

performing a T-duality on it. Since the direction is compact the T-dual can be of finite size and this

allows for a resolution of the singularity. The resolution of an ADE singularity consists of a tree of

complex projective spaces P1
i that intersect according to the Dynkin diagram of the associated group.

Fibering these over the four-cycle on which the 7-brane/singularity have support gives rise to a set

of resolution divisors Ei. There is a further divisor E0 that corresponds to the elliptic fibre over the

four-cycle and all together these divisors intersect according to the affine Dynkin diagram.
∫

CY4

EI ∧ EJ ∧Da ∧Db = CIJ

∫

CY4

W ∧Da ∧Db . (5.5)

Here we define the affine index EI = {E0, Ei} and CIJ is the affine Cartan matrix, Da and Db are

generic divisors in the base B and W is the 4-cycle divisor of the 7-brane which we define by the

vanishing of an appropriate holomorphic polynomial

W : w = 0 . (5.6)

The generators of the associated gauge group are accounted for as follows: there are M2 branes wrapping

suitable combinations of the resolution P
1
i which give rise to the non-Cartan elements of the gauge group.

The Cartan elements come from the two-form duals wI of the resolution divisors EI which give rise to

gauge fields by dimensional reduction of the M-theory three-form

C3 = AI ∧ wI . (5.7)

For the case of an SU(5) gauge group on the divisor W the required vanishing orders of the coeffi-

cients of (5.3) are

a1 = b5 , a2 = b4w , a3 = b3w
2 , a4 = b2w

3 , a6 = b0w
5 , (5.8)

where the bi are functions which do not vanish at w = 0. The explicit resolution of the SU(5) singularity

for this Tate model has been studied in detail in [175–182].ae The works differ in the form of the resolution

aeSimilar analysis was performed for SO(10) in [183,184] and for E6 in [185].
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in that some use a small resolution while others use a blow-up, currently there is no disagreement in

the final results. For the purposes of this section we will follow the blow-up methods of [179] and refer

to that work for full details. A blow-up is a smoothing of the singularity by the introduction of an

additional coordinate and an additional scaling relation such that the new scaling implies, through

the Stanely-Reisner Ideal (SRI), that the singularity locus is no longer part of the manifold and is

replaced by the exceptional divisor associated to the newly introduced coordinate. The resolution of an

SU(5) singularity this way requires four blow-ups and the four new coordinates, ei with i = 1, ..., 4, are

introduced through the transformation [179]

(x, y, w) →
(

xe1e4e
2
2e

2
3, ye1e

2
4e

2
2e

3
3, e0e1e2e3e4

)

. (5.9)

After this replacement, and dividing out by an overall prefactor, we have that the so called proper

transform of the Tate equation is

PT = −y2e3e4 + x3e1e
2
2e3 − a1xyz + a2x

2z2e0e1e2 − a3yz
3e20e1e4 + a4xz

4e30e
3
1e2e4 + a6z

6e50e
3
1e

2
4e2 = 0 .

(5.10)

The modified SRI after the blow-up is given in [179] and it can be checked using it that the resulting

manifold is smooth, ie. there is no solution to PT = dPT = 0. The divisors associated to the ei are the

Ei of (5.5). Note that the actual resolution P
1
I can be extracted as the intersection of eI ∩PT ∩Da ∩Db

with Da and Db generic divisors in the base that intersect w at a point.

5.2. Matter curves as codimension 2 singularities

For generic bi in (5.8) Tate’s algorithm implies an SU(5) singularity over w = 0. However over loci

where the bi themselves vanish the manifold may become more singular and naively applying Tate’s

algorithm on this restricted locus we would associate an enhanced symmetry to that locus. To be more

explicit consider the discriminant for the ansatz (5.8) which reads

∆ = −w5
[

P 4
10P5 + wP 2

10 (8b4P5 + b5R) +O
(

w2
)]

, (5.11)

where we define

P10 = b5 , (5.12)

P5 = b23b4 − b2b3b5 + b0b
2
5 , (5.13)

R = −b33 − b22b5 + 4b0b4b5 .

Now over loci where the combinations P10 or P5 vanish we have further degeneration and according

to Tate’s algorithm a gauge enhancement. Since these constraints restrict to complex codimension 2

they correspond to curves on w = 0 or SGUT and are referred to as matter curves because on these

loci additional massless degrees of freedom localise. Such enhancements of the gauge group over curves

is familiar from early work on F-theory [186] and will closely tie in with the local approach to model

building explored in section 6. More specifically on the locus P10 = 0 Tate’s algorithm predicts an

enhancement to SO(10) and on P5 to SU(6). The additional massless degrees of freedom are required

to complete the adjoint of SU(5) which is present everywhere to the adjoint of the enhanced gauge

group. Or in terms of M-theory they correspond to membranes wrapping the additional P1s required
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to resolve the enhanced singularity. Working the other way we can deduce the spectrum of localised

modes by decomposing the adjoint of the enhaced gauge group to SU(5)× U(1)

SO(10) : 45 → 240 ⊕ 102 ⊕ 10−2 ⊕ 10 ,

SU(6) : 35 → 240 ⊕ 51 ⊕ 5−1 ⊕ 10 . (5.14)

Note that the additional U(1) may be completely broken in the vacuum. Therefore on P10 we have

localised modes in the representations 10⊕ 10 and on P5 a pair 5⊕ 5.

The above reasoning relied to application of Tate’s algorithm to singularities of co-dimension higher

than one but, as emphasised in [183], the algorithm strictly only holds for co-dimension one singularities.

Because of this it is worth examining in more detail the structure of the fibre over the matter curves.

Again this was done a number of different ways in [175–182], but we will follow the analysis of [179]. We

are particularly interested in the resolution P
1-tree over the matter curves and to study this explicitly

we should study the intersection eI ∩ PT over the matter curves. Consider for example the case of the

first P1 given by

e1 ∩
{

−y2e3e4 − a1xyz
}

, (5.15)

which using the SRI (presented in [179]) to set to 1 coordinates which can not vanish simultaneously

with e1 can be simplified to

e1 ∩ {e3e4 + a1x} . (5.16)

Now over the 10 matter curve a1 = b5 = P10 = 0 the right hand side of (5.16) factorizes and so the P
1

splits into two

{e1 ∩ e3} and {e1 ∩ e4} . (5.17)

It can then be checked that additional P1 is exactly such that the intersections of the P
1
I forms the

Dynkin diagram of SO(10), and so indeed we recover the extra membrane states as expected from the

naive application of Tate’s algorithm. The same can be shown to hold for the case of P5 enhancing to

SU(6).

5.3. Yukawa couplings as codimension 3 singularities

Similar to the enhancements of the singularity over the matter curves it is possible to have further

enhacements where matter curves intersect. These rank 2 enhancements in co-dimension 3 correspond

not to new massless content but rather to operators coupling the modes on the intersecting matter

curves, an important subset of which are Yukawa couplings. The naive application of Tate’s algorithm

implies that we have the following enhancements and associated operators

P10 = b4 = 0 : SU(5) → E6 =⇒ 5 10 10 = Up type Yukawa,

P10 = b3 = 0 : SU(5) → SO(12) =⇒ 5 5 10 = Down type Yukawa,

P5 = R = 0 : SU(5) → SU(7) =⇒ 5 5 1 = µ−term type operator. (5.18)
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where the operators are deduced following the same procedure of decomposing the adjoint of the en-

hanced group in terms of SU(5) af

78 → 24(0,0) ⊕ 1(0,0) ⊕ 1(0,0) ⊕ 1(−5,−3) ⊕ 1(5,3)

⊕ (5⊕ 5̄)
(−3,3) ⊕ (10⊕ 1̄0)

(−1,−3) ⊕ (10⊕ 1̄0)
(4,0)

,

66 → 24(0,0) ⊕ 1(0,0) ⊕ 1(0,0) ⊕ (5⊕ 5̄)
(−1,0) ⊕ (5⊕ 5̄)

(1,1) ⊕ (10⊕ 1̄0)
(0,1)

,

48 → 24(0,0) ⊕ 1(0,0) ⊕ 1(0,0) ⊕ (5⊕ 5̄)
(−6,0) ⊕ (5⊕ 5̄)

(0,6) ⊕
(

1⊕ 1
)(6,−6)

. (5.19)

Note that the GUT singlets are not localised on matter curves on the GUT divisor but do intersect it

at the point of enhancement.

Although again the application of Tate’s algorithm is strictly not possible, since in the previous

section we showed that indeed the expected matter localises on the matter curves, and the enhancement

points are where such matter curves intersect, we expect that indeed the conjectured operator is there

even if the fibre structure over the point is not that of the full enhancement group predicted by Tate’s

algorithm. Indeed as shown in [177–179] this is the case: although the P
1s in the fibre do not form

the extended Dynkin diagram of E6 say, the appropriate couplings are present. The difference from

the matter curves is that the splitting of the P
1s is such that no new classes of P1 are introduced but

only the multiplicities of existing classes are changed. This is expected for an enhancement where an

interaction rather than new matter is localised.

5.4. U(1)-symmetries and G-flux in F-theory

Unlike non-Abelian symmetries, which are well understood in terms of the ADE classification of sin-

gularities, U(1) symmetries in F-theory are more difficult to identify and construct. However they are

crucial for model building in two respects: firstly, turning on flux along the U(1)s is how chirality is

induced in IIB and a similar mechanism is expected to be used in F-theory. Secondly, U(1)s, even if

Stueckelberg massive, can be used a symmetries to control operators in the theory, for example for-

bidding proton decay. Because U(1)s play these crucial roles in model building and yet are not well

understood their study is an active subject in the contemporary literature and a full and general picture

is yet to emerge. In this section we will review the lines of attack and progress that has been made

so far. Note that here we will discuss aspects of U(1)s that arise from a global perspective, which as

emphasised in [187] for example, is required for a full understanding, particularly regarding forbidding

operators. In section 6 we will study U(1) symmetries from a local perspective which does not hold the

full information but nonetheless can yield significant results.

In the weakly coupled type IIB string with O3/O7 planes there are two types of U(1)s coming from

D7-branes: those that are massless in the absence of world-volume flux and those that are massive even

in the absence of flux. The latter gain a mass through the Stueckelberg term in (4.18). Since in uplifting

to F-theory only the world-volume flux is not geometrised it must be that those massive U(1)s in IIB are

geometrically massive. In the following we will primarily be concerned with massless U(1)s according to

this classification since they are better understood but will make some comments on the massive ones

at the end.

afHere the charges under the additional 2 U(1)s are given for the 10, 5, 1 in each bracket with the conjugate representation

having the opposite charge.
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U(1)s that are massless and unbroken in the absence of flux correspond to additional sections of

the elliptic fibration, i.e additional to the section defining the base z = 0 [188]. An additional section

implies a set of holomorphic functions {x1, y1, z1} of the coefficients of the fibration (5.3) such that

when we set {x, y, z} = {x1, y1, z1} we find PT = 0. Equivalently, it specifies a point in the torus over

every point in the base. In the special case where z1 = 1 we have that PT (x1, y1, 1) = 0 and therefore

if we transform coordinates by x → x + x1 and y → y + y1 we arrive at a form for PT where a6 = 0.

This is the case which was studied in [189], termed a U(1)-restricted Tate Model, where it was shown

that the additional section generically intersects itself on the locus a3 = a4 = 0 thereby enhancing to an

SU(2) singularity.ag The resolution of the SU(2) singularity then introduces an additional exceptional

divisor which is in turn associated to the additional massless U(1). In [179] further evidence for this

construction was given by showing that the matter curves have the expected charges under this U(1).

An additional section was also studied without an SU(5) singularity in [190] where the general form

of a 2-section model was presented. In [191] the additional U(1) was identified by noting that the U(1)-

restricted Tate model constraint a6 = 0 implies that, after an appropriate coordinate transformation,

the SU(2) singularity can be written in the form of a conifold singularity. A small resolution of this

then induced the new divisor associated to the U(1).

Another approach to the second section is to use duality with the Heterotic string, and this was

utilised in [192] to study additional sections. In particular constraints were deduced on the form of the

w dependence of the bi in (5.8) such that they are consistent with the existence of a U(1).

The most systematic approach so far to additional U(1)s, or sections, was presented in [193]. It was

shown that an appropriate restriction of the coefficients of the Tate model induces up to 4 new sections,

for an SU(5)GUT model, which can reproduce the general breaking pattern of E8 → SU(5)GUT ×
∏

i U(1)i. The two possible cases with a single U(1) were studied in detail.

Once a massless U(1) is identified we can consider turning on flux along it. This is described on

the resolved M-theory side in terms of the four-form G-flux. This was initially studied independently of

the SU(5) resolution in [191] and for the case of SU(5) × U(1) within the U(1)-restricted Tate model

in [179–181] and more generally in [193]. The appropriate flux was identified as taking the form

GX = f ∧ wX = f ∧
(

−S +K + Z +
1

5
(2, 4, 6, 3)iEi

)

, (5.20)

where f is the flux on the base and wX plays the M-theory analogue of the gauge generator along the

U(1). Here S is the resolution divisor associated to the U(1) as described above, K is the anti-canonical

bundle on the base, Z is the Poincare dual of the section divisor (z = 0), and the EI are the resolution

divisors of the SU(5) singularity (see section 5.1).

Geometrically massive U(1)s uplifted from IIB were first considered in [189,194] following ideas from

massive U(1)s in type II [195].ah The claim is that these arise in F-theory from two-forms that are not

harmonic but rather satisfy differential relations of the type

dwA = Ca
Aαa , (5.21)

agIn terms of the general possibilities for U(1)s coming from E8 in F-theory, see table 4, this was a restricted model of
type 4+1.
ahSimilar ideas in the context of M-theory were studied in [196,197] where the massive U(1)s arose from discrete torsion.
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where here Ca
A are integers and αa are a basis of 3-forms on the manifold. Reducing the M-theory C3

on the wA gives a set of U(1)s but since they are not harmonic the U(1)s are massive. Although these

U(1)s are string-scale massive intuition from IIB implies they still have a role to play, firstly in IIB such

U(1)s would still leave behind a global symmetry which constrains the low energy theory. In particular

this is the case for the diagonal U(1) which as discussed in section 4.4 forbids the top Yukawa coupling.

Also, in IIB, it is still possible to turn on flux along such U(1)s to induce chirality, though such a flux is

subject to D5-tadpole cancellation conditions (4.8). Whether, and how, these properties lift to F-theory

is still under study.ai

Relating to this discussion, in [181] it was shown that fluxes turned on along the geometrically

massive U(1) in IIB when lifted to F-theory can be mapped to a particular allowed G-flux, first identified

in [178], called the universal spectral cover flux (we will discuss this in section 6.2). This is consistent with

the above proposal for the non-closed 2-forms because still a G can be constructed from an appropriate

combination of non-closed forms which itself is closed and harmonic. Indeed this is guaranteed by the

uplift of the D5-tadpole condition to F-theory which is automatically part of the geometry.

As discussed it is possible to turn on fluxes in F-theory even in the absence of a massless U(1)

associated to the flux, and this is more general than the specific massive U(1)s described above. A

particularly important class of fluxes which have no associated massless U(1)s are the universal spectral

cover fluxes. These were identified in [178, 180, 181] for SU(5) models, in [184] for SO(10) models and

in [185] for E6 models. This class of flux is interesting because, unlike the U(1) flux, it does not take the

form f ∧ w with f being a flux on the base and w being the M-theory two-form playing the analogue

of the gauge generator in IIB. Rather it has components involving two resolution divisors, explicitly we

have for SU(5)

G = E2 ∧ E4 +
1

5
(2,−1, 1,−2)iEi ∧K . (5.22)

So far we have discussed only fluxes that are given as wedge products of two 2-forms. Such fluxes

are said to be in the primary vertical subspace of 4-forms on the CY [199]. These fluxes present at all

loci in complex structure moduli space. In [191] it was shown how to construct fluxes that can not be

written in this way for an SU(2) model, and such fluxes are expected to be only allowed on loci in

complex structure moduli space and therefore fix some moduli. These fluxes were generalised to the

case with also SU(5) in [181].

The construction of the four-form G-flux is only half of the input needed to calculate the chirality

induced by the flux since we need to determine over which cycle to integrate the flux. In type IIB the

two-form flux would be integrated over the matter curves, or D7-brane intersections (4.15). In F-theory

the G-flux naturally integrates over four-cycles and these are denoted matter surfaces and constructed

as follows [178–181, 200]. For a representation on a matter curve R, we consider the Cartan charges of

the weights of the representation which can then be identified with some combination of the resolution

P
1s with the same Cartan charges. The Cartan charges of the combination of P1s are determined by

intersecting them with the resolution divisors EI which correspond to the Cartan generators. Therefore

to each (weight of a) representation we can associate a combination of P1s that are fibered over the

matter curve supporting that state. Altogether this therefore defines a 2 complex dimensional surface

aiAlternative promising approaches, based on E(−1) instantons, to the uplift of the diagonal U(1) in IIB were also studied
in [198].
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which is the matter surface associated to that state CR. The chirality induced by the flux for that

representation is given by integrating the flux over the associated matter surface.

Introducing chirality through G-flux implies that the massless spectrum can be anomalous. As dis-

cussed in section 4.2, in IIB the anomalies are guaranteed to be cancelled through the Green-Schwarz

mechanism once D5 and D7 tadpole cancellation is imposed. In F-theory these tadpoles are automat-

ically cancelled and so we expect that anomalies are automatically cancelled as well. This result was

shown, and the mechanism in F-theory was studied in detail, in [166].

Finally, as in IIB, the G-flux is subject to some important quantisation conditions. These were

studied and determined in [157,178–181,191,200–205].

5.5. Global SU(5) F-theory GUT models

The formalism discussed in the previous section for global F-theory models was primarily concerned

with the structure of the elliptic fibration and not with the of the base of the CY. Of course an explicit

global model in F-theory is required to specify also the base manifold and identify SGUT within it.

There has been substantial literature exploring the geometry of the base and constructing models on it.

However most of it was before the developments which lead to the detailed understanding of four-form

flux. The work discussed below constructed the base explicitly but then used ideas from gauge theory,

or the spectral cover, to discuss the flux. Therefore, strictly speaking, they are not complete global

models of F-theory. Nonetheless they do form the background on which true global model building can

be viably developed.

Recently global models which specify also the flux have been constructed in [179, 180, 182]. The

state of the art there are models which exhibit 3 chiral generations, though none have a fully realistic

Higgs sector: the models of [179,180] do not consider doublet-triplet splitting and in [182] Wilson lines

are utilised though with results yielding multiple Higgs fields. The models are all based on the U(1)-

restricted structure which is a particular breaking of E8 with one 10-matter curve and two 5-matter

curves, in particular this does not allow for a U(1)PQ scenario. We will describe in detail more general

scenarios from a local model building perspective in section 6, but for now we note that global models

are yet to reproduce the rich structures that local models have been exhibiting and some work remains

to reconcile the two approaches.aj

Returning to models that construct the base and study the flux using the spectral cover. Early

work studying general global properties of the base was presented in [208–210] and actual models were

constructed in [211,212], where the base was a flop of a blown-up Fano three-fold, and [175] where the

base was a del-Pezzo transition of a Fano three-fold. In [176] Toric methods were utilised to construct

the geometry, and [213] to build SO(10) models. In [214] a scan over half a million base geometries was

performed and many models constructed and a database formed. In [215] global models were studied

with an emphasis on instanton dynamics. In [216] global models were studied with respect to supporting

possible Wilson lines.

ajIt should be noted that Heterotic line bundle models are closely related to the approach adopted in F-theory of us-

ing Abelian fluxes and these do exhibit a rich phenomenological structure, especially with respect to additional U(1)
symmetries [206,207].
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6. Local models in F-theory

One of the important aspects of type IIB and F-theory is that the gauge degrees of freedom are localised

on 7-branes which wrap only a submanifold of the full CY. This is particularly interesting in the case

of a GUT theory where all the SM gauge groups and matter are localised on a single SU(5) 7-brane

wrapping a four-cycle. In such a setup much, but certainly not all, of the information regarding the

gauge and matter sector can be obtained by considering only the local geometry of the four-cycle

and not the full CY. This is a substantial simplification which is similar, at least in spirit, to branes

on singularities [5] (see section 3). The idea of local F-theory models is to use this to study aspects

of the models which do not require a fully global understanding as outlined in the previous section.

This approach has proved quite fruitful and the phenomenological success of the resulting local models

identified F-theory as a potentially attractive region in the landscape for string phenomenology and

was therefore also the driving force behind much of the global aspects research as well. Indeed some

of the earliest papers on the applications of F-theory for string phenomenology advocated the local

approach [217–220]. The advantages and disadvantages of the local approach are the universal ones for

bottom-up versus top-down approaches: you gain freedom and simplicity for model building but you

lose the UV sector, both the UV physics itself and any constraints on the IR physics that arise from it.

There is an additional aspect which is that local models project large regions of the landscape onto a

relatively small number of models. This allows us to make general statements about F-theory models

but also does not distinguish between different possible global realisations that can lead to the same

local models. This may be regarded as an advantage or a disadvantage subjectively.

Sections 6.1 and 6.2 will describe the formalism and tools used in the local approach with an aim

towards the setting the groundwork for the model building phenomenology reviewed in section 6.5.

Since the 7-brane gauge coupling strength is set by the size of the 4-cycle that it wraps, while

the Planck scale is set by the volume of the full CY, it is possible to consider decoupling gravity

in local models by sending the volume to infinity. Of course since the planck scale is finite we may

require that decoupling is possible at least in principle. Some motivation for this requirement can be

found in the small hierarchy between the Planck scale and the GUT scale, the former being set by the

CY volume while the latter by the four-cycle [219]. Also in the fact that the GUT coupling strength

predicted by gauge coupling unification is quite strong and therefore requires a relatively small cycle.

The possibility of an in-principle decoupling of gravity constrains the GUT cycle embedding in the CY

to be a contractable cycle, more formally with an ample normal bundle. It is important to stress that

the requirement for contractability is not essential for the local approach to model building, though it

does complement it. The constraints on the geometry implied by requiring contractibility were studied

in [58,176,208,211,219,221] for example.

It is important to emphasise that although in principle it is possible to decouple gravity and keep

a finite coupling interacting gauge theory at tree-level, the calculation of any 1-loop quantities will

typically diverge in such circumstances because open string 1-loop amplitudes are equivalent to tree-

level closed string amplitudes and since closed strings propagate in the bulk space they are sensitive

the decoupling limit.ak Indeed in [222–224] it was shown that gauge coupling running and therefore

akThis of course is the reason that also anomalies, particularly mixed gauge-gravitational, see for example [165], can not

be studied in a local context.
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unification occurs at scales set by the bulk scale, and therefore would diverge in the decoupling limit.

Similarly in [225] it was shown that Yukawa couplings also exhibit such a divergence.

Just as the gauge and matter sectors are localised to four-cycles, operators in the theory are localised,

though in a less drastic and universal sense, to points in the four-cycle. Operator coefficients in F-theory,

just as in IIB, can be calculated by solving for the wavefunction profiles of the associated fields in the

extra dimensions and integrating their overlap. The localisation of operators manifests in the peak of

the wavefunction profiles around the intersection of the matter curves. This means that, at least to some

approximation, it is possible to extract information about the wavefunctions by just considering a local

patch inside the GUT four-cycle around the point associated to the operator. This was first applied to

study flavour physics in [226] and subsequently in [187, 227–239] for this and more detailed aspects of

operators. In section 6.4 we will discuss the details of these constructions which are sometimes termed

ultra-local since they are valid only on a patch within the four-cycle.

6.1. The gauge theory

From the discussions in sections 5.1-5.3 we know that the type of configurations we are interested in

have a gauge group GS on the GUT divisor SGUT : w = 0, which is then enhanced to a higher rank

one on matter curves inside SGUT . Further Yukawa couplings can also be understood from a further

enhancement over the intersection of matter curves. This data describes key properties of the effective

low-energy theory that should describe intersecting 7-branes in F-theory. Already in [186] it was shown

that these type of symmetry enhancement over loci in a gauge theory can be captured by thinking

about a gauge theory with the enhanced gauge group over SGUT which is broken down to GS by a

spatially varying vev for an adjoint Higgs field. The Higgs vev vanishes over certain loci and that is

where the gauge group therefore enhances. The additional massless modes that cause the enhancement

are associated to matter fields under the decomposition of the adjoint as in (5.14). Therefore we expect

that at least a coarse description of F-theory models of intersecting 7-branes can be captured by an

N = 1 8-dimensional gauge theory on SGUT which a spatially varying vev for an adjoint Higgs. It is

also known that for supersymmetry this theory must be twisted [217, 218, 240] which means it has a

connection or half a unit of background flux.

An appropriately twisted 8-dimensional gauge theory was constructed in [217,218] as a local descrip-

tion of F-theory models. It captures the relevant enhancements of symmetries over matter curves and

therefore the appropriate localised massless matter which is the analogue of strings stretching between

the GUT brane and additional 7-branes. It also captures the the point enhancements and therefore the

associated Yukawa couplings. The theory is termed topological in [218] which rather should be inter-

preted as being independent of some of the metric data, specifically the non-holomorphic part which

affects the Kahler potential of the theory. The spectrum, matter curves and Yukawa couplings all have

purely holomorphic components and this is the coarse data which is appropriately captured. In [230]

it was shown how the theory can be mapped directly to twisted N=1 8-dimensional super Yang-Mills

which in turn also captures the Kahler potential data. Therefore the theories presented in [217,218] do

also capture some of this data, but the key point is that this is only in the approximation for a slowly

varying Higgs vev. In terms of intersecting 7-branes this corresponds to shallow intersection angles [218].

The precise regime in which we can trust the Kahler potential of this theory, and the associated D-

term equation, was studied in [238,239]. In particular it was argued that in the case where the 7-branes
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intersecting the GUT brane go into the bulk of the CY the theory breaks down on SGUT in the limit

where we decouple gravity through a large CY volume. For a finite Planck scale it is possible to find a

regime where the approximation of shallow intersection angles can be made to work at least locally on

a patch in SGUT .

The 8-dimensional theory is comprised of a gauge field A and an adjoint valued Higgs field Φ. These

can be decomposed into 4-dimensional N = 1 multiplets

Am̄ = (Am̄, ψm̄, Gm̄) , (6.1)

Φmn = (ϕmn, χmn, Hmn) , (6.2)

V = (η,Aµ, D) . (6.3)

The indices on the fields denote their form-values on S. So for example Am̄ ∈ Ω̄1
S ⊗ ad(P ) where Ωp

S

denotes holomorphic p-form on S and P is the principle bundle (in the adjoint representation) associated

to the gauge group G. Here A and Φ are chiral multiplets with respective F-terms G and H. V is a

vector multiplet with D-term D. Am̄ and ϕmn are complex scalars while ψm̄, χmn, and η are fermions.

The action for the effective theory was given in [218]. Setting 4-dimensional variations of the fields

to zero, the equations of motion that follow are

H − F (2,0) = 0 , (6.4)

i [ϕ, ϕ̄] + 2ω ∧ F (1,1) + ⋆SD = 0 , (6.5)

2iω ∧ Ḡ− ∂̄Aϕ = 0 , (6.6)

−∂H̄ + 2ω ∧ ∂̄D + Ḡ ∧ ϕ̄− χ̄ ∧ ψ̄ − i2
√
2ω ∧ η ∧ ψ = 0 , (6.7)

ω ∧ ∂Aψ +
i

2
[ϕ̄, χ] = 0 , (6.8)

∂̄Aχ− 2i
√
2ω ∧ ∂Aη − [ϕ, ψ] = 0 , (6.9)

∂̄Aψ −
√
2 [ϕ̄, η] = 0 , (6.10)

−
√
2 [η̄, χ̄]− ∂̄AG− 1

2
[ψ, ψ] = 0 . (6.11)

Here F denotes any gauge flux present and ω denotes the Kahler for on SGUT . For supersymmetric

backgrounds we have D = G = H = 0 and the backgrounds considered will have vanishing gaugino vev

〈η〉 = 0.

The matter curves are captured by an appropriate background vev for ϕ, which according to (6.6),

must be holomorphic. As discussed, to model intersecting branes we should take the gauge group on

S to be a higher rank than SU(5). For example to model an intersection which has a 5-matter curve

we should take GS = SU(6) and give the Higgs an adjoint vev which breaks SU(6) → SU(5) × U(1)

generically on S while enhancing back to SU(6) on the holomorphic curves where ϕ vanishes. It is

possible to show then that solving the equations of motion for perturbations of ψm and χ about such

a background gives solutions for wavefunction profiles that have a gaussian profile which peaks on the

vanishing locus of ϕ [217,218]

δψm ∼ δχ ∼ e−|〈ϕ〉|2 . (6.12)

These are the trapped matter modes. We do not go into further details on the wavefunction profiles

here as we will do so in section 6.4.
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Table 4. Table showing possible breaking patters of
E8 → SU(5) × ΠiU(1)i. Note that the non-Abelian factors,
other than SU(5), are broken by the Higgs and are displayed

for classification purposes of the remaining U(1)s.

Breaking Pattern Number of U(1)s

E8 → SU(5)× S [U (4)⊕ U (1)] 1

E8 → SU(5)× S [U (3)⊕ U (2)] 1

E8 → SU(5)× S [U (3)⊕ U (1)⊕ U (1)] 2

E8 → SU(5)× S [U (2)⊕ U (2)⊕ U (1)] 2

E8 → SU(5)× S
[

U (2)⊕ U (1)3
]

3

E8 → SU(5)× S
[

U (1)5
]

4

The gauge theory description is richest if we consider an E8 theory on SGUT which is broken by

the Higgs background to SU(5)× ΠiU(1)i.
al There are multiple possible breaking patterns of E8 that

preserve an additional number of U(1)s and these are be classified in table 4. The breaking patterns are

realised by Higgs background inside SU(5)⊥ in the decomposition E8 → SU(5)GUT × SU(5)⊥ where a

Higgs generator taking value just along the Cartan sub-algebra of SU(5)⊥ preserves S
[

U(1)5
]

and the

other cases corresponding to turning on components away from the Cartan.

The representations trapped on matter curves are determined once the Higgs breaking pattern is

specified. They arise from the adjoint of E8 which under the decomposition E8 → SU(5)GUT ×SU(5)⊥
yields

248 → (24,1)⊕ (1,24)⊕ (10,5)⊕ (5̄,10)⊕ (1̄0, 5̄)⊕ (5, 1̄0) . (6.13)

Therefore the GUT 10-multiplets are in the fundamental representation of SU(5)⊥ and the GUT 5-

multiplets are in the anti-symmetric of SU(5)⊥. A particulary nice way to parameterise the possibilities

in table 4 is, see [207,246] for example, to consider the purely Cartan breaking in which case the charges

of the GUT representations can be parameterised by five 5-component charge vectors (ti)j = δij where

i, j = 1, ..., 5. Here we are parameterising four linearly independent U(1)s in terms of five U(1)s that

satisfy one tracelessness constraint which means we should specify the vector (1, 1, 1, 1, 1) to be neutral

or in terms of the basis charge vectors the linear relation
∑

i

ti = 0 . (6.14)

Using this basis the charges are

Q (10I) = ti ,

Q (5J) = −ti − tj , i 6= j ,

Q (1K) = ti − tj , i 6= j , (6.15)

where the capital indices label the different matter curve representations and run over the possible

combinations of the small indices, which means I = 1, .., 5, J = 1, .., 10, and K = 1, .., 10.

The charges of the representations for the other cases in table 4 can be built from these charges by

identifying some of the tis according to the non-Abelian factors in the decomposition of SU(5)⊥. The

alFor theories that go beyond E8, specifically by considering additional intersecting D3-branes see [241–245].
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rule is that if compared to the pure Cartan breaking we have U(1)n → U(n) then we identify n of the

ti. So for example for S
[

U(3)× U(1)2
]

we take t1 = t2 = t3 and these all parameterise a single U(1),

the diagonal one in U(3). The different breaking patters in table 4 are sometimes refered to as different

monodromies [227,235,246].

Note that from the charge assignments (6.15) we see that if all the matter generations of the SM

arise on a single 10-matter curve then a non-trivial monodromy is required for an up-type Yukawa since

to be gauge invariant this must take the form

Q (5 10 10) = −t1 − t2 + t1 + t2 , (6.16)

so that t1 and t2 should be identified as the single 10-matter curve carrying the SM generations.

The term monodromies arises from considering the local form of the Higgs field where its vev along

two U(1)s is mapped under a monodromy around a branch cut in its spatial dependence on SGUT [227].

In [235] a more general way to view this, which is more along the lines described here, is to note that

branch cuts arise in Higgs profiles when a holomorphic Higgs vev which has off-diagonal components

so that it take values in the full SU(2) is diagonalised. The resulting diagonal Higgs profile then has

branch cuts that interchange the two diagonal components.

A further important point made in [235] is that to extract full information regarding the localisation

of matter in the presence of a non-Abelian Higgs vev it is not sufficient to consider only the eigenvalues of

the Higgs field but rather the full Higgs profile should be specified. This is as opposed to a purely Cartan

diagonal Higgs vev which is fully specified by its eigenvalues. Configurations that are not captured by

the eigenvalues of the Higgs were termed T-branes. As yet we do not have sophisticated enough tools

to describe such backgrounds over the full SGUT in F-theory, as opposed to a local patch, and so for

the rest of this review we restrict ourselves to Higgs backgrounds that are fully characterised by their

eigenvalues (which may have branch cuts interchanging them).

If we diagonalise the Higgs field over the full SGUT then it is characterised by its eigenvalues which

have a spatial dependence and may be intercharged under monodromies around branch cuts on SGUT .

Each diagonal element corresponds to a charge vector ti above in that when it vanishes SU(5)GUT

combines with that particular U(1)i to enhance to SU(6) or SO(10). Therefore the Higgs background

can be described by promoting the ti to holomorphic (up to branch cuts) functions on SGUT and matter

charged under the ti is localised on the locus where the appropriate combination of ti, as specified in

(6.15), vanishes.am Although the ti individually may undergo monodromies, it is possible to describe

the Higgs bundle by quantities that are invariant under monodormies, these are the Casimirs of the

Higgs field bi and are given by

b1 ≡ Tr [ϕ] = s1 (ti) =
∑

i

ti ,

b2 ≡ −1

2
Tr

[

ϕ2
]

= s2 (ti) ,

...

b5 ≡ det ϕ = s5 (ti) = Πiti . (6.17)

amThe GUT singlets are not fully localised on SGUT but the projection of their localisation locus to SGUT is given by
the vanishing curve of the appropriate ti combination.
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Here the sn denote elementary symmetric polynomials of degree n. The labelling bi is no coincidence,

these quantities are actually related to the global bi of section 5 (more precisely to the projection of

them onto SGUT ). This is the first explicit connection between the Higgs bundle and the geometric

description of F-theory, in section 6.2 we make this mapping more explicit.

So far we have discussed the background Higgs vev which determines the matter curves. If we only

have a holomorphic Higgs background the gauge theory preserves four dimensional N = 2 supersym-

metry and therefore the massless spectrum forms N = 2 vector multiplets and hypermultiplets and so

is not chiral. To obtain more realistic models we have to break to N = 1 supersymmetry and generate

chirality, this is achieved by the presence of a background flux for the 8-dimensional gauge field along

SGUT . The key difference from the IIB fluxes described in section 4.2 is that we are describing the whole

intersecting brane system in terms of one 8-dimensional theory. However since the integrals involving

chirality are always performed restricted to the GUT brane we expect that the naive generalisation of

the formulae (4.14) and (4.15) should also hold in these cases where we replace the intersection of the

GUT brane with a U(1) brane with the matter curves. This was studied in detail in terms of the twisted

gauge theory in [217,218] with the expected results that the chirality is counted by the homology

Hi
(

C, F ⊗K
1
2

C

)

. (6.18)

Here C denotes the matter curve, F the U(1) flux which transforms in the appropriate representation

for the localised matter (ie. is weighted by the U(1) charge), and KC is the canonical bundle by which

we twist. The net chirality is therefore given by

I = h0
(

C, F ⊗K
1
2

C

)

− h1
(

C, F ⊗K
1
2

C

)

=

∫

C

F . (6.19)

Although this approach does capture some of the appropriate fluxes it does not capture all the possible

fluxes; a more sophisticated approach to fluxes is the use of the spectral cover as described in section

6.2.

Apart from U(1) fluxes which induce chirality in complete GUT multiplets it is also possible to

turn on flux inside SU(5)GUT . Indeed this is a particularly attractive way to break the GUT group to

the gauge group of the Standard Model which is the commutant with the Hypercharge inside SU(5).

Generically such a flux would induce a mass for the Hypercharge gauge boson through the Stueckelberg

coupling (4.17). However the fact that the GUT gauge theory is localised on a submanifold of the

full CY, and that the massless axions that can give the hypercharge a mass come from the closed-

string sector and therefore are counted by the cohomology of the full CY, gives a way to avoid such a

mass [154, 219, 220, 247]. The idea is to turn on hypercharge flux which is homologically non-trivial in

SGUT but homologically trivial in the full CY. This implies that the corresponding mass term vanishes

since
∫

Da

fY ∧ i∗ (ωi) = 0 ∀ ωi ∈ H2 (CY ) , (6.20)

where fY is the hypercharge flux.

The presence of hypercharge flux on SGUT can alter the massless spectrum of both bulk modes and

matter curve modes. Decomposing the adjoint of SU(5) to the Standard Model gauge group gives

24 → (1,3)0 ⊕ (8,1)0 ⊕ (1,1)0 ⊕ (3,2)−5/6 ⊕ (3̄,2)5/6 , (6.21)
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and so a bulk hypercharge flux can induce net chirality in the (3,2)−5/6 states. To avoid such chiral

states we should take the hypercharge flux to come from a bundle LY which satisfies [219,220]

I
(

S,L
5
6

Y

)

= 1 +
1

2
c21

(

L
5
6

Y

)

= 0 =⇒ c21

(

L
5
6

Y

)

= −2 . (6.22)

Note that this requires that the bundle LY is such that L
5
6

Y is integer quantised. The matter curve

states under the decomposition are given in (4.20), and are counted by the cohomology arising from

tensoring the appropriate hypercharge flux bundle with the U(1) fluxes in (6.18). Since N = deg
(

L
5/6
Y

)

is integer quantised the U(1) bundles must be appropriately chosen such that M10 = deg
(

L
1
6

Y ⊗ F10

)

and M5 = deg
(

L− 1
3

Y ⊗ F5

)

are quantised where F10 denotes the U(1) flux on the 10-matter curves and

F5 on the 5-matter curves. This implies that the bundle combinations that generate chirality for all the

SM representations are integer quantised. Explicitly we have

n(3,1)−1/3
− n(3̄,1)+1/3

= M5 ,

n(1,2)+1/2
− n(1,2)−1/2

= M5 +N , (6.23)

for the 5-matter curves and

n(3,2)+1/6
− n(3̄,2)−1/6

= M10 ,

n(3̄,1)−2/3
− n(3,1)+2/3

= M10 −N ,

n(1,1)+1
− n(1,1)−1

= M10 +N , (6.24)

for the 10-matter curves. We will return to the spectrum induced by hypercharge flux in more detail in

section 6.3.

Finally we note that the gauge theory description is only a part of the full effective theory expected

on an F-theory 7-brane, and in particular it does not include the coupling to the closed-string sector

and terms higher order in the gauge field strength as appear in the DBI and Chern-Simons terms of

a D-brane. See [17] for a review on how to recover some of the terms in the 7-brane effective action

and [248] for work approaching the problem form the M-theory perspective.

6.2. The spectral cover

In the previous section we reviewed the approach to F-theory models of using an 8-dimensional gauge

theory to describe the configuration of intersecting 7-branes. In contrast the global approach to F-theory

7-branes presented in section 5 was through a 12-dimensional geometry with singularities. Roughly

speaking the gauge generators are lifted to a geometric description in F-theory, so that for example the

2-form flux with generator index in the 8-dimensional theory is lifted to a 4-form flux in a pure geometry

background. In this section we will review an approach which in some sense the half-way point between

the 8-dimensional gauge theory and the geometric global F-theory models. We will still retain a purely

local analysis but will geometrise the gauge theory.

The starting point is to model the gauge theory as a fibration of an A4 singularity over SGUT where

the A4 accounts for the SU(5)⊥. Generically over SGUT the A4 is fully resolved but over the matter

curves or Yukawa points it degenerates thereby enhancing the singularity. Such an A4 singularity is
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described by the equation (for detailed studies see [194,218,249])

y2 = x2 +Π5
i=1 (s+ ti) , (6.25)

where the ti are functions on SGUT . The singularity lies at x = y = s = 0. Each ti amounts to resolvingan

one of the 5 2-cycles in the A4 singularity and so these map directly to the ti in (6.15) and expanding

out the equation we see that we can write it in terms of the bi in (6.17)

y2 − x2 = b0s
5 + b2s

3 + b3s
2 + b4s+ b5 , (6.26)

which gives an explicit map between the Higgs in the 8-dimensional field theory and the A4 singularity

fibration. The bi in (6.26) are also related to the bi in the full global E8 Tate (5.8) in the limit w → 0.

Intuitively this can be understood as the manifestation in the geometry, in the limit of the SU(5)GUT

singularity on w = 0, of the splitting E8 → SU(5)GUT × SU(5)⊥, while for a more concrete map

see [178].

From (6.26) we can construct the spectral cover as follows [251] (see also [252] for earlier work). The

right-hand side of equation (6.26) encodes the local geometry

C : b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = 0 . (6.27)

This equation naturally defines a divisor inside a non-compact CY 3-fold X composed of the total space

of SGUT and its canonical bundle KS , with s a coordinate along the latter. At a generic point on S the

roots of (6.27), which are the eigenvalues of the associated Higgs, define 5 points in the fibre KS and

these trace out a 5-fold cover of S which is called the spectral cover (of the fundamental representation).

The divisor C is non-compact since at b0 = 0 we lose two roots that go off to infinity. In order to construct

fluxes in the spectral cover which will be the local version of G-flux it is useful to compactify X to X̃

by taking two homogenous coordinates U and V and identifying s = U/V [251]. C is compactified to

C̃ by adding the divisor at infinity corresponding to V = 0 which we denote σ∞. The divisor U = 0 is

denoted σ and the homogneity implies σ · σ∞ = 0.

Note that since the bi appearing in the spectral cover are the pull backs to SGUT of the bi of (5.8),

then the bi are sections of

bi ∈ η − ic1 (S) . (6.28)

Here c1 (S) denotes the first Chern class of the tangent bundle of S, which we henceforth denote c1,

and η = 6c1 − t where t is the first Chern class of the normal bundle of SGUT (so the dual bundle to

the divisor w = 0).

To construct fluxes we define the associated projections

π : X̃ → SGUT ,

pC̃ : C̃ → SGUT . (6.29)

Then fluxes are line bundle that live in the spectral cover and satisfy the tracelessness constraint [251]

c1
(

p∗
C̃
L
)

= p∗
C̃
c1 (L)−

1

2
p∗
C̃
r = 0 , (6.30)

anStrictly speaking the ti in (6.25) parameterise deformations of the singularity rather than resolutions. However for

an ADE singularity local mirror symmetry induces a map, which does not act on SGUT but only in the fibre, between
resolutions and deformations so that we can refer to them interchangeably [250].
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where r is the ramification divisor

r = p∗
C̃
c1 (SGUT )− c1

(

C̃
)

. (6.31)

If we decompose

c1 (L) =
1

2
r + γ , (6.32)

then (6.30) implies

pC̃∗γ = 0 . (6.33)

Therefore fluxes in the generic spectral cover model correspond to two-forms that satisfy (6.33). There

is a unique such flux, which is called the universal spectral cover flux

γ = 5
[

C̃10
]

− p∗
C̃
pC̃∗ [C10] , (6.34)

where C10 is the class of 10-matter curve in the spectral cover U = b5 = 0.

The chirality in the 10 sector induced by the universal flux can be explicitly computed to be [251]

n10 − n1̄0 = −
∫

SGUT

η ∧ (η − 5c1) . (6.35)

The net chirality of the 5 representations is equal to that of the 10 which guarantees anomaly cancel-

lation.

The discussion so far applies to the generic spectral cover by which we mean that the equation (6.27)

does not factorise. From (6.25) we see that in the case where we think of a resolved SU(5)⊥ singularity

fibered over SGUT it seems the bi are such that (6.27) factorises into 5 factors. However, as discussed in

section 6.1, the SU(5)⊥ singularity has a Weyl group action which interchanges the ti so as to preserve

the bi and generally the fibration over SGUT can act with this group which gives rise to monodromies

in F-theory [227,235,246].

This maps directly to the product structure of (6.27), where we see that under no identification of

the ti, (6.27) factorises into 5 factors. Each factor corresponds to a U(1) with a tracelessness constraint

b1 = 0 leaving the 4 Cartan U(1)s as linearly independent. As we identify the ti (6.27) decomposes into

fewer factors implying fewer U(1)s and finally if the fibration uses the full Weyl group there is no splitting

at all and no U(1)s. Hence a spectral cover model which corresponds to the presence of a U(1) symmetry

is called a split spectral cover, and the splitting factorisation corresponds to the degree of the group

theory factor in table 4. So for example the case of a local breaking E8 → SU(5)GUT ×S [U(4)× U(1)]

is described by a 4 + 1 split spectral cover [253]

C : (c0U + c1V )
(

U4d0 + U3V d1 + U2V 2d2 + UV 3d3 + V 4d4
)

. (6.36)

In the form (6.36) we have to impose an additional tracelessness constraint on the coefficients since

expanding it out we find

b1 = c0d1 + d0c1 = 0 . (6.37)

In writing a split spectral cover the constraint (6.37) must be satisfied automatically. In this case a

solution ansazt is

d0 = αc0 , d1 = −αc1 , (6.38)



Models of Particle Physics from Type IIB String Theory and F-Theory 49

with α some arbitrary section.

In the presence of a single U(1) symmetry, so that after identifying the ti related by monodromies

there remain two classes t1 and t2, the matter curves also split according to the classification (6.15).

Different curve components are distinguished by the U(1) charges of the representations they carry. In

terms of the split spectral cover we see this as the split of P10 and P5, the 10-matter and 5-matter

curves as defined in (5.14)

P10 = b5 = c1d4 , (6.39)

P5 = b23b4 − b2b3b5 + b0b
2
5 =

(

c21d2 + c0c1d3 + c20d4
) (

c1d2d3 + c0d
2
3 + αc21d4

)

.

We should think of the splitting of the matter curves as the decomposition of a single curve in the

spectral cover into the components inside each factor of the spectral cover.

Similarly to such a splitting of the matter curves there are additional fluxes possible due to the split

and these correspond to fluxes along the additional U(1). They are constructed in a similar way as for

the non-factored case. Consider a split of (6.27) into factors labelled by i which are of order ni so that
∑

i

ni = 5 . (6.40)

Associated to each factor there is a map

pi : Ci → SGUT . (6.41)

Now the fluxes are defined to live on each factor, so that

c1 (Li) ∈ H(1,1)
(

Ci,Z
)

. (6.42)

However the tracelessness constraint only applies to their sum
∑

i

c1 (pi∗Li) = 0 . (6.43)

Now as before to the map pi we can associate a ramification divisor, factor it out, and therefore work

with the associated γi which satisfy
∑

i

pi∗γi = 0 . (6.44)

There are a number of fluxes that can be constructed such that they are traceless and most of them

correspond to non-Abelian bundles. See [182, 212] for some detailed constructions. It is informative to

see how the most direct analogue to an Abelian U(1) gauge flux on SGUT is constructed. Given any

2-form on SGUT ρ, this flux is nothing but the flux with geometric component ρ and whose gauge

generator index is simply lifted to the spectral cover in the canonical way. To do this first we denote the

charges of the 10’s, or equivalently the ti’s, under this U(1) by qi. Note that due to the tracelessness

constraint these must satisfy
∑

i

niqi = 0 . (6.45)

Then the spectral cover flux is constructed as

ρ̂ =
∑

i

qi p
∗
i ρ . (6.46)
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The idea here being that we have pi∗p
∗
jρ = niδijρ which ensures that the tracelessness constraint (6.44)

is satisfied.

This flux acts just like a normal gauge flux over SGUT would do: namely to calculate the induced

chirality MR associated to some representation R the intersection of ρ̂ with the matter curves in the

spectral cover simply amount to the intersection in SGUT weighted by the charge under the U(1)

MR = ρ̂ · CR = qR ρ · π∗ (CR) , (6.47)

where qR is the charge of the representation R under the U(1).

Having discussed the spectral cover construction at some length it is important to emphasise that

it is still only a local and incomplete description of F-theory models. In particular a split spectral cover

does not guarantee that there is a U(1) present in four-dimensions after all the compact space has been

integrated over. Similarly there are global properties such as the D3-tadpole and the spectrum of GUT

singlets that can not be studied in full generality using the spectral cover.

The example given in this section of a 4+1 split spectral cover model was first studied in [253].

Following this, and the original work [251], the spectral cover was used extensively in local model

building. A 4+1 split was used in [175,182,192], a 3+2 in [192,212] and higher split models in [234,239,

254–260]. Spectral cover models of SO(10) GUTs were studied in [213, 261], the related flipped SU(5)

in [262–267], and directly the SM gauge group in [268,269]. Spectral covers based on E6 rather than E8

gauge groups were studied in [270]. While the connection of the spectral cover to fully global models

was studied in [178,179,185,187,189,202].

As mentioned in section 6.1 the Higgs bundle description is incomplete whenever the Higgs back-

ground is not fully characterised by its eigenvalues [235]. This limitation transfers over to the spectral

cover construction which does not fully capture the most general geometric setting even locally. In

particular it is possible to have spatially varying background vevs for the GUT singlet recombination or

gluing moduli. This is the geometric analogue of turning on spatially varying non-Cartan components

in the Higgs background, and such geometries have been studied in [181,271–273].

6.3. Globally trivial curves and hypercharge flux

As discussed in section 6.1 in the context of hypercharge flux GUT breaking, an important aspect of

F-theory GUTs is the existence of curves on SGUT that are non-trivial in the homology of SGUT but

trivial in the global homology of the CY. In this section we are interested in a particular aspect of this

sector which is the net chirality that can be induced by hypercharge flux in the spectrum of the massless

modes localised on matter curves. It was first noted in [253] that already from the local approach of

the spectral cover there are strong constraints on the possible chiral spectrum induced by hypercharge

flux. This was subsequently expanded upon in [212,234,254–260].

The most direct result is the absence of any net chirality induced by hypercharge flux in the absence

of any splitting in the spectral cover [251]. This follows because the homology classes of the bi in (6.28)

imply that the matter curves are in the following homology classes

[P10] = [b5] = [η − 5c1] , (6.48)

[P5] =
[

b23b4 − b2b3b5 + b0b
2
5

]

=
[

η3 − 10c1
]

.

Now the important point is that the homology classes of η and c1 are both globally non-trivial since

they correspond to the first Chern classes of the tangent and normal bundles of the GUT divisor.
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Therefore, from (6.20), the hypercharge flux must restrict trivially to them and hence no net chirality

can be induced by it on the matter curve spectrum

[FY ] · [P10] = [FY ] · [P5] = 0 . (6.49)

Here we denote the hypercharge flux FY and the inner product is the intersection number which calcu-

lates the net chirality. Note that there can still be vector-like massless modes induced by the hypercharge

flux.

The situation changes when the spectral cover is split and the representations on the matter curves

are distinguished by an additional U(1) symmetry. Now (6.49) implies that the total chirality induced

by the hypercharge flux on the matter curves must vanish, but there can be some net chirality on each

class, as distinguished by the U(1) charge, of matter curves. This is because the homology class of the

split components are only determined up to an unknown relative factor by the bi, explicitly using the

example split (6.39) we have that

[c1] + [d4] = [η − 5c1] , (6.50)

and so the two 10-matter curves can have equal and opposite globally trivial components which the

hypercharge flux could restrict to. It is important to note that this additional freedom does not guarantee

that the 10-matter curves do have a globally trivial component but is simply compatible with it.

A non-trivial restriction of the hypercharge flux to a matter curve modifies the spectrum as in (6.23)

and (6.24). It was shown in [257] for a large set of spectral cover models that the possible net restriction

of the hypercharge flux to the matter curves always satisfies the relation, using the notation of (6.23)

and (6.24),
∑

Ci
10

Qi
10N

i
10 +

∑

Cj
5

Qj
5N

j
5 = 0 . (6.51)

Here Ci
10 and Cj

5 denote the 10 and 5-matter curves respectively, Qi
10 denotes the charges of the repre-

sentations under any U(1) present due to splitting, and N i
10 denotes the restriction of the hypercharge

flux to that curve. It is worth writing in this notation the constraint that the total restriction vanishes

(6.49)
∑

Ci
10

N i
10 =

∑

Cj
5

N j
5 = 0 . (6.52)

It was shown in [260] that, at least for spectral cover models with at most 2 U(1) symmetries, i.e that

split into at most 3 factors, the constraints (6.51) and (6.52) are the only ones on the possible restriction

of the hypercharge flux to the matter curves that arise from the type considerations discussed.

In [258] it was argued that the constraints (6.51) and (6.52) can be understood from four-dimensional

anomaly cancellation. The important point is that because the hypercharge flux is globally trivial, and so

satisfies (6.20), it can not participate in the Green-Schwarz anomaly cancellation mechanism discussed

in section 4.2 since the coupling in (4.17) vanishes.ao Therefore the hypercharge flux can not modify

aoAlthough the particular terms shown in section 4.2 were for the weakly coupled IIB limit it is reasonable to expect that
similar reasoning applies to their F-theoretic uplift, as studied in [166].
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the anomalies of the massless spectrum and the constraints (6.51) and (6.52) ensure that this is so for

the anomalies involving just the SM gauge groups

ASU(3)2−SU(3) , ASU(2)2−SU(2) , AU(1)Y −U(1)Y ... , (6.53)

and for the mixed anomalies involving the U(1) symmetry

ASU(3)2−U(1) , ASU(2)2−U(1) , AU(1)2Y −U(1) . (6.54)

Note that ensuring the hypercharge does not modify the anomalies does not imply that the anomalies

must vanish but rather that they should be proportional to the anomalies before the hypercharge flux

is turned on, ie. at the GUT level, so that

ASU(3)2−SU(3) ∝ ASU(2)2−SU(2) ∝ ... ∝ ASU(5)2−SU(5) = 0 ,

ASU(3)2−U(1) ∝ ASU(2)2−U(1) ∝ AU(1)2Y −U(1) ∝ ASU(5)2−U(1) . (6.55)

The fact that these subtle anomaly cancellation conditions are automatically ensured in the spectral

cover approach is rather satisfying. However it was shown in [274] that there are additional anomaly

constraints which are not automatically satisfied and these correspond to the anomaly

AU(1)Y −U(1)2 . (6.56)

Within a possible Green-Schwarz counterterm to this anomaly the hypercharge flux appears directly

through a Stueckelberg mass coupling and therefore, in order to remain massless, such a counterterm

must vanish. Another way to see that it must vanish is that according to the discussion above it must

be proportional to the GUT anomaly, but the latter vanishes automatically because of the non-Abelian

GUT group ASU(5)−U(1)2 = 0. Therefore for globally trivial hypercharge flux we would expect that the

local geometry should impose this constraint on the spectrum. However, unlike the anomalies (6.54) this

does not come out from all currently known constraints on the geometry. Therefore we must deduce that

there are additional constraints on the local geometry of F-theory GUT models that have a (possibly

anomalous and massive) U(1) symmetry.

The anomaly (6.56) implies that an additional constraint on the net hypercharge restriction should

be [274]

3
∑

Ci
10

(

Qi
10

)2
N i

10 +
∑

Cj
5

(

Qj
5

)2

N j
5 = 0 . (6.57)

This additional constraint was shown in [274] to be quite restrictive so that only two possibilities of the

breaking of E8 from the table 4 could support a net chirality in at least some of the representations

while satisfying all the anomaly constraints. These were particular models based on a S [U (3)⊕ U (2)]

and S [U (2)⊕ U (2)⊕ U (1)] breaking. In terms of the spectral cover these are 3+2 and 2+2+1 splits,

but the conclusion applies also to more general models not fully captured by the spectral cover (see

section 6.2 for a discussion) since it just relies on the possible representations that are present. Note

that the fact that the spectral cover approach does not automatically satisfy the constraint (6.57), even

though it does (6.51), is not so surprising because the triviality aspect of the curves is only determined

globally. A geometric understanding of the constraint (6.57) on the globally trivial components of the

matter curves is as yet missing.
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Finally, it is interesting to note that the constrained homology of the matter curves (6.48) can be

used to place constraints on their intersection structure and therefore the associated Yukawa couplings

[221, 275, 276]. One particularly important result is that in the absence of any splitting the number of

E6 points of enhancement is always even.

6.4. Wavefunctions and ultra local models

So far we have reviewed the so called semi-local approach to F-theory models where we consider the

local geometry of SGUT within the CY. One interesting aspect of these models is the localisation of

modes to matter curves inside of SGUT . Similarly, since cubic couplings, and in particular Yukawas,

between fields localised on matter curves are associated to intersections of the curves they are localised

at points in SGUT . In the effective field-theory description used in section 6.1 such points corresponds

to enhancement of the gauge symmetry. Around these points the localisation is manifest in the effective

gauge theory through the profile of the matter fields wavefunctions along SGUT . The localisation of

operators to points or small patches in SGUT implies that we can study them to a decent approximation

by considering the gauge theory within just a patch in SGUT around such an enhancement point of

interest. Since locally the patch is just flat space the analysis simplifies considerably allowing for a

fairly explicit study of the local wavefunction profiles. The approach of considering the gauge theory on

a local patch is sometimes termed ultra local.

Studying Yukawa, and other couplings in a local patch was done in [187,226–239,277,278].ap In this

section we review the local theory around a point of enhancement and some of the applications. We

primarily follow the discussion presented in [239].

The setting of the ultra local theory is within the gauge theory described in section 6.1 where we

consider a higher rank gauge theory over SGUT which is broken to SU(5)GUT by a spatially varying

Higgs profile. The higher gauge group here is defined according to the type of coupling we are inter-

ested in studying and therefore the local enhancement group. The most general such configuration is

around a point of E8 enhancement [246] and in describing the local theory we will consider this and

lower enhancement groups, such as E6 which is associated to a up-type Yukawa coupling and SO(12)

associated to a down-type coupling.

We are interested in the equations of motion for fluctuations of the fields about a background with

a Higgs vev and non-vanishing gauge field flux along S. Locally, the leading order contributions from

the Higgs and gauge fields are linear in the local co-ordinates z1 and z2 and so take the form

〈ϕH〉 =MKRm
a
i ziQadz1 ∧ dz2 + . . . , (6.58)

〈A〉 = −MK Im(Ma
ijzidz̄j)Qa + . . . , (6.59)

where the dots denote higher order terms in the two local complex coordinates z1 and z2. Here the

ma
i and Ma

ij are complex constants which, in the case of E8 enhancement, denote the vevs along the 4

U(1) factors with associated generators Qa. Actually it is more convenient to turn on the vev within

apIn [275, 279] wavefunctions were studied within a more global setting within SGUT . See also [280] for an analysis of

wavefunctions on simple matter curve geometries and [281–283] for related studies of wavefunctions.
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S(U(1)5) so that a = 1, .., 5 but we have to impose an additional tracelessness constraint

5
∑

a=1

ma
i =

5
∑

a=1

Ma
ij = 0 . (6.60)

We will also allow for flux MY
ij along the Hypercharge U(1) inside SU(5)GUT with generator QY , and

denote it by the index value a = 6 so that summing over the a index includes the hypercharge. Note

that the local expansion of the Higgs and the flux begins with a linear term in the zi and there is no

constant term. For the Higgs background this amounts to defining the enhancement point to be at the

origin. For the gauge field a constant term locally is pure gauge and so can be gauged away.

The mass scale MK is a local mass scale which involves the cutoff scale of the theory M∗ and scales

with a homogeneous rescaling of the local metric by a length scale R‖ as

MK =
M∗

R‖
. (6.61)

The dimensionless scale R is associated to the local normal length scale R⊥ to S and scales as

R ≡ R‖R⊥ . (6.62)

The scaling of the Higgs with R⊥ follows from the pullback of the normal metric component to the

world-volume of the 7-brane as discussed in [238].

In this background the equations of motion (6.4-6.11) simplify considerably and can be written in

the compact form

D
−Ψ = 0 , (6.63)

with,

D
± =









0 D±
1 D±

2 D±
3

−D±
1 0 −D∓

3 D∓
2

−D±
2 D∓

3 0 −D∓
1

−D±
3 −D∓

2 D∓
1 0









, Ψ =









η

ψ1̄

ψ2̄

χ









, (6.64)

and

D−
i ≡ ∂i −

1

2
qaM̄

a
jiz̄j D+

i ≡ ∂̄i +
1

2
qaM

a
jizj i = 1, 2 (6.65)

D−
3 ≡ −Rqam̄a

i z̄i D+
3 ≡ Rqam

a
i zi . (6.66)

Here qa denote the charges of the fields under the generator Qa. Since the charges are always contracted

with the Higgs or fluxes it is convenient to introduce the notation

Mij ≡ qaM
a
ij , mi ≡ qam

a
i . (6.67)

These are the equations of motion for massless fields, but in the ultra local theory we also know the

equations that determine the wavefunctions for massive fields [237,238,283]

D
+
D

−Ψ = |mλ|2 Ψ , (6.68)

with associated four-dimensional mass MKmλ.
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This completes the summary of the ultra local theory in the presence of gauge flux background

which is in the Cartan subalgebra of SU(5)⊥. Wavefunction solutions to this theory in generality were

studied in [239] which can account for up to a rank 4 local enhancement from SU(5) to E8, for the

case of rank 2 enhancement (particularly SO(12)) in [226,230,232,234,238] and toy models based on a

local U(3) enhancement in [233,237]. The key properties of the wavefunctions are localisation onto the

vanishing loci of the Higgs background (6.12). Further there is an arbitrary holomorphic prefactor, the

different possible independent holomorphic polynomials corresponding to Landau-level degeneracies.

Finally in the presence of a flux background the wavefunction peaks at a single point along the matter

curves. Such a turning point is associated to the wavefunction of every chiral state. The flux and Higgs

backgrounds around this peak point must be consistent with the chirality of the state which for the

background (6.58-6.59) implies that, for a given state with charges qa peaking at zi = 0 we have [239]

χlocal (q
a) = −Re

[

(

M12 + M̄21

)

m̄1m2 +M11

(

|m1|2 − |m2|2
)]

> 0 . (6.69)

It is worth noting that the idea of a point of full enhancement to E8 is attractive in terms of a very

rich ultra-local theory and in some sense is the ultimate realisation of the local approach discussed in

this section. Independently of this motivation there are some phenomenological reasons for favouring

such a point. In [246] it was argued that if flavour physics is attributed to wavefunction profiles then the

special diagonal structure of the CKM matrix, which corresponds to a strong correlation between the up

and down Yukawa couplings, implies that the local geometry controlling the wavefunction basis around

both the Yukawa points should be closely correlated. Hence the points should be in close geometric

proximity motivating a coalescence into a point of E7 enhancement. Requiring further a neutrino Dirac

mass coupling leads to a motivation for a point of E8.

The backgrounds described are in some ways the simplest local configurations and more compli-

cated settings are likely to be required to achieve fully realistic phenomenology. In particular a Higgs

background not fully in the cartan is likely to be required to account for the large top quark Yukawa

coupling through monodromies. Such backgrounds were studied in [235] (see also [284]) and termed

T-branes and in particular their relation to local monodromies introduced in [227] elucidated.

Monodromies were discussed from the perspective of the full SGUT in section 6.1 and in terms of

the spectral cover in section 6.2. Recall that a monodromy acts as a subgroup of the Weyl group of the

SU(5)⊥ singularity fibered over SGUT . In terms of the Higgs background the Weyl group permutes the

eigenvalues ti. So a Z2 monodromy or example would interchange t1 and t2 as we move around SGUT .

As emphasised in [235], the most general way to think about this is in terms of a non-diagonal Higgs

background, so for example as a matrix in SU(5)⊥ we can consider the following

ϕH =













0 1 0 0 0

z1 0 0 0 0

0 0 t3 0 0

0 0 0 t4 0

0 0 0 0 t5













, (6.70)

where t3, t4 amd t5 are some unspecified functions of the zi. We can diagonalise this local holomorphic
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Higgs background

ϕH =













√
z1 0 0 0 0

0 −√
z1 0 0 0

0 0 t3 0 0

0 0 0 t4 0

0 0 0 0 t5













, (6.71)

and now as we circle around z1 = 0 the eigenvalues t1 and t2 are interchanged. It was shown in [227,235]

that such a background acts in terms of the matter wavefunctions as if t1 and t2 were identified.

A local background with a non-diagonal Higgs, or monodromy, modifies the D-term equation (6.5)

since [ϕ, ϕ̄] 6= 0, and therefore the local form of the wavefunctions. In particular it implies a non-

vanishing flux background which localises on the branch cut locus [235].

One of the most important applications of the ultra local theory is to Yukawa couplings. Yukawa

couplings arise from triple overlaps of the wavefunctions of the participating fields [285]. This follows

from dimensional reduction of the the relevant operator in the 8-dimensional theory

WY =

∫

S

Tr [A ∧A ∧Φ] . (6.72)

As discussed in section 6.1 the matter fields arise from perturbations of the 8-dimensional fields. The

wavefunctions take the form of an exponential localisation (6.12) and an arbitrary holomorphic prefactor

which counts solutions to the Dirac equation in the presence of flux which are the Landau levels. Since

the wavefunctions are localised within the local patch so is their overlap, which means that effectively

we can perform the integral over S as an integral over C2.

Wavefunctions for the charged fields can be decomposed as

A1̄ = φI4D ⊗ ψI
1̄ , A2̄ = φI4D ⊗ ψI

2̄ , Φ12 = φI4D ⊗ χI . (6.73)

Here φ4D are four-dimensional (super-)fields which do not depend on the coordinates on SGUT while

the internal profiles are given by ψi and χ. The index I runs over all the representations present in

the decomposition of the adjoint representation of the full enhanced gauge group G associated ot the

Yukawa point (typically E6 for an up-type and SO(12) for down-type) under the remaining gauge group,

which would be of the form SU(5)GUT ×U(1)2, after turning on the Higgs vev and fluxes. The generator

structure of the internal wavefunctions is such that the trace in (6.72) simply leads to a selection rule

stating that the charges of the three fields under the U(1)s should sum to zero. After accounting for

this selection rule the relevant four-dimensional cubic coupling is given by

Y (I,J,K)(i,j,k) =
1

6
GIJK

∫

S

[

ψI,i
1̄
ψJ,j
2̄
χK,k + ψI,i

2̄
ψK,k
1̄

χJ,j

−χI,iψK,k
1̄

ψJ,j
2̄

− ψI,i
1̄
ψK,k
2̄

χJ,j

−ψI,i
2̄
χK,kψJ,j

1̄
+ χI,iψK,k

2̄
ψJ,j
1̄

]

. (6.74)

We have split off from the indices {I, J,K} the generation indices {i, j, k} so that generation independent

quantities are manifestly so. Hence a four-dimensional field is specified by fixing I and i. The indices i,

j and k, denote the possible Landau level degeneracies of the states, i.e. the generation number in the

case of multiple generations coming from flux. Finally the factor GIJK accounts for the U(1) selection
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rules so that for appropriately normalised generators it gives 1 if the coupling is gauge invariant and

vanishes if it is not.

An important result is that in the case where all the generations arise from a single matter curve,

the Yukawa matrix (6.74) about a single point is always rank 1 in generation space [226,230,232,233].

This was shown in full generality in [233] by going to an appropriate holomorphic gauge. The rank

1 structure is promising in terms of flavour physics at leading order because the third generation is

so heavy, however it must be broken eventually to generate the other quark and lepton masses and

mixing. In [233] it was shown that a background closed-string flux can appropriately deform the rank 1

structure by inducing a non-commutative deformation of the 8-dimensional gauge theory. The Yukawas

for the lighter generations arise at higher orders in a small parameter associated to the non-commutative

deformation and can naturally induce realistic flavour hierarchies realising the idea of [226]. The relevant

flux in the type IIB limit is of type G1,2 and in terms of M-theory G-flux this lifts to G1,3 flux. It is

important to note that this type of flux is known to not lead to supersymmetric Minkowski space

solutions of M-theory on CY four-folds to 3-dimensions [286] and therefore neither in F-theory.

In [287,288] it was shown that the required non-commutative deformation can also be induced by non-

perturbative effects such as instantons and gaugino condensation on additional 7-brane sectors. It was

shown that an equivilant formulation of the structure of the Yukawa couplings in the non-commutative

theory, with the Yukawas coming from the non-commutative generalisation of the operator (6.72), can

be made by considering a canonical gauge theory but with additional higher dimension operators

Wnp ∈ ǫ

∫

S

θnSTr [ΦnF ∧ F ] . (6.75)

Here STr denotes the supertrace, θn are some holomorphic functions given in [288], and ǫ parameterises

the size of the non-perturbative effects. The case with n = 1 was originally used in [237] within a toy

model based on a U(3) gauge group. However for the more realistic SO(12) and E6 cases the trace

vanishes and so the operators with n = 0, 2 are the leading terms. Note that the particular operator

n = 0 requires that the instanton intersects one of the 7-branes which in turn intersects the GUT brane

over a matter curve. This was studied in detail in [237,288] and the resulting rank 3 Yukawa couplings

were analysed. It was shown that realistic flavour structures could be induced and a quantitative analysis

was presented giving the CKM elements and quark mass ratios in terms of parameters attributed to

the non-perturbative effects. It was also proposed that the observed non-unification of the masses of the

quarks and leptons that come from the 5-matter GUT mutliplet at the GUT scale can be attributed in

such models of flavour to the deformation of the wavefunction profiles by hypercharge flux.

In [110] it was shown that the two approaches of non-perturbative effects and background H-flux

are, at least in the type IIB limit, equivilant in the sense that the backreaction of the non-perturbative

effects sources the relevant flux. This is compatible with the observation that the flux can not lead to

supersymmetric Minkowski solutions because it is known that the non-perturbative effects deform the

10-dimensional solution away from CY and lead to supersymmetric AdS solutions [39, 289].

Finally we note that since the cubic coupling (6.72) involves the full 8-dimensional field, it also

determines the the coupling of massless four-dimensional modes to massive four-dimensional modes

that arise as KK modes or Landau levels of the 8-dimensional fields. Such a coupling is important

when studying proton decay for example since this is how the heavy triplets, following doublet-triplet

splitting, couple to the MSSM fields. This and other applications of the coupling to heavy modes were
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studied in [238,239,290].

6.5. F-theory local model building phenomenology

Having reviewed the technical tools behind local models in F-theory in this section we review the

application of these techniques to phenomenology. Much of the model building in F-theory is motivated

by the possibilities of finding new string motivated solutions to classic phenomenological problems in

the SM and GUT theories. The results of this body of work have been rather fruitful and this success

has driven much of the interest in F-theory over the last years. Many of the seeds of the ideas studied

featured already in the early works [217, 219, 220], but these were developed and new ideas introduced

in a large body of work that followed. In this section we review these developments. There are some

themes that thread many of the papers and this section is grouped under such themes, while ideas that

do not fall into these rough classification are reviewed in section 6.5.5.

6.5.1. Controlling operators with U(1)-symmetries

Since F-theory models are typically based on an underlying exceptional symmetry additional U(1)

symmetries which remain after breaking to the GUT group are ubiquitous in model building. In this

section we review one of the immediate application of these which is to forbid certain dangerous operators

in the theory.

One of the classic constraints on GUT theories comes from dimension 4 proton decay operators that

arise after GUT breaking from the matter parity violating operator 5̄M 5̄M10M in the superpotential

where the subscript M denotes that this is a matter representation of the SM rather than a Higgs.

Local models which utilise an additional U(1) to forbid such a dimension 4 proton decay operator were

proposed in [212, 228, 246, 253, 254, 256, 257, 259, 260, 264, 266, 267, 272, 291, 292]. It is important to note

however that the use of U(1) symmetries to forbid operators which are very tightly constrained, such as

dimension 4 proton decay, can not be fully addressed within a local approach since the symmetries could

be broken by bulk effects. In [187] this was studied and estimates for proton decay operators induced by

bulk effects were deduced. This motivated the study of global models which ensure an unbroken U(1)

over the full CY [189,193].

Since the discrete subgroup of matter parity is also sufficient to forbid such operators, studies of

realisation of discrete symmetries in F-theory are also relevant for this purpose. In [187, 261, 275, 276]

realisations of matter parity as a geometric symmetry were proposed while in [259,266,293,294] discrete

symmetries arising from breaking of the additional U(1)s were studied.

Another use of U(1) symmetries is to generate realistic flavour structures. This can be realised by

considering different generations of the SM to arise from different matter curves so that they have

different U(1) charges. By breaking the U(1) symmetries spontaneously through the GUT singlets

(6.15) at a scale below the GUT scale Yukawa couplings can be induced by higher dimension operators

with naturally small coefficients realising the Froggatt-Nielsen mechanism. Such models were studied

in [234,254,256,259,266] where realistic quark and lepton masses and mixings were obtained.

Proton decay can also proceed through dimension 5 operators that are induced after integrating

heavy modes out, typically the triplet partners of the Higgs doublets. In terms of GUT fields such

superpotential operators take the form 5̄M10M10M10M and are suppressed by the mass scale of the

heavy modes that were integrated out. Forbidding such operators using U(1) symmetries is connected
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to the superpotential Higgs mass term µ5Hu 5̄Hd
because the neutrality of the Yukawa couplings implies

that the charge Q under any such U(1) of the operators satisfies

Q (5Hu
5̄Hd

) = −Q (5̄M10M10M10M ) . (6.76)

Therefore the up and down Higgs should not be vector-like with respect to any U(1) that forbids

dimension 5 proton decay. Such U(1)s are denoted Pecci-Quinn (PQ).aq Models utilising a U(1)PQ

symmetry to suppress dimension 5 proton decay were studied in [212, 228, 246, 254, 256, 257, 259, 260,

264, 266, 267, 292]. In all the models the U(1)PQ was spontaneously broken in order to give a mass to

some fields; in [246] this was tied to supersymmetry breaking while in the other works in was related to

the lifting of exotic fields that were present after GUT breaking by hypercharge flux. Therefore in all

models dimension 5 proton decay operators are not exactly forbidden but only suppressed and so the

question of whether there is enough suppression to avoid experimental constraints becomes important.

The constraints on the higher dimension operator vary according to which generations are involved in

the operator, with the strongest constraint in the case with the largest number of light generations

(see [295] for a review of the constraints). Therefore a full understanding of the constraints on such

operators requires a theory of flavour. In four-dimensional GUTs this is well understood because the

flavour structure of the proton decay operators is related to the Yukawa couplings since the Higgs

doublets and massive triplets share the same couplings. However in F-theory, depending on the method

of doublet-triplet splitting this connection to the Yukawa couplings may not be present and the flavour

structure of the dimension 5 proton decay operators needs to be determined independently. Initial

investigations of this were performed in [238,239] for the case of doublet-triplet splitting by hypercharge

flux using wavefunctions overlap analysis (see also [290] for dimension 6 operators) with the results that

the flavour structure may be compatible with estimates from four-dimensional GUT theories but in

some cases can differ by a few orders of magnitude. In the case where large differences occurred however

there was additional suppression of the proton decay operator compared to four-dimension GUTs.

Therefore it is likely that the suppression level induced by a spontaneously broken U(1)PQ used in the

above references is sufficient to be compatible with proton decay experimental constraints, but a more

accurate determination of the flavour structure would certainly be useful in this respect.

Another matter-parity violating superpotential operator which must be very strongly suppressed is

β5Hu 5̄M as it leads to large neutrino masses from mixing with the Higgs. Forbidding such an operator

using U(1) symmetries is closely tied to the theory of neutrinos since if the right handed neutrinos are

neutral under the appropriate U(1) then a Dirac mass for them would be forbidden. For this and other

reasons this is typically a difficult operator to forbid, but models which achieve this using U(1) can be

found in [212,253,256,257,259,260,266,267,272,292].

6.5.2. Doublet-triplet splitting with Hypercharge flux

One of the most appealing applications of hypercharge flux is to give a mass to the triplet partners

of the Higgs doublets thereby presenting a solution to the well known problem of GUT doublet-triplet

aqNote that this holds in the vacuum where the Yukawa couplings are fixed to their observed large values, it may be that
in a model where the Yukawas themselves are generated through higher dimension operators dimension 5 proton decay
can be forbidden by a non-PQ U(1) but this must eventually be broken to generate the Yukawas and so effectively the

breaking scale of such a U(1) just amounts to playing with the ratio of the Higgs vevs: tanβ.
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splitting [219, 220]. The spectrum that can be induced by hypercharge flux was discussed in sections

6.1 and 6.3. In this section we discuss some constraints on the spectrum that arise in the presence of a

U(1)PQ in which case the hypercharge flux must induce some net chirality on the Higgs curves.ar The

non-trivial net restriction to the Higgs curves requires for doublet-triplet splitting has implication for

the matter spectrum also away from the Higgs curves. This was first noted in [253] using the spectral

cover techniques and subsequently explored in [212,254,257,258,260] culminating in the constraints on

the net restriction of the hypercharge flux to the matter curves summarised in section 6.3.as One of

the constraints that (6.51) imposes is that in the presence of a U(1)PQ doublet-triplet splitting implies

a non-trivial restriction of the hypercharge to non-Higgs matter curves and therefore the presence of

exotics in the spectrum [257]. The additional constraint (6.57) sharpens this problem and in particular

implying a non-trivial restriction to the 10-matter curves as well as ruling out doublet-triplet splitting

with a U(1)PQ completely in some cases.

The exotics implied by the presence of a U(1)PQ symmetry are only massless in the limit where the

symmetry is unbroken. Because, as implied by (6.52), the exotics are vector-like with respect to the SM

symmetry groups breaking the symmetry spontaneously can induce a mass for the exotics. The fact that

the exotics do not form complete GUT multiplets and therefore typically ruin gauge coupling unification

motivates breaking the U(1)PQ at a high scale, ie. giving the charged GUT singlets a large vev, so that

the exotics are lifted to a high scale and do not affect the gauge coupling running significantly before

the GUT scale. On the other hand the U(1)PQ is useful for controlling operators such as those which

lead to dimension 5 proton decay (see section 6.5.4 for other uses of a U(1)PQ). The tension between

these two objectives was studied quantitatively in [234, 239, 257–260] and in particular in [267]. Again

these studies are subject to the uncertainty in the flavour structure of proton decay operators discussed

in section 6.5.1. It is also important to note that the models studied did not take into account the

constraint (6.57) and so some modification to those theories may be required.

Note that the study of exotics in the aforementioned works was performed assuming that the SM

families arise from complete GUT mutliplets. Some additional freedom can be gained by letting the gen-

erations arise from different GUT mutliplets. This idea was studied in [296] with a different motivation

of generating a top Yukawa coupling in the absence of monodromies.

Due to some of the difficulties associated to GUT breaking and doublet-triplet splitting with hyper-

charge flux it is interesting to consider alternative approaches using Wilson lines. Within an F-theory

context this was explored in [182,216].

6.5.3. Gauge coupling unification

Perhaps the strongest experimental evidence for grand unification is the unification of the MSSM gauge

couplings at 1016 Gev. At 1-loop this is to the accuracy of 0.5% while at 2-loops it is at 3%. The

unification of the couplings in F-theory GUTs depends on the form of GUT breaking. The possibility

arIn the absence of such a symmetry the Higgses are vector-like under all symmetries and hypercharge flux can be used
for doublet-triplet splitting without inducing any net chirality.
asAlthough, as emphasised in [235] the derivations using the spectral cover techniques of the constraints may be evaded
in the most general case, the understanding of the constraints in terms of four-dimensional anomaly cancellation shows
that they must be satisfied in any model where the hypercharge is fully embedded in SU(5)GUT and is required to remain

massless.
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of breaking by Wilson lines (studied in [182, 216]) analogous to the heterotic string maintains the

unification of the gauge couplings at the GUT scale up to threshold corrections. An important difference

from heterotic models is that the GUT coupling can be independent from the coupling of gravity and

so there is no tension between the two, though on the other hand there is also no generic prediction

of their relation. One of the most interesting aspects of F-theory models is GUT breaking through the

use of hypercharge flux which is not available in the heterotic string.at This is because, as discussed in

section 6.1, the mechanism of hypercharge flux GUT breaking relies on the flux being nontrivial in the

homology of SGUT but globally trivial [154,219,220,247]. There is no such separation in the homologies

of the submanifold that the gauge field propagates on and the full extra dimensions in the heterotic

string.

Gauge coupling unification in the presence of hypercharge flux in F-theory was studied in [219,

220, 222–224, 248, 257, 267, 298–303]. Generally, there are two ways to study threshold corrections to

gauge coupling unification at 1-loop in string theory: through the 1-loop open string channel, or gauge

theory, or through the tree-level closed string channel, or supergravity. The latter method was applied

in [298] to show that the gauge couplings are split at tree-level from a correction in the type IIB limit

coming from the F 4 term in the D7 action (4.1) in the background of hypercharge flux. The tree-level

holomorphic gauge couplings for the SU(3), SU(2) and U(1)Y factors are given by [298]

fSU(3) = T − 1

2
S

∫

SGUT

F2
U(1) , (6.77)

fSU(2) = T − 1

2
S

∫

SGUT

[

F2
U(1) + F2

Y + 2FU(1) ∧ FY

]

,

3

5
fU(1)Y = T − 1

2
S

∫

SGUT

[

F2
U(1) +

3

5

(

F2
Y + 2FU(1) ∧ FY

)

]

(6.78)

Here S is the axio-dilaton superfield S = e−ϕ + iC0, T the Kahler modulus associated to SGUT ,

FU(1) is the flux turned on along the diagonal U(1) generator of U(5), and FY is the hypercharge

flux. Note that as shown in section 6.1 in order to avoid exotics in the (3,2)−5/6 representations we

must take
∫

F 2
Y = −2. The gauge couplings are therefore non-universal unless we turn on FU(1) with

FU(1) ∧ FY = −1, which this implies that FU(1) must have a globally trivial component [298].

The uplift of this non-universality to general F-theory backgrounds is not fully understood as yet

since we do not understand the uplift of the F 4 term, though see [248] for progress in this direction.

Nonetheless a similar correction to the gauge couplings is expected in the F-theory setup. One way to

motivate this is to identify this particular correction from the supergravity persepctive as the correction

from the gauge theory perspective of integrating out the pair of (3,2)−5/6 that have been made massive

by the hypercharge flux [220, 267]. Since this latter view point can be understood also in the effective

gauge theory describing the F-theory setup the same consequences should apply.

Another use of the dual approaches to calculating threshold corrections is to relate them to closed

string tadpoles. In [222–224] it was shown that hypercharge flux induces a local tadpole in the closed

atThis is the case for the definition of the hypercharge generator as completely embedded inside of SU(5)GUT . Realisations
of hypercharge as a linear combination of a U(1) inside SU(5)GUT and additional U(1) factors can allow for the use of

hypercharge flux in the heterotic string, though the canonical normalisation of the generator and therefore the prediction
of gauge coupling unification is then lost [297].
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string sector which from the gauge theory perspective implies that the gauge couplings diverge due to

threshold corrections. Since the hypercharge flux is globally trivial the local tadpole is also globally trivial

and so the associated divergence is regulated, but only at a scale associated to the global compactification

radius. It was therefore argued that since the gauge couplings run until this global radius scale, rather

than the local string scale where heavy modes first appear, gauge coupling unification in F-theory

models utilising hypercharge flux should appear to occur at a scale above the string scale. Practically,

as rough order-of-magnitude estimates, for a GUT scale around 1016 Gev this would imply a string

scale around 1015 Gev.

Gauge threshold corrections computations directly from the field theory side were performed in

[257,267,299–303]. One important aspect of these is that, as discussed in section 6.5.2, many F-theory

models typically have exotics in the spectrum which do not form complete GUT multiplets and therefore

induce non-universal running for the gauge couplings. The exotics can be given a mass through a vev for

GUT singlets, and how strong their effect is on gauge coupling unification depends on their proximity

to the GUT scale. This was studied for explicit models in [257,267].

6.5.4. Supersymmetry breaking

Supersymmetry breaking is not a phenomenological aspect that can be studied completely locally be-

cause there is always a gravity mediated contribution which is sensitive to global aspects. However it

is possible to assume that this is subdominant to another source of supersymmetry breaking mediation

which can be studied locally within an F-theory context. When this approximation is valid is gener-

ally very model dependent and within an F-theory context was studied in [304]. Of course even if the

main mediator of supersymmetry breaking is gravitational it is possible to use results from IIB and

some approximations to make general statements about the F-theory setup and this has been studied

in [97, 290, 304, 305]. Motivated by the Higgs mass results there are also models which consider a very

high scale of supersymmetry breaking [290,306].

Within the approximation that the primary source of supersymmetry breaking is the local gauge

sector, supersymmetry breaking in F-theory GUTs was studied in [212, 246, 267, 307–312]. The models

are based on gauge mediation with [308–311] using messengers in the 5 ⊕ 5̄ representations, [246, 312]

in the 10⊕ 1̄0 representations, and in [267] the messengers did not form complete GUT multiplets. All

of the models utilised a U(1)PQ symmetry to control the µ − Bµ problem of gauge mediation where

the µ term induced through the Guidice-Masiero mechanism in the Kahler potential

K ⊃ X†HuHd , (6.79)

is allowed by the U(1)PQ, with X the supersymmetry breaking field which is charged under the U(1)PQ.

While the associated Bµ term is forbidden

K ⊃ X†XHuHd . (6.80)

A natural consequence of the presence of a U(1)PQ is an additional source of soft masses for the fields

coming from integrating out the associated Stueckelberg massive gauge field [309,313]. The interesting

thing about such soft masses is that they depend only on the charges of the fields that gain a mass

under the U(1)PQ. Therefore if the generations share the same charge such masses are automatically

flavour diagonal thereby avoiding strict experimental constraints on flavour changing currents. In [312]
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the phenomenological implications of this additional mass term were studied in detail. However it is

important to note that, since the mass of a Stueckelberg massive gauge field is at the string scale,

a mechanism is still required to understand the suppression of flavour changing soft masses induced

by other heavy fields compared with the U(1)PQ induced masses. In particular calculations of such

masses coming from integrating out heavy chiral mutliplets were performed in [238] with the results

that generally no additional suppression is expected though there is the possibility of such a relative

suppression at regions of parameter space.

6.5.5. Further topics

In this section we review phenomenological aspects of F-theory models which do not fall into the themes

outlined above. Although flavour physics does constitute a central theme in F-theory phenomenology the

wavefunction approach to flavour physics was reviewed in section 6.4 and the Froggatt-Nielsen models in

section 6.5.1. It should be noted though that the wavefunction discussion is of course classical and it is

important to take into account quantum corrections to the Yukawa couplings from threshold effects, and

these have been studied to some extent in [225, 314]. Additional to these approachs a model of flavour

was also developed in [272] where the flavour structure is attributed to the different dimensions over

which the matter representation can be localised in the presence of gluing morphisms that correspond

to brane recombination modes [271–273].

F-theory GUTs have proved quite fruitful in the arena of Neutrino physics. A key aspect of neu-

trino model building is the nature of right-handed neutrinos and in F-theory there are two classes

of candidates: there are GUT singlets which are neutral under all the gauge symmetries, and so can

be termed moduli, and there are GUT singlets that are charged under additional U(1) symmetries.

Note however that the two types of candidates can be related once the U(1) symmetries are spon-

taneously broken. The moduli candidates have been studied in [228, 246, 315] and the charged ones

in [212,234,246,253,254,266,292]. The models had realistic neutrino masses were obtained which arose

either through the traditional see-saw mechanism or through the mechanism proposed in [316] where a

Dirac mass in Kahler potential naturally leads to correct neutrino mass scale after electroweak symmetry

breaking. It is interesting to note that neutrino physics is also an area where experimental predictions

were made in F-theory models which have since been confirmed. This refers to the neutrino mixing

angle θ13 which until recently was experimentally consistent with zero and in many bottom-up models

assumed to vanish through some symmetry. The relevant mixing angle was predicted in the models

of [228,254] to be non-vanishing and indeed was measured to be so [317].

So far in F-theory we have considered configurations which amount to intersecting 7-branes. An

interesting extension of these theories is by adding probe D3-branes intersecting the GUT 7-brane.

In particular D3-branes probing exceptional E6, E7, E8 points of enhancement give rise to additional

sectors which are strongly coupled N = 2 superconformal field theories [241, 242, 244]. Such strongly

coupled sectors can couple to the visible sector and modify physics including gauge coupling unification

and electroweak symmetry breaking. The phenomenology of these theories is studied in [245, 318] and

is particularly interesting given the current experimental probes of the Higgs couplings.

An interesting and often studied scenario in beyond the SM physics is the possiblity that gauginos

are Dirac rather than Majorana. In [319] it was shown how such a scenario could be realised in F-theory.

Although more inspired by F-theory than directly derived from it the no-scale flipped-SU(5) model
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proposed in [291] has been studied throughly and the detailed resulting phenomenology seems quite

promising [320–326].

Although most of the work in F-theory is on SU(5) and SO(10) GUTs there are studies on SU(6)

[327,328] and E6 GUTs [185,266,270,272,292]. Also it is possible to consider a direct embedding of the

SM gauge groups more analogous to intersecting brane models [255,268,329].

It is clear that there is an important element missing from the F-theory phenomenology reviewed

which is moduli stabilisation. Although a well developed subject in the type IIB limit, see section 2, the

uplift to F-theory of the stabilisation of the Kahler moduli and the open-string moduli (which become

geometric in F-theory) is less well understood. The effective action approach of [164], and related flux

superpotential [330], is a substantial step towards this aim. Also in [331–333] some aspects of moduli

stabilsation from the M-theory persepctive were studied. It is clear from the key role that instantons

play in type IIB that a similar important role in moduli stabilisation is relevant for F-theory. Therefore

studies of instantons in F-theory are important in this respect [198, 215, 307, 334–341]. A particularly

interesting result of [337] is that a condition for the instanton prefactor Pfaffian to vanish in F-theory

is the existence of a point of E8 enhancement. This is could present an attractive way to dynamically

motivate the existence of such a point and the resulting phenomenology.

7. Concluding remarks

We reviewed the construction of particle physics models within the weakly coupled type IIB string and

its strongly coupled extension of F-theory. There are many aspects that combine to form a realistic

string vacuum and one of the most important is the stabilisation of all the moduli. This is an aspect

which is particularly well understood within the type IIB framework and we began by reviewing how

full stabilisation of the moduli can be realised. The rest of the review was dedicated to how the key

elements of low energy particle physics; gauge and global symmetries, a chiral matter spectrum, and

interaction operators such as Yukawa couplings arise and the actual models that can be constructed

combining these elements. The first class of models we discussed were D3-branes at singularities where

semi-realistic matter spectra could be constructed as well as some control over more detailed aspects

such as quark and lepton masses and mixing. We then summarised the key aspects of models based on

intersecting and fluxed D7-branes in IIB.

Motivated by the realisation of GUTs we argued that within such a unified framework an order one

top quark Yukawa coupling requires the presence of exceptional symmetries that can only be realised

within the strongly coupled regime of type IIB string theory termed F-theory. F-theory model building

was reviewed in two sections, the first concerned global aspects of the framework such as the structure

of the elliptic fiber over various loci in the CY four-fold, how gauge symmetries, both Abelian and

non-Abelian, can be generated, and how to account for world-volume flux and the chirality it induces

in the spectrum. The second section reviewed local model building which is based on a gauge theory

description of the GUT 7-brane. We showed that a wide spectrum of phenomenological issues can

be addressed in this framework, many of which offer novel stringy solutions to familiar puzzles from

field-theory GUTs. For example a geometric understanding of quark and lepton flavour physics and

doublet-triplet splitting using background flux. Additional U(1) symmetries beyond those of the SM

played a central role in this arena of model building and, although strongly constrained by anomaly

cancellation, could offer substantial control over operators in the theory.
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Although the successes of particle physics model building so far are impressive, both in the accuracy

to which known aspects of the SM could be recovered as well as the range of puzzles that this top-down

framework offers attractive solutions to, the ultimate goal of string phenomenology: an understanding

of how the particular universe we inhabit emerges from string theory, still requires substantial advances.

It is of course difficult to guess how revolutionary the insights required and how long it would take to

make these advances, but some seem more immediately reachable than others. For example just a few

of the more immediate aspects to address are how to realise the local model building phenomenology

of F-theory in a fully global context, particularly pressing aspects being the realisation of globally

trivial hypercharge flux as well as additional U(1) symmetries. Another global aspect is how the rich

moduli stabilisation models of IIB are lifted to F-theory? In the opposite regime there remains much to

understand about ultra local models based on wavefunction analysis in local patches, for example an

analysis of more general Higgs backgrounds with non-Cartan elements.

In terms of model building targets we have not discussed cosmology at all in this review. There is

a substantial body of literature on the subject of cosmology in the type IIB framework (see [342, 343]

for reviews), though it is fair to say that a fully realistic model of inflation is yet to emerge completely

naturally from the theory, and inflationary model building remains of high priority. In terms of particle

physics it is crucial to respond to the findings of the LHC. Two particularly important aspects of

this are updating our model building targets away from the MSSM as other theories become more

attractive with results for the Higgs mass and couplings, for example theories with additional singlets

or massive gauge symmetries that can change the tree-level Higgs mass. Relating to this aspect of LHC

limits on supersymmetry it is important to look for models which accommodate soft mass patterns that

maintain the naturalness motivation for supersymmetry while evading LHC limits. One of the primary

motivations for supersymmetry remain gauge coupling unification and understanding the details of this

in F-theory, particularly in the presence of hypercharge flux, is clearly important.

Perhaps the most serious long term issue facing string phenomenology is that of the landscape:

which vacuum of string theory does our universe correspond to and why that particular one? Two of

the most important aspects, in relation to this question, that have been reviewed here are the modular,

or local, approach to model building and the idea of an underlying E8 symmetry controlling the full

structure of the theory. The local approach allows us to decouple some of the particle physics questions

from the full closed-string background. This idea is particularly appealing when we consider that the

landscape, and anthropic reasoning, have proved most successful in the closed-string or gravitational

sector when applied to the cosmological constant. On the other hand in particle physics the principles of

symmetries, unification and naturalness have so far proved reliable guides. Therefore the appealing idea

of a closed-string landscape with an open-string sector which is understood from more traditional routes

fits well with the modular approach to model building. Within the particle physics sector itself the idea

that E8 should be the structure underlying the gauge, matter and interactions of the model, even within

a type II setting, restricts the possible spectrum of models that can be studied to a manageable set.

For example in F-theory GUTs with hypercharge flux breaking, even before we impose any possible

additional constraints coming from global realisations, anomaly cancellation by itself severely restricts

any possible additional U(1) symmetries. Therefore one of the crucial questions for string phenomenology

is: is there an underlying E8 controlling unification in string theory?

Of course even if, by some criteria, we could convincingly argue for a particular realisation of our
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universe in string theory, it is difficult to see with our present understanding of the theoryau how this

could emerge as the unique consistent solution to string theory and therefore is not strictly a prediction

of the theory. Ideally a theory should make distinct falsifiable predictions, however, the primary criteria

by which a theory of the universe should be judged is its ability to reproduce known observations.

And by this criteria string models, in incorporating quantum physics, gravity and particle physics, are

already the leading theories known. Further, as we have seen the requirement to reproduce the present

day observations is highly constraining. These drive us to distinct regions of the landscape; each region

providing a phenomenological scenario. Within a given phenomenological scenario it is certainly possible

to extract predictions. In this light, the absence of a unique string theory prediction at present should

certainly not be taken as a fundamental obstacle. The ambitious goal of string phenomenology should

be pursued intensively: it is difficult to imagine that fundamental physics could advance indefinitely

without facing this task sooner or later.
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