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Abstract

Large studies of extended families usually collect valuable phenotypic data that may have
scientific value for purposes other than testing genetic hypotheses if the families were not selected
in a biased manner. These purposes include assessing population-based associations of diseases
with risk factors/covariates and estimating population characteristics such as disease prevalence
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and incidence. Relatedness among participants however, violates the traditional assumption of
independent observations in these classic analyses. The commonly used adjustment method for
relatedness in population-based analyses is to use marginal models, in which clusters (families)
are assumed to be independent (unrelated) with a simple and identical covariance (family)
structure such as those called independent, exchangeable and unstructured covariance structures.
However, using these simple covariance structures may not be optimally appropriate for outcomes
collected from large extended families, and may under- or over-estimate the variances of
estimators and thus lead to uncertainty in inferences. Moreover, the assumption that families are
unrelated with an identical family structure in a marginal model may not be satisfied for family
studies with large extended families. The aim of this paper is to propose models incorporating
marginal models approaches with a covariance structure for assessing population-based
associations of diseases with their risk factors/covariates and estimating population characteristics
for epidemiological studies while adjusting for the complicated relatedness among outcomes
(continuous/categorical, normally/non-normally distributed) collected from large extended
families. We also discuss theoretical issues of the proposed models and show that the proposed
models and covariance structure are appropriate for and capable of achieving the aim.
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Correlated outcomes; Marginal models; Family study; Large and inter-related extended families

Introduction

In studies of large families, the family structures are usually complex and different, and the
individuals may relate to each other in a range of ways. There may be considerable scientific
value in assessing population-based associations of diseases with risk factors and estimating
population characteristics such as disease prevalence and incidence in addition to testing
genetic hypotheses. Since observations on family members are correlated, these results need
to be adjusted. The commonly used adjustment method for relatedness in population-based
studies is to use marginal models [1-3], in which clusters are assumed to be independent
with a simple and identical covariance structure. In applying a marginal model to family
data, clusters become families, and the assumption that clusters are independent with an
identical covariance structure implies that families are unrelated with an identical family
structure. For example, let yj; denote an observed disease status (y;j = 1, if diseased, and = 0,
otherwise) of the jth member from the ith family, i =1, 2, ...,N; j=1,2, ..., m. Then, the
following marginal model is usually applied to assess population-based association of
prevalence or cumulative incidence of the disease with its risk factors/covariates xy, ..., Xp,

P(y;;=1) . B
log Tyzyzl) =Bo+L1xij1+02Tij2+ - - +8pTijp, 1=1,2,..., N;j=1,2,...,m,

where coefficients Bg, ...Bp are unknown parameters, and the covariance/correlation
structure among y;;s from a family is assumed to be the same across all families and to
follow some simple structures. The most often used covariance/correlation structures
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defined in the marginal model are the independent, exchangeable and unstructured structures
[1, 2] (they have been accommodated in many statistical software packages such as SAS
Process GENMOD, SAS software, SAS Institute, Cary, NC).

The independent and exchangeable correlation structures defined in the marginal model
have the following forms:

1 0 --- 0 1 » - r

0 1 " ro1 :
Rindcpcndent: . andRezchungeable:

0 0 1 r ro 1

On the other hand, if an extended family with, say, 8 members, is recruited based on “core
sibs” in a family study and the 8 members are ordered as {father of core sibs, mother of core
sibs, spouse of core sib 1, spouse of offspring 1 of core sib 1, core sib 1, core sib 2, offspring
1 of core sib 1, offspring 2 of core sib 1}, then the correlation matrix for outcomes collected
from the 8 members should have the following form

1 000 = *x $ §
01 00 * x $ %
001000 % =
00 01 0O0O0O0
Rﬁztended = £ « 0 0 1 % % %
* x 00 = 1 $ $
$ % «x 0 = $ 1 =x
$ $ x 0 x $ x 1

This is because spouses are usually unrelated, and father and mother relate to their children
(the *s in the matrix) and their grandchildren (the $s) differently. Therefore, if the
independent correlation structure is applied to the data collected from this kind of extended
family, then it implies that all members in the extended family are unrelated while in
actuality all members are related except the spouse of offspring 1 of core sib 1. On the other
hand, if the exchangeable correlation structure is used, it implies that all members in the
extended family are related to the same degree, and thus ignores those unrelated (more than
half of correlations are zero as shown in Regendeg) @nd those related to different degrees
(those *s and $s). It is well known and has been reported in the literature using either
theoretical proofs or simulations that treating related as unrelated or vice versa may either
under- or over-estimate the variances of estimated parameters, which in turn may lead to
false inferences about associations of the relevant outcome with its risk factors/covariates [2,
4].

The unstructured covariance structure defined in the marginal model has the following form:
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2
011 912 *°° O1m
2
021 022 “*° O2m
COV= .
2
Om,1 082 **° Opm

where mis family size, {oj j}s are unknown variance/covariance components, oj j = oj , but
01,2 F 01,3 £ £ 01,m 02,3 * 02,4 FEE 02,my -+ Om-2,m-1 * Om-2,m and

031 # 059 # -+ # 0p, . IT the marginal model with the unstructured covariance structure is
applied to the data collected from the abovementioned extended family (m = 8), then we
need to estimate 36 (=8*(8+1)/2) unknown variance/covariance components in COV. This
will be impractical if family size is large. Further, using the unstructured covariance
structure in a marginal model also requires that we are able to uniquely order all members in
each family in a way that is the same across all families (e.g., see the explanation about the
“WITHIN” option in SAS Process GENMOD for details). However, it is difficult and
sometimes impossible to order uniquely if families have different sizes or structures.
Moreover, even when all recruited extended families have the same structure, if only a
subset of the data is used in an analysis such as using the data collected from those aged 40—
60 years only, then the numbers of the aged 40-60 members from different families may
vary and so may the structures among the extracted members from different families.

Therefore, the current applicable covariance structures (independent, exchangeable and
unstructured) used in a marginal model may not be optimal to describe the complicated
relatedness, and the assumption of identical family structure may not be satisfied in larger
extended families.

Let us take the Strong Heart Family Study (SHFS) [5] as an example. The SHFS was
initiated in 1998 to identify genetic determinants of cardiovascular disease (CVD) in
American Indians and to map and identify genes for CVD susceptibility. Families were
recruited if they had a “core sibship” (a sibship with at least five living siblings, of whom
three or more were original Strong Heart Study (SHS) [6] cohort members) and had at least
12 living offspring aged =15 years among the core sibship members. Each of the recruited
families included the core sibship members, their parents (if alive), spouses, offspring,
spouses of offspring, and grandchildren who were at least 15 years of age. A detailed
description of the SHFS and SHS has been reported previously [5, 6] and published on the
SHS web site (http://strongheart.ouhsc.edu). For example, 27 extended families were
recruited in one of the centers of the SHFS. These extended families spanned four
generations with the largest family size being 114 and the average size being 45. It is clear
that family structures of these families are different and complicated. An application of the
marginal model with either the independent or exchangeable covariance structure will lead
to oversimplifying the complicated relationship among members in the extended families,
while an application of the marginal model with the unstructured covariance structure will
lead to estimating at least 6555 (=114*(114+1)/2) unknown variance/covariance
components since the largest family size is 114. Moreover, because the families are recruited
based on the “core sibship” and are not geographically distant from each other, it is not
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unusual for a recruited non-core member in a recruited family to be related to recruited
members in other recruited families. This is often the case in family studies for populations
such as American Indians, Alaska Natives or the Amish. Thus, the usual assumption that
families (clusters) are unrelated (independent) in a marginal model may not be satisfied
either.

Therefore, it is desirable and important to develop models to adjust for these kinds of
complicated relatedness in order to assess the population-based associations and estimate
population characteristics. This paper proposes such models for analyzing continuous or
categorical, normally or non-normally distributed outcomes in “Models”, provides
simulation and application examples in “Simulation and examples”, and discusses related
theoretical issues in “Extension of the proposed models defined in (2.1) and (2.2)”,
“Discussion”, and in the Appendix.

Models

Proposed model for a qualitative outcome

Lety; = 1, if person i has an outcome of interest such as a disease, and =0, otherwise. We
propose the following marginal model for assessing association of the prevalence or
cumulative incidence of the disease with its risk factors/covariates xq, ..., Xp.

log

) P(y;=1 . 5
Zt(P(yZ'ZJ)):]Og (%) =Lo+L1xi1+Boxio+ - - - —|—,8px¢p, i=1,....,my,my+1,...,m+me,...,n, ﬂi:P(inI/

where logit(.) is called the logit link function, o(i, j) is the kinship coefficient [7] between
two individuals i and j, (i, j) = P{At any given locus, two randomly picked alleles, one
from person i and one from person j are identity by descent}, 1 > r4 > 0, r; and coefficients
Bo, ---Bp are unknown parameters, and the observations are ordered sequentially by families,
thatis, i =1, ..., my denote the members in the 1st family, i =my + 1, ..., my + mp denote the
members in the 2nd family, etc., and n denotes the total number of participants in the study.

The covariance structure of the model defined by (2.1) is based on the classic biometrical
model [7], where r denotes the component due to the additive effect, which is the major
cause of resemblance between relatives. Following approach of the biometrical model, if the
additive effects alone cannot adequately explain the data, a dominance component may be
added [7]. That is, if necessary, we may use the following covariance structure in the model
defined by (2.1)

Var(y;)=pi(1=p:), Cov(yi,y;)=2rad(i, j)+ral7(i,j)) \/#i(l = i) \/#j(l = pj),i# Jyi j=1,...,n, (2.1a)

where rg >0,rq>0, ry +rq<1, rqdenotes the component due to the dominance effect,
which represents variance due to non-linear interaction between transmissible alleles and is
contributed by individuals who share both alleles identical- by-descent [7], and Aq(i, j) is
Jacquard’s coefficient [8], Aq(i, j) = P{The two alleles of person i at any given locus are
identical by descent with the two alleles of person j at the same locus}. Both o(i, j)s and
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Dq(i, j)s are directly calculated from the extended pedigrees of families ascertained in a
family study since parents themselves may be related. For example, assuming parents are
unrelated, it is well known that the kinship coefficient for two identical twins is 0.5; parent-
offspring, 0.25; full sibs, 0.25; uncleniece, 0.125; etc. If there are no instances of inbreeding,
no double cousins, and no twins in the pedigree, then A;(i, i) = 1, Vi; A7(i, j) = 1/4, if i and
are full siblings; and zero otherwise. Many commercial software packages such as SAS
Process INBREED (SAS software, SAS Institute, Cary, NC) and freely available software
packages such as the PEDIG package [9] can be applied to calculate kinship coefficients
between any two individuals based on their ascertained pedigree.

Compared to the independent, exchangeable and unstructured structures defined in the
marginal model shown in the introduction, it is clear that the covariance structures in the
proposed models defined by (2.1) or (2.1a) account appropriately for different degrees of
relationship among family members. These covariance structures have at most two unknown
parameters (r5 and rg), and do not require that all members in each family be ordered in the
same way across all families. The proposed covariance structure defines the relationship of
outcomes collected from any two members in recruited families no matter how complicated
and different the family structures are, or whether the families are related. The proposed
model is also flexible for analyses that use only a subset of the data since the covariance
structure for the subset can easily be composed from the corresponding sub-kinship matrix.

Proposed model for a continuous outcome

For a continuous outcome, y, such as cholesterol, the proposed model is

Yi=PBo+B1zi1+0exia+ - - - +5pxipte,
=1,...,mq,mq
+1,...,mq
+mag,...,n, Var(y;)
=Var(e;)
=a?, Cov(yi, ;)

2.2)

:COV(EZ‘, ej)

=022r,¢(i,7),i # j,i,j=1,...,n,

where g’s denote random errors, 1 > r5 > 0, r5 denotes the component due to the additive
effect, 02, r, and coefficients py, ..., Bp are unknown parameters, and the other notations are
the same as those defined in (2.1). Similarly, if the dominance effect needs to be considered,
we may use the following covariance structure in the model defined by (2.2)

Var(yi):Var(ei):UQ, Cov(ys, y;)=Cov(e;, ej):02(2ra¢>(i,j)+rdA7(i,j)),i #J,4,5=1,...,n, (2.2a)

whererg>0,rq>0, rg +rq<1, rqdenotes the component due to the dominance effect.
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Extension of the proposed models defined in (2.1) and (2.2)

To extend the models defined in (2.1) and (2.2) to cover different kinds of outcomes in a
family study and to allow for additional random effects such as random environmental
effects, we follow the procedure for generalized linear mixed models [4, 10, 11].

LetY =(y1, ..., Y)' Xi = (L, Xizs -y Xip) s X = (X1, ..., Xn)*, B = (Bo, Br, -+, Bp) " 2 = (71,
o Z4g)S Z= (20 -0 Zn)S U= (Ug, Up, ..., Ug)Y, and e = (€, &, ..., )", where y; denotes the
outcome variable observed in individual i with fixed covariates x; and explanatory variables
z; that are associated with the random effects U, and U and the errors, €, are assumed to be
independent. Assume that U has a mean zero O and covariance matrix Cov(U) = G (0) that

depends on an unknown vector 8; and given U, y; will have means E(y, /U)=yY, variances
Var(y;/U), and covariance components

Cov(yi, y;/U)= \Jvar(y:/U){2rad (i, )} /var(y;/0),i 5 @23)
or
COV(yZ'7 y]/U): Var(yi/U){zra(b(ia j)+TdA7(i7 ])} Var(yj/U)ai * .7 (2.38)

if the dominance effect is added, where 0 <ra<1(orO<rg rg<landrg+rg<1lifthe
dominance effect is added). Assume that ;, is related to 5” =x7B+z] U by a link function
g(u?)=nY, with inverse h=g™%. Then p=(»V, ... . n¥ )" =XB+2ZU and

B(Y /U= ... 1Y) =(h(x]B+77U), .., h(x;B+2,U)) =h(XB+2U) (24)

It is clear that if there are no random effects involved, the model defined by (2.1) is a special
case of (2.4) when y is binomially distributed and the logit link function is used. The model
defined by (2.2) is the one in which the identity link function is used and Var (y;/U) = o2.
Models in which outcomes have other distributions such as those belonging to the linear
exponential family with respective link functions are also accommodated in (2.4) [4, 10, 11].

If all families are unrelated and have an identical structure, the estimation procedures for o2,
ra g, 6, B and U in the models defined by (2.1), (2.2) or (2.4), the proofs for asymptotic
properties of the estimators, and their statistical inferences follow those used in the
generalized linear mixed models [4, 10, 11]. In the case where families in a study can be
classified into unrelated subgroups, and families in each subgroup are unrelated and have
identical structure, we show in the Appendix that similar approaches and asymptotic
properties also hold. When families in a study are related and large and have different sizes
and structures, and the number of families may be only moderate, it is difficult to
theoretically prove the asymptotic properties of the estimated parameters from our models
because families may be related. However, we showed by a simulation that the usual
asymptotic properties also hold in this case no matter whether the families are related or
with different family sizes or structures if the total number of members from all families is
large enough even though the number of families may be only moderate (Appendix).
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Simulation and examples

As mentioned in the introduction, it has been reported in the literature by either theoretical
proofs or simulation methods that treating related observations as unrelated or vice versa
may either under- or over-estimate the variances of estimated parameters, and thus may lead
to false inferences about the significances of associations of a relevant outcome with its risk
factors/covariates [2, 4]. To further confirm these uncertainties, we use a simulation to
compare power of the proposed models with that of the marginal model with either the
exchangeable or independent correlation structure in detecting significant associations of an
outcome measure with its risk factors/covariates when correlation structure in a data is
neither the exchangeable nor independent.

Let FPG;j denote measured fasting plasma glucose (FPG) of the jth member in the ith
family. The following proposed model (2.2) is used to simulate association of FPG with its
seven risk factors/covariates: age, waist circumference (WAIST), body mass index (BMI),
urinary albumin to creatinine ratio (UACR), insulin, low density lipoprotein (LDL), and
triglycerides (TG),

FPGj;= — 16.14+0.295age;+0.431 WAIST;;
— 0.894BMI;
+7.367log(UACR),,
+4.115log(insulin), ;
— 0.065LDL;
+14.757log(TG),;+e€i;-

The families are those 50 unrelated extended families in which each family had 8 members
ordered as {father of core sibs, mother of core sibs, spouse of core sib 1, spouse of offspring
1 of core sib 1, core sib 1, core sib 2, offspring 1 of core sib 1, offspring 2 of core sib 1}.
Figure 1 shows the pedigree for the ordered 8 members. Assume FPGs observed from a
family are normally distributed with VVar(FPG;;) = 1000 (or standard deviation of 31.6) and
ra = 0.5, then based on the definition of the covariance in (2.2) and the calculated kinship
matrix @ from the pedigree of the ordered 8 members, FPGs have the following correlation
matrix

10 0 0 0250 0.250 0.125 0.125
0 1 0 0 0250 0.250 0.125 0.125
00 10 00 0.250 0.250
00 01 00 0 0
Corr(FPGy, FPGi)=Ru= | 050 (950 00 1 0250 0250 0250 [
0.250 0.250 00 020 1 0125 0.125
0125 0.125 0.250 0 0.250 0.125 1  0.250
0125 0.125 0.250 0 0.250 0.125 0.250 1

where FPG;. =(FPG;jq, ..., FPGjg)*® denotes FPG collected from 8 members of the ith family,
i=1, ...,50,and

Eur J Epidemiol. Author manuscript; available in PMC 2014 September 18.
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0.5 0 0 0 025 025 0.125 0.125
0 0.5 0 0 025 025 0.125 0.125

0 0 05 0 00 0.25 0.25
0 0 0 05 00 0 0
o={¢ij}= 025 025 0 0 05 025 025 0.25

0.25 0.25 0 0 025 05 0125 0.125
0.125 0.125 0.25 0 0.25 0.125 0.5 0.25
0.125 0.125 0.25 0 0.25 0.125 0.25 0.5

For example, o(father of core sibs, offspring 1 of core sib 1) = @17 = 0.125. Whenr; = 0.8,
FPGs have the following correlation matrix that has larger correlation coefficients

10 0O 0 04 04 02 02

01 0O 0 04 04 02 02

0 0 1 0 00 04 04

Ro— 00 0 1 00 0 O
04 04 0 0 1 04 04 04

04 04 0 0 04 1 02 02

02 02 04 0 04 02 1 04

02 02 04 0 04 02 04 1

The parameters used in the simulation model are obtained from the SHFS data in order to
make the model realistic and meaningful. It is clear that Ry or R, contains three levels of
correlations (e.g., 0, 0.125 and 0.25 in Rq), which is neither the exchangeable correlation
(that assumes all correlation coefficients are the same and non-zero) nor independent
correlation (that assumes all correlation coefficients are zero) structure defined in the
marginal model. One thousand replicated simulated data sets, each including 400 simulated
observations from the 400 members in the 50 unrelated extended families, were generated.
For each of the 1,000 simulated data sets, the proposed model (2.2) and the respective
marginal model with the exchangeable or independent correlation structure were applied
separately to estimate the regression coefficients for the seven risk factors/covariates of FPG
in these models. To estimate power of a model in detecting significant association of FPG
with a given risk factor/covariate, say, WAIST, after adjusting for the other risk factors/
covariates in the model, we tested the null hypothesis: Hg: “the coefficient for WAIST in the
model” = 0, at a given significant level (type 1 error rate) a based on each of 1,000
simulated data. The empirical power of the model at the given significance level a in
detecting the significant association of FPG with WAIST after adjusting for the other risk
factors/covariates in the model was estimated as “the total number of the tests based on the
1,000 replicated simulated data sets where Hg was rejected at the given significance level a
“divided by 1,000. The same procedure was applied simultaneously for each of the seven
risk factors/covariates in the model. Table 1 displays estimates of the empirical powers of
the proposed model (2.2) and the marginal model with the exchangeable or independent
correlation structure in detecting the significant association of FPG with each of its risk
factors/covariates after adjusting for the other risk factors/covariates in the model at two
different significance levels (a = 0.05 or 0.01) based on the 1,000 simulated data sets
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generated by using two different correlation matrices R, and Ry. For example, at the
assumed correlation matrix R1 and the given significance level a = 0.05, the estimated
empirical powers of the proposed model (2.2) and the marginal model with the
exchangeable or independent correlation structure in detecting the significant association of
FPG with WAIST after adjusting for the other risk factors/covariates in the model are 0.611,
0.598 and 0.556, respectively. The power of the proposed model (2.2) is almost always
greater than the power of the marginal model with either the exchangeable or independent
correlation structure, and the differences between the powers increased with the correlation
coefficients (those based on R, are larger than those based on R1). Our simulation results
indicated that using either simplified exchangeable or independent correlation structure in
analyzing correlated data with more complicated correlation structures (e.g., those defined
by R1 or Ry) may either under- or overestimate the variances of parameters, and thus may
lead to incorrect inferences about the significance of associations of an outcome with its risk
factors/covariates. It may be expected that such uncertainty will be greater if simplified
exchangeable or independent correlation structure is used in analyzing correlated data
collected from the SHFS extended families that span four generations with the largest family
size being 114 and the average size being 45.

Table 2 shows results when applying the proposed model (2.2) and the respective marginal
model with either independent or exchangeable correlation structure to one of the 1000
simulated data sets that used the correlation structure defined in R;. We can interpret the
results from the proposed model (2.2) in the same way as those from a conventional linear
regression model since the proposed model (2.2) is a marginal model and the coefficients
from a marginal model represent population averaged results [2, 4]. For example, based on
the results from the proposed model (2.2) in Table 2, age, WAIST, log(UACR), log(insulin)
and log(TG) were significantly and positively associated with FPG; while BMI and LDL
were significantly and negatively associated with FPG. However, the results from the
respective marginal models show that, besides the differences in the estimated coefficients,
which maybe minor if the sample size is large [2, 4], some of the significant risk factors/
covariates of FPG in the proposed model were no longer significant in the respective
marginal models with either independent (age, log(insulin), and LDL) or exchangeable (age
and LDL) covariance structures, reflecting uncertainty in inferences due to the simplification
in correlation structures.

Discussion

As indicated earlier, the proposed models are appropriate, capable, flexible and efficient for
population-based association studies while adjusting for complicated relatedness in data
collected from family studies with large extended families.

If outcomes are continuous and normally distributed, and families in a study are unrelated to
each other and have an identical family structure, the proposed model defined in (2.4) with
the identity link function is the variance components model used in pedigree analyses [7, 12,
13]. However, if outcomes are discrete or not normally distributed, the proposed model
defined in (2.4) is different from those proposed models for correlated data in the literature.
For example, for binary outcomes, the proposed Model (2.1) is different from those
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threshold models [14-16] or the generalized linear mixed model (GLMM) with a logit link
function [17] or the mixed models on which family-based association tests (FBAT) are
based [18, 19].

The threshold model for the disease outcome y; (y; = 1, if person i has the disease; and =0,
otherwise) and its risk factors/covariates Xy, ..., Xp is defined as follows. Let the random
effects U = (uy, Uy, ..., upy)® be normally distributed with

E(u;)=0, Cov(u;, u;)=022¢(3, §), i, j=1,...,n.

Assume given U, y;, i =1, ..., n, are mutually independent, and

if 2z <9,

&~ (P(y;=1/U))=0"H(P(2; > 9/U))=Bo+Lrzi1+FaTiat - +BpTip—0+u;, i=1,...,my,mi+1,...,my+ma,...

where 3 is the underlying threshold, z, i = 1, ..., n, are the underlying random variables, and
®~1( ) stands for the inverse of the standardized cumulative normal distribution function,
which is also called the probit link function in the GLMM.

The respective GLMM with a logit link function in this case is defined as follows. Assume
given the same random effects U = (uy, Uy, ..., U,)® defined above, yi, i =1, ..., n, are
mutually independent, and

logit(P(y;=1/U)
“log ( P(y;=1/U) )

1 - P(y;=1/U)
=Bo+Lr1xi1+Paxio+ - - - +Bpxiptus, i
=1,...,my,my
+1,...,mi+mg,...,n.

The mixed model on which FBAT is based for the dichotomous phenotype yj; of the jth
offspring in the ith family is defined as follows. Assume given the random variable ujj that
codes for genotype of the jth offspring in the ith family at a particular allele, i =1, ....m; j =
1, ..., mj, yjj’s are independent and

P(yi=1/us)

W]:]/%)) +B0+B81%i1+Boxio+ - - - +BpTyptyuy,

log it(P(y;=1/u;)=log (

where xg, ..., X usually denote demographic or environmental effects, and u;; are dependent
on parental genotypes. FBAT based on this model tests the null genetic hypothesis Hy : “no
association in the presence of linkage”; or “no linkage and no association between a marker
and the phenotype”, which is equivalent to testing whether the coefficient v of the random
variables equals zero, that is, Hy : v = 0.
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It is clear that the proposed Model (2.1) is a marginal model while the threshold model and
the GLMM maodel as well as the FBAT based model are mixed random effects models. It is
known that a marginal model and a mixed random effects model can lead to different
estimations and interpretations for the regression coefficients [2, 4]. In the proposed Model
(2.1), the logit of the expectation E(I(y; = 1)) = P(y; = 1) was directly modeled with its risk
factors/covariates xy, ..., X, and the covariance is directly defined through y;’s themselves.
Therefore, like the example of the proposed Model (2.2) shown in “Simulation and
examples”, the estimated coefficients Ba, BlA, B,; for the risk factors/covariates from the
proposed Model (2.1) can be interpreted in the same way as those estimated coefficients
from a conventional logistic regression model since the coefficients from a marginal model
represent population averaged results [2, 4]. While in the previous mentioned mixed random
effects models, say, the GLMM model, the logit of the conditional (conditioning on the
random effects U) expectation E(I(y; = 1)/U) = p(y; = 1/U) was modeled with both the fixed
effects xq, ..., Xy and the random effect uj, and the covariance is partially defined by the
random effects U. Therefore, the estimated coefficients [36, Bl~, BF; for the fixed effects, Xy,
..., Xp from these models are dependent on individual random effects ujs and the distribution
of u;s by the definition of the conditional expectation and thus are individual- specific not
population averaged [2, 4, 10, 17]. The Gibbs sampling method [20, 21] was usually used in
fitting these mixed random effects models. Similar differences also exist between the
proposed Model (2.4) and the GLMM models. Marginal models are appropriate when
inferences about the population-average are the focus, which are what we focused in this
paper and are usually the focus in population-based epidemiological studies; while a random
effects model is most useful when the objective is to make inference about individuals rather
than the population average [2, 4]. We adopted a marginal rather than random effects model
approach for our covariance structure since we are interested only in assessing population-
based associations of diseases with their risk factors/covariates and estimating population
characteristics in epidemiological studies.

It is easy to verify that when families in a study are those unrelated pedigrees that contain
only identical twins or only siblings without twins, the proposed models are equivalent to
the marginal model with the exchangeable covariance structure that is often adopted in
populationbased analyses [22].

Therefore, if families in a family study are unrelated and have identical structure, the
covariance structure defined in the proposed models can be treated as an additional
appropriate covariance structure to the existing covariance structures used in marginal
models. If families in a family study are large and related, and have different sizes and
structures like the extended families in the SHFS, the proposed models are most appropriate
for and capable of handling this type of data for population-based analyses. The SAS macros
for applying the proposed models will be available upon request.

Other marginal models for family data in the literature include the odds-ratio regression
models [23] that model on each specific pair such as siblings or a parent-sibling pair, and the
frailty models [24, 25] that take care of censored observations.
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Abbreviations

BMI Body mass index

CVvD Cardiovascular disease

FBAT Family-based association tests

FPG Fasting plasma glucose

GLMM Generalized linear mixed model

LDL Low density lipoprotein

SHFS Strong heart family study

SHS Strong heart study

TG Triglycerides

UACR Urinary albumin to creatinine ratio

WAIST Waist circumference
Appendix

Case 1: Families in a study are classified into unrelated subgroups, and families in each
subgroup are unrelated and have identical structure

This is the case for a family study in which we combined those related study families
together to form an expanded family and then classified all such expanded families into
different subgroups based on their structures.

Let @, and n; be the Kinship coefficient matrix and the number of families associated to the
subgroup |, respectively, | =1, 2, ..., § Sis the total number of subgroups of families in the

study, and M :Z;”l- Let Y= (yfjl, Yoo yf/ml)T denote the observed outcomes from
the vth family in the subgroup I, v=1, 2, ..., nj, and f; ¢ denote the density function of yj,,
where & denotes all unknown parameters. Suppose that Sremains fixed, each of nj tends to
infinity, and ni/M — A > 0, V1. Let I' (£) denote the information matrix corresponding to fig
and let

s
1(&)=)_MI'(8).
=1

The likelihood L(£) is given by
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S n

L&)=Y logfie(yi;)

I=1j=1

and the likelihood equations by

0

a_giL(g)Zo’ i=1,2,...,w,

where w denotes the number of all unknown parameters. Then we have the following
theorem:

Theorem 1 Suppose fi ¢ for each | satisfies some general regular conditions [26], then with
a probability approaching 1, there exist solutions &y, of the likelihood eguations such that
i E_,,:A is consistent for estimating &,
. VM (EM — &) isasymptotically normal with (vector) mean zero and covariance
matrix [1(&)]7L.

The proof of this theorem for the model defined by (2.4) follows those of Theorem 6.1 in
Lehmann [26] and those of the generalized linear mixed models [4, 10, 11].

The conditions used in the proof are reasonable because in a family study, the size of the
largest expanded family must be finite since only several generations and certain individuals
will be included. Therefore the number of different structures in recruited families in the
study should be finite also. Assuming the finite family structures are distributed
homogenously, it is expected that the number of families with each of these finite family
structures will all be large if the study population size is large enough.

Case 2: Families in a study may be related and large, and have different sizes and structures,
and the number of families may be only moderate.

It is difficult to theoretically prove the asymptotic properties of the estimated parameters
from our models in this case because families may be related. However, we believe that the
asymptotic properties also hold in this case if the total number of members from all families
is large enough. To show that the asymptotic properties may still hold in this case, the
following simulation study was conducted. We simulated data using the following model,
which was derived from the SHFS data in order to make the coefficients realistic and
meaningful, for the association of age and waist circumference (WAIST) with fasting
plasma glucose (FPG):

FPG;=14.13+0.98age;+0.53Waist;+e;,

where g°s are normally distributed with mean zero and the covariance structure defined by
the model in (2.2) with 02 = 2,043 and r, = 0.3553 (or equivalently parameterized as
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02=0%r,=726,02=0> — 02=1,317), and the Kinship matrix that is derived from 653
individuals aged 30-65 in the 27 recruited families in the SHFS (since it is difficult to
choose an appropriate 653-dimensional covariance matrix for related families with different
family structures and sizes). We will show, by successively adding three more families in
the simulation, that the asymptotic properties of the estimated parameters from our proposed
model will hold no matter whether the included families are related or with different family
sizes or structures if the total number of members from included families is large enough
even though the number of families may be only moderate. Step 1: First, we simulated data
for all members in the first three families based on the model and the sub-kinship matrix
corresponding to these members, and then obtained a set of estimated parameters based on
the simulated data. Next, we repeated this procedure 100 times and thus obtained 100 sets of
the estimated parameters, then tested whether the 100 estimations of each parameter came
from a normal distribution by using the Kolmogorov—-Smirnov test. Similarly, in each
successive step (Steps 2-9), we added three more families and performed the same
simulation and analyses. The results from this simulation study are shown in Table 3. For
example, at the last step, Step 9, we used the kinship matrix for all 653 members aged 30-65
in all 27 families. Means from the 100 estimates of intercept, coefficients of age and

WAIST, 52 and 52 were 14.24, 0.986, 0.521, 717.68 and 1330.75, respectively. All of these
means were quite close to the respective true parameters, 14.13, 0.98, 0.53, 726 and 1317 in
the above model used in the simulation (actually, the true parameters all fell within the one-
standard-error confidence intervals of the respective means). These estimated parameters
were considered to have normal distributions based on the results from the Kolmogorov—
Smirnov tests (all P> 0.1). Similar results also held even at the earlier steps such as Step 8
that included only 24 families but with 598 members. These results show that the asymptotic
properties also hold in this case.
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Fig. 1.
Pedigree for the ordered eight members
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