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Abstract

Large studies of extended families usually collect valuable phenotypic data that may have

scientific value for purposes other than testing genetic hypotheses if the families were not selected

in a biased manner. These purposes include assessing population-based associations of diseases

with risk factors/covariates and estimating population characteristics such as disease prevalence
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and incidence. Relatedness among participants however, violates the traditional assumption of

independent observations in these classic analyses. The commonly used adjustment method for

relatedness in population-based analyses is to use marginal models, in which clusters (families)

are assumed to be independent (unrelated) with a simple and identical covariance (family)

structure such as those called independent, exchangeable and unstructured covariance structures.

However, using these simple covariance structures may not be optimally appropriate for outcomes

collected from large extended families, and may under- or over-estimate the variances of

estimators and thus lead to uncertainty in inferences. Moreover, the assumption that families are

unrelated with an identical family structure in a marginal model may not be satisfied for family

studies with large extended families. The aim of this paper is to propose models incorporating

marginal models approaches with a covariance structure for assessing population-based

associations of diseases with their risk factors/covariates and estimating population characteristics

for epidemiological studies while adjusting for the complicated relatedness among outcomes

(continuous/categorical, normally/non-normally distributed) collected from large extended

families. We also discuss theoretical issues of the proposed models and show that the proposed

models and covariance structure are appropriate for and capable of achieving the aim.
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Introduction

In studies of large families, the family structures are usually complex and different, and the

individuals may relate to each other in a range of ways. There may be considerable scientific

value in assessing population-based associations of diseases with risk factors and estimating

population characteristics such as disease prevalence and incidence in addition to testing

genetic hypotheses. Since observations on family members are correlated, these results need

to be adjusted. The commonly used adjustment method for relatedness in population-based

studies is to use marginal models [1–3], in which clusters are assumed to be independent

with a simple and identical covariance structure. In applying a marginal model to family

data, clusters become families, and the assumption that clusters are independent with an

identical covariance structure implies that families are unrelated with an identical family

structure. For example, let yij denote an observed disease status (yij = 1, if diseased, and = 0,

otherwise) of the jth member from the ith family, i = 1, 2, …, N; j = 1, 2, …, m. Then, the

following marginal model is usually applied to assess population-based association of

prevalence or cumulative incidence of the disease with its risk factors/covariates x1, …, xp,

where coefficients β0, …βp are unknown parameters, and the covariance/correlation

structure among yijs from a family is assumed to be the same across all families and to

follow some simple structures. The most often used covariance/correlation structures
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defined in the marginal model are the independent, exchangeable and unstructured structures

[1, 2] (they have been accommodated in many statistical software packages such as SAS

Process GENMOD, SAS software, SAS Institute, Cary, NC).

The independent and exchangeable correlation structures defined in the marginal model

have the following forms:

On the other hand, if an extended family with, say, 8 members, is recruited based on “core

sibs” in a family study and the 8 members are ordered as {father of core sibs, mother of core

sibs, spouse of core sib 1, spouse of offspring 1 of core sib 1, core sib 1, core sib 2, offspring

1 of core sib 1, offspring 2 of core sib 1}, then the correlation matrix for outcomes collected

from the 8 members should have the following form

This is because spouses are usually unrelated, and father and mother relate to their children

(the *s in the matrix) and their grandchildren (the $s) differently. Therefore, if the

independent correlation structure is applied to the data collected from this kind of extended

family, then it implies that all members in the extended family are unrelated while in

actuality all members are related except the spouse of offspring 1 of core sib 1. On the other

hand, if the exchangeable correlation structure is used, it implies that all members in the

extended family are related to the same degree, and thus ignores those unrelated (more than

half of correlations are zero as shown in Rextended) and those related to different degrees

(those *s and $s). It is well known and has been reported in the literature using either

theoretical proofs or simulations that treating related as unrelated or vice versa may either

under- or over-estimate the variances of estimated parameters, which in turn may lead to

false inferences about associations of the relevant outcome with its risk factors/covariates [2,

4].

The unstructured covariance structure defined in the marginal model has the following form:
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where m is family size, {σi,j}s are unknown variance/covariance components, σi,j = σj,i, but

σ1,2 ≠ σ1,3 ≠ ⋯ ≠ σ1,m, σ2,3 ≠ σ2,4 ≠ ⋯≠ σ2,m, …, σm−2,m−1 ≠ σm−2,m, and

. If the marginal model with the unstructured covariance structure is

applied to the data collected from the abovementioned extended family (m = 8), then we

need to estimate 36 (=8*(8+1)/2) unknown variance/covariance components in COV. This

will be impractical if family size is large. Further, using the unstructured covariance

structure in a marginal model also requires that we are able to uniquely order all members in

each family in a way that is the same across all families (e.g., see the explanation about the

“WITHIN” option in SAS Process GENMOD for details). However, it is difficult and

sometimes impossible to order uniquely if families have different sizes or structures.

Moreover, even when all recruited extended families have the same structure, if only a

subset of the data is used in an analysis such as using the data collected from those aged 40–

60 years only, then the numbers of the aged 40–60 members from different families may

vary and so may the structures among the extracted members from different families.

Therefore, the current applicable covariance structures (independent, exchangeable and

unstructured) used in a marginal model may not be optimal to describe the complicated

relatedness, and the assumption of identical family structure may not be satisfied in larger

extended families.

Let us take the Strong Heart Family Study (SHFS) [5] as an example. The SHFS was

initiated in 1998 to identify genetic determinants of cardiovascular disease (CVD) in

American Indians and to map and identify genes for CVD susceptibility. Families were

recruited if they had a “core sibship” (a sibship with at least five living siblings, of whom

three or more were original Strong Heart Study (SHS) [6] cohort members) and had at least

12 living offspring aged ≥15 years among the core sibship members. Each of the recruited

families included the core sibship members, their parents (if alive), spouses, offspring,

spouses of offspring, and grandchildren who were at least 15 years of age. A detailed

description of the SHFS and SHS has been reported previously [5, 6] and published on the

SHS web site (http://strongheart.ouhsc.edu). For example, 27 extended families were

recruited in one of the centers of the SHFS. These extended families spanned four

generations with the largest family size being 114 and the average size being 45. It is clear

that family structures of these families are different and complicated. An application of the

marginal model with either the independent or exchangeable covariance structure will lead

to oversimplifying the complicated relationship among members in the extended families,

while an application of the marginal model with the unstructured covariance structure will

lead to estimating at least 6555 (=114*(114+1)/2) unknown variance/covariance

components since the largest family size is 114. Moreover, because the families are recruited

based on the “core sibship” and are not geographically distant from each other, it is not
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unusual for a recruited non-core member in a recruited family to be related to recruited

members in other recruited families. This is often the case in family studies for populations

such as American Indians, Alaska Natives or the Amish. Thus, the usual assumption that

families (clusters) are unrelated (independent) in a marginal model may not be satisfied

either.

Therefore, it is desirable and important to develop models to adjust for these kinds of

complicated relatedness in order to assess the population-based associations and estimate

population characteristics. This paper proposes such models for analyzing continuous or

categorical, normally or non-normally distributed outcomes in “Models”, provides

simulation and application examples in “Simulation and examples”, and discusses related

theoretical issues in “Extension of the proposed models defined in (2.1) and (2.2)”,

“Discussion”, and in the Appendix.

Models

Proposed model for a qualitative outcome

Let yi = 1, if person i has an outcome of interest such as a disease, and =0, otherwise. We

propose the following marginal model for assessing association of the prevalence or

cumulative incidence of the disease with its risk factors/covariates x1, …, xp.

(2.1)

where logit(․) is called the logit link function, ϕ(i, j) is the kinship coefficient [7] between

two individuals i and j, ϕ(i, j) = P{At any given locus, two randomly picked alleles, one

from person i and one from person j are identity by descent}, 1 > ra > 0, ra and coefficients

β0, …βp are unknown parameters, and the observations are ordered sequentially by families,

that is, i = 1, …, m1 denote the members in the 1st family, i = m1 + 1, …, m1 + m2 denote the

members in the 2nd family, etc., and n denotes the total number of participants in the study.

The covariance structure of the model defined by (2.1) is based on the classic biometrical

model [7], where ra denotes the component due to the additive effect, which is the major

cause of resemblance between relatives. Following approach of the biometrical model, if the

additive effects alone cannot adequately explain the data, a dominance component may be

added [7]. That is, if necessary, we may use the following covariance structure in the model

defined by (2.1)

(2.1a)

where ra > 0, rd > 0, ra + rd < 1, rd denotes the component due to the dominance effect,

which represents variance due to non-linear interaction between transmissible alleles and is

contributed by individuals who share both alleles identical- by-descent [7], and Δ7(i, j) is

Jacquard’s coefficient [8], Δ7(i, j) = P{The two alleles of person i at any given locus are

identical by descent with the two alleles of person j at the same locus}. Both ϕ(i, j)s and
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Δ7(i, j)s are directly calculated from the extended pedigrees of families ascertained in a

family study since parents themselves may be related. For example, assuming parents are

unrelated, it is well known that the kinship coefficient for two identical twins is 0.5; parent-

offspring, 0.25; full sibs, 0.25; uncleniece, 0.125; etc. If there are no instances of inbreeding,

no double cousins, and no twins in the pedigree, then Δ7(i, i) = 1, ∀i; Δ7(i, j) = 1/4, if i and j

are full siblings; and zero otherwise. Many commercial software packages such as SAS

Process INBREED (SAS software, SAS Institute, Cary, NC) and freely available software

packages such as the PEDIG package [9] can be applied to calculate kinship coefficients

between any two individuals based on their ascertained pedigree.

Compared to the independent, exchangeable and unstructured structures defined in the

marginal model shown in the introduction, it is clear that the covariance structures in the

proposed models defined by (2.1) or (2.1a) account appropriately for different degrees of

relationship among family members. These covariance structures have at most two unknown

parameters (ra and rd), and do not require that all members in each family be ordered in the

same way across all families. The proposed covariance structure defines the relationship of

outcomes collected from any two members in recruited families no matter how complicated

and different the family structures are, or whether the families are related. The proposed

model is also flexible for analyses that use only a subset of the data since the covariance

structure for the subset can easily be composed from the corresponding sub-kinship matrix.

Proposed model for a continuous outcome

For a continuous outcome, y, such as cholesterol, the proposed model is

(2.2)

where ei’s denote random errors, 1 > ra > 0, ra denotes the component due to the additive

effect, σ2, ra and coefficients β0, …, βp are unknown parameters, and the other notations are

the same as those defined in (2.1). Similarly, if the dominance effect needs to be considered,

we may use the following covariance structure in the model defined by (2.2)

(2.2a)

where ra > 0, rd > 0, ra + rd < 1, rd denotes the component due to the dominance effect.
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Extension of the proposed models defined in (2.1) and (2.2)

To extend the models defined in (2.1) and (2.2) to cover different kinds of outcomes in a

family study and to allow for additional random effects such as random environmental

effects, we follow the procedure for generalized linear mixed models [4, 10, 11].

Let Y = (y1, …, yn)τ, xi = (1, xi1, …, xip)τ, X = (x1, …, xn)τ, B = (β0, β1, …, βp)τ, zi = (zi1,

…, ziq)τ, Z = (z1, …, zn)τ, U = (u1, u2, …, uq)τ, and e = (e1, e2, …, en)τ, where yi denotes the

outcome variable observed in individual i with fixed covariates xi and explanatory variables

zi that are associated with the random effects U, and U and the errors, e, are assumed to be

independent. Assume that U has a mean zero O and covariance matrix Cov(U) = G (θ) that

depends on an unknown vector θ; and given U, yi will have means , variances

Var(yi/U), and covariance components

(2.3)

or

(2.3a)

if the dominance effect is added, where 0 < ra < 1 (or 0 < ra, rd < 1 and ra + rd < 1 if the

dominance effect is added). Assume that  is related to  by a link function

, with inverse h = g−1. Then  and

(2.4)

It is clear that if there are no random effects involved, the model defined by (2.1) is a special

case of (2.4) when y is binomially distributed and the logit link function is used. The model

defined by (2.2) is the one in which the identity link function is used and Var(yi/U) = σ2.

Models in which outcomes have other distributions such as those belonging to the linear

exponential family with respective link functions are also accommodated in (2.4) [4, 10, 11].

If all families are unrelated and have an identical structure, the estimation procedures for σ2,

ra, rd, θ, B and U in the models defined by (2.1), (2.2) or (2.4), the proofs for asymptotic

properties of the estimators, and their statistical inferences follow those used in the

generalized linear mixed models [4, 10, 11]. In the case where families in a study can be

classified into unrelated subgroups, and families in each subgroup are unrelated and have

identical structure, we show in the Appendix that similar approaches and asymptotic

properties also hold. When families in a study are related and large and have different sizes

and structures, and the number of families may be only moderate, it is difficult to

theoretically prove the asymptotic properties of the estimated parameters from our models

because families may be related. However, we showed by a simulation that the usual

asymptotic properties also hold in this case no matter whether the families are related or

with different family sizes or structures if the total number of members from all families is

large enough even though the number of families may be only moderate (Appendix).
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Simulation and examples

As mentioned in the introduction, it has been reported in the literature by either theoretical

proofs or simulation methods that treating related observations as unrelated or vice versa

may either under- or over-estimate the variances of estimated parameters, and thus may lead

to false inferences about the significances of associations of a relevant outcome with its risk

factors/covariates [2, 4]. To further confirm these uncertainties, we use a simulation to

compare power of the proposed models with that of the marginal model with either the

exchangeable or independent correlation structure in detecting significant associations of an

outcome measure with its risk factors/covariates when correlation structure in a data is

neither the exchangeable nor independent.

Let FPGij denote measured fasting plasma glucose (FPG) of the jth member in the ith

family. The following proposed model (2.2) is used to simulate association of FPG with its

seven risk factors/covariates: age, waist circumference (WAIST), body mass index (BMI),

urinary albumin to creatinine ratio (UACR), insulin, low density lipoprotein (LDL), and

triglycerides (TG),

The families are those 50 unrelated extended families in which each family had 8 members

ordered as {father of core sibs, mother of core sibs, spouse of core sib 1, spouse of offspring

1 of core sib 1, core sib 1, core sib 2, offspring 1 of core sib 1, offspring 2 of core sib 1}.

Figure 1 shows the pedigree for the ordered 8 members. Assume FPGs observed from a

family are normally distributed with Var(FPGij) = 1000 (or standard deviation of 31.6) and

ra = 0.5, then based on the definition of the covariance in (2.2) and the calculated kinship

matrix Φ from the pedigree of the ordered 8 members, FPGs have the following correlation

matrix

where FPGi. =(FPGi1, …, FPGi8)τ denotes FPG collected from 8 members of the ith family,

i=1, …, 50, and
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For example, ϕ(father of core sibs, offspring 1 of core sib 1) = ϕ17 = 0.125. When ra = 0.8,

FPGs have the following correlation matrix that has larger correlation coefficients

The parameters used in the simulation model are obtained from the SHFS data in order to

make the model realistic and meaningful. It is clear that R1 or R2 contains three levels of

correlations (e.g., 0, 0.125 and 0.25 in R1), which is neither the exchangeable correlation

(that assumes all correlation coefficients are the same and non-zero) nor independent

correlation (that assumes all correlation coefficients are zero) structure defined in the

marginal model. One thousand replicated simulated data sets, each including 400 simulated

observations from the 400 members in the 50 unrelated extended families, were generated.

For each of the 1,000 simulated data sets, the proposed model (2.2) and the respective

marginal model with the exchangeable or independent correlation structure were applied

separately to estimate the regression coefficients for the seven risk factors/covariates of FPG

in these models. To estimate power of a model in detecting significant association of FPG

with a given risk factor/covariate, say, WAIST, after adjusting for the other risk factors/

covariates in the model, we tested the null hypothesis: H0: “the coefficient for WAIST in the

model” = 0, at a given significant level (type 1 error rate) α based on each of 1,000

simulated data. The empirical power of the model at the given significance level α in

detecting the significant association of FPG with WAIST after adjusting for the other risk

factors/covariates in the model was estimated as “the total number of the tests based on the

1,000 replicated simulated data sets where H0 was rejected at the given significance level α

“divided by 1,000. The same procedure was applied simultaneously for each of the seven

risk factors/covariates in the model. Table 1 displays estimates of the empirical powers of

the proposed model (2.2) and the marginal model with the exchangeable or independent

correlation structure in detecting the significant association of FPG with each of its risk

factors/covariates after adjusting for the other risk factors/covariates in the model at two

different significance levels (α = 0.05 or 0.01) based on the 1,000 simulated data sets
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generated by using two different correlation matrices R1 and R2. For example, at the

assumed correlation matrix R1 and the given significance level α = 0.05, the estimated

empirical powers of the proposed model (2.2) and the marginal model with the

exchangeable or independent correlation structure in detecting the significant association of

FPG with WAIST after adjusting for the other risk factors/covariates in the model are 0.611,

0.598 and 0.556, respectively. The power of the proposed model (2.2) is almost always

greater than the power of the marginal model with either the exchangeable or independent

correlation structure, and the differences between the powers increased with the correlation

coefficients (those based on R2 are larger than those based on R1). Our simulation results

indicated that using either simplified exchangeable or independent correlation structure in

analyzing correlated data with more complicated correlation structures (e.g., those defined

by R1 or R2) may either under- or overestimate the variances of parameters, and thus may

lead to incorrect inferences about the significance of associations of an outcome with its risk

factors/covariates. It may be expected that such uncertainty will be greater if simplified

exchangeable or independent correlation structure is used in analyzing correlated data

collected from the SHFS extended families that span four generations with the largest family

size being 114 and the average size being 45.

Table 2 shows results when applying the proposed model (2.2) and the respective marginal

model with either independent or exchangeable correlation structure to one of the 1000

simulated data sets that used the correlation structure defined in R1. We can interpret the

results from the proposed model (2.2) in the same way as those from a conventional linear

regression model since the proposed model (2.2) is a marginal model and the coefficients

from a marginal model represent population averaged results [2, 4]. For example, based on

the results from the proposed model (2.2) in Table 2, age, WAIST, log(UACR), log(insulin)

and log(TG) were significantly and positively associated with FPG; while BMI and LDL

were significantly and negatively associated with FPG. However, the results from the

respective marginal models show that, besides the differences in the estimated coefficients,

which maybe minor if the sample size is large [2, 4], some of the significant risk factors/

covariates of FPG in the proposed model were no longer significant in the respective

marginal models with either independent (age, log(insulin), and LDL) or exchangeable (age

and LDL) covariance structures, reflecting uncertainty in inferences due to the simplification

in correlation structures.

Discussion

As indicated earlier, the proposed models are appropriate, capable, flexible and efficient for

population-based association studies while adjusting for complicated relatedness in data

collected from family studies with large extended families.

If outcomes are continuous and normally distributed, and families in a study are unrelated to

each other and have an identical family structure, the proposed model defined in (2.4) with

the identity link function is the variance components model used in pedigree analyses [7, 12,

13]. However, if outcomes are discrete or not normally distributed, the proposed model

defined in (2.4) is different from those proposed models for correlated data in the literature.

For example, for binary outcomes, the proposed Model (2.1) is different from those
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threshold models [14–16] or the generalized linear mixed model (GLMM) with a logit link

function [17] or the mixed models on which family-based association tests (FBAT) are

based [18, 19].

The threshold model for the disease outcome yi (yi = 1, if person i has the disease; and =0,

otherwise) and its risk factors/covariates x1, …, xp is defined as follows. Let the random

effects U = (u1, u2, …, un)τ be normally distributed with

Assume given U, yi, i = 1, …, n, are mutually independent, and

where ϑ is the underlying threshold, zi, i = 1, …, n, are the underlying random variables, and

Φ−1(․) stands for the inverse of the standardized cumulative normal distribution function,

which is also called the probit link function in the GLMM.

The respective GLMM with a logit link function in this case is defined as follows. Assume

given the same random effects U = (u1, u2, …, un)τ defined above, yi, i = 1, …, n, are

mutually independent, and

The mixed model on which FBAT is based for the dichotomous phenotype yij of the jth

offspring in the ith family is defined as follows. Assume given the random variable uij that

codes for genotype of the jth offspring in the ith family at a particular allele, i = 1, …,m; j =

1, …, ni, yij’s are independent and

where x1, …, xp usually denote demographic or environmental effects, and uij are dependent

on parental genotypes. FBAT based on this model tests the null genetic hypothesis H0 : “no

association in the presence of linkage”; or “no linkage and no association between a marker

and the phenotype”, which is equivalent to testing whether the coefficient γ of the random

variables equals zero, that is, H0 : γ = 0.
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It is clear that the proposed Model (2.1) is a marginal model while the threshold model and

the GLMM model as well as the FBAT based model are mixed random effects models. It is

known that a marginal model and a mixed random effects model can lead to different

estimations and interpretations for the regression coefficients [2, 4]. In the proposed Model

(2.1), the logit of the expectation E(I(yi = 1)) = P(yi = 1) was directly modeled with its risk

factors/covariates x1, …, xp, and the covariance is directly defined through yi’s themselves.

Therefore, like the example of the proposed Model (2.2) shown in “Simulation and

examples”, the estimated coefficients β̂
0, β1̂, …, β̂

p for the risk factors/covariates from the

proposed Model (2.1) can be interpreted in the same way as those estimated coefficients

from a conventional logistic regression model since the coefficients from a marginal model

represent population averaged results [2, 4]. While in the previous mentioned mixed random

effects models, say, the GLMM model, the logit of the conditional (conditioning on the

random effects U) expectation E(I(yi = 1)/U) = p(yi = 1/U) was modeled with both the fixed

effects x1, …, xp and the random effect ui, and the covariance is partially defined by the

random effects U. Therefore, the estimated coefficients β̃
0, β̃

1, …, β̃
p for the fixed effects, x1,

…, xp from these models are dependent on individual random effects uis and the distribution

of uis by the definition of the conditional expectation and thus are individual- specific not

population averaged [2, 4, 10, 17]. The Gibbs sampling method [20, 21] was usually used in

fitting these mixed random effects models. Similar differences also exist between the

proposed Model (2.4) and the GLMM models. Marginal models are appropriate when

inferences about the population-average are the focus, which are what we focused in this

paper and are usually the focus in population-based epidemiological studies; while a random

effects model is most useful when the objective is to make inference about individuals rather

than the population average [2, 4]. We adopted a marginal rather than random effects model

approach for our covariance structure since we are interested only in assessing population-

based associations of diseases with their risk factors/covariates and estimating population

characteristics in epidemiological studies.

It is easy to verify that when families in a study are those unrelated pedigrees that contain

only identical twins or only siblings without twins, the proposed models are equivalent to

the marginal model with the exchangeable covariance structure that is often adopted in

populationbased analyses [22].

Therefore, if families in a family study are unrelated and have identical structure, the

covariance structure defined in the proposed models can be treated as an additional

appropriate covariance structure to the existing covariance structures used in marginal

models. If families in a family study are large and related, and have different sizes and

structures like the extended families in the SHFS, the proposed models are most appropriate

for and capable of handling this type of data for population-based analyses. The SAS macros

for applying the proposed models will be available upon request.

Other marginal models for family data in the literature include the odds-ratio regression

models [23] that model on each specific pair such as siblings or a parent-sibling pair, and the

frailty models [24, 25] that take care of censored observations.
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BMI Body mass index

CVD Cardiovascular disease

FBAT Family-based association tests

FPG Fasting plasma glucose

GLMM Generalized linear mixed model

LDL Low density lipoprotein

SHFS Strong heart family study

SHS Strong heart study

TG Triglycerides

UACR Urinary albumin to creatinine ratio

WAIST Waist circumference

Appendix

Case 1: Families in a study are classified into unrelated subgroups, and families in each

subgroup are unrelated and have identical structure

This is the case for a family study in which we combined those related study families

together to form an expanded family and then classified all such expanded families into

different subgroups based on their structures.

Let Φl and nl be the kinship coefficient matrix and the number of families associated to the

subgroup l, respectively, l = 1, 2, …, S, S is the total number of subgroups of families in the

study, and . Let  denote the observed outcomes from

the νth family in the subgroup l, ν = 1, 2, …, nl, and fl,ξ denote the density function of ylν,

where ξ denotes all unknown parameters. Suppose that S remains fixed, each of nl tends to

infinity, and nl/M → λl > 0, ∀l. Let Il (ξ) denote the information matrix corresponding to fl,ξ
and let

The likelihood L(ξ) is given by
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and the likelihood equations by

where w denotes the number of all unknown parameters. Then we have the following

theorem:

Theorem 1 Suppose fl,ξ for each l satisfies some general regular conditions [26], then with

a probability approaching 1, there exist solutions ξ̂
M of the likelihood equations such that

i. ξ̂
M is consistent for estimating ξ.

ii.  is asymptotically normal with (vector) mean zero and covariance

matrix [I(ξ)]−1.

The proof of this theorem for the model defined by (2.4) follows those of Theorem 6.1 in

Lehmann [26] and those of the generalized linear mixed models [4, 10, 11].

The conditions used in the proof are reasonable because in a family study, the size of the

largest expanded family must be finite since only several generations and certain individuals

will be included. Therefore the number of different structures in recruited families in the

study should be finite also. Assuming the finite family structures are distributed

homogenously, it is expected that the number of families with each of these finite family

structures will all be large if the study population size is large enough.

Case 2: Families in a study may be related and large, and have different sizes and structures,

and the number of families may be only moderate.

It is difficult to theoretically prove the asymptotic properties of the estimated parameters

from our models in this case because families may be related. However, we believe that the

asymptotic properties also hold in this case if the total number of members from all families

is large enough. To show that the asymptotic properties may still hold in this case, the

following simulation study was conducted. We simulated data using the following model,

which was derived from the SHFS data in order to make the coefficients realistic and

meaningful, for the association of age and waist circumference (WAIST) with fasting

plasma glucose (FPG):

where ei‘s are normally distributed with mean zero and the covariance structure defined by

the model in (2.2) with σ2 = 2,043 and ra = 0.3553 (or equivalently parameterized as

Wang et al. Page 14

Eur J Epidemiol. Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



), and the kinship matrix that is derived from 653

individuals aged 30–65 in the 27 recruited families in the SHFS (since it is difficult to

choose an appropriate 653-dimensional covariance matrix for related families with different

family structures and sizes). We will show, by successively adding three more families in

the simulation, that the asymptotic properties of the estimated parameters from our proposed

model will hold no matter whether the included families are related or with different family

sizes or structures if the total number of members from included families is large enough

even though the number of families may be only moderate. Step 1: First, we simulated data

for all members in the first three families based on the model and the sub-kinship matrix

corresponding to these members, and then obtained a set of estimated parameters based on

the simulated data. Next, we repeated this procedure 100 times and thus obtained 100 sets of

the estimated parameters, then tested whether the 100 estimations of each parameter came

from a normal distribution by using the Kolmogorov–Smirnov test. Similarly, in each

successive step (Steps 2–9), we added three more families and performed the same

simulation and analyses. The results from this simulation study are shown in Table 3. For

example, at the last step, Step 9, we used the kinship matrix for all 653 members aged 30–65

in all 27 families. Means from the 100 estimates of intercept, coefficients of age and

WAIST,  and  were 14.24, 0.986, 0.521, 717.68 and 1330.75, respectively. All of these

means were quite close to the respective true parameters, 14.13, 0.98, 0.53, 726 and 1317 in

the above model used in the simulation (actually, the true parameters all fell within the one-

standard-error confidence intervals of the respective means). These estimated parameters

were considered to have normal distributions based on the results from the Kolmogorov–

Smirnov tests (all P > 0.1). Similar results also held even at the earlier steps such as Step 8

that included only 24 families but with 598 members. These results show that the asymptotic

properties also hold in this case.
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Fig. 1.
Pedigree for the ordered eight members
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