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“The success or failure of your deeds does not add up to the sum of your life.
Your spirit cannot be weighed. Judge yourself by the intentions of your actions,
and by the strength with which you faced the challenges that have stood in your
way.

The Universe is vast and we are so small. There is really only one thing we
can ever truly control... whether we are good or evil.”

/ Oma Desala, Mother Nature, Stargate SG-1/

“I have lived many lifetimes. First... in Atlantis. Then... on Earth, before the
dawn of your civilization. Then I joined the ranks of the Ascended. And finally,
I returned to mortal form, to live out my remaining days among the noblemen
of Arthur’s Court. Or, so I thought. And through all these eons, only one thing
has stayed the same: there is never enough time.”

/ Merlin, Archmage of the Round, Stargate SG-1 /
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Abstract

Tails, fins, scales, and surface coatings are used by organisms for various
tasks, including locomotion. Since millions of years of evolution have passed,
we expect that the design of surface structures is optimal for the tasks of the
organism. These structures serve as an inspiration in this thesis to identify new
mechanisms for flow control. There are two general categories of fluid-structure-
interaction mechanisms. The first is active interaction, where an organism
actively moves parts of the body or its entire body in order to modify the
surrounding flow field (e.g., birds flapping their wings). The second is passive
interaction, where appendages or surface textures are not actively controlled by
the organism and hence no energy is spent (e.g., feathers passively moving in
the surrounding flow). Our aim is to find new passive mechanisms that interact
with surrounding fluids in favourable ways; for example, to increase lift and to
decrease drag.

In the first part of this work, we investigate a simple model of an appendage
(splitter plate) behind a bluff body (circular cylinder or sphere). If the plate
is sufficiently short and there is a recirculation region behind the body, the
straight position of the appendage becomes unstable, similar to how a straight
vertical position of an inverted pendulum is unstable under gravity. We ex-
plain and characterize this instability using computations, experiments and a
reduced-order model. The consequences of this instability are reorientation
(turn) of the body and passive dispersion (drift with respect to the direction
of the gravity). The observed mechanism could serve as a means to enhance
locomotion and dispersion for various motile animals and non-motile seeds.

In the second part of this thesis, we look into effective models of porous
and poroelastic materials. We use the method of homogenization via multi-
scale expansion to model a poroelastic medium with a continuum field. In
particular, we derive boundary conditions for the velocity and the pressure at
the interface between the free fluid and the porous or poroelastic material. The
results obtained using the derived boundary conditions are then validated with
respect to direct numerical simulations (DNS) in both two-dimensional and
three-dimensional settings. The continuum model – coupled with the necessary
boundary conditions – gives accurate predictions for both the flow field and the
displacement field when compared to DNS.

Descriptors: fluid-structure-interaction, flow control, passive appendages, ho-
mogenization, poroelastic coatings, separated flows, surface-fluid interface.
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Sammanfattning

Många djur använder sig av fjäll, päls, h̊ar eller fjädrar för att öka sin förm̊aga
att förflytta sig i luft eller vatten. Eftersom djuren har genomg̊att miljontals
år av evolution, kan man förvänta sig att ytstrukturernas form är optimala
för organismens uppgifter. Dessa strukturer tjänar som inspiration i denna
avhandling för att identifiera nya mekanismer för manipulering av strömning.

Samverkan mellan fluider och strukturer (s̊a kallad fluid-struktur-interak-
tion) kan delas upp i tv̊a kategorier. Den första typen av samverkan är aktiv,
vilket innebär att en organism aktivt rör hela eller delar av sin kropp för att
manipulera det omgivande strömningsfältet (till exempel f̊aglar som flaxar sina
vingar). Den andra typen är passiv samverkan, där organismer har utväxter
(svansar, fjärdar, etc.) eller ytbeläggningar som de inte aktivt har kontroll över
och som s̊aledes inte förbrukar n̊agon energi. Ett exempel är fjädrar som passivt
rör sig i det omgivande flödet. V̊art mål är att hitta nya passiva mekanismer
som växelverkar med den omgivande fluiden p̊a ett fördelaktigt sätt, exempelvis
genom att öka lyftkraften eller minska luftmotst̊andet.

I den första delen av detta arbete undersöker vi en enkel modell för en
utväxt (i form av en platta) bakom en cirkulär cylinder eller sfär. Om plat-
tan är tillräckligt kort och om det finns ett vak bakom kroppen kommer det
upprätta läget av plattan att vara instabilt. Denna instabilitet är i princip
samma som uppst̊ar d̊a man försöker balansera en penna p̊a fingret. Vi förk-
larar den bakomliggande mekanismen av denna instabilitet genom numeriska
beräkningar, experiment och en enkel modell med tre frihetsgrader. Kon-
sekvenserna av denna instabilitet är en omorientering (rotation) av kroppen
och en sidledsförflyttning av kroppen i förh̊allande till tyngdkraftens riktning.
Denna mekanism kan användas djur och frön för att öka deras förm̊aga att
förflytta eller sprida sig i vatten eller luft.

I den andra delen av avhandlingen studerar vi modeller av porösa och
elastiska material. Vi använder en mångskalig metod för att modellera det
poroelastiska materialet som ett kontinuum. Vi härleder randvillkor för b̊ade
hastighetsfältet och trycket p̊a gränssnittet mellan den fria fluiden och det
poroelastiska materialet. Resultaten som erh̊allits med de härledda randvil-
lkoren valideras sedan genom direkta numeriska simuleringar (DNS) för b̊ade
tv̊a- och tredimensionella fall. Kontinuumsmodellen av materialet kopplad
genom randvillkoren till den fria strömmande fluiden predikterar strömnings-
och förskjutningsfält noggrant i jämförelse med DNS.

Deskriptorer: fluid-struktur-interaktion, flödeskontroll, passiva utväxter, ho-
mogenisering, ytbeläggning, separerade strömning, ytbeläggning-strömning
gränssnitt.
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Preface

This thesis deals with the development of models suitable to describe inter-
action between the moving fluid and appendages / coatings with properties
inspired by nature. This work is a direct continuation of my Licentiate thesis
(ISBN 978-91-7595-427-1) and contains parts of it. A short introduction on
the main ideas, objectives, and tools employed, as well as a summary of the
findings are presented in the first part. The second part contains five articles.
The first article is published in Nature Communications ; the second article is
published in Journal of Computational Physics ; the third article is submitted
to Physical Review Fluids ; the fourth article is under review for publication in
Journal of Fluid Mechanics and the fifth article will be submitted to Proceed-
ings of the Royal Society A. The manuscripts are fitted to the present thesis
format without changing any of the content. All images acquired externally
have been released to public domain by their authors under license CC0 1.0,
if not stated otherwise.
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Paper 4. U. Lācis & S. Bagheri. A framework for computing effective
boundary conditions at the interface between free fluid and a porous medium.
4th revision submitted to J. Fluid Mech., 2016
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Part I

Overview and summary





CHAPTER 1

Introduction and motivation

Animals currently living on earth have gone though millions of years of evolu-
tion. During all these years, the variety and function of those organisms have
developed tremendously. Currently there are around 1.5 million species in the
animal kingdom, covered by all sorts of skins and have a wide range of abilities.
We trust that the evolution has lead to animals with optimal (Parker & Smith
1990) performance for various tasks, including but not limited to hydrodynamic
interaction. This serves as a motivation for us to look in the examples from
the nature.

(b)

active

passive

(a)

passive

active

Figure 1.1. Examples of two motile organisms, a bird (a,
Scissor-tailed Flycatcher) and a fish (b, Goldfish). The bird
(a) flaps its wings actively in order to fly, while the tail and
the feathers might passively improve the aerodynamical prop-
erties. The fish (b) bends its body and moves its fins actively
in order to swim, while the scales might passively reduce the
flow resistance.

All motile organisms interact with the surrounding environment, and most
often it is fluid (birds spend most of their time time in air, while fish in water).
There are two general interaction categories. The first and the most common
category is active interaction. The main property of the active interaction with
a fluid is that the animal must spend energy in order to modify the surrounding
flow. The second category is passive interaction. The main property of this

3



4 1. INTRODUCTION AND MOTIVATION

category is that energy input is not required from the organism. Instead, an
appendage or a surface structure is interacting with the flow in a coupled fluid-
structure-interaction (FSI) manner. In Figure 1.1 we show a Scissor-tailed
Flycatcher and a Goldfish as two examples of motile animals, which use both
active and passive means to interact with the surrounding fluid. An excellent
review on how swimming fishes and mammals make use of both active and
passive flow control is presented by Fish & Lauder (2006).

In section 1.1, we give an overview of some identified mechanisms that
living organisms use in order to interact with the surrounding fluids. Based
on this overview, we outline the main aim and objectives of this thesis work in
section 1.2.

Figure 1.2. Birds flying in a V-shaped flock.

1.1. Background

Mechanisms in passive and active categories can vary in scale and complexity.
For example, a recent study by Gazzola et al. (2014) have provided a unified
understanding of the force balance during swimming for aquatic animals with
size ranging from few millimetres to tens of metres. Depending on the size, the
swimmer generate around it either a laminar – ordered, simple, exhibiting low
mixing – or turbulent – chaotic, complex, exhibiting high mixing – flow. Both
types of flow cause pressure drag (determined by difference of pressure between
front and back) and skin friction drag (determined by fluid shear or friction at
the wall). The main finding of Gazzola et al. (2014) is that for smaller animals
the surrounding flow is laminar and the generated thrust is balanced by the
skin friction part of the drag, whereas for larger animals the surrounding flow
is turbulent and the generated thrust is balanced by the pressure part of the
drag.
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Another example is the mechanism used by groups of animals, who inter-
act with each other through modifications of surrounding fluid. A well known
behaviour of various bird species is to group in flocks, as shown in Fig. 1.2.
Portugal et al. (2014) has recently explained collective flight benefits and the
underlying synchronisation mechanism of northern bald ibises. They illustrated
that birds must use the complicated structures in the flow and are apparently
able to synchronise wing flapping to re-use some of the energy lost in the sur-
rounding vortex structures. These two examples falls into “active interaction”
category and are large scale phenomena.

Various tails, appendages and skin coatings can be subjected to mecha-
nisms of passive interaction. For example, many birds have so-called pop-up
feathers, which activates during their landing. A picture of a landing swan is
shown in Fig. 1.3, where active pop-up feathers are identified using red circles.
The aerodynamic effect of these feathers has been investigated by Meyer et al.
(2007). They found that the presence of these feathers can delay the dynamic
stall and increase lift performance for large attack angles. This is also a large
scale effect, since feathers usually pop-up in groups of many individual plumes.

Figure 1.3. A photo of a landing swan by Campbell (2013).
Feathers that have popped up during the landing process are
identified using red circles.

Another example is shark-skin that has inspired the development of riblets
for aeroplanes. They are structured, fine-scale denticles on the surface. A close-
up view on denticles of a lemon shark using electron microscope is shown in
Fig. 1.4a. Dean & Bhushan (2010) have reviewed the extensive work on drag
reduction function of the riblets and it is clear that a skin-friction reduction
commonly up to around 5% is achievable. Bechert et al. (1997, 2000) have
shown that for selected riblet properties, the skin-friction can be reduced even
by 10%. However, riblets have not reached widespread adoption due to rela-
tively high cost of manufacturing them and need to change the coating once
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every few years. Additionally, Oeffner & Lauder (2012) have shown that the
elasticity – feature which standard riblet systems usually lack – is important
for increasing drag-reduction. Further on, Itoh et al. (2006) investigated the
drag reduction properties of seal fur. A picture of seal fur on a coat is given
in Fig. 1.4b. For closer view on the structures present in the fur, the reader
is referred to the publication by Itoh et al. (2006). Their finding show that
the seal fur is better performing than riblets. Authors argue that the reason
for that is the stochastic nature of the seal fur, that is, while there is only a
single wavelength present for riblets, defined by the regular geometry, the seal
fur exhibits a distribution over more than one wavelength. They also point
out that the role of elasticity of the seal fur is not clear and further research is
needed.

(b)(a)

Figure 1.4. Examples of two surface coatings. In frame (a),
we show dermal denticles of a lemon shark from a scanning
electron microscope, published by Deynat (2011). In frame
(b), we show a close-up on a coat, which is made from seal fur.

In practice, modelling real-life materials is very challenging, because it in-
volves working with effects at multiple scales and investigating materials that
serve multiple functions. Therefore researchers have focused on different lev-
els of abstraction in order to better isolate underlying beneficial interaction
mechanisms leading to, for example, reduction of flow drag. The already men-
tioned riblets is one example, in which hierarchical porous and elastic structure
of shark skin is modelled using simple, rigid grooves. As another example,
Bagheri et al. (2012) have used a very simple abstraction of a real life cilia or
flagella – elastic one-dimensional filament attached behind cylinder in a two-
dimensional setting. They observed that in the case of long filament, the system
is symmetric and the appendage flaps under the influence of the von Kármán
vortex street symmetrically with respect to center line. However, if the filament
is shorter than some critical length, the symmetry of the system is broken. The
appendage then flaps at either top or bottom of the center line. And as a re-
sult, non-zero lift and torque is generated on the average. They attributed this
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effect to resonance between the flow time scale and elasticity time scale of the
filament.

Yet another example is using many filaments to coat the cylinder, as in-
vestigated by Favier et al. (2009). In their work, a semi-empirical homogenised
model of a hairy coating is developed. They model the coating by building
it from straight stiff rods, which are anchored to the cylinder by a non-linear
torsion spring, and are coupled to neighbouring rods using a similar non-linear
potential, based on angle difference. Then they homogenise the model and im-
plement it numerically. By investigating various configurations, they are able
to produce a drag reduction of 15% in the laminar flow regime.

Drag reduction has been successfully obtained also by production of a
slip at the boundary of the fluid. The slip can be generated by, for exam-
ple, hydrophobic surfaces (Tretheway & Meinhart 2002) or by introduction of
microbubbles (Ushida et al. 2012). The slip at a wall causes smaller shear
compared to no-slip at the wall, and henceforth also reduces drag. It is inter-
esting to note that many species in nature make use of super-hydrophobic sur-
faces, as summarised in the review by Liu & Jiang (2011). Recently Rastegari
& Akhavan (2015) investigated both laminar and turbulent flow over super-
hydrophobic surfaces in a micro-channel. They show that most (at least 80%)
of the drag reduction effect for turbulent flows can be attributed to the slip
velocity, similar as for laminar flow. However, the remaining part (up to 20%)
can be attributed to modification of turbulence itself. They also point out that
if the surface would be elastic, then it is very likely that one would observe
additional modifications of the turbulence and conclusions would change.

All these investigations are in general interesting and insightful, and some
actually leads to beneficial interaction between surrounding flow and structures,
such as drag reduction. Moreover, some of the presented examples are useful
for laminar flows, and some – for turbulent flows. However, it is not presently
clear, what the exact role and potential of porosity and elasticity of appendages
and surfaces is for drag reduction, lift enhancement or other favourable FSI
mechanisms. Currently it seems that a poroelastic coating could be useful to
reduce drag for both laminar (Favier et al. 2009) and turbulent (Rastegari &
Akhavan 2015) flows. Furthermore, majority of the available models are empir-
ical and very simple, usually without elasticity and proper multi-scale features.
For example, the thoroughly researched riblets are a crude model of shark skin
without any elastic properties. Both of the objectives (see next section) in this
thesis are connected to the development of models that would take multi-scale
effects rigorously into account and would also be able to describe elasticity.
Such models would significantly aid the understanding of the fluid-structure
interaction mechanisms arising for various appendages and surfaces exposed to
the fluid flow both in laminar and turbulent regime.
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(a) (b)

U∞

flow
flow

body

appendage

PE structure

rigid wall

Figure 1.5. A sketch of the problems investigated in this
work. In frame (a), a bluff body with an appendage is exposed
to uniform free stream U∞. In frame (b), a poroelastic (PE)
structure is added on top of a rigid wall, which is exposed to
a free fluid flow above it.

1.2. Objectives of this work

The overarching aim of this thesis is to identify new passive fluid-structure
interaction mechanisms that can be used to manipulate a surrounding flow-
ing fluid in a desirable manner. To reach this aim, we set the following two
objectives:

1. Investigate theoretically and numerically the symmetry-breaking insta-
bility that arises when a single appendage – attached behind a bluff
body – interacts with an incoming flow (Fig. 1.5a). Explain the phys-
ical mechanism behind this symmetry breaking and characterize the
consequences of the instability for rigid particles moving in fluids.

2. Develop an effective (averaged) continuum model of a porous and elastic
material attached to a rigid wall exposed to a free vortical flow from
above (Fig. 1.5b). Validate the derived model with fully-resolved direct
numerical simulations in two and three dimensions. Explain the transfer
of mass, momentum and stress across the interface between the free fluid
and the poroelastic medium.



CHAPTER 2

Research methods

In this chapter, we introduce the research methods used in order to approach
the objectives outlined for this thesis. In the following sections, we describe
the basics of theoretical, numerical and experimental investigations. We keep
the contents of this chapter general, while occasionally emphasizing the specific
methods which are employed during this thesis work.

2.1. Theoretical approaches

In order to employ theoretical investigation of a given system, one is required
to develop a viable model. A reasonable model is also a prerequisite of any nu-
merical investigation, as well as experimental observation. A theoretical model
provides equations for the numerical community to solve. Without the govern-
ing equations, no investigations could be carried out. Additionally, theoretical
models provide understanding of necessary measurements for experiments, as
well as functions of measurement tools. Without measurement tools, experi-
ments can not be carried out. Theoretical foundations are therefore crucial for
any problem in question.

The investigation of passive flow control mechanisms found in nature is
multidisciplinary. In order to describe the behaviour of the surrounding fluid,
models from fluid dynamics must be invoked. To describe tails or feathers of
animals, deformation must be characterised using solid mechanics models. To
capture the properties of the deforming natural bodies, one has to look into
biology and find, for example, how the elastic properties of a given tissue depend
on the surrounding conditions. In this work, we focus on fluid mechanics and
solid mechanics, and neglect more detailed biological description. Additionally,
we consider theoretical approaches, which simplify the more general governing
models by employing homogenisation and description of effective quantities in
multi-scale systems.

2.1.1. Fluid mechanics

In fluid mechanics, it is common to investigate a moving fluid (flow) in a con-
tinuous manner. An example of a flow is shown in Figure 2.1. A continuum
model of moving fluid is devised as follows. A velocity value u is assigned to a
fluid parcel; the fluid parcel must be sufficiently large from microscopic point
of view, such that movement of individual molecules or atoms is not impor-
tant; and at the same time sufficiently small from macroscopic point of view,

9



10 2. RESEARCH METHODS

Figure 2.1. An example of an incompressible fluid flow. Wa-
ter flows in a narrow passage of a river, during which a very
chaotic patterns can be seen.

such that the system of interest is composed of infinitely many fluid parcels.
The conservation laws for these fluid parcels are then formulated in an integral
form (summing contribution over finite volume) and finally point-wise models
are created.

In this work we look at flow, which is assumed to be incompressible. This
assumption holds for most of liquids, and also for gases, in which the flow speed
is significantly smaller (below 30%) compared to speed of sound in that fluid.
The resulting model for the fluid under those assumptions is the incompressible
Navier-Stokes equations

ρ

[

∂u

∂t
+ (u ·∇)u

]

= −∇p+ µ∇2u, (2.1)

∇ · u = 0, (2.2)

f (u, p)|∂Ω = gBC, (2.3)

where ρ is the fluid density, u is the velocity field, p is the pressure, µ is the
dynamic viscosity of the fluid, f (u, p)|∂Ω is a general function of boundary
velocity and pressure values and gBC is a general boundary condition on a
surface of a fluid domain (can be both prescribed velocity or surface stress).
The dimensionless Reynolds number is defined as Re = ρUL/µ, where L is a
characteristic length scale of the flow. The Reynolds number characterises the
ratio between inertial and viscous forces in the flow.

The Navier-Stokes equations are non-linear partial differential equations.
Analytic solutions are available only for a very limited set of problems. There-
fore it is common to conduct numerical (section 2.2) or experimental (sec-
tion 2.3) investigations.
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2.1.2. Solid mechanics

In solid mechanics, one of the simplest possible models of a body is a finite-
sized non-deformable body with mass subjected to external forces. In such a
framework, the body dynamics are very simple. For any arbitrary body there
are 6 degrees of freedom in three dimensions (translation in three directions,
rotation around three axis). Velocities are assigned to the center of the mass of
the body and the motion is governed by the total force on the body. In a two-
dimensional setting, Newton’s equations of a rigid body motion surrounded by
fluid are

dus

dt
=

1

ρVs

∮

S

τ · n̂dS +

(

1−
1

ρ

)

gĝ, (2.4)

dωs

dt
=

1

ρIs

∮

S

r× (τ · n̂) dS , (2.5)

where τ is the fluid stress tensor, us is the translation velocity, ωs is the angular
velocity, r is the radius from the center of mass to the surface of the body,
Vs =

∫

dV is a dimensionless volume, Is =
∫

r2 dV is a dimensionless moment
of inertia, and ∂Ωfs = S is the solid object surface. Hats are used to denote
unit-vectors, here n̂ is the unit surface-normal vector and ĝ is a unit vector in
the direction of gravity. Nevertheless, solid bodies are often deformable, which
is also the case for the problems we aim to investigate. A simple example of a
deforming solid body is a ruler placed on a table, and bent by forces acting at
the end of the ruler and at the center of the ruler (see Figure 2.2).

The deformation is described in a continuous manner using a displacement
field v = x− x0 for each solid body element (similarly as velocity field for the
fluid), which is the difference between the current position x and initial (rest)
position x0 in the coordinate system moving together with the center of mass
of the body. In the deformed case the limited number of degrees of freedom
have been replaced by a continuous field.

Figure 2.2. A deformed ruler caused by forces applied at
both ends of the ruler as well as at the center of the ruler
(reactive force form the table).
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The strain of the solid body is translated to stress through a given stress-
strain relationship. In this work we look at linear elasticity, i.e., in which the
relation between strain and stress is a linear function. The governing equation
for deformation of a solid body is then

ρs
d2v

dt2
= ∇·

[

Csk :
1

2

{

∇v + (∇v)
T
}

]

+ F,

B.C. Fb =

[

Csk :
1

2

{

∇v + (∇v)
T
}

]

· n̂, (2.6)

I.C.
1

V

∫

v dV =vc (t) ,
1

V

∫

r× v dV = θc (t) ,

where ρs is the density of the structure, Csk is a fourth-rank tensor, which re-
lates strain and stress of the structure, F is a body force within the structure,
Fb is the prescribed boundary forcing, needed to determine the boundary con-
dition at the surface. Finally, vc and θc are the prescribed position and turn of
the center of mass, which are necessary integral conditions on the displacement
field values in order to render the solution unique. It is also possible to replace
the integral condition with point constraints or Dirichlet boundary conditions
at part of the solid body surface. If part of the boundary is specified using
a known displacement value, then equations of the rigid body motion become
redundant.

2.1.3. Multi-scale and homogenisation techniques

Often it is not possible to resolve all scales computationally by solving the
governing equations, which are valid everywhere. Therefore, various modelling
techniques, called multi-scale methods that simplify the task have been lately
drawing a lot of attention (Keyes et al. 2013). For most of these methods, the
problem in question must exhibit scale separation. That is, there has to be a
small pore-scale with length l and a large system scale with length H , such that
l/H ≪ 1. A most common feature of all those methods is homogenisation or
averaging in one or another form. The information from smaller scales (Fig. 2.3,
left) and the governing operatorM is homogenised to yield an average effective
operator A acting on average fields, defined in large-scale domain (Fig. 2.3,
right). If there are more than two separate scales present, then this process
can be repeated for the next scale.

An excellent review categorising all available approaches has been done by
Scheibe et al. (2015). They propose a multi-scale analysis platform (MAP) flow-
chart, which guides readers through different questions and leads to a specific
“motif”. Within each motif they describe a particular version of a multi-scale
method which should be useful, and provide references for further information.
In this work we focus on method, in which different scales are decoupled com-
pletely. The reason for the decoupling is the small Reynolds number creeping
flow in poroelastic material, which can be described by the linear Stokes equa-
tions. Such a method would fall within “motif B” in the MAP. As referenced
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Mu = 0 A〈u〉 = 0

l

H
≪ 1l

H

Figure 2.3. An example of a homogenisation process. On
left, we show a fine-scale porous structure (with characteristic
pore size l) in a free-fluid (with characteristic scale H). On the
right, we show a homogenised description of the same porous
structure containing only average variables. This approach is
valid if scale separation exists l/H ≪ 1.

in the MAP, review of such methods with applications to hydrology is done by
Cushman et al. (2002). The authors have investigated a number of multi-scale
methods, ranging from the method of volume averaging to the random walk
method. At the end of the review, a subjective categorisation of such methods
is presented. According to Cushman et al. (2002), for micro-structure geome-
tries, which are deterministic periodic (based on multiplying the same structure
over and over again), volume averaging by Whitaker (1998) or homogenisation
via multi-scale expansion, as, for example, explained by Mei & Vernescu (2010),
could be useful.

We compare two methods suitable for deterministic periodic microsctruc-
tures and analyse the operations that has to be carried out. Both volume
averaging by Whitaker (1998) and homogenisation by Mei & Vernescu (2010)
make use of (i) the scale separation; (ii) averaging procedure; and (iii) expan-
sion. Therefore we conclude that the two methods are rather similar. The
only difference between the methods is the order of sequence at which these
operations are carried out. In the method of volume averaging, one first carries
out the averaging operation, then uses Gray’s decomposition to get equations
for the deviations, and finally uses scale separation and locality assumption
to create and the solve closure problems. On the other hand, in the method
of homogenisation one starts with the scale separation, then renders the gov-
erning equations non-dimensional using appropriate scale assumptions on the
quantities, expands the equations to obtain the closure problems, and finally
averages (homogenises) the solution. Summary of the main steps is given in
Fig. 2.4.

More detailed in-depth comparison between these two techniques is per-
formed by Davit et al. (2013). In their work, all the steps and assumptions
of each method are thoroughly scrutinised. At the end of their work (Davit
et al. 2013, Fig. 12) a subjective spider-web diagram is presented, comparing
these two methods with respect to various criteria. In particular, they state
that the method of volume averaging is easier to use on a new case compared
to homogenisation, while the roles should be changed for a known case. This
conclusion is, of course, subjective. In our experience with working on both
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Figure 2.4. Flow chart of key elements in the method of
volume averaging (top) and the method of homogenisation via
multi-scale expansion (bottom).

of these methods, application to known case is equally easy (or difficult) using
both of these methods, however, applying those methods to unknown case for us
(boundary conditions and elasticity) showed that it was easier to use method of
homogenisation via multi-scale expansion. Nevertheless, we acknowledge that
both of these methods have their own strengths and weaknesses. While in the
current thesis we have worked only with homogenisation via multi-scale expan-
sion in depth, it seems that for the best results, both methods should be used
concurrently.

We compare the basic ingredients of methods of volume averaging and
homogenization, which has to be used in order to arrive with an averaged /
homogenised description of a multi-scale problem. In the method of volume
averaging (Whitaker 1998), the governing equations are averaged over a char-
acteristic volume V as a first step. The superficial average of a given variable
ψα of a phase α (fluid f or solid s) is defined as

〈ψα〉 ≡
1

V

∫

Vα

ψα dV = εα 〈ψα〉
α
, (2.7)

where Vα is the volume occupied by the phase α, εα = Vα/V is the volume
fraction of phase α and 〈ψα〉

α
is the intrinsic average of the same variable. The

core of the method is the spatial averaging theorem

〈∇ψα〉 = ∇ 〈ψα〉+

∫

Afs

ψαn̂fs dA, (2.8)

where Afs is the interface between the fluid and the solid, and n̂fs is the
normal vector pointing into the solid phase. Another fundamental definition is
the transport theorem,

〈

∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
−

∫

Afs

ψαw · n̂fs dA, (2.9)

where w is the local velocity of the interface, which in a fluid-solid system is
equal to the local value of the solid boundary velocity. The variables in integrals
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arising from both of these theorems are expanded using Gray’s decomposition

ψα = 〈ψα〉
α
+ ψ̃α, (2.10)

where ψ̃α is the deviation of the variable. The deviation terms often need
to be solved for using an appropriate closure problem (Whitaker 1998). The
volume-averaged formulations for the Navier-Stokes equations in a porous case
are relatively well-established. The averaging has been extensively explained
by Whitaker (Whitaker 1986a, 1996, 1998) and later used by Hussong et al.
(2011). However, the treatment of the elasticity and the boundary conditions
has not reached the same level of maturity, or is mostly theoretical. Boundary
conditions between porous material and free fluid has been proposed by Ochoa-
Tapia & Whitaker (1995), and later re-derived by Minale (2014b), who put
additional effort into describing how the stress is partitioned between solid and
fluid part of the poroelastic material. Nevertheless, Minale (2014b) does not
provide practical solutions to the closure problems.

The homogenisation via multi-scale expansion, on the other hand, starts
by introducing fast and slow coordinates x = x̃/l and X = x̃/H , respectively.
The tilde denotes dimensional coordinate. Any variable is then expanded in the
form of a power series and generalised to the new function arguments, which
in the one-dimensional time dependent setting is

ψ(x, t) → ψ (X, x, t) = ψ0 + ǫψ1 + ǫ2ψ2 + . . . , (2.11)

where the variables ψk (k = 0, 1, 2, . . .) are functions of the arguments X , x
and t. It is important to note that the variable in question is extended from
a one-dimensional space to a two-dimensional space, as illustrated in Fig. 2.5.
However the two-dimensional formulation is arbitrary up to the slice, defined
by the scaling X = ǫx. The spatial derivative is given as

(·),i = (·),i1 + ǫ (·),i0 , (2.12)

x

ψψ

x

X

Figure 2.5. The starting point of the multi-scale expansion
technique is the generalisation of a quantity, which is a function
of one physical coordinate (x), into another quantity, which is
a function of two coordinates (a micro-scale x and a macro-
scale X).
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where we have used comma to denote differentiation. The term (·),i denotes

derivative with respect to the original coordinate; the term (·),i1 is derivative

with respect to the micro-scale coordinate x; and the term (·),i0 is the derivative
with respect to the macro-scale coordinate X . After applying the expansion
both in amplitude and in coordinate space, one arrives with governing equations
at different orders. These equations then have to be solved one-by-one in micro-
scale. After the solution is obtained in micro-scale, the results can be averaged
and used in effective equations.

In order to give an example of volume averaging and homogenization meth-
ods, we briefly illustrate equations, which can be obtained by starting from
Navier-Stokes equations in pore-scale (2.1–2.3). Applying the volume averag-
ing (Whitaker 1998) on the governing equations (allowing the solid skeleton to
be elastic) leads to

ρ

[

∂ 〈u〉f

∂t
+
(

〈u〉f ·∇
)

〈u〉f
]

= −∇ 〈p〉f + µ∇2 〈u〉f + f1, (2.13)

∇ · 〈u〉
f
= f2, (2.14)

where 〈·〉
f
is an intrinsic average of the flow and pressure fields, as defined

before. The obtained equations are similar to the pore-scale Navier-Stokes
equations (2.1–2.3) except for two source terms. The source term in the mo-
mentum equation f1 contains the viscous dissipation due to the creeping flow
and other pore-scale effects, and the source term in the continuity equation f2
describe the source or the sink of the averaged velocity field arising from the
change of fluid volume fraction in the medium. These equations are employed
by Hussong et al. (2011) to describe flow fields caused by beating cilia. In order
to recover the classical Darcy’s law with or without Brinkmann’s correction,
additional assumptions connected to scale separation must be employed to ne-
glect the inertial (and the viscous) terms in the averaged setting (Whitaker
1996). On the other hand, in the method of homogenisation via multi-scale
expansion by Mei & Vernescu (2010), one immediately uses the scale separa-
tion on the pore-scale Navier-Stokes equations, and at the first order directly
obtains the relative Darcy’s law

〈u〉
f
− ∂t 〈v〉

f
= −

K

µ
·∇ 〈p〉

f
, (2.15)

∇ · 〈u〉
f
= f2, (2.16)

where ∂t 〈v〉
f
is the averaged velocity of the solid phase and K is a permeability

tensor. Using this approach it is quicker to obtain the Darcy’s law directly, while
adding the Brinkmann correction (Auriault et al. 2005) or the inertial terms (to
the best of author’s knowledge, this has not been done using homogenization
via multi-scale expansion) requires seemingly much more work compared to the
method of volume averaging.
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2.2. Numerical simulations

After having settled on the theoretical model that accurately describe a system
in question and after obtaining corresponding governing equations, numerical
experiments can be employed. The equations must be discretised using a nu-
merical scheme. The possible choices are vast. A large group of numerical tools
use finite volume methods (FVM), which are easy to understand, therefore very
widely used by engineers. In FVM, the governing equations are re-written in
an integral form around some control volume, and then the integral form is
evaluated numerically. For more information, see the book by Moukalled et al.
(2015). Another group of simple discretisations, which is also the oldest numer-
ical method, is the finite difference methods (FDM). In FDM, the original form
of point-wise continuous partial differential equation is used and each derivative
is approximated using a given support stencil, which consists of a few discrete
points in space and time. The reader can find FDM formulas for grids with
arbitrary spacing in the work by Fornberg (1988). However, the boundary con-
dition treatment is relatively cumbersome due to required modification of the
differentiation stencils. The last and most theoretically involved group of simu-
lation methods is the finite element methods (FEM). The FEM is according to
opinion of many researchers most elegant in terms of mathematical treatment.
For the FEM, one has to define an appropriate test function space, and then
multiply the governing equations with the corresponding test function. The
equations are then integrated over the whole domain and a weak formulation
is derived. In such way, an approximation of the real solution, which has the
smallest error in the defined function space, is found. For fluid flow simulations,
FEM with spectral basis is gaining popularity due to high accuracy and good
scaling properties on parallel computers. For the theory of spectral element
methods (SEM), the reader is referred to the book by Karniadakis & Sherwin
(2013). Another good reading material on various numerical methods applied
for numerical solutions of flow models is the book by Ferziger & Perić (2002).

Regardless of the chosen method, the next step is discretisation of the
physical domain using a mesh (or other numerical representation for mesh-free
methods). The standard way to achieve this, is using body-fitted mesh, i.e.,
mesh, which is conforming to the body. Except for very few specific shapes
of the body (such as squares or rectangles), the body fitted mesh approach
is rather complex. The easiest is to generate an unstructured mesh, which
does not contain any underlying global structure. An example of body-fitted
unstructured triangle mesh is shown in Fig. 2.6 (left). Such a mesh is typical
for numerical simulations with FEM, and can also be used with FVM. In this
work, we use the FEM with body-fitted mesh for simulations with FreeFem++
(Hecht 2012), which is a convenient toolbox to test different physical models
and boundary conditions. For FVM and FDM, however, the domain is typically
discretised using a structured mesh, which has a global structure. The simplest
possible structured mesh is a uniform mesh, as shown in Fig. 2.6 (right). The
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Figure 2.6. Example of two meshes used for numerical sim-
ulations. On the left, we show a body fitted triangular un-
structured mesh around a cylinder. On the right, we show a
uniform quadratic structured Eulerian mesh around cylinder
with splitter plate within a IB framework, in which the body
is represented using a separate Lagrangian grid (red circles).

FVM and FDM on such discretisations can be very efficient due to application
of fast Fourier solvers (for periodic conditions).

If one would like to carry out numerical simulations of moving bodies, then
the standard approach with body-fitted mesh (Fig. 2.6, left) is computationally
expensive due to the requirement of a changing mesh, which has to be either
deformed or re-created. In order to avoid this difficulty, a so called immersed
boundary (IB) method can be used, which we also employ in part of this work.
The IB method was originally developed by Peskin (1972) for describing flow
patterns around heart valves. The underlying idea is to discretise the Navier-
Stokes equations on a regular structured grid (Eulerian mesh in Fig. 2.6, right),
and represent a body of arbitrary geometry on a separate grid (Lagrangianmesh
in Fig. 2.6, right), which can move freely with respect to the fluid grid.

The interaction between the Lagrangian and the Eulerian grids is imposed
by interpolation and spreading (regularisation) operators. The velocity of the
fluid u (r) is interpolated from the Eulerian grid to the Lagrangian grid, while
the forcing from the solid body F (L) is spread from the Lagrangian to the
Eulerian grid

U (L) =

∫

Ω

u (r) δ (r− L) dV , (2.17)

f (r) =

∫

S

F (L) δ (L − r) dS . (2.18)

Here, r is the coordinate vector from the origin of the coordinate system to
any point on the Eulerian grid, L is the coordinate vector from the origin
of the coordinate system to any point on the Lagrangian grid, U (L) is the
interpolated velocity on Lagrangian points, f (r) is the regularised force density
on the Eulerian points, and δ (r− L) is the regularised Dirac delta function.
The main advantage of IB methods is their efficiency, because the simplicity of
the structured fluid mesh is preserved and there is no need for deforming or re-
creating the fluid mesh. On the other hand, one has to deal with inaccuracies
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introduced by interpolation and spreading operations, as well as with a fictitious
fluid inside the body.

All numerical simulations contains errors. The most common one is the
discretisation error; that is, error, which is caused due to the representation of
a continuum model in a discrete way. It includes both spatial disctretisation
error (connected to mesh size) and temporal discretisation error (connected
to time step). The numerical simulations of turbulent flows are very prone
to these errors, because the structure of the flow is very complex, containing
small and large scale entities. Less common is the modelling error; that is, an
error, which is caused due to an insufficiently accurate continuum model for
the specific problem. For example, the incompressible Navier-Stokes equations
are not able to capture the flow behaviour close to the speed of sound and rise
of shock waves. In order to be confident about the problem description using
numerical simulations, one always has to check the discretisation error and also
think about modelling error.

2.3. Experiments

While theoretical approaches and numerical simulations are often practically
cheap, provide detailed results, which are not always accessible from experi-
ments, experimental investigations have been and always will be an invaluable
asset in scientific ventures. The reason is the fact that the real-life experiments
are fully governed by fundamental laws in nature, while numerical simulations
and theoretical efforts must always be based on mathematical models. To
be fair, one has to note that experiments alone would also be useless, because
without theoretical models, one could not understand the measurement devices.
Although this statement is strong, one has to remember that even the most well
founded and the most widely accepted theory still is a required ingredient for
the measurements. For example, the commonly used Pitot or Prandtl tubes
has been designed based on the Bernoulli’s law. Without the theory, the mea-
surement would not have any interpretation. Empirical and heuristic models
can also be viewed as the simplest possible theoretical description. To sum up,
theoretical, numerical and experimental efforts should be used hand-in-hand in
order to achieve scientific progress.

There are many types of experimental facilities and measurement methods
used for experiments on flows and solids. To give a few examples, very wide
spread experimental tools in fluid mechanics are wind tunnels (example shown
in Fig. 2.7a), water tanks and water tables. The flow field can be visualised
using dye or smoke (Fig. 2.7a), but for more quantitative observations one has
to use more sophisticated techniques, such as particle-image-velocimetry (PIV)
and laser-Doppler-velocitmetry (LDV) for flow field investigations, or pressure
tubes and hot-wire anemometry for flow velocity investigations in a particular
point. For experiments with solid structures measurement techniques are re-
quired, which are able to resolve also the solid displacement, as, for example,
can be done using optical coherence tomography (OCT).
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Figure 2.7. Example of a wind tunnel experiment (a) in
RPI Subsonic Wind Tunnel, where a model of Cessna 182 is
tested. A wingtip vortex is visualised using smoke. Photo by
Dale (2007). Schematic of a soap-film experimental facility
(b). Overview of experimental facility in Stockholm (c), and
zoomed view of a cylinder (indicated with a red circle) with
a filament (indicated using a blue line) immersed inside the
soap-film (d).

It is possible also to carry out two-dimensional (2D) experiments. As sur-
prising as it may be, there are 2D flows present also in nature, most notable
example is the large scale atmospheric and ocean flow, which is globally 2D
due to stratification (difference in fluid density). Smaller scale experiments in
2D can be carried out using a soap-film apparatus. Since the work by Couder
(1984); Couder et al. (1989) and Kellay et al. (1995) on turbulence in a soap-
film, this experimental method have been developed tremendously and has
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found applications in FSI field as well. The soap-film experiment is widely
known as a good approximation to a two-dimensional experiment and as such
it is suitable to compare with our two-dimensional numerical simulations. A
schematic of a soap-film apparatus is shown in Figure 2.7b. We have built our
own apparatus with feedback from Prof. Kellay (Bordeaux), the pictures are
shown in Figure 2.7c,d.

The soap solution is driven from the reservoir by a pump P (Figure 2.7b) to
the top. Then soap solution falls between two nylon wires under the influence
of gravity and forms a thin soap-film. The film flows around an object placed
in the test section (fixed or free to rotate), thus forming a wake behind the
body. The thickness variations of the soap-film serve as a proxy of the vortex
structures in the flow field. The measurements of the flow field can be done
using a high-speed camera or LDV system.

The experiments are not influenced by the errors, which would appear in
numerical simulations – the fundamental laws of nature are always present and
there are no discretisation errors. However, the experiment must be carried out
using measurement devices. And the results obtained from the experiments are
also prone to two types of errors; the first being random error and most often
caused by the accuracy of the measurement device; the second being system-
atic error and most often caused by the influence from the measurement device
on the experiment itself. The main challenge in matching the experimental
measurements with numerical simulations is to have sufficient control over all
errors, such that one can, with good enough confidence, state that the investi-
gated problem is the same from both (experimental and numerical) sides. In
this thesis I further focus on numerical and theoretical efforts, but correspond-
ing experimental results, where applicable, can be found in the papers in the
second part of this thesis.



CHAPTER 3

Individual appendage in a flow

In this chapter, we give an overview of our work towards understanding, how
a single appendage behind a bluff body behaves, if the body is moving or is
exposed to an incoming flow stream, which is the first objective outlined in
section 1.2. The starting point for this work is the symmetry breaking for an
elastic filament behind a cylinder, as reported by Bagheri et al. (2012), and also
symmetry breaking of a system consisting of a cylinder with a splitter plate
clamped at the rear end, as analysed by Xu et al. (1990) and Cimbala & Chen
(1994). We investigate a single appendage behind an object freely falling under
the influence of gravity to understand if any favourable behaviour is triggered
by the previously reported symmetry breaking.

3.1. Numerical investigations

We use the IB projection method developed by Taira & Colonius (2007), which
is an extension of fractional-step FVM originally introduced by Perot (1993).
To carry out simulations, we have proposed additional modification of the
method to include the rigid body motion solver implicitly (Lācis et al. 2016,
paper 2). By doing so, we are able to investigate freely falling bodies with
density ratio between the body and the surrounding fluid close to unity.

We define the fluid domain Ωf as a rectangular box, shown in Fig. 3.1, left.
The domain is meshed using a structured rectangular mesh, with a grid that
is uniform in the region of movement and expanding towards the sides of the
boundary. The requirement of uniform mesh spacing arise from the discrete
Dirac delta function, used to couple the solid body boundary ∂Ωfs with the
fluid mesh. The gravitational acceleration is pointed towards the bottom of
the domain. At the outer boundary of fluid region ∂Ωfo, we impose no-slip
boundary condition.

From the simulations, we conclude that the cylinder with the splitter plate
after some initial transient turns and drifts towards left or right. The direction
of the drift is determined by the initial condition. In Fig. 3.1, right, we show a
snapshot of a steady drift obtained for Reynolds number Re = 156. We have
identified that the body turns by an angle θ = 19◦ with respect to the direction
of motion, and the drift angle is α = 8◦ with respect to the direction of gravity.
For more results in the two-dimensional setting and experiments on soap-film,
see paper 1 (Lācis et al. 2014).

22
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Figure 3.1. Set-up of numerical simulations, used to inves-
tigate a freely falling cylinder with a splitter plate clamped
at the rear. On the left, we show a simulation domain, with
the region of the uniform mesh identified using dashed lines.
Boundary condition at all of the sides of the box is zero veloc-
ity, and the fluid inside the box is at rest. On the right, we
show a snapshot of simulation at Reynolds number 156 and
identify the direction of gravity and body motion, as well as
turn angle and drift angle.

As indicated by Lācis et al. (2014), such an instability is also present in
three dimensions. To carry out further investigations in three dimensions, we
select an elliptic shape of appendage behind a sphere and carry out numerical
investigations for different aspect ratios A and lengths L of the appendage. In
order to simplify the numerical task, it is assumed that a reasonable approxi-
mation of the behaviour exhibited by the freely falling body can be obtained
by steady, fixed body simulations. This assumption is reasonable for Reynolds
number Re = 200 which renders the wake of the sphere steady. An illustration
of the sphere with the elliptic appendage placed in the free-stream undergoing
the same symmetry breaking as the cylinder with the splitter plate is shown
in Fig. 3.2a. Two stream-wise velocity iso-surfaces behind the sphere with an
appendage of aspect ratio A = 0.7, length L = 0.7D and turn angle θ = −11.3◦

are shown in Fig. 3.2b. From the figure, we observe that there is a relatively
large back flow region at one side of the elliptic appendage, while it does not
exist on the other side of the appendage. We have then varied the aspect
ratio and length of the appendage in order to seek the optimal shape of the ap-
pendage, which generates the largest lift force. For more results and discussion,
see paper 3.
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Figure 3.2. Sphere with an appendage shaped like an ellipse
placed in a free stream of velocity U∞ is shown in panel (a).
The sphere has a diameter D and the appendage has a length
L. Due to symmetry breaking, a turn by an angle θ as well as a
lift force Flift is generated. In panel (b) we show iso-surfaces of
two stream-wise velocity values u = 0 (blue) and u = −0.1U∞

(red). The turn angle of the body is θ = −11.3◦. Length of
the elliptic appendage is L = 0.7D and the aspect ratio is
A = 0.7.

It turns out that this instability both for two-dimensional and three-
dimensional bodies is the same one as previously observed by Xu et al. (1990);
Cimbala & Chen (1994); Bagheri et al. (2012), but up till now the exact mecha-
nism was not uncovered. In the following sections, we briefly describe the main
reason for this symmetry breaking and also possible consequences.

3.2. Inverted-pendulum-like instability

In this section, we summarise a simple mathematical model, which we have
proposed as an explanation for the observed symmetry breaking. The model
is based on an intuitive mechanical system, namely the inverted pendulum.
Therefore, we call this the inverted-pendulum-like (IPL) instability. Consider
an inverted pendulum, which consists of a cylinder and a plate attached to
it, as shown in Fig. 3.3a. The pendulum is anchored at the center of mass of
the cylinder; the center of mass of the whole body is located slightly above
the attachment point. There are solid walls at the sides of the system. The
straight upright position of the pendulum is an equilibrium state, however, it
is unstable. That is, if there is any disturbance in the system, the pendulum
would fall, either to the left or to the right, depending on the disturbance.

We suggest that the cylinder with the splitter plate freely falling in fluid
or exposed to incoming free stream is a similar system. The role of the gravi-
tational forces are played by pressure forces in the back flow region (Fig. 3.3b),
which essentially try to push the spitter plate out of the back flow region, given
that the plate is sufficiently short. On the other hand, the forward flow is
playing the role of side walls, providing with counter-acting force. This sets a
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Figure 3.3. Illustration of the model, which we propose as
explanation for the observed fluid-structure-interaction sym-
metry breaking. In frame (a), we show a system of the unsta-
ble inverted pendulum, which is encompassed by walls at both
sides. In frame (b), we sketch a splitter plate, which is fully
enclosed in a back flow region, created due to presence of the
cylinder. In frame (c), we show a force balance at an equilib-
rium angle θ between forces from the back flow and forward
flow.

unique turn angle, at which the total torque caused by the plate around the
center of the cylinder is zero.

In order to obtain more quantitative predictions, we have devised a simple
model of two forces acting on the two different parts of the splitter plate. First,
we assume that the splitter plate is infinitely thin, such that any thickness
effects can be neglected. We define the normal direction n̂ on the plate as
shown in Fig. 3.3c.

We define two normal forces acting on the plate. One is the force driving
the instability, i.e., trying to turn the plate away from the center, and is defined
as

F+
n = 2k sin (θ)AρfU

2B (θ) . (3.1)

Here, B (θ) is the length of the splitter plate located inside the back flow re-
gion, or in other words, length of the plate exposed to normal force in the
“plus” direction. The second is the stabilisation force, i.e., trying to oppose the
instability, and is defined as

F−

n = 2 sin (θ)AρfU
2 [L−B (θ)] . (3.2)

Here, L−B (θ) is the length of the splitter plate located outside of the back flow
region and is exposed to normal force in “minus” direction. The constants k
and A are force model calibration constants; the parameter k shows the relative
magnitude of force inside the back flow region compared to force outside of the
back flow region, and parameter A characterises the magnitude of both forces.
After determining the forces acting on the splitter plate, one can construct the
corresponding torque around the center of the cylinder. In the IPL model it is
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(a) (b)

Figure 3.4. Results of the inverted-pendulum-like model
compared with direct numerical simulations for a freely falling
cylinder with splitter plate. The solid density ratio is ρs/ρf =
1.001 and the Reynolds number is Re = 45. In frame (a),
we show the turn angle with respect to splitter plate length.
In frame (b), we show the drift angle for same splitter plate
lengths.

assumed that equilibrium solutions are the ones with zero torque arising from
the forces on the splitter plate.

We choose the model calibration constants by comparing the model predic-
tions with observables from the numerical simulations. Then we compare the
model predictions with direct numerical simulations of a freely falling cylinder
with a splitter plate of different lengths. The density ratio is ρs/ρf = 1.001
and the Reynolds number is Re = 45. Turn angle results are given in Fig. 3.4a.
The model has been successful in predicting the drift angle of the freely falling
body. The forces acting on the plate can be projected in normal direction to
the incoming free stream and thus obtain the side force on the body. Since the
level arm for the force towards left (F+

n ) is smaller compared to the level arm
for the force towards right (F−

n , Fig. 3.3c), the force towards left must be larger
than the force towards right. Therefore, the drift is towards the direction, in
which the plate is tilted, as seen in Fig. 3.1b. More quantitative comparison of
obtained drift angles for different splitter plate lengths is shown in Fig. 3.4b.

Additional discussion about the model validation and quantitative com-
parison with soap-film experiments can be found in paper 1 (Lācis et al. 2014),
and corresponding supplementary material.

3.3. Effects of elasticity

In this section, we describe additional effects of elasticity on the IPL instabil-
ity. Experimental investigations of a three dimensional system consisting of a
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cylinder with an attached elastic filament has been carried out by Brosse et al.
(2015). They found that if the filament is shorter than some critical length, it
collapses near the surface of the cylinder. This effect has been attributed to
both the IPL and also buckling instability – collapse of a filament structure by
bending under load aligned with the filament.

Our study is carried out in a two-dimensional setting. We replace the rigid
splitter plate of the freely falling cylinder with a deformable one-dimensional
filament, similar to the one used by Bagheri et al. (2012). The difference
between the set-ups is that in the reference paper (Bagheri et al. 2012) the
filament is hinged to the cylinder (filament can freely change angle with respect
to cylinder surface) and the cylinder can not rotate, while in this work the
filament is clamped to the cylinder (the angle between filament and cylinder
close to the attachment point is always 90◦) but the cylinder itself can rotate.
Illustration of the proposed system is shown in Fig. 3.5a. For the purpose of
the numerical simulation, filament is assumed to be infinitely thin, inextensible
and massless.

In order to carry out numerical simulations, we complement the developed
numerical method (Lācis et al. 2016, paper 2) with an explicit solver for the
one dimensional elastic beam, as employed by Bagheri et al. (2012). Due to the
explicit nature of the elastic solver, the time-step restriction on the numerical
simulations was much stricter compared to rigid body solver only. Therefore,
we were only capable to carry out investigations of the elastic appendages for
a limited time in the free fall regime.

a b c

URUR

UU

Figure 3.5. Illustration of the body, which consists of a cylin-
der and an elastic filament clamped (denoted with red) at the
rear end, frame (a). In frame (b), we sketch one possible be-
haviour of the system, in which the filament undergoes the
same IPL instability as the rigid plate, but there is a visi-
ble deformation. In frame (c), we sketch another possible be-
haviour, in which the filament undergoes a buckling instability
in addition to the IPL instability.
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Figure 3.6. Results of freely falling cylinder with elastic
filament clamped behind it. The length of the filament is
L = 1.0D. The body is shown at five different time instances.
The free-fall trajectory is shown by the black line, which is not
in scale with the body.

Figure 3.7. Results of freely falling cylinder with elastic
filament clamped behind it. The length of the filament is
L = 2.4D. The body is shown at five different time instances.
The free-fall trajectory is shown by the black line, which is not
in scale with the body.

We carry out simulations of a freely falling cylinder with a soft elastic
appendage of length L = 1.0. The body with filament shape at five different
time instances is shown in Fig. 3.6. We also show the trajectory of the falling
body in black (not in scale with the body). From this figure, one observes a
very similar behaviour to that with a rigid plate – the body turns and drifts
towards one side. The only signature of the elasticity is the slightly deformed
shape of the filament. This behaviour can be explained exactly in the same
way as the IPL instability and is illustrated in Fig. 3.5b.
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We repeat the simulation for longer L = 2.4D and softer filament (with
40% smaller bending coefficient). The trajectory and body shapes at four
distinct time moments are shown in Fig. 3.7. From this figure, we conclude that
in addition to the IPL instability, the filament also buckles. After the buckling,
the body turns again, same as for the IPL instability. However, it drifts to
the opposite direction. Although this symmetry breaking is very different from
that of an IPL instability, we believe that the cause is very similar. That is,
due to the back flow region behind the cylinder, the filament buckles, if the
combination of filament length and bending rigidity is permitting it. We have
sketched this behaviour in Fig. 3.5c.

These numerical simulations, which we were able to carry out only in the
transient free fall regime, are giving an indication of what one could expect if
the elasticity is coupled with the IPL instability. For some parameter range the
results would remain largely the same as for the rigid case. However, for other
parameter combinations, an elastic instability – buckling – appears, which has a
large effect on the freely falling motion. In order to fully characterise the effect
of elasticity in the future, longer simulations would be required that would
reach a steady free fall regime, if there exists one. In addition, the numerical
method development should be continued with the objective to reduce the
numerical cost of such simulations. A possible direction would be to implement
elastic filament treatment implicitly, similarly as done for hte vorticity-based
IB method by Wang & Eldredge (2015).

(a) (b) (c)
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Figure 3.8. Illustration of swimming cylinder model. In
frame (a), we show two regions at the surface of the cylinder,
where velocity difference of tangential velocity ∆uτ is imposed
between the solid body motion us and the surrounding fluid
motion. In frame (b), we illustrate this velocity difference or
jet production in zoomed view. In frame (c), we show velocity
difference as a Gaussian function, which we use to match the
boundary condition continuously with the no-slip condition.
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3.4. Swimming-like motion

We also investigate the IPL instability for swimming bodies. To that end, we
take advantage of the developed numerical method (Lācis et al. 2016, paper
2) that allows to prescribe not only no-slip condition between the fluid and
the moving rigid body, but also a velocity difference. In order to model a
swimming body, we define two segments of the cylinder, located symmetrically
at the top and bottom of the cylinder, as shown in Fig. 3.8a. Over these two
segments, we impose a tangential velocity difference between the solid body
and the surrounding fluid, as illustrated in Fig. 3.8b. A Gaussian function is
used, such that the velocity difference at the sides of those two segments is zero,
see Fig. 3.8c. At the remaining boundary of the cylinder, we define the no-slip
condition. This velocity difference between the solid body and the surrounding
fluid acts as a jet and propels the body forwards or backwards, depending on
the direction of the jet, as illustrated in Fig. 3.8a.

Figure 3.9. Results of a cylinder with velocity difference im-
posed at the top and the bottom, producing a jet that moves
it forward. On the left, the vorticity field is shown at the end
of the simulation. In the middle, the trajectory line is drawn.
On the right, time statistics of the horizontal cylinder velocity
us and the vertical cylinder velocity vs are shown.

The maximal value of the velocity difference is set to max (∆u) = 2.5.
This value was obtained by observing the final velocity of the cylinder alone
and matching it to us = 1.0. The simulation of this problem is carried out in
a still fluid. Results from this simulation are shown in Fig. 3.9. The Reynolds
number for the simulation is Re = 40. In the figure, we have reported the
final vorticity field near the cylinder, trajectory curve and also time evolution
of the horizontal us and the vertical vs velocity of the cylinder. As expected,
due to the produced jets at the sides of the cylinder, the cylinder is moving
from the right to the left. After an initial transient, the cylinder reaches an
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Figure 3.10. Results of a cylinder and a splitter plate with
a velocity difference imposed at the top and the bottom of the
cylinder, producing a jet that moves the body forward. On the
left, the vorticity field is shown at the end of the simulation.
In the middle, the trajectory line is drawn. On the right, time
statistics of the horizontal cylinder velocity us and the vertical
cylinder velocity vs are shown.

approximately constant horizontal velocity us = 1.0. The vertical velocity is
oscillating with roughly zero mean value and an amplitude of around vs = 0.05.
Overall, there is no symmetry breaking and the cylinder is moving along a
straight path on average. From the vorticity plot at the end of the simulation,
one can identify two wakes. The first wake is caused by the jets originating at
the sides of the body, and is a propulsion wake. The second wake is caused by
the cylinder itself and it is a drag wake.

To trigger the IPL instability, we add a rigid splitter-plate behind the
cylinder and drive it using exactly the same parameters at the cylinder sides.
The results are presented in Fig. 3.10. Interestingly, after the initial transient,
the moving body is translating along the diagonal on average, exhibiting a very
wide range of rotation angle. That is, the motion has similarities to that of
a fish swimming. It seems that the splitter plate has destabilised the moving
body and the generated back flow region is causing oscillations, which resemble
a swimming motion.

In the future, to characterise the observed IPL instability effect on
swimming-like motion, additional convergence tests and initial condition sen-
sitivity studies need to be performed. Investigations of different plate lengths
should be added. Additionally, the IPL model could be applied to this set-up
and possibly extended in order to allow for dynamic interaction between the
plate and the surrounding propulsion jets.



CHAPTER 4

Poroelastic material in free fluid

In this chapter, we give an overview of our work towards developing a complete
mathematical formulation for the free flow problem over porous and poroelas-
tic material, which is the second objective outlined in section 1.2. The direct
numerical simulations (DNS) of the governing equations valid at all scales (see
sections 2.1.1 and 2.1.2) for multi-scale systems – in which the characteristic
size of the pores l is small compared to the macroscopic system size H – are
very expensive. This is because there is a very large number of pores in the
system, and each pore has to be resolved with a reasonable accuracy. How-
ever, the homogenised models contain a lot of assumptions and simplifications.
Therefore, the starting point of this work is the DNS of a selected test problem,
which we later on use for validation of the continuum model. Then we continue
using the homogenisation method via multi-scale expansion (section 2.1.3) to
obtain the effective model.

4.1. Direct numerical simulations

Due to the fact that there are many assumptions and simplifications required
to formulate a closed multi-scale model, it is desirable that the resulting model
is validated. Although the elastic equations derived by Mei & Vernescu (2010)
has been known for many years, a detailed validation has not been presented
to the best of our knowledge. The most common approach, as employed by Lee
& Mei (1997c), is to compute the effective elasticity and validate the resulting
tensors with respect to symmetries predicted by anisotropic material theory
(Cowin 2013). The closest to what we want to do is the work by Iliev et al.
(2008), where they have investigated large deformations, that result in non-
linear micro-scale problems. They present the theory and then validate the
results with DNS. However, up to this day no one-to-one comparison between
solution of micro-scale equations (DNS) and a homogenised model of a practical
system in two or three-dimensions has been presented.

Therefore, along the way of developing homogenised models, we have set
out a task to validate the model as much as possible. For validation, we se-
lect a lid-driven cavity problem. When working with porous materials only,
two-dimensional systems are sufficient. For validation in the porous case, the
bottom of the cavity is filled by regularly spaced cylinders, as shown in Fig. 4.1a.
The top wall of the cavity is driven by some velocity Uw, which in turn gener-
ates a flow vortex in the cavity. Due to the porous bed, there is a slip velocity

32
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Figure 4.1. Lid-driven cavity problem as validation problem
for porous material (a) and poroelastic material (b). In the
porous case, the bottom of the cavity is filled by discrete cylin-
ders. In the poroelastic case, the bottom of the cavity is filled
by spheres in all directions connected using cylinders.

at the interface with the porous region, which appears in the horizontal ve-
locity component, as shown in Fig. 4.2a. Additionally, part of the momentum
is transferred through the porous medium via a penetration velocity (vertical
velocity component), as shown in Fig. 4.2b. For more details of results, see the
paper 4 (Lācis & Bagheri 2016).

For validation in the poroelastic case, we construct a quasi-three-
dimensional set-up, as shown in Fig. 4.1b. In this case, the bottom of the
cavity is filled with fully-connected three-dimensional structures, which consist
of spheres, connected with cylindrical rods in all directions. We consider only
one pore-structure in the y direction, extending over the microscale length l.
For investigations of poroelasticity, a three-dimensional structure is required. In
two-dimensions, all porous materials are disconnected (as cylinders in Fig. 4.1a)
and therefore can not transfer stress. On the other hand, all elastic materials,
which are connected in all directions and can transfer stress, can contain only
isolated pores. That is, no flow through the porous material would be pos-
sible. Note that the later on presented homogenisation theory is not capable
of describing effective elasticity of materials, which are not connected in all
directions in the micro-scale.

The constructed structure is then placed at the bottom of a cavity problem
(Fig. 4.1b). The lid of the cavity is driven using the same wall velocity Uw as
in the two-dimensional case. Both slip velocity and penetration velocity near
the poroelastic structure in this problem are very similar to those reported
for the two-dimensional case (Fig. 4.2), therefore the velocity plots are not
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Figure 4.2. Results of the lid-driven cavity problem using
direct numerical simulation and homogenised model for porous
material. In frame (a), we show slip velocity and in frame (b),
we show penetration velocity. Both velocities are sampled at
coordinate y = 0.01H . Volume fraction of solid material is
2% and scale separation parameter is l/H = 0.1.

reported again. We show the horizontal displacement field close to the interface
in Fig. 4.3a. There we see that the horizontal displacement is very similar
to the slip velocity, which essentially shows that the displacement is mostly
governed by the free fluid shear at the interface. The vertical displacement
shown in Fig. 4.3b, on the other hand, seems to be governed by the transfer of
momentum in and out of the porous medium, as seen by the similarity between
the penetration velocity and the vertical displacement. For more results and
discussion of the poroelastic medium at the bottom of the cavity, see paper 5.

4.2. Velocity interface condition

In order to have a useful homogenised model of porous or poroelastic material
subjected to a free fluid flow, an appropriate boundary condition is needed at
the interface between the two. Theoretical approaches to model the interface
condition using volume averaging or homogenisation has been proposed be-
fore. Using homogenisation approach, theoretical derivation of the stream-wise
boundary condition has been carried out by Mikelić & Jäger (2000), and for
the pore pressure condition by Marciniak-Czochra & Mikelić (2012). These
conditions have been validated by Carraro et al. (2013) for a one-dimensional
channel flow. The boundary condition for the vertical velocity component has
been derived and confirmed by Carraro et al. (2015). Despite these efforts,
researchers are still using empirical conditions or proposing new ones. The
main reason seems to be a lack of step-by-step instructions on how to use these
theoretically derived boundary conditions. Therefore we have used the homog-
enization via multi-scale expansion in order to derive and explain a framework,
on how to get the necessary boundary conditions purely theoretically, if the
geometry of the underlying porous material is known. The explanation of the
method can be found in (Lācis & Bagheri 2016, paper 4). In order to make
the work as widely accessible as possible, we have also released all the required
codes as an open-source software (Lācis & Bagheri 2016).
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The boundary condition derived in (Lācis & Bagheri 2016, paper 4) in
dimensional form is

u = −
K

µ
· ∇p− + L :

[

∇u+ (∇u)
T
]

, (4.1)

where K is the second-rank interface permeability tensor and L is the third-
rank interface slip length tensor. The velocity at the interface is depending on

the gradient of the pore pressure p− and free fluid velocity strain ∇u+(∇u)
T
.

The main contribution from our work on the boundary condition (Lācis &
Bagheri 2016, paper 4) is (i) showing that both velocity strain terms appear in
the boundary condition and (ii) testing the derived boundary conditions in a
two-dimensional setting. We note that it is important that the velocity condi-
tion contains the pore-pressure gradient, otherwise the error in interface-normal
velocity might be very large (we have observed error up to 200%). Using the
derived boundary condition, we were able to model the slip velocity (Fig. 4.2a)
and the penetration velocity (Fig. 4.2b) with a good accuracy in an effective
way, i.e., the model is not capturing the micro-scale oscillations, however, it is
predicting the average macro-scale behaviour. The extension of this boundary
condition to poroelastic set-up is trivial, as discussed in paper 5. Essentially,
the same boundary condition holds for the relative flow velocity with respect
to the motion of the solid skeleton. We trust that based on this work, re-
searchers should be able to employ theoretically sound boundary conditions in
a homogenised setting.

Note that the derivation of this boundary condition is carried out under
one special assumption – that the shear from the free fluid above the porous
material is of the same order as the pressure gradient, which can be estimated
by assuming that the free fluid Reynolds number is of order Ref ∼ ǫ−1. In
paper 4, we discuss that this assumption, although restrictive in nature, has
only theoretical consequences. It gives a convenient way to derive generalised
boundary condition of that originally proposed by Beavers & Joseph (1967),
and also produces a condition, which in practice works also away from the used
assumption.

4.3. Effective model equations

Although the effective elasticity equations have already been derived by Lee
& Mei (1997b) and explained in the book by Mei & Vernescu (2010), we have
re-examined the used assumptions and resulting equations. The derivations
of the macro-scale equations and corresponding micro-scale problems can be
found in the appendix of paper 5. The discussion about practical limits of the
model equations can be found in the section 5 of paper 5.

The result of derivations from the appendix of paper 5 is that the ho-
mogenised solid displacement is governed by a linear law, i.e.,

(1− θ) ρs∂
2
t v = ∇ ·

[

C :
1

2

(

∇v + (∇v)
T
)

−αp

]

, (4.2)
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Figure 4.3. Results of the lid-driven cavity problem using
direct numerical simulation and homogenised model for porous
material. In frame (a), we show the horizontal displacement
and in frame (b), we show the vertical displacement. Both
fields are sampled at coordinate z = −0.05H . Volume fraction
of the solid material is 14% and the scale separation parameter
is l/H = 0.1.

where θ = Vf/V is the porosity or fluid volume fraction, ρs is the solid skeleton
density, v is the displacement field of the poroelastic material, p is the pore fluid
pressure inside the poroelastic material, C is a fourth-rank effective elasticity
tensor of the poroelastic material, and α is the coefficient for the pore pressure
contribution in the total stress. These effective tensors can be obtained using
a set of micro-scale problems, as described in paper 5. The pore pressure, on
the other hand, is governed by

Ẽ∂tp̂−∇ ·

(

K

µ
·∇p̂

)

= −α :
1

2
∂t

(

∇v̂ + (∇v̂)
T
)

. (4.3)

Here, the scalar Ẽ characterise the solid skeleton displacement response to the
time variation of pressure. The permeability tensor K characterises the seep-
age flow relationship with pressure gradient. The effective parameters in this
equation are also determined by micro-scale problems, where test displacement
fields are solved for. These governing equations are generalised versions of the
expressions for poroelastic materials derived by Biot (1941). The solid momen-
tum equation (4.2) in the non-inertial regime for isotropic effective elasticity
tensor reduces to expression (Biot 1941, eq. 4.1), whereas the pore pressure
equation (4.3) for the isotropic case reduces to expression (Biot 1941, eq. 4.4).

The governing equations in the poroelastic medium (4.2– 4.3) together with
the velocity boundary condition (Lācis & Bagheri 2016, paper 4) and the total
stress continuity at the interface have been implemented using the FreeFem++
(Hecht 2012) solver. The resulting software has been released as an open-
source code (Lācis & Bagheri 2016). The same test problems as described
in section 4.1 has been simulated. The obtained slip velocity and penetration
velocity distribution over a horizontal slice near the porous structure is shown in
Fig. 4.2. The agreement between direct numerical simulations and results from
homogenised equations is very good, although the latter does not capture the
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pore-scale variations. The solid displacement results are shown in Fig. 4.3. In
the displacement comparison between the DNS and the model, one can observe
that the agreement is satisfactory, although the displacement is consistently
overestimated. We attribute this error to the stress interface condition, which
could be improved by constructing a similar interface problem as for the velocity
condition. See paper 5 for additional discussion.

4.4. Immersed boundary method for poroelastic materials

We have considered another approach to cross-reference and validate the poroe-
lastic model results. Knowing that we already have a two-dimensional IB code,
the natural question is – can this framework be used to simulate a poroelastic
medium?

The most appropriate way to proceed is to resolve the shape of porous
or poroelastic skeleton structure using many Lagrangian points with a good
precision, taking into account the diffusive nature of the interface in IB method.
This would, however, result in a very fine fluid mesh over a large domain and it is
not clear if this approach would be computationally cheaper than the classical
simulations using a body fitted mesh. To render IB simulations feasible, we
consider a single Lagrangian point as a model for a circular cylinder. Modelling
the cylinder with a single point is crude, and also it is not clear, what should
be the diameter of such a “cylinder”. In reality, the Lagrangian point creates
a smoothed volume forcing at the neighbouring fluid nodes. We carry out
numerical simulations of flow around one Lagrangian point for various Reynolds
numbers and compare the obtained drag coefficient with experimental results
by Tritton (1959) for different “diameters” of the IB cylinder. We found that
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IBM results, d = 1.0 hmin

Figure 4.4. Direct numerical simulations of a flow over one
Lagrangian point for various Reynolds numbers. The diameter
of the model cylinder d is set to one mesh spacing hmin. For
comparison, literature data from Tritton (1959) is given.
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the best results can be obtained, if the diameter of the cylinder is set to length
of one mesh spacing d = 1.0 hmin. The results are shown in Fig. 4.4. From
the plot one can observe that using this interpretation, the integral measure –
drag coefficient – from the single Lagrangian point is very similar to that of
the cylinder for a range of Reynolds numbers from around Re = 0.5 to around
Re = 5. These findings indicate that a single Lagrange point might be used
as a representation of a circular cylinder in certain cases. The accuracy of this
representation deteriorates for smaller and larger Reynolds numbers.

The elasticity in the two-dimensional setting must be modelled, if one re-
quires both seepage velocity and stress transfer through the medium. There-
fore we introduce a spring model, i.e., we connect the neighbouring Lagrangian
points using a set of linear extension and torsion springs. We carry out a
steady simulation of a channel, partially obstructed by a poroelastic medium.
The Reynolds number based on the channel height is around 100 and the solid
volume fraction is around 1%. The vorticity field and new shape of the ob-
struction is shown in Fig. 4.5 (left). There we see that the poroelastic material
has deformed under the pressure and shear forces from the surrounding fluid.
In Fig. 4.5 (right), we show the stream-wise (horizontal) flow velocity sampled
at the red line. From this plot, one can observe the characteristic velocity os-
cillations over the space, with the wave-length being set by the location of the
Lagrange points.

Figure 4.5. IB simulations of a flow over a poroelastic obsta-
cle in a two-dimensional channel. The Reynolds number based
on the channel height is around 100, and the solid volume frac-
tion is around 1%. On the left, we show vorticity of the flow
and the final shape of the obstacle. On the right, we show the
stream-wise velocity profile along the slice marked by the red
line.
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In the future, the presented model should be further validated with respect
to how accurate the flow field around a single Lagrange point in the IB method
is compared to the flow field around a cylinder. The resulting flow fields and the
displacement fields from the IB description of the poroelastic material should
then be compared to direct numerical simulations of the whole system in order
to validate the elasticity model. In addition, the code and elastic materials
should be extended to three dimensions. The main advantage of this approach
is that there is no separate modelling involved at the interface between the free
fluid and the poroelastic material.



CHAPTER 5

Summary of the papers

Paper 1

Passive appendages generate drift through symmetry breaking

In this paper, we investigate a simple model of an appendage behind a body
– splitter plate behind a circular cylinder. We show that although generally
a recirculation region behind a body is not desirable and increases drag, some
of that lost energy can be recovered using a symmetry breaking. We show
that a short splitter plate in the wake becomes unstable in a similar man-
ner as the inverted pendulum becomes unstable under the influence of gravity,
thus we denote it as inverted-pendulum-like (IPL) instability. Although this
effect has been observed previously both for rigid and elastic appendages, the
precise mechanism and consequences remain unknown. We demonstrate the
turn and drift both experimentally (using soap-film experiments at Reynolds
number around tens of thousands) and numerically (Reynolds number around
hundred). Then we demonstrate that the IPL instability is relevant also for
elastic appendages (which are more common in nature compared to rigid ap-
pendages) and in three dimensions. We conclude that the mechanism we have
demonstrated could possibly be exploited by organisms in nature.

Paper 2

A stable fluid-structure-interaction solver for low-density rigid particles using
the immersed boundary projection method

In this paper, we describe the numerical method, which we developed while
working on the paper 1. We use an immersed boundary projection method as
the basis for our fluid solver and couple it with rigid body dynamics. We have
found that the explicit coupling, which is commonly used to find the solution
of a cylindrical and a spherical particle motion in fluid, becomes unstable for
bodies with non-dimensional density close to unity, if a splitter plate is added
behind the body. In order to overcome this instability, we devised an implicit
coupling scheme. We show in the paper that the implicit scheme is stable for
very light particles. We also show that the extension we have developed does
not increase the computational cost and retains a similar accuracy compared
to the original method.
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Paper 3

Passive control of a falling sphere by elliptic-shaped appendages.

In this paper, we extend the investigations of the IPL instability presented in
the paper 1 to a three-dimensional (3D) setting by considering a planar elliptic
appendage behind a sphere. First, the intuition from a semi-quantitative IPL
model developed in paper 1 for two-dimensions (2D) is introduced and later
used to explain the 3D results. In this paper we use a series of flow simulations
around a fixed body at various turn angles exposed to a free stream, thus
imitating a steady free-fall velocity and a rotation freedom around one axis.
We have limited our investigations to elliptic appendages with arbitrary aspect
ratios. The total torque, drag and lift acting on the body is determined for
each turn angle. The zero torque condition is used to determine the equilibrium
angle, at which we obtain the drift angle as a ratio between the lift and the drag
forces. By comparing the drift angle results between different aspect ratios, we
identify the one which leads to a largest drift angle between the trajectory of
the freely falling body and the direction of gravity. This is explained based on
the intuition formed from the analysis of the IPL instability. In addition, we
compare the total drag between bodies with different appendages and conclude
that, for certain aspect ratios, the body experiences larger drag and slower
free-fall, which can be beneficial for seed dispersal.

Paper 4

A framework for computing effective boundary conditions at the interface be-
tween free fluid and a porous medium.

In this paper, we use the method of the homogenisation via multi-scale ex-
pansion by Mei & Vernescu (2010) to derive a velocity and pressure boundary
condition for a free fluid in contact with a porous medium. In the first part
of the paper, we present a complete set of equations and boundary conditions
needed to solve for the free fluid motion over the porous material. We illustrate
the accuracy of the developed boundary condition by considering a lid-driven
cavity problem, which has a porous bed consisting of circular cylinders. We
compare the results from the homogenised model with the results from a fully
resolved Stokes model. The corresponding numerical codes has been released
as an open-source software. This part of the paper, along with the released
open-source software, should be widely accessible for practitioners, who would
like to use the homogenisation approach. The second part of the paper is aimed
towards more theoretical readers and explains the derivation and assumptions
needed to arrive with the derived boundary condition.
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Paper 5

A computational continuum model of poroelastic beds.

In this paper, we continue the investigations of continuum models for free fluids
over porous and poroelastic materials. Starting with Mei & Vernescu (2010),
we carry out derivations of effective homogenised equations that can be used to
model the behaviour of poroelastic material subjected to a moving fluid. We
present the governing continuum equations for the pore pressure and poroelastic
material displacement along with the necessary boundary conditions. We then
present a way to determine the required effective properties, which appears
in the governing equations. We employ the introduced homogenized model
to describe a poroelastic material response to the free fluid vortex above it
(created using the lid-driven cavity). The flow and the displacement results
from the homogenised model are then compared to the results from a fully
resolved simulation. From this comparison, we explain that the shear stress
from the free fluid is transferred to the solid skeleton and the pore fluid in
the microscale, whereas in the macroscale it is absorbed by the solid skeleton
only. Consequently, we show that the stress continuity boundary condition at
the interface between the free fluid and the poroelastic medium is sufficient
to capture the displacement of the poroealstic medium with an acceptable
accuracy. Finally, the practical limitations of the described model are discussed.



CHAPTER 6

Conclusions and outlook

In the first part of this work, we have considered a single appendage behind
a bluff body and its interaction with the surrounding flow. We have looked
both at solid and elastic appendages, and also both at two-dimensional and
three-dimensional configurations. In those studies we observed an inverted-
pendulum-like (IPL) symmetry breaking. The IPL symmetry breaking occurs
if the appendage is sufficiently short with respect to the length of the back flow
region; the IPL symmetry breaking causes a turn and a drift of the body. We
have investigated in more detail the two-dimensional (2D) rigid case, for which
we have described the turn and drift angles numerically, experimentally and also
theoretically. To facilitate the 2D numerical simulations of a freely falling body,
we have extended the immersed boundary (IB) projection method to include an
implicit coupling between the fluid solver and the solver for Newton’s equations
of motion. We have determined that IPL is not an elastic instability, but
a fundamental fluid-structure-interaction (FSI) instability. Carrying out this
work, we have successfully reached the first objective, outlined in section 1.2.

In the second part of this work, we have investigated the method of ho-
mogenisation via multi-scale expansion to simplify the description of porous and
poroelastic multi-scale materials in moving fluids. We have used the method
to derive the effective boundary condition for the free fluid at the interface
with porous and poroelastic material, as well as for the pore pressure. We have
also derived the effective governing equations for the poroelastic material and
analysed the practical limitations of those equations. We have compared the
effective model predictions of the flow and the displacement fields to the results
from fully resolved direct numerical simulations and observed good agreement.
We have looked into the stress boundary condition for the displacement of the
poroelastic material and found that the stress continuity condition provides
good results. We have explained this by illustrating that the shear stress trans-
fer from the free fluid to the pore fluid is a microscale effect, while the shear
stress transfer to the poroelastic skeleton is a macroscale effect. Based on this,
we justify that using the stress continuity interface condition is a good choice.
With this work, we have fulfilled the second objective outlined in section 1.2.

Based on the current thesis activities, there are several directions that
could be further taken in order to approach the overarching aim. One of the
possible projects is to further investigate appendages in the recirculation region
behind a bluff body as means to generate a favourable interaction between the
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surrounding fluid and the structure. The objectives for a following doctoral
student would include but are not limited to:

1. Implement an efficient numerical method for investigations of elastic
one-dimensional filaments behind a freely falling body.

2. Extend the numerical implementation to three dimensions, in which
elastic two-dimensional sheets (or flags) of various shapes could be de-
scribed.

3. Investigate more complex appendages with holes or more than one plane;
approach the shapes that can be observed in nature.

4. Look into appendage role in a swimming process, both in two- and
three-dimensional setting.

5. Extend the model suited for appendage description to three-dimensions
and also to include unsteady effects; investigate the applicability of dif-
ferent modelling approaches.

Another possible project for a following doctoral student would be to con-
tinue modelling multi-scale poroelastic materials and interaction with the sur-
rounding moving fluid. The objectives for this student could be:

1. Develop more complex time dependent direct numerical simulations with
deforming meshes that would allow validation of the homogenised model
for a wider range of parameters.

2. Introduce mesh deformation also in the homogenised model setting and
use the arbitrary Lagrangian-Eulerian (ALE) method to avoid mesh
node displacements in tangential direction of the interface.

3. Carry out a proper treatment of stress boundary condition using multi-
scale expansion and interface cells.

4. Modify the pore-scale test problems in order to account for porosity
changes due to a change in pore-scale geometry, especially due to a
change of the pore-scale structure volume.

5. Couple the homogenisation description of a poroelastic material to large-
eddy-simulation framework for higher Reynolds number flows.

6. Apply the developed models for characterisation of turbulent flow over
poroelastic structures, unsteady flow around a cylinder coated with
poroelastic material and other physical problems.

To sum up, this thesis work serves as an important step in further improv-
ing the understanding and knowledge about how appendages and poroelastic
materials interact with surrounding flows, which in future could lead to novel
engineering applications.
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Lācis, U. & Bagheri, S. 2016 https://github.com/UgisL/flowMSE.
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Marciniak-Czochra, A. & Mikelić, A. 2012 Effective pressure interface law for
transport phenomena between an unconfined fluid and a porous medium using
homogenization. Multiscale Model. Sim. 10 (2), 285–305.

Mavko, G., Mukerji, T. & Dvorkin, J. 2009 The rock physics handbook: Tools
for seismic analysis of porous media. Cambridge university press.

Mei, C. C. & Vernescu, B. 2010 Homogenization methods for multiscale mechanics.
World scientific.

Meyer, R., Hage, W., Bechert, D. W., Schatz, M., Knacke, T. & Thiele, F.

2007 Separation control by self-activated movable flaps. AIAA journal 45 (1),
191–199.
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