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Abstract. Bacillus subtilis swarms rapidly over the surface of a synthetic medium creating

remarkable hyperbranched dendritic communities. Models to reproduce such effects have been

proposed under the form of parabolic Partial Differential Equations representing the dynamics

of the active cells (both motile and multiplying), the passive cells (non-motile and non-growing)

and nutrient concentration. We test the numerical behavior of such models and compare them

to relevant experimental data together with a critical analysis of the validity of the models based

on recent observations of the swarming bacteria which show that nutrients are not limitating but

distinct subpopulations growing at different rates are likely present.

Key words: Dendritic patterns, Bacillus subtilis swarming, Reaction-diffusion equations, Cell

community growth.

AMS subject classification: 35K55, 65M60, 92C17

1. Introduction

Communities of cells can exhibit remarkable patterns which have attracted the attention of scien-

tists for many years. They result from highly complex but poorly understood interactions between

cells and internal regulatory networks, which involve both chemical signaling and the effects of
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physical factors. Numerous models have been used in attempts to represent some of these bio-

physico-chemical effects and to describe the resulting self-organizing patterns.

Different biophysical factors involved in pattern formation have given rise to various types

of modelling. One class of model concerns auto-chemotaxis (attraction of cells by a chemical

substance emitted by the cells themselves) and gives rise to a Fokker-Planck equation that is com-

monly called the Keller-Segel system after the seminal work [12]. This model is mathematically

very challenging and has motivated numerous studies (see [3, 23] and the references therein); in

particular this class of model typically leads to cell aggregation in one or several discrete spots

(blow-up of the system as a Dirac mass solution). Several such models and numerical results are

presented in [22].

Other models are based on the multiplication of cells resulting from nutrients initially present

in the medium and consumed by the expanding community, combined with active and random

motion of bacteria. This approach has also been widely used and can generate dendritic patterns in

the absence of oriented drift (preferred direction of motion) in contrast to the Keller-Segel model

which describes cells moving preferentially towards higher concentrations of the chemo-attractant.

Many additional factors have been incorporated into models, such as the observed higher motility

of cells at the tip of the dendrites (region of higher population density and higher nutrient con-

centration) in [11], a surfactant secreted by the cells that may change the liquid surface and thus

the migration speed of cells [15, 6], or differentiation from swimmers to swarmers for Proteus

mirabilis as modelled in [4, 5].

We are interested in models that can explain the dendritic patterns exhibited by swarming

communities of Bacillus subtilis, taking into account possible biophysical effects arising during

the migration. We summarize some recent experimental observations in Section 2., then we review

several models and show numerical simulations (Section 3.). Finally we discuss in Section 4. the

similarities and differences between simulations and experimental results.

2. Experimental results

Bacillus subtilis is a non-pathogenic but important constituent of soil and the plant rhizosphere.

This bacterial species is also one of the major model organisms used in the laboratory throughout

the world to study fundamental questions concerning bacterial growth, metabolism, physiology and

behaviour. B. subtilis is now an important model for studying the life style and social behaviour

of bacteria as large communities – the normal form of most bacteria in nature. A particularly

remarkable form of such community growth is the ability of B. subtilis to ‘swarm’ over the surface

of low concentration agar (0.7%-1%). Swarming is a process of rapid mass migration of cells over

a surface, involving a co-operative interaction between cells but not necessarily involving cell

aggregation. We are studying the swarming of strains of B. subtilis over a fully defined medium

(B-medium) in a Petri dish (a swarm plate), in which the bacteria migrate from a central inoculum

as hyper-branching dendrites, forming radiating patterns covering several square centimeters in a

few hours ([9, 10]).
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The presence of flagella and the secretion of a surfactant (surfactin) by the bacteria, plus the

products of at least 15 genes, are absolutely essential for swarming. Following inoculation of the

plate with 104 cells, the bacteria multiply with an estimated generation time (doubling time) of

about 90 min, compared to 110 min when cells are growing in a classical shaking liquid culture.

After 11–12 h of growth, the inoculum forms the mother colony (MC), approximately 30 µm
thick, 2 mm in diameter. This growth period is presumably necessary to build a critical mass

and an accumulation of a chemical signal sufficient to trigger in some cells the ability to form

dendrites. The first visible sign of initiation of swarming is the appearance of a transparent zone of

surfactin spreading outwards from the MC of a transparent zone of surfactin. Approximately one

hour later, hemispherical ‘buds’ approximately 800 µm in diameter, abruptly appear (burst) from

the edge of the MC. These form the heads (tips) of the rapidly elongating 10-14 primary dendrites.

Surfactin production is essential for formation of the pre-dendritic buds and experiments suggest

that its presence modifies the surface of the agar gel, presumably by inducing the formation of a

thin layer of fluid close to the agar surface [1]. Flagella, whose deployment presumably depends

on an appropriate fluid film on the agar surface, are essential for a later stage in the development

of the bud and for driving dendrite migration (see below). Importantly, the entire process of bud

formation and elongation of the radiating dendrites, up to lengths of 1.5 cm, occurs as a monolayer

of cells. The cells in dendrites are distributed in an irregular mesh-like organization, including

closely packed but clearly separated cells. Dendrites can be divided into two distinct regions, a long

stem containing largely non-motile cells, which remarkably are maintained at an overall constant

population density, and the extreme 1 mm at the tip where the population density increases sharply.

This tip region contains hyper-motile cells that we term swarmers, which appear to constitute the

’motor’ for elongation. Dead cells in dendrites or the MC are rare, perhaps less than 1%.

When dendrites reach approximately 1.5 cm in length, equivalent to 5-6 h following emergence

of pre-dendrite buds, a dramatic switch from monolayered to multilayered dendrites slowly spreads

progressively from the base of dendrites, as the swarm begins to develop the classical biofilm form

( at least 50 µm thick). These observations demonstrate that nutrients are in great excess for at least

24 h encompassing the swarming process and subsequent maturation of the bilayer. Moreover, we

have shown that diluting the nutrients in the swarm plates at least 4-fold, prior to inoculation has

little obvious effect on the pattern of swarming (unpublished data).

Recent studies [8], using genetic analysis and fluorescent microscopy to measure the level of

production (expression) from the gene encoding the major flagellum subunit in situ, have identi-

fied a specific subpopulation of hyper-flagellated cells (‘swarmers’ ). These are dominant in the

formation of buds and then subsequently spearhead dendrites in the tips. These hyper-motile cells

are in contrast to the cells forming the stem of dendrites that we term ‘supporters’. We propose

(manuscript in preparation) that supporters contribute to dendrite elongation by growth and divi-

sion (multiplication), while swarmers actively drive extension from the tip, generating hydrody-

namic forces dependent upon their hyper-motility. Thus, migration of the swarm front results from

the co-operative action of two sub-populations to promote dendrite extension. In contrast to these

mechanical forces however, we note that the piloting mechanism or guidance system that ensures

radial migration likely depends on a self-generated chemical gradient, but so far this explanation

remains speculative.
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We shall now summarize a number of notable features of the migration process and consequent

pattern development that should be taken into account when constructing mathematical models, if

these are to describe the swarming process adequately. Migrating dendrites on encountering a large

obstacle (like a cover slip or an E. coli colony) are induced to make a 90o turn but then in most

cases these return to the original radial direction. In addition, dendrites rarely merge and appear to

avoid each other. This behaviour is consistent with the diffusion of a chemical repellent generated

by the cells able to keep dendrites well separated. Significantly, the limited number of primary

dendrites established at the initiation of swarming are usually supplemented at much later times

by additional dendrites arising from the MC. This might indicate that the differentiation event to

form swarmers (capable of breaking out of the MC) is based on a stochastic process that can occur

repeatedly over time. In relation to the branching process, we have observed that branching can

occur by tip splitting. However, a significant number of branches abort and remain very short and

are often restricted to one side of the dendrite stem. All new branches tend to quickly adopt a radial

direction during subsequent elongation. Importantly, while the overall frequency of branching

increases towards the edge of the swarm plate, dendrite stems progressively become thinner (Fig.

1).

A surprising characteristic of the swarming process is the paradox that while cells are expected

to grow and divide exponentially, as all cells do in a liquid culture, the rate of swarming migration

remains constant. This, combined with the constant population density over most of the dendrite,

clearly indicates that not all cells in the dendrites can be growing at the same rate. This would

be an extremely unusual behaviour for a bacterial population and it is important to establish now

which subpopulations may be subject to growth rate control.

3. Models for self-organizing communities

The mathematical description is performed in two steps. First, a model is proposed based on the

major supposed mechanisms that drive the migration of the cells. We give two such examples: one

is based on nutrient consumption, the other on chemoattraction and chemorepulsion. Secondly, a

numerical simulation is performed that allows us to visualize the approximate solution.

Throughout this section we consider a general situation where the cell community lives in a

domain Ω. For numerical simulations we consider only the case of a disk that represents the usual

experimental domain (a Petri dish). The initial state, mimicking the experimental device, is set

with an initial value for the bacterial population density representing an ‘inoculum’ in the center

of the disk.

3.1. Reaction-diffusion models (nutrient only)

The nutrient-based models used to generate dendritic patterns of cell communities are mostly for-

mulated in terms of three quantities

• the population density u(x, t) of active cells at the location x ∈ Ω. Under the effect of their

151



A. Marrocco et al. Models of cell colonies self-organisation

Figure 1: An experimental swarming pattern displayed by B. subtilis 168 on B-medium. Bacteria

were inoculated in the centre of the plate and incubated for 24 h. Dendrites elongate radially from

the central mother colony (approximately 3.5 mm per h) and begin branching after 1.5 cm. Highly

reproducible patterns are obtained, characterized by increased frequency of progressively thinner

branches. Dendrites generally appear to evade each other and rarely fuse. Side branches tend to

be biased to one side and rather frequently abort after a relatively short distance. Interestingly, this

motif, termed domain branching, is observed in mouse lung tissue [18]. Side branches frequently

commence at 40 − 90o to the main branch, but then adopt a radial direction.

flagella, active cells undergo a random movement resulting in a diffusion of intensity du, and they

multiply according to the nutrient available locally

• the nutrient concentration v(x, t) diffuses according to Einstein’s rule and, because the nutrient

is limited, it can diminish locally due to its consumption by multiplying cells

• the population density of passive cells w(x, t) are assume to be stationary and non-multiplying.

Active cells become passive according to some rules that differ from one model to the other. Pas-

sive cells do not move nor multiply, and do not revert to the active form, but accumulate in the

domain.

These assumptions lead to write general systems of the form



























∂

∂t
u(x, t) − du∆u(x, t) = u[vf(u, v) − g(u, v)],

∂

∂t
v(x, t) − dv∆v(x, t) = −uvf(u, v),

∂

∂t
w(x, t) = ug(u, v).

(3.1)

Such systems have first been introduced to model chemical reactions. A simple example is the

152



A. Marrocco et al. Models of cell colonies self-organisation

Figure 2: Dynamics of community growth as given by a numerical simulation of the Gray-Scott

model (3.2) with n = 1. Active cells modelled by the component u(x, t) are shown (total number of

cell presented in Fig. 3). Three different successive times are presented. These cells are positioning

where nutrient is available.

Figure 3: Same model as in Figure 2, the total population density u + w is shown. The dendritic

pattern is determined by the passive cells in this type of model.

Figure 4: Same model as in Figure 2, the nutrient concentration v is shown (dark represents high

concentration). While moving outwards towards undepleted nutrient, the active bacteria consume

the nutrient.
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Gray-Scott system [7] is a simple and classical example which writes as



























∂

∂t
u(x, t) − du∆u(x, t) = u[unv − µ],

∂

∂t
v(x, t) − dv∆v(x, t) = −un+1v,

∂

∂t
w(x, t) = µu(x, t).

(3.2)

Here n ≥ 0 is an integer related to the mass action law for the molecules undergoing the chemical

reaction and µ > 0. Variations around this model can also be interpreted in terms of bacterial

motion as proposed in Kessler and Levine [13], and Golding et al [6]; they replace the growth term

unv by h(u)v where h(·) is a truncation function for small values of u and h ≈ 1 for large values.

The Gray-Scott model explains the instability that generates the digitation process. It is related

to concentration effects of the equation on active cells; its solution u exhibits high values on the

tip of the dendrite and move outwards where nutrients are replete (Figure 2). These concentra-

tion points are traveling pulses that undergo secondary instabilities which explain their branching,

see [21, 14]. They leave behind them the column of passive bacteria forming the dendritic pat-

tern shown in Figure 3. In order to run simulations on the normalized unit disk, we have used

parameters given by

n = 1, du = 6.25 10−8, dv = 100du, µ = 0.01, v0 = 1,

where v0 is the initial constant value of v.

Rather than a limitation on growth for small values of u as in the Kessler and Levine model,

Mimura et al [19] proposed a limitation on the transition rate to the passive state for large values

of u or v. The choice of the reaction terms f and g in the general system (3.1) is then given by































∂

∂t
u(x, t) − du∆u(x, t) = u

[

v −
µ

(a + u)(b + v)

]

,

∂

∂t
v(x, t) − dv∆v(x, t) = −uv,

∂

∂t
w(x, t) =

µu

(a + u)(b + v)
.

(3.3)

The resulting dendritic patterns differ slightly from those obtained with the Gray-Scott model, but

the underlying mechanism is very similar. Figure 5 shows the active cells and the total population.

Simulations were run in the unit disk and the parameters we have used for model (3.3) are

du = 1.4 10−7, dv = 20 du, a = 1/2400, b = 1/120, µ = ab, v0 = 0.087.

Other biophysical processes can be taken into account in this class of models in order to ex-

plain the behaviour of specific bacterial communities. The effect of surfactant has, for instance,

been analysed in [15] and affects the diffusion term by allowing variation in cell motility of cells

depending on the height of the surface liquid. The influence of the reaction terms and analogy with

phase transitions are studied in [26]. The references [6, 22] also contain several related models.
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Figure 5: Dynamics of the dendritic expansion as given by a numerical simulation of the Mimura

model (3.3). Left: active cells modeled by the component u(x, t). Right: total population u + w.

3.2. Chemoattraction, chemorepulsion and Fokker-Planck terms

When the bacteria emit a chemoattractant or chemorepellent terms must be included in the reaction

diffusion systems described above. Assuming that the medium is rich enough so that the nutrient

is not limiting, we arrive at systems of the form















































∂

∂t
u − du∆u + div[(

α

(1 + ca)2
∇ca − η∇cr)] = u[g(u, cr) − f(u)],

∂

∂t
w = uf(u),

∂

∂t
ca − da∆ca + uca = βu2,

∂

∂t
cr − dr∆cr + γ(u + w)cr = χw2.

(3.4)

Here ca and cr represent the concentration of chemoattractant and chemorepellent respectively.

These are assumed to diffuse according to Einstein’s rule with coefficients da and dr, they are

degraded with the rates assumed to be u and γ(u + w) here, and they are secreted by the cells with

rates β and χ. Their actions are represented by Fokker-Planck terms in the equation for u, together

with the Keller-Segel model mentioned earlier.

In this combination of reaction-diffusion equations together with drift terms, the latter represent

chemoattraction/chemorepulsion and have tendency to dominate the dynamics. Their hyperbolic

character change the time scales, infer stronger aggregation effects on active cells and this yields

much more dynamical profiles (thiner structures that move faster). This can be seen in Figure

6 where we have assumed a short-range attraction on active cells (u component) and long-range

repulsion on passive cells (w component). The parameter values for this figure are

du = 0.1, da = 1., dr = 10., α = 1.5, η = 0.12, β = 0.2, γ = 5, χ = 1,
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Figure 6: Dynamics of community expansion as given by a numerical simulation of a model (3.4),

including cell population densities, chemoattractant and chemorepellent factors, but no nutrient

limitation. Left: active cells modeled by the component u(x, t). Right: total population u + w.

Compared to Figures 3 and 5, the oriented drift creates more dynamical patterns where active spots

can cross each other leading to an interwoven pattern.

f(u) = ρ(u − µ ln(u)), ρ = 0.025, µ = 2.718,

g(u, cr) = δ
β2

r
+ c2

r

β2
r

+ αrc2
r

, δ = 20, αr = 50, βr = 5.

3.3. Numerical method

The numerical solutions we have presented are based on the mixed finite element method (with

Raviart-Thomas elements of lowest degree often denoted by RT0) that has been described in [16,

17]. One of the major ingredients is a change of unknown functions to handle the several orders of

magnitude in population densities that can occur in different areas of the computational domain.

This is run on an unstructured triangular grid as shown in Figure 7 which allows the instabilities

to progress without preferred direction, in contrast to rectangular grids which have the tendency to

create mesh effects.

For numerical purposes the domain is the unit disk (or a sector of it) and the diffusion co-

efficients are small. This forces us to use fine grids (finer as the diffusion coefficients become

smaller).

The dendritic patterns are very dependent on the grid used for computing and convergence is

reached with very fine grids. For this reason the numerical convergence has only been reached for

relatively moderate values of du and of the ratio dv/du.
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Figure 7: An example of the triangular mesh with 1024 elements. The meshes used for the numer-

ical solutions are obtained by successive subdivisions with similar triangles and adjustment of the

vertices to the curved boundary. Finer grids with up to 600.000 elements have been used.

Figure 8: Example of numerical simulations of the Gray-Scott model (3.2) with the same set of

parameters as in Fig. 2–4 , except we have used the ratio dv = 20du (this makes the pattern denser

compared to the ratio 100 used previously), using different triangular meshes; from left to right:

65536 elements, 262144 elements, 589824 elements.
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4. Critical review of the correspondence between experiments

and models

Whereas the models presented here clearly produce dendrites of various shapes, a critical anal-

ysis of the experimental data reveals that many features cannot be explained by these models.

Moreover, as we will now discuss, these observations make it clear that an entirely new class of

models will be needed for a detailed description of swarming in Bacillus subtilis and probably

other bacteria.

The major point concerns the mechanism of branch formation. The models (3.1), (3.2), and

(3.3), as well as most of the models found in the literature, suppose that the proliferation of the

bacteria is limited by the availability of a chemical nutrient which satisfies a diffusion equation.

In some situations described in the literature this appears to be true, and convincing agreement

between patterns from models and experiments has been obtained [6]. This however, may be

an illusion. In all standard microbiological media, including Peptone - a so called poor medium

employed in many early swarming studies - in which indeed the growth rate of cells is slow because

the amino acids constituting the carbon source are not energy rich, many generations of growth

can nevertheless be supported before nutrients become limiting. For the swarming experiments

described in our studies (see Section 2.), certainly, nutrients do not become limiting for growth, as

shown by the continued visible increase in cell numbers for many hours after completion of the

swarming process. Similarly, swarming in Proteus mirabilis is not controlled by nutrient limitation

[4, 24].

The importance of this experimental observation stems from the fact that a gradient in nutrient

concentration is required in these models to create dendrites, since this promotes faster growth of

bacteria in the tips that have easier access to the nutrients. In the absence of nutrient limitation, a

different physical or chemical effect must pilot the outward migration of bacteria leading to branch

formation. Two different potential alternative mechanisms can be envisaged for Bacillus subtilis.

A first hypothesis is suggested by the fact that mutants with reduced surfactin production swarm

slowly or do not exhibit swarming. Moreover, the swarming process is accompanied by spatial

gradients of surfactin concentration. Since surfactin is a surfactant, concentration gradients give

rise to Marangoni forces, which have been shown to create branching patterns in the spreading of

liquid droplets [25]. Moreover, many models to explain swarming assume that the surface of the

agar is covered by a thin liquid film [6, 2]. However, the reality is more complex since a simple

experiment shows that a droplet of pure water deposited on the surface of the agar gel does not

spread over the surface, but remains sessile [1]. This obviously implies that the surface of the

agar cannot be covered by a continuous liquid film. Nevertheless, in the presence of surfactin, a

very thin film develops in the vicinity of the deposited droplet and expands slowly (the covered

distance is approximately ∼ t0.45 [1]). While the presence of this film is necessary for swarming,

presumably because this allows the movement of the bacteria, it is unlikely to provide a mechanism

for the formation of dendrites. Indeed, the thickness of the film is close to that of prewetting

films and these have never been reported to lead to the formation of dendrites on a solid liquid

interface. Furthermore, the results of [1] clearly indicate that the agar surface has a quite complex

structure and that the wetting phenomena at this surface are not well understood. Therefore, a
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better understanding of these wetting properties is needed before they can be incorporated into

new models, even at a qualitative level.

A second hypothesis, which was the basis for formulating models (3.4), is that the outward

migration of the bacteria is driven by a long-range chemorepellent. Whereas, as yet, no substance

generating such a chemotactic movement of the bacteria has been identified experimentally, the

fact that dendrites avoid each other is consistent with the existence of a chemorepellent. As was

shown in Section 3., simulations of such models can indeed produce dendritic structures. However,

the mechanisms for branching and the overall growth of dendrites are quite different in the model

and in the experiments.

In particular, the models presented here, as well as most of those in the literature, introduce

two ‘states’ of the bacteria: ‘active’ cells which diffuse and reproduce, and ‘passive’ ones that do

neither move nor reproduce. As was shown in Section 3., a characteristic feature of these models

during branch formation are ‘hot spots’ of active bacteria that are located at the tips of the branches,

whereas the main parts of the branches consist exclusively of inactive bacteria. As a consequence,

the elongation of the branches takes place by cell division in the ‘hot spots’. The experimental

observations yield a quite different picture. Although the tips of the dendrites can be described

as ‘hot spots’, characterized by a higher population density of bacteria, which in addition move

much faster than the average population, the doubling time of the bacteria under the conditions

considered here is much longer than the typical time for swarming, indicating that the driving

mechanism for the swarming is cell migration and not cell division. Moreover, although not as

highly motile, the bacteria in the ‘stems’ are by no means inactive. Some cells at least appear to

perform a random-walk type motion with a global drift towards the tips that may support tip motion

since cutting the stem with an obstacle stops the swarming at the head of the dendrite (unpublished

observations, Orsay).

These observations have major non-trivial implications for the formulation of new models,

when considering the structure of the front of the swarm community. In the models presented here,

the diffusion coefficient of the bacteria is always positive. In the ‘hot spot’, the balance between

diffusion and cell division creates a propagating front solution that remains well localized. If the

bacteria were to remain active, as experimentally observed, behind the tips, the diffusion process

would lead to a spreading of the bacteria, and the gaps between the branches would disappear;

only the transition to an inactive state, where bacteria neither move nor divide, maintains the stems

intact. This conclusion remains valid even in models where the diffusivity of the bacteria depends

on the local bacterial population density u and tends to zero when u tends to zero [20].

Consequently, a model must yield stable interfaces between the inside and the outside of the

colony, even if all the bacteria are active. This necessarily requires some effect which leads to a

‘cohesion’ of the colony. In the Keller-Segel model, a short-range chemoattractant leads to the

aggregation of the bacteria, but this model yields spot patterns, whereas stripes of active bacte-

ria are unstable. This model therefore cannot describe stable branches. A class of models which

can describe stable stationary and moving fronts is known from the physical description of phase

transitions, the simplest example being the Cahn-Hilliard equation. In such models, two stable

states (corresponding to the two thermodynamic phases in contact) are connected by a stable front

solution of well-defined width. This front is maintained by the balance between a diffusion coef-
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ficient which becomes negative in the front and terms containing higher-order spatial derivatives

to prevent the solution from developing singularities. While such models have numerous poten-

tially useful properties for the description of bacterial community expansion, it is difficult at the

present stage to find a well-justified equivalent to the free energy functional that underlies their

mathematical structure.

In summary, many fundamental aspects of the swarming process are not well reproduced by

the models available at present. Furthermore, as we have discussed above, some experimental

observations indicate that the structure of the models has to be profoundly modified. Thus, bas-

ing dendrite elongation on the exhaustion of nutrients by active cells at the swarm front, with

non moving (non growing) cells behind, although these are two useful mathematical parameters,

is untenable microbiologically, since nutrients are in excess on swarm plates and all cells should

be growing. On the other hand, recent experimental evidence from studies in B. subtilis (Hamze

et al submitted)has demonstrated the presence of distinctive cell types, swarmers and supporters,

actively moving and non-moving respectively. In addition, preliminary mathematical analysis in-

dicates that B. subtilis swarms may include cells growing at different rates. This would be a novel

concept in the field of bacterial communities, but interestingly could explain some, so far, puzzling

experimental observations. Future studies will be directed to testing this hypothesis, in addition to

other experiments clearly needed to guide further model development. In particular, a much better

understanding of the motion of a single bacterium and its interplay with the community is required.

This necessitates further experiments focused on the analysis of the trajectories of single bacteria.

In addition, a better understanding of the structure of the agar surface and its consequences for the

local motility of the bacteria is desirable. Finally, models with several different population density

fields of bacteria, reflecting distinct cell types, will certainly be required to account for the full

complexity of the swarming process.
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