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dhstract
of
Models of Slow Intergranular Yold

Growth due to Void Surface and
Grain Boundapy Self-IHffusion

by
Keith Isamu Kagawa
Brown lUniversity, 1976

Intergranular void growth a* elavated temperature is studiad here in
cases for which the shape of the void is determined by void surfaca diffu-
sion and growth occurs by diffusion from the void tip and aleng the grain
bosundary. Eguations governing the void shape are lipearized and this
linearization ghown not to lead to gross errerz in light of the large dif-
ferences in the reported values of diffusion coefficients., A similarviry
sglution for void shape is derived, and assuming growth in a particular
manner, the similarity shape is shown {¢ be determined by the chojce of
aavﬂhr* where a iz the void half-length, v is the speed of propasa-
tien of the void tip, & is the atomic veolume, and ?# is a temperature
dependent material parameter. An iterative solu‘!':ion for void shaps which
depends on aavfﬁv# is derived also.

By assuming the grain boundary flux te¢ be distributed in such a manner
that the grains separate as rigid bodies, the similarity and iterative snapes
are linked to the applied stress, and the resulting growth models comared to
the limiting cases of eguilibrium and ecrack-like growth. The comparisen indi-
cates that void growth can be represented by a iwo-part solution whare either
the linearized equilibrdium or the similarity model applies for small .313"..*;’:.1.!;gt .

H
and the crack-like modal applies for larger aav;ﬂv .



An Appendix present: an analysis of relaxation times associated with a
variety of diffusion mechanisms which are useful in determining the dominant

mechanisms of matter transport.




1_. Introduction

Structures and machine elements operated under conditions of high

tempe_:rétu& and sustaioned ioading often fail by excessive time-dependent
-' .- defmt_im or the fracture that follows , even wien the stresses involved are
far belcw the "yisld" stress Iof the material. In laboratcey specimens testad
. under these conditions (temperature significantl:.r ahu_va room temperature but

‘below the melting temperature and tensile luaﬂiné ceonsiderably below :,riéld
= stress), voids have bheen cbserved to form preferantially on grain boundaries
_ ﬁerpendic.u.lar to the tensile axis [1-3]), suggasting that grain bowmdary void
| nucleation and growth play a major role in fracture at high-tempuratm.
Sintering, the shrinking of exiating vaid& at high temperature and
.undsr sustained compressive loading, is well known in powder metallurgy and
is att:-ﬁ.hui:ed to the diffusion of atoms by fuu.ﬂ main mechaniswms: wapor
‘avaporation and condensation, self-diffusion along free surfaces, self-
diffusion along grain boundaries, and bulk diffusion through the lattice of
:the crystal. & general view is gj.ven by ﬁshh}r L{4] who has made estimares

of the contribution of each mechanism in relation to sintering in powden
compacts.

It is reasonable to expsct then, that the grmtﬁ of voids through dif-

fusicn should play a major .rnle in high-temperature fracture. Yoids ¢m the
- grain boundary can be nugleated at junctions of grains and at grain boundary-
iﬁclusion interfaces through an accumulation of vacancies. Once puclaated,
these voids can grow by diffusien from the cavity tip and along the grain
ﬁomdary, cr by bulk diffuéiun' from the-sur;r'ace of the wvoid to the grain

boundaries wntil the liganent is sufficiently reduced for fracture to oceur.




Numerous studies of the grewth of voids on a planar grain boundary per-
pendicular to the applied stress have heen made. Hull and Rimmer [2] ‘and
Speight and Harris [5] estimated the time to rupture of 2 material with an
array of spherical voids located cn a planar grain boundary and in -which
atoms were transported from the surface of the cavity along the grain inter-
face. A correction to the model was made by Weertman [6], who considered tha
appropriate boundary condition to be one of zero vacancy flux on the grain
boundary at the midpoint between woids. Vitovec E7] then estimated the strain
rate while taking into account the change In stiress acting across thq grain
boundary dus to changes in the ligament Size,

Recently, Raj and Ashby [8] have .ﬂﬂnl a study of void growth and nucle-
‘ation taking inte acoount grain'hOunﬂary'slidingf

All the above have assumad that surface diffusion is sufficiently active
to assure that the voids rerain shapes made up of spherical segments. This
condition tmy not always hold and has led Chuang and Rice {9,10] to study
the problem of a lohg, erack-Like cavity located on & flanar grain hnﬁndary-
whoge shape and rate of growth (measured aa tip velocity) are governed by the
chemical potential at the surface and grain boundary. The grains themselves
are asswed to be elastic and laotropic, The study_in&icatea that below somne
critical growth velocity an adequate model of void grewth cgn be constructed
by assuming the grain boundary Flux such that the grains separate as rigid
bodies.

The present study examines Z-dimensional models of void growth that
span the gap hetwsan the cnnstﬂnt-curvaturef_Hull*RimnEr type of void and the
long, crack-like .cavity.of thang and Rice. The material is considered
to be igsotropie and homogeneous and the continuum viewpoint will be maintained

{lengths of interest are large compared to atomic dimensions). Voids are




assumed to have been nucleated and ¢nly their grewth is studied here.

A similarcity solution in which shape and velosity are determined by tha
choice of opne paramster is cbtained aleng with an iterative sclution in which
void shape is alsoc a function of the same parameter. Poth are compared to
the constant-curvatur= and long, crack-like wvoid shapes.

For a tensils load applied perpendicular ©o the grain boundary, the
assumption of rigid grains is then shown to impose the conditions necessary
for determination of the woid shape and rate of growth through the chemical
potential and atom flux evaluated at the void tip. The models are then com=

pared to the Hull-Rimmer (H-R) type and Chuang-Rice (C-R) models of void

growth.
Rlthough only two-dimensional models are considered here, a similar anal-

ysis san be carried out for ths axisymmetric case.




2. Discussion of the Chemical Potential

Diffusicn analyses usually do not consider nonhomogeneous stress Fields
as contributing to the chemical potential for @iffusion, and thus the driving
force is often eapressed in terms of concentrations of the diffusing species.
But, for those prablems in which significant stress fields are present, it is
necessary to include fluxes dus T0O the norhomogeneous stress field and it
becones convenient to expreas the flux J as proportional to the gradient of
the chemical porential of the specias,

Conzidap a erystal at constsnt temperature T and subjected to 3 con-
stant macroscopic pressure P, - The atom flux due tao self-diffusion is given

by tha exprassion

R (2.1)

where D is a diffugion coefficient, f# iz the atomic velume, k is
Boltzmann's constant, and p  is the chemical potential defined as the work
required to reversidbly add an atom to the stressed ¢rystal (as am interstitial
or ip a vacancy), apd is referred to an unstressed reference crystal at T and
P L]
=]

Stevens, Dutton, and Puls [ll] have shown that assuming local equilibrium

between vacancies, divacancies, and interstitials allows the driving potential

¥ To be expressed as

L {2.2)
whars uo is the chemical potential of an atom on a lattice site amnd By is
is the chemical potential of a vacancy.

To determine the chemical potential for seif-diffusion, consider a very

large erystal held rigidly at a large distance from its surface and with 2




normal traction o applied at the surface. The chemical potential at the
interface is By since the surface can be considered a sink for vacancles,
Assuming the concentration of defects just below the surface to be in equi-

- libprium with the surface allows the calculaticn of p, . It can be shown

A
[12,13]) that to the first order in stress,

. 1 1 '
hoE ﬂu“ (ﬂl + pz}Tan (2,3)

whare N is the chemical potential of the reference crystal, and P,

Pl
are the radll of curvature of the surface (with the center of curvature taken
outside the crystal), and *rs iz the surface energy. .
Assuming the concentration of dafacts to be constant with respact tao
Time, oonservation of mass dietataz that within the cryatal,
¥l =0, | B ' (2.4)

or ecombining eqns. {2.1) and (2.4),

y=0. , (2.5)

If the value of u can be determined at the boundaniss of the crystal, the
evaluation of the atom fluxes in the interior reduces to finding a solution
to Laplace's equatim with the appropriate boundary conditions given by
eqn. {(2.3)

Equation {2.3) will be used extensively in the following chapters to

describe the chemical potential on the wold surface and on the grain boundary.

-




3. The Shape of a Void on a Grain Bowndary

Changes i the shape of a void leocated on a grain boundary can be accom-
plished by self-diffusicn along the surface of the cavity, by bulk diffusicn
through the lattice, and by evaporation and condensation. It is expected
that at temperatures significantly below the melting point of the material it
should be more difficult to move an atom (or a vacancy} through the lattice
than along a free surface, and thus latiice diffusion should be negligible
compared to surface diffusicon [14]. However, as the temperature approaches
the melting point, lattice diffusicn should contribute a significant part to
the total atopm Flux.

In order to know the conditicons under which surface diffusion is the
dominant mechanism in determing the shape of the void, it is useful to com-
pars the characteristic relaxation time of a free surface with periadie cur-
vature when the atom Flux is due to lattice diffusion and when it is due to
sunfaca diffucion. IF Ta » the sharacteristic time for surface diffusion,
and 1, , the charactaristic time for lattice diffusien, are such that
tsfrt £ .1 , it can be sxpested that surface fluwes will be the move sig-
nificant part of matter trangport. Characteristic wavelengths for Ts‘h.l. = .1

of some common metals at .5 T, and .8T_ are given in Table I and are

m
seen to be of the same order of magnitude as observed inter-void spacings,
leading cne to assume that lattice diffusicnn can uwsually be neglected in the
determination of vold shape. {See Appendix for & more complete discussion
and the derivation of characteristic times.)

In a similar manner, the contributicn to matter transport from surface

diffusion and from evaporation-condensation can be compared. Table I gives

the characteristic wavelenpths for TEfTv = .1 of some common metals at




5 Tm and .0 Tm . Where 15 and T, are the characteristic times for
surface diffusion and evaporation-condensation reapectively. Since the wave-
lengths are of the same order of magnitude as the ohserved inter—-void spacing,
surface diffusion can reasonably be assumed to be the dominant mechaniswm
involved in determining the shape of voids.

The proablem to he studied hera iz one of a wold whosa shape is altered
by diffusion along its surface and in which matter is remowved only from the
void tip by grain boundary ﬁiffusinn. In the hope of determining shapes
batween the extromes cflthe constant curvaturs and long, crack=like veids, a
linearized govwrning eﬁuatinn iz derived and two methods of solution are
explored. The first leads to a.similarity solution in whié¢h void shape is
detarmined by fixing a dimensionless paran;eter and the second is an iterative
schemg based on the constant curvarure, equilibrium shape.

A short derivation of the limiting cases {cqméponding to very slow and
very rapid growth) will also be given to provide a basis for comparison and
evaluation of tha two solutions for void shape.

Expresaions for cwvature and flux at the woid tip will also be darived
and will be shewn in the next section to be the link between the prablen of
determining tﬁe shape of the veid and that nf.its growth due to an applied
stresﬁ.

3.1. Derivatrion of the Linearized Governing Equation

For woid spacings much smaller than the grain diapeter, the grain can be
modelled as a very large solid held rigidly at a distance from the surface
that iz large compared to the void length. The grain boundary void can he
representad as a symmetric, cylindrical Eavitj,r on the zurface of the solid
described by yi{x,t) with the coordinate system fixed at tha center of the

-void as in Figure 3.1.




The woid tip angle ¢ Is assumed to be constant for all time and is
deteymined by the usual surface energy considerations,

¥.

cos ¥ 3-3-- . (3.1).
-1

1]

where LA and ¥

L, are the energies for 4 free surface and a grain boundary

respactively.
Assuming the cavity shape to be governed only by surface diffusion sig-

nificant to some depth & e {usually taken to be ﬂlfa} , the surface flux isg

given by
L D é ..
- 2§ du '
. atomg, - - . -
whera J_ -is the surfage flux { }, D is the surface diffusion co-

R sed =3

efficient, and 93 is an increment of length along the surface.

Ccnservation of mass requives

3] v L

5.0

FERL] {.3.3} :
where v is the normal velocity of the void surface, and, combining

gqns. (3.2} and (3.3),

32:4 ’ v, KT .
— + i ':l - {at#}
332 Dsﬁﬁ

Since the void surface is traction free, and since « = - % . eqn. (2.3)

requires ‘the chemical potential to be proportional to the curvature «-

B o= _msx . (3.5)
If the rate of change of woid height iz considered 1o be small, that is,
y' << 1 (where the prime denntes differentiation with respect to x }, the

curvature can be exprassed as




c sy, . (3.6)

and from equns. (3.4),(3.5), and (3.6}, the governing equation can be written

as
aug 1 a3y -
+ = =0 - - (3.7)
gt .93 Bt )
nsisasﬁ
where & s T {In practice, y' is not small for most metals and

this limitation is discussed later.)

- ¥oid symmetry requires that the slope and flux be 2ero at x = d
(y'(0,t} = 0 and y"(0,t) =0) . The other two boundary copditions are
obtained by specifying the void length and tip angla (y(a,t) = 0 and
y'la,t) = - v). |

3.2. Limiting Cases

The limiting cases of constant curvature and lomg, crack-like shape are
" discussed heve to Facilitate later comparison with the similarity and itera-
tive solutions. Both linearized and mm-lin_uaarizei soluticng are given and
conpared for each limiting case.

.3.2.1. Eguilibrium Void Shape

I1f surface diffusion is much more agtive than grain boundary diffusion

so that the vold shape can be assumsd to be ong of constant curvature

K = - 312 - {2.8)
the woid =hape iz given by
' . : x? ~ Z
Z — = = x5 - 3.9
Yy Zin ¥ cos b+ 1 32 sin ¢ _ i )]
The surface flux at the void tifp (Jﬁ}t' to be used later in coupling
' ip

void shape to the rigid grain model, can bhe evaluated by relating the rate of




- 10 =

change of woid volume to the flux at the tip ro gt

@y 2 3,10
=tip © [sinzin ’ . . { }

where v = -:—:- ig the tip velocity.

The case just.disﬂussed énrwesponds to very alow growth since the assump-
tian of constant curvature implies that each peint on the wvold surface is in
equilibriom with EITEI‘]F other point ncn the surface.

3.2.2. Linearized EBquilibrium Void Shape

Under the linearization, constant curvature imclies
¥" = Censtant . (3.11)
After integration and evaluation of the constants, the linsarized eQu.ilibri\.un

void shape can be shown to be given by
4

Sval, _ x |
Y - 2 2 L ] (3!12}
a
and the curvature by )
ca-¥, | (3.13)

Again, relating the rate of change of vnid volume to the flux at the tip
Eivaen

- 2¢av
SR 2y : (3.1%)

where the wolume is evaluated by integrating the void shape of eqn. (3.12).
Since the curvature and flux at the tip are of primary iwmportance in the
void growth model, the error introduced in the linearization can be estimated
by comparing the tip curvature and flux of the equilibrium and linearized
equilibrium shapes for varicus tip angles, Tigure 3.2 shows - {:}tipa vs. §

and Fig. 3.3 shows f(dslt_ fifav vs. ¢ . The linearized equilibrium shape
ip - :
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can be zean to give a reascnaple representation of the equilihrium ghape forp
smaller values of ¢ with larger error as ¥ approaches Tm/2 .

3.2.3. cChuang-Riece Crack-like Shape

Consider a long, crac.k-li_ke void =such that it can be described as a
semi-infinite cavity growing at comstant welocity v . Chuang and Rice [9]
have studisd the shape of suck a cavity without making the small angle
}.ir.;eari::atim and have shown the curvature and flux at the void tip to be

approximated well by the sxpressions

w13
{:)tip = - Y2(1 - cos ¥) L@] (3.15)
=d | 173
> .
{JE}tiP = /2(1 - cos ¥) 33%5—1' : (3.16)

This scluticn corresponds to the steady-state situation in which the void
is growing so rapidly that matter is removed caly frm the tip of the woid and
the surface far eway is not affected by the hehavior of the tip region.

J.2.%. Linearized Crack-like Shape

A linearized form of the long, crack-like void can be derived as follows.
Suppose the void tan be modelled as a semi-infinite cavity growing at con-
stant velocity v and that void shape is dependent only on the distance from

the tip,

yix,t) = (1) _ £3.17)

whera: Z = x - a and a= a¢+vt . Than,

N __ 48 :
e v T (3.18)

and the linearized governing equation becomes

d" w o
- —— =0 . 3.1%
-—Ed;u _E'd: (3.19)




The void shape is found to be

1/3
gle) = ¢[—] l - exp {{g} / 1} . {(3.20)
From egns. {3.5) and {3,209, the curvature at the void tip is
1/3
v
(ggp = - w{—é,;] . {3.21)
Elnd frm SqNS. {3-2]; (3.5}5 {aiﬁ}j E.'l:ldrfa.?ﬂ]g the fl'l.u\‘. at th'ﬂ' tip 5.5
p 1/3
{9? )

(Js}tip e (3.22)

The error introduced in linearizatrion can be estimated by examining the

, 2/3 {J ) {
tip ?] - 143
iﬁav )

va B for the C-R and linearized crack-like shapes. The linearized shape

curves in Fig. 3.% which represent plotz of

is sesn to be a good approximation to the C-R shaps and together with the
linsarized equilibriuwn shape discussed earlier, will be useful in the evalu-
ation of the similarity and iterative shapes yet to be derived.

1.3, Similarity Solution

An examination of the void profiles for the linearized equilibrium and
¢erack-like voids given by egns. {3.12) and (3.20)} indicatesz the void shape
to be independent of the physical dimensions of the void. Solutions hawving
this property are known as similarity solutions which are obtained by sub-
stituting particular dimensionless variables into a partial differential
equation, resulting in an ordinary differential equation only in terms of
these dimensionless variables, Consider then, the pair of dimensiopless

variables

z —— {3.23a)
(Et]]'ﬂ"
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L —3'7— (3.230)
{Qt}l N : .

where n is & function of £ only. Differentiation and substitution into
eqil. {3.7) gives a fourth order linear ordinary differential eguation in

nf{&) apd £ ,

4 .
d' 1, dn 1 |
df .

For a particular éhnica of £ = ———Jl——-, the location of the void tip

in dimensionless coordinates, the boundary conditions can be shown to be:
no} =0, am(@)=0 , (.} 20, and (L) ==,

A pover saries solution of thae form

n(g) = J A" | | (3.25)

n=0
can be obtained where the coefficients are given by

n-1
Aney ™ An B{n+i){n+2)(n+I3)(n+s) * (3.28)

Because of the symmetry conditions (n'{0) = 0 and n" (0} = 0)), the

coefficients of the odd power terms must be zero and n can be shown te be

U S S S
2 1 .6 1 10 '
+¢32{E 'rmﬁ +m£ L e {3.27)

Hh&ﬁ.‘: Bo and B.2 are constants evaluated by fixing a {n and sclving sub-
ject to the tip conditicns {n(EQ} = 0 an& n‘({ﬂ? = - P},

The void shape given in eqn. (3.27) is expressed in dimensionless quan-
tities and hence is not dependent on the actual dimensions of the void but is

determined EI}T the choice of o *




If during growth of the void, the shape changes so that £, ©an be
taken to be a constant with respect to timez, a relation for tip velocity can

b2 c¢btained by differentiating ean. (3.23a) to get

T ERPL (3.28)

where ¥ is the void tip velocity, v = da/dt , and v* = @ = TBDSGEHET .
Thus, the shape can be related to the dimensionless group (aafﬂ}{?fv*} and
allows the comparison of the similarity solution with the linsarized constant-
curvature and long, crack-like limiting cases described earlier,

For very small choices of Eo s+ @ good approximaticn to n c¢&an be made
by neglecting all but the first two terms of eqn. (3,27), reducing the
expression for n  to the sam= form as eqn. (3.12). Thus, the similarity
solution approaches that of the linearized squilibrium void when (aafﬂ]{vaﬁ}
is chosen to be very small. The shapes predicted by the sinmilarity solution
for £, =1,2 and 3 are compared to the linearized eguilibrium shape in
Fig. 3.5.

For somewhat larper chojces of Ea » tha power sapies truncated at 4

terms gives an adequate representation of the void shape and the soluticn

becomes
_ 1 4 2 1l o)
n—h¢{1-9—55}+h2{5 +l—uﬁﬁ} (3.29a)
whata
1 M 1l I r B
A, = *Eu{l + IEE&‘EG}I(E * 5 5. " g9i20 Eu} {3.29h)
and
, 1 u a4 1 .8

It will be ghown in a later sectian that the curvature and flux at the

void tip ars needed to couple the szhape to the stresz applied to the ripid
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grain model. The curvature of the similarity solution can be obtainad by
taking derivatives of eqn. (3.27} with respect to £ and the curvature at

the void tip is

=2 R S
{:}tip = a [BG{ 8 tﬂ 394{} ED LI !}
1l 4 i B
+ 52{2 + E EQ + ﬁuﬁu EU‘ * . . 1}] - (343'11}

From eqns. (3.2), 2.5), {3.5) and (3.27), the flux at the void tip is

2
v
o 1 1 )
idsltiPt—ﬂ:?"[Bﬂ-{ -EEG-WEU* - - )
1l .3 1 7
+ BE(IE-EU * Soew ot v - X I (3.31)

For larpe choices of Eﬂ . Dumerical erpor asgociated with the evaluarion
of a sufficisnt number of terms to assure converganss of the powsr series
necessitates a different scheme for the solutisn of 2qn. (3.24). The ordipavy
differential equation and itz assogiated boundary conditions make up a two
point boundary value problem amenable to solution by methods known as oo paint
shooting techniques [15]. Although more costly to evaluate thar the series

solution, the shocting technigque is much more accurate for large choices of

Eo v

If the similarity sclution is a reascnable representation of wvoid shape,
it should approach the shape of the Linearized, srack-like cavity given In
eqn. (3.20)} as &, is chosen to be very large (fast growth}. Piguras 3,5a
and 3.6b compare the shapes predicted by the similarity selution evaluated
using a two point shooting technique to those of the linearized, cracx-like
cavity having the corresponding tip velocities given by egn. {3.28). The

shapes are not alike since chicosing a £, inposes an acceleration and higher
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order time derivatives as well as a velocity. An examination of dzafdtz
reveals a deceleration of tha void tip, and it is both the deceleration and
tha hipgh velocity associated with large choices ef Eu that allow matter to
ba removed from the void tip to form a bulge.

However , it should he noted that the tip profiles of the similarity and
the linearized, ¢rack-like shapes are vary mush alike and that it iz tha tip

parameters {:}tip and (I} that will be of importance in the void

tip
growth models discussed later.

3.4, Iterative Sgolution

In the similarity solution the assumption that the rate of change of
dimensjonless void length, dEDfdt, doss not significantly contribute to the
void tip velocity is made in order teo incorporate veloccity in the determina-
tion of woid shap=. A different approach can be adopted in which the
velocity enters explicitly in the expression of woild shape.

The governing partial differential equation as seen earlier is

L
2y _ 13 (3.32)
axn <F ot
Assume that y c¢an be represented by a series of functions,
Yy, ty vyt {3.33)

where y_  is the linearized constantcurvature shape of eqn. €3.12) and Y

satisfies
u
a}rn‘rlz-...];iyﬂ {3 3:;}
ixu g t

for n=0,1,2,...
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Since the boundary condition for slope at the void tip {y'(a,t) = - §)

is satisfied by Y, the h?undary conditicng to be zatisfied by the other
y are: ]rt;{ﬂ,t} =0 , y;;' {o,t) = ¢, }rn(a,t]' =40 , and y'nfa,t] =0 .

.

The First three such functions are:

~ 2
ya I
Y, * 5 1 {a] ; {5.35)
; 1
~yaf 1 o.x6& 1 x4 11.x2 17] fav
¥; 572 360 a0 "7 2’ *1ze'a’ " 30 m}J g (3.35)
and
10 8 B
da [ 1% 45 x8 w2 x
¥, ® 7 |T8Thess 20 * Telewoo ‘a’ " Telwsoo ‘a’
3870 x ¥ soms  x,2 2785 | a’ a%a
1814400 “a 1814800 "a 1814%00] 2 2
@ dr
‘a 2z %10 az¢  .x,°  1u280 ,x,°
Z TE144G0 “a 1814400 'a 1814400 ‘a
2 I N2
. 25778 & + 12hL24 awv . (3.37)
TB14H00 'a 1626600) | %

As mentioned inm the previous saction, a disadvantage of the similarity
golution iz that it imposes a deceleration of the void tip. It is useful,
than, to look at the iterative solution for constant velocity. The Yo for
ecnatant v can be straightforwardly obtained by computer and are shown in
Fig. 3.7 for aav!ﬂv* =% and 1, 2, 3, 4%, and 5 iterations. The shapes
are seen to oscillate and &n examination of the ¥, Susgesis that for a suf-
ficient number of iterations, the solution y oscillates infianitely for any

S
value of aav!ﬂv chosen.

It now becomes necessary to determine under what consitions a reasonable
estimate of void shaps is given by the iterative sclution. Since the iteva-

1
tiva shape iz dependent on the choice of aa?fﬂ? - (il?fﬁ??}f-,dzafdtzl , ete. .
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which are the same dimensionlass groups found in the similarity solution,
one can compare the two., Figure 3,8 shows the similarity solution for
aavfﬂv* = E:}u = 5, 10, and 20 and the two iteration solution, y = Yo ¥t Y,
with the appropriate dimensionless velocity and acceleration groups. Good
agreement between the two solutions gives some basis for using a two term
iterative solution 1o represent a void growing at constant velocity for
aavjnvﬁ #« 5 . These two iteration, constant velocity veid shapas are shown
in Fig. 3.9 for a“v/@v& = 1, 3, 5, and 10.

The curvature and surface flux necessary for coupling the void shepe and
the rigid prain model of the next ssction can be obtained from eqns. (3.2),
{3.5), (3.6), (3,35), (3.36)}, and (3,37). Evaluatrion of the resulting ex-

pressions at the void tip for the twe iteration solution gives

2
1 {23} as9 {33-;]

). =-¥1 .1

tip a 5 ﬂv*J T 14175 ﬂv*J
7 21
[ a d%a) (3.38)
4175 L_gz dt?JJ
ang )
3 3 7 .2
v (2 [a'y b |a'vy o a’ d%a}
3y 2¥Z|fqay L ojavi [ . (3.39)
S'tip  ga? |3 !'hr] 63 [ﬂv_ IS 157 a0

3.5. Discussion

A viable model of void shape should predict growth in an eguilibrium
mode for velocities considered in szome =enie to be small and growth corre-
sponding to the C-R model for larger velocities,

The linearized equilibrium, similarity, iterative, and linearized crack-
like models of void shape are compared by plotting - {:}tip a/p vs. an“q"r.l',"'ﬂwﬁ

"
in Fig. 3.10 and (Js} . ﬂa2!¢£§ vs, aavfﬂv in Fig. 3.11. OCumves For the
tip
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constant velocity, two iteration model (egns. (3.39) and (3.39), negl=cting
ascaleration terms) are shown, as well as curves for the similarity solution
{equns. {(3.30) and {3.31)) usinz the first 20 terms in the series solutrien
for vy .

The curves for the similarity solution are in pood agreement with thase
of the linearized equilibrium medel For small choicas of aavfﬁv* and with
the ourves for the linearized crack-like model at larger values, indicating
a smooth transition from the equilibrium mode to the steady state mode of
void growth at approximately aavfmr* z 5 .

The curves for the two iteration modsl follow thoma for the linearizsd
equilibprium shape closely but do not approach the behavior of the linearized
crack-like model, leading one to expect that the iteration model iz only usze-
ful in a limited range, a‘w/®v £5 .

As noted previcusly, both the similarity and iterative approaches to volid
shape are based on the asswption that y' << 1 (small angle). Table II
shows the tip angles of commen metals to range from 1.2 to 1.U5 and thus the
small angle assumption cannot be justified a pricri. However, as demonstrated
by the comparison of tip curvature and flux for the linearized and non-
linearized limiting cases, the small angle assumption does not lead to pgross
errors, and since the experimentally determined valuss of DE are aften not
even in order of magnitude agreement [16], it seems reasonzble to make the
small angle assumption in order to obtain a simple model of void shap=s.

void shape has been shown to be determined by the choice of asw'ﬂw*
dnd in the next chapter the applied stress will be coupled to Tthe shape
through the curvature and surface flux evaluated at the vwoid tip. It should
be noted, however, that the shape predicted by the similarity scolurion assumss

a particular manner of growtn corresponding fTo Eo constant.
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4, Rigid Grajn Models of Void Growth

The growth of & vwoid on a grain boundary is accomplished by removing

ratter from the veid surface and transporting it to the grain boundary by
diffusion through the grain or by diffusion from the void tip along the g;r-au'.;-:
boundary. To determine the conditionz under which one of the above iz the
dpminant mechanism of matter transport, a comparison of characteristic times
gimilar to that of the previous chapter can be made whers the characteristisz
relaxation times are now for a periodic. thickening at the grain interfacs.
Characteristic wavelengths for ":u‘“"z * 1 of sl.:me.cnmun metals at .5 T“_l
and .98 i‘m » where Ty and T, are the characteristic times due o grain
boundary and lattice diffusion respectively, are given in Table I and are

of the same order of magnitude as the observed void spacing. For this reason,
lattice diffusion is neglected in the models considered here and only the
flux along the grain interface is taken to ageount For the increase in volume
of the void and the local graiq boundary thickeming & . (See Appendix for
the derivation of relaxation times and a more complete discussion.)

As mentioned earlier {10], for woid tip velocities lesz than Vop

where
3
Zer o g D"ﬁ“] 2!/’ f C4.1)
¥~ 3 7 *
v I]h hJ ‘r-s(l-u }J

{E is Youngz's modulus, v is Poisson's ratio, n is the grain boundary

coefficient, and &,  is the depth through which grain boundapy diffusion is

L
considered to act), a modal of void prowth can be constructad by assuming the
graiops to separate as rigid bodies, i.e., the grain boundary thickening &

is uniform along the grain Iinterface.
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In this section, the relation between applied stress and veid growth for
such a model wili be explored. The applied stress will be found to determine
the woid shape through the flux and curvature of the void tip, The similarity
and itepative shapes obtained earlier will be coupled to the rigid grain madel
and ccapared to the models utilizing the linearized equilibrium and linearized
cragk-1ike void shapas.

k.1, The Rigid Grain Assumption

In crder to model the growth of voids on a grain boundary perpendiculas
te an applied strass, consider a very large cerystal with a pericdic array of
symmetric, cylindrical voids with center to cemter spacing of 2b and locarad
oh a planar grain boundary as shown in Fig. 4.1. A uniform stress o_ is
applied at a distance larpe compared to 2b.

Conservation of mass requires

CLIg (4.2}

EJh .
R t

3

where 4§ is the grain boundary thickening and Jh ig the grain boundary

flux given by

5
; = bbow

b -~ THRT ¥k ° {4.3)

On the grain boundary, the significant part of the chemical potential
is due to the normal stress transmitted across the grain interface, G
Equations (2.3}, 4.2), (4.3}, and the fact that the rigid grain assumption

implies that 4 is not a function of x give

dzﬂ

g = Constant . (. 4)
(=11

At the point midway between two voids, symmetry requires the flux te ba

zepo, or from eqns, (2.3) and (u.3),
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' )
_ﬂn{h -a) =0 {4.5)

where the prima denotes diffevantiation with respect to X . The other two
boundary conditions necessary for a solution of egn. (4.4} are given by 9,
and @’ , the value of the stress and its derivative, respectively, evaluated -
at the veoid tip.

The resulting expression for 9, is

2 E
- bfe o 1 X
-:rn_{x} = u?_+ anfx 3 -];:-;} {h.5)
and the applied stress is given by
N 3 . : .
o= Fr o {(x}dx _ (4.7}
’ v}
b=a b-3a = ,. -
.E-—h—-{ﬂu +—-:'i-u‘0] - . . (“-E}

4.2, Void Growth Models

In oprder to obtain a complete model of void growth, the void profiles
obtained earlier must be .mupled. to the rigid grain model of the previous
gaction through the values of o, and u; . From eqn. (2.3), equating the
chemical potential of the surface and of the grain boundary at the void tip
gives

¢, =" Ts('c)_tip : : (4.9)
where ® is the m.:“r-r.atu.:c-e ;:rf- the void.

Also, at the veid tip, the swface fluxes must bz e2qual to the grain

boundary EFlux, ﬁr from eqns. {2.3) and (&.3)

. '5'
24y = bB g (4.10)
3'¢ip kT o

wheno J5 is the sirface fiux.
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The expressions for (k) _,_ and (J )} for the various madels of
tip B rip
vold shape cen now be used throwgh eqns. (4.8), (4.9), and (4,10} to couplae
the shape to the applied stress. For the linearized equilibrius shaze,

eqns,. (3.13Y, (3,14}, and (4.8-4.10} give

04 3
b-a |1 _ 4 ba ["5’s]{a"v]

From eqns. {3.21), (3.22), and (4.8-4.10), the expression for the linear-

ized erack-~like shape is

173 273
v = ¥y b-a 1 Ea_v d +£h_ail‘D5'55} a'av / (4.12)
=" Te b |a |, " 3 zlnbabj o "
() . and (J_) for the similarity sclution are given by eqns.

tip s tip
#
{3.31) and (3.232), respectivaly, but for a limited range of advinv” & four

term solution for n may be used and froo egns. {3.28), (3,29a-c}, (3.30),

(3.31), and (4.3-%.10),

|

) - ()

3,2
1 {a v} 1 [av]
2+ . {a,.13)
/ ‘ 10 mﬁJ 4320 W*J }

The two iteration, tonstant velocity expression from eqns, (2.38},

(3.32), and (%.8-4,10} is




2
o = ¢y E_-_g_{i L+ a’v) _ 359 a%v)
o B b Ja 5 *1 143175 n?ﬁJ
D6 5 3 3,2
bra 5 g 2 la'r 4 la“v
+ —= = Iz |75 - == . S 1Ty
a’ [“bala # (ﬂv ] 1% {ﬂv } |

4.3, IMsquseion

From a practical viewpoint, it is uaufui to know the void growth rate as
a function of the .applied stress, geometric parameters, and nateri.a.fl..p‘.ml.;mr-'
ties, but because of the nature of the similarity and iterative models of
vold shape an e:ﬁpmaim of growth rate valid for all veln&iﬁea is aiffi-
cult to obtain. However, eqns. (4.13) and {4.14), the expressions for a_
of the similarity model using only the first four terms of tha seriss solu-
tion for void shape and of the two itmtiuﬁ model réspectiveljr. can ‘be
expected to be valid over a limited range of aavfﬂv* and are easily inverted
to obtain hav!ﬂ't* ns a function of Dsﬁsfl}bﬁh , &/b , and u_hf #‘rs .

The lineariz_ed equilibrium, linearized crack-like, 4 term gimilarity, and
constant velocity two iteration models are compared in Fig. %.2 where .
l:~:i'.aluur'ﬂ‘w.vﬁr iz pletted against a/b for Dsﬁsm]:;ﬁb = 10 and .:r_hfws =10 .

The similarity and 2 iteration solutions agree with the linearized equilibrium
model for small a/b {corresponding to small aavfnv*} and predict a cpitical
volid size - |

-1

. : ﬂlqh .
(j:_’}ﬂ'r = '[l + "Ts {“.15)

belew which void growth does not occur by diffusive mechanisms. Euth solu-

tions zlse approach the behaviar of the lineapized crack-like solution for

. i .
larger a/b {corresponding to larger aav!ﬂv } with the similarity solution
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giving a smoother transition from equiiibrium to crack-like growth, appreach-
ing the curve fu;-' the crack-like model at aavfﬂv*:: 5.

| As dizecussed in a previous section, the similarity void shape used here
has accelepation and higher order terms impﬁsed_uh&n the velocity is fixed,
Howaver, due to. the resemblance of the general bshavior of‘tﬁa zimilarity and
eonstant velseity, 2 iteration models of veid growth for aaﬁfnv* =5 ,.
the gimilarity expragsion can be used with some confidence over the Limited
range.,

An adequate representation of void growth can be.mﬂde.hy using the
' Linearized'equilibriuﬁ'of the similarity model for aavjnv* A5 apd the
cvack-dike model for aSv/fv.2 5 . The linearized equilibrium model has
the advantape of a simple expression for velocity in terms of appli=d stress,
gecmetric paramatérs, and material properties, while -the similarity moﬁel |
gives a smoother transition te the crack-=like mode of grﬁwth.

Tﬁe behavicr of a two part model based on. the similarity and crack-like
 models is shown in Flgs. 4.3 and .4, where bov/v® vs. a/b is plotted fom
various values of D § /B¢, and a biyr_ . ﬁﬁ the applied stress is in-
creased, the transition from equilibrium to crack-like growth should cocur
at lower valuas of a/b and is borne out by the curves in Fig. 4.3 vhepre
D;ﬁsfnhﬁh is held constant and u_h!ws ia varied. Also, as Dsﬁsfnnﬁb
becomes larger the void is espected to remain in an equilibrium growth mode
for larger welocities and the tranzition reginq is eaxpected to ocour at largsr
values of a/b . This trand is shown in Fig. 4.4 where G‘PI¢T= iz held con-
stant as BEEEID 5, is varied. Thus, the 2 part model exhibits the behavior

B'b
necessary for an adequate mede) of void grewth.
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5., Conclusion

Two dimensional models of pgrain boundary void growth have been discussed.
Void shape has been assumed to be determined by surface diffusion and tha
change of vold velume has beah assumed to be accomplished by diffusisa from
the void tip and along the grain boundary. Equations governing the void
ahape have been linearized and the linearization shown not to be a particu-
lariy restrictive assumption. Agszuming a particular mode of growth, a
similarity solution has been obtained in which the woid shape iz determined
by the ¢choice of aa?fﬂv# . An iterative solution whose shape iz dependsnt
on aavfﬂvﬁ has been derivad also.

Azsuming rigid grains, the similarity and iterative solutions have bsen
coupied to the applied stress through the curvature and surface flux at the
void tip. Whils the determination of the stress necessary for void grouwth at
a given welocity can be chtained straightforwardly, the inverse problem of
determining void growth when the applied stress iz known is not as easily
solved and, finally, void growth has hesn dascribed by a twe part seclution in
which either the linearized equilibrium or an approximation to the similapity
solution is used for aavfﬂvﬂlﬁ 5, and the crack-like model is used for
aavfﬂv*z 5 . The two part model has been shown to exhibit the behavior
expected of a reasonable model of void growth: a minimum void size for dif-
fugive growth as well as growth in an equilibrium mode at low velocities
and growth in a steady-state, crack-like mode at larger velocities,

It should be noted that under conditions of large applied stress and low
Dﬂﬁsfﬂhdh , estimates of time té ruprture based on this model may differ from
those obrained using Hull-Rimmer type models and thase differences should be

explored as well 45 void nucleation and the eventual rcupture of the material

due to plastie floew in the liganments.
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Appendix: Characteristic Relaxation Times

In order to determine the conditions under which self-diffusion along
the surface of the veid and along the grain boundary are the only significant
mechanisms of matter transport, it is useful to compare the characteristic
relaxation time for each mode of transport dus to 2 periodic disturbance.
Hullins [17} has derivad characteristic timex for a periodic curvature on a
fres supface in the two dimensional case and the extension to threa dimensions
is given here. The characteristic times forr a pericdic grain boundary thick=
ening, modellaed by a periecdic normal stress on a free surface, are 2ls0
derived here.

A.l. The Frea Surface

Conzider a semi-infinite, isotropic solid ocoupying the half space

z >w , where w 1is a Free surface given by

wix,y,t) = a{t) exp [J'. ET“j exp [i g_;ﬂ . (Al)
A{t} 1is taken to be much smaller than both £ and L .
From eqn. §2.3}, the chemical potential on a free surface is proper-

tional to the curvature and is

(n) =, - Sy N (A2)

surface

- [ ]

A.1.1., ERelaxation Due to Surface Self-Diffusion

where

If only surface diffusion iIs considered active, and then only through

lf3]’

some d2pth from the surfacge ﬁs (usually taken to be 2 conservation of

m135 requires
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b
ety * AN (au)
x ay & at

where {Jsix and (Js}y are surface fluxes in the x and y dirsctions

respectively., Substitution of eqn. (3.2) and eqn. (Al) gives

' ﬂrs Dsﬁs cu
A {t) + T A(t) = 0, (AD)

and the relazation time is

't [[%1]"‘ . & *]'2 : (48)

A.1.2. Relaxation ue to Lattice Self-Diffuzion

For the case in which only lattice diffusion is active, an estimate of
The relaxation time can be made by assuming the concentration of defects to
be time independent. Then, continuity requires that the chemical potential
satisfy Laplace's equation.

It is peasonable to expect that the magnitude of the atom flux tends
to zero at large distances from the surface, leading to the condition that
M is equal to a constant as z -+ o ., The expression for u  at the surface
is given by egqn. {A2) and the determinarion of the atom flux throughout the
solid reduces to the problem of finding the solution to Laplace's equation,

given the boundary conditions outlined above, The axpraszion for u is
b= - oy et exp [-ez) wix,y.t) . (A7)

Conservation of mass at the surface requires

'

1l Gw
T3 [J)a (a8)

where (J}z is the flux in the =z direction, given by

b
= . L oy
(N, =+ gx

T 3z (A2}
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Substitution of eqns. (Al), (A7}, and (A9) intc eqn. (A8} results in an

ordinary diffarential equation in A{t} with a characteristic time

| ~3/2
Y, = %; [[?T“}E . [ET"]E] i (a10)

A.1l.3. Relaxation Due to Evaporation-Condensation

Censider the surfaze ta be in equilibrium with its own vapor at prassure
P . Assuming the vapor to be a perfect gas, P can be found by equating the
chemical potantial of the solid and of the vapor at the surface, with both
referred to a common reference crystal, apd is given by '
y &
_L 5
in [Pth KT - {an)

where Fn is the vapor presswre over a flat reference <rystal and « is

the curvature of the surface upder consideration.
Frow kinetie theony [18] the flux from the surface can be approximated

by
AFE

@-e = —i75 ) _ (412)

(2mmkT) 3 2

whera BG is the rate of evaporation from a flat surface, 4 =P -F_ ,
and m iz the mass of a molesule of the materizl.

A mass halance at the surface requires

AP 1 3w
——73 = . {A13)
{2rmkT) 2 "t

Fer AP 2mall,

_;—Pz . (Al4)
o

and substituting egn. (ALY and (Al4) Into (Al3) resulrs in a first order,
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linear ordinary differentiai equation in A(t) with a charactaristic time

172, . 3/2 a1
_ 2y ey [g“ 2 a3
T, = ik RPN £2.0 ) {A15)
L ] Pnﬂg"f R‘.} { LJ J

A.i. Tha Grain Boundary

Consider a local grain boundary thickening & and its associated normal
stress distribution on thelgrain interface a .prﬁducad by placing matter
.$elactively on the grain boundary.

The graje interface can be mndg;led as the surface ﬁf a semi-iﬁfinita

solid ocoupying z = ¢ - If the solid is isotrepic apd linsar elastic and

the stresses at the swfacs are of the form

= - . 2WK . 2
¢ =@ = B{t) exp [1. _I.J =xp [:. —::L:I {Alsa)
and '
uyz = -:sxz'= + I _ (216b)

the linear elasticity solution [19] gives a grain boundary thickening

_ o 201-w)
& = we T | _ (A1l7)
whera /
<1 /2
R 2xy 2 2n 2
o= [T} + f-il—)_] _ . B (415)
and l%3-5(1:} is much smaller than 1 . '

From eqns. {2.3) and (Al6a), the expression for chemical potential on

tha surface iz

surface = Yo ﬂun ) (a19)

{u}

A.2.1, Relaxation Due to Grain Boundary Self-Diffusion

If only grain boundary diffusion is assumed to be active, conservation

of mass at the interfacs requires
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aIJh]x a(J }
+ :
Br

‘1 96 _ . '
HT-D. _[AEG}

) 0x
Substitution of egns. {%.3), (Alba), {ﬁl?i,;and (A19) inte (AZ0) results in

a first arder linear ordinary differential equation in B{t) with charactar-

= I 2 . 2-3‘."‘2 .
v, z;éu} XT [[2,3 +(’T']] . a1

i#tic tina_

Dbﬁ"ﬂ

A.2,2, Relaxation Due to Lattice Self-Diffusion

Now, assuze bulk diffusicn and neglect diffusion adleng the grain boundary.
If the concentration of defects is time irdepandsnt, conservation of mass re- -
quires that the chemical potential sﬁtisfy lLaplace's eguation in the material.
Again, it iz re&sunasle t; expact thaf the ﬁagnitude of the flux tends t&
zero at distances from the grain boundary that are large compared to L and
L . The expression for u'-at the boundary intaffana is given by eqns. (AlS)
and {A)9) and the dﬂtermin#tinn nf_the_flux thruughout the solid then reduces
to the ﬁulutinh af.Léplécefs Equatiﬁn subject to the apprﬁpriate hounrdary cﬁn-
ditions. The expression for n is. '

I ﬂnn exp [- cz] . | (A22)

Conservation of mass at the interface gives

1 36 ' : |
sgirt (), . (A23)

Substitution of eqns. (4.3), (ﬂlﬁa), (A17}, and (A19) into (A23) results in
a first order linear ordinary differéntial equation in B{t) with character-

istic relaxation time

- iw kT o 2 ﬂ o '
B X [1] (+ . | {A2u)
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A.3, Remarks )

An estimate of the contpribution to thé tatal atom flux on a fres surféce
due to surface self-diffusion, lattice diffusion, and evapnratinn-énndansatiun
can be made by sxamining the ratios of the characteristic_ralaxation times for
each mechaniazm. In the twn-c_l'imensionnl_case, taking & or L tending to

infinity, eqns. (A6) and (A1Q) g;vﬁ

L3 D .
5 _ L _
T "7 I {AZ25)
£ 5 5 .
and eqné._(&ﬁl and (Al5) give
T P 2 n
5 _ O A
T 77 5 (A28)

v Dsﬁs{ kT )

If ré!tl << 1 and Tsff? << 1 for a given L , surface diffusion can
bha expacted to be the dominant mechanism of matter transport for free surface
digturbances of wavelength less than 4 .

In a similar mamner, a ﬁﬁmparisnn of grain boundary diffusion and Iatfice
diffusion can be made. For the two dimensional case, from eqns. {(421) and
(A24), |

b LA2T)

L=D_£
T BS

and, if tbftg << ] for a given X , grain boundary diffusion can be expacted

a |

to be dominant for matter transport near grain boundary disturbances of wave-
le=ngth less than A .

The diffusion coefficients are found to obey an empirical law of the

form ' .2
D= DG exp [ RT] {A23)

" where b, is a constant known as the frequency factor, R is the universal

gas constant, 0 is an acrivation energy, and T is the absolute temperature.
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Representative valuez of the diffusion cocefficients for some metals
are given ino Table I as well as values for Amax s the characteristic wave-
length for the ratios eof characteristic time equal to .1, at .3 Tm and .8 Tm'
In practice, there are large discrepancies in the reported values of the
coefficients and activation energies for surface and grain boundary diffusicn
and are usually attributed to diffieulries in measuremant of appropriate

parameters and imparity effects,




Table I. Material propertias and hmax " for tsf‘l.'l = .1, tsf'r .1,
and Thhﬂ.z .1 at T = .5 Tm and T = .8 TrIII
—— w'—-ﬂ-m_'—"_'T —a— =
- Cu . Ag 7n afa - tFe N1
Tm{K}{l} 1356 1234 60k 1809 1809 1723
ftn) x 102909 118 171 1.52 1,18 1.18 1.10
Atomic weight (kgfkmnl}{l} 63,54 107,87 65.37 55. 85 55,85 S8.71
ﬂsq(mzfsen}tz} 2.0 .25 9.4 x 2070 10, .4 4.2 = 1072
4 {kcal/mol) 59,0 41,6 6.17 '55.6 © K8.0 - 47.7
. - ! - . - - =4
Dboimzfsec}{l]{a] Lz2x10° | z2x20° | 25 x207" | gax 10"t [1.75 % 20
0, (keal/mol) 21.5 .3 4o, o | 39.0 28,2
ﬁzo{mgjsec}{l] 3.3 x 1070 | 4.9 x 31070 3.55-:_1n'5 e x w0t | 1ax10? [2.59 x 107t
Q {kealimol) 4.3 Wi 5 23.0 57.2. B4. 5 |
At T = .57
m
D& /D& B.1 % 10" | 2.8 102 3.1 2.0 1.2 x 107°
[ Db b i -
Pﬁ(Pa){l] 3,8 x 1070 5,3 x 10°° | 2.6 x 1073 1077 1077 7.5 x 1077
xﬁ&?{pmjtb} 5,1 5.8 1,9 » 10° 16. 1.8% 10" |} 7.7 x 10°
{for t /v, = .1
s’ 2 _ _
A {um) 1.0 T 5.8 2,2 x 10° 2.8 x 10° 26,
“ma K
{for 1 /v = .1}
. a 3 &
A {pm) 5.5 = 10 30. 3.9 4,3 = 10 3,2 = 10
{ for Thht‘. .1}

_E'E_



Table I. ({Continued}
Cu - Ag Zn ube yFa Mi
st T = .ET
m
Dsﬁsfﬂhﬁh .38 L 80. 17. Bg.5 » 10.
Po(Pa]{l} 6.2 x 1072 2.9 % 1072 4,1 2.3 % 1077 2.3 % 10 8.5 x 10
(h) 2
lmax{um} 5.3 31-5 1.9 13. ?-ﬁ » 10 EE-.
{ for 1$Itl = ,1) .
lmaxtum} ) 8,4 2.7 -9 1.7 ™ lﬂa 1.1l = lﬂ3 £l
{for TEfTv = .1
A {um) 4.8 26 8.2 % 1072 21. 35,8 % 10°
max
{for rhfrl s .1)

Referepces: (1)
{2)

(3)

Smithells, C. J., "Metals Reference Book," 4th ed., Butterworth {1967}.

Heumann, G.,
Center (1972).

*Handhook of Materials Seience,” ed. C. T. lynch, CRC Press (1974},

-4
{a) Valueg for Gh z 5 x 10  um.,

1/3

(b} Calculated assuming &, = 0 .

and Neumann, G. M., "Surface Self=Diffusion of Hetals," Diffusion Information

-.-ge...




Table II.

and ¢ for scme métals.

1= 37 -

Valuas of TE

11'3:

¥

Material ?g[ﬁﬁl : ?SIEE%} b= cos T ‘.ﬁi

| =i m <3
Az 790 1140 1.22
Au 364 © 1488 1,45
cu  6US 1725 1.38
Fe 78 1950 1.7
nL 690 1725 1.97
Pt 1000 3000 1,40

Data fromP, J. Eirth and J. Lothe, "Theory of Dis~
locations," McGraw-Hill (1968).
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Figure Captions

Coordinate system for void shape.

Comparison of -(n}tipa for equilibrium and linearized equilibrium

void shapes for various tip angles.

Comparison of {Js}tipﬂfav for equilibrium and linearized equilibrium

woid shapez for various tip angles.

1/3
Comparison of —ix}tipiiavalfa or (Js)tipnfiﬁﬁvg} / for the Chuang-

Rice and linearized crack-like wveoid ghapes for warious tip anglas.
Void shapes predicted by the similarity solwtion for Eo = 1,2, and 3.

Comparison of void shapes predicted by the similarity and linearized
crack-like =zolutions for (a) Eﬂ = 8 and (b) Eﬂ = 16 .

VYoid shapes predicted by the iterative solution for constant velocity,
#
¥, whare (aavfﬂv y=5 .

Comparison of the two iteration and gimilarity void shapes for
(a’ofuv’) = S, 10, and 20.

Void shapes predicted by the two iteration solution for constant
velocity v where {aavfﬂvr] =1, 3, 5, and 10.

*
Plots of (“}tip {a/¥) vs. [aavfnv ) for the linearized equilibrium,
similarity, constant velocity two iteration, and lincarized crack-like
veid shapes,
&
Plots of {Js}tip [ﬁazf¢59} ¥8. faavfﬂv } for the linearized equilib-
rium, similarity, constant velocity two iteration, and linearized

crack-like void shapes.
Coordinate system for the rigid prain modei.

Void growth models using the linearized equilibrium, 4 term =imilarity,

constant veldcity two iteration, and linearized erack-~like void shapes
f, = I = -

For (D 6_/D & ) = 10 and (uthst} 10




- 3] =

b.3. Void growth using a 2 part selutien (4 tern similarity and linearized
erack-like) for {Dsﬁsfqhﬁb] = 10 and {ﬁubfwyal = {a) l5 (h]*lﬂ,
and {c) 20 . The dashzd line indicates transition at {(a v/av) = 5 .

,4, Void growth using a 2 part sclution (4 term similarity and linearized
crack-like) For (o _ /vy ) = 10 and (D4 /D 6 ) = {(a) 2, (b) 10,
=h" " g" - 553 bbb A &
and {c¢) 200 . The dashed line indigates transition at (a v/iv )} = 5 ,
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