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Abstract 

of 

Models of Slow Intergranular Void 
Growth due to Void Surface and 
Grain Boundary Self-Diffusion 

by 

Keith Isamu Kagawa 
Brown University, 1976 

Intergranular void growth at elevated temperature is studied here in 

cases for which the shape of the void is determined by void surface diffu-

sion and growth occurs by diffusion from the void tip and along the grain 

boundary. Equations governing the void shape are linearized and this 

linearization shown not to lead to gross errors in light of the large dif-

ferences in the reported values of diffusion coefficients. A similarity 

solution for void shape is derived, and assuming growth in a particular 

manner, the similarity shape is shown to be determined by the choice of 

a v/Qv where a is the void half-length, v is the speed of propaga-

tion of the void tip, ft is the atomic volume, and v is a temperature 

dependent material parameter. An iterative solution for void shape which 

3 * 

depends on a v/ftv i s derived a l so . 

By assuming the grain boundary flux t o be d i s t r ibu ted in such a manner 

tha t the grains separate as r i g i d bodies , the s imi l a r i ty and i t e r a t i v e snapes 

are linked t o the applied s t r e s s , and the r e su l t i ng growth models compared t o 

the l imi t ing cases of equilibrium and crack-l ike growth. The comparison ind i -

cates tha t void growth can be represented by a two-part solut ion where e i t h e r 

3 A 

the l inear ized equilibrium or the s imi l a r i ty model applies for small a v/>.v } 

3 " 

and the crack-l ike model applies for l a rger a v/flv 
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An Appendix presents an analysis of relaxation times associated with a 

variety of diffusion mechanisms which are useful in determining the dominant 

mechanisms of matter transport. 
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1. Introduction 

Structures and machine elements operated under conditions of high 

temperature and sustained loading often f a i l by excessive time-dependent 

, deformation or the fracture tha t follows, even when the s t r e s ses involved are 

far below the "yield" s t r e s s of the mater ia l . In laboratory specimens t e s t ed 

under these conditions (temperature s ign i f ican t ly above room temperature but 

below the melting temperature and t e n s i l e loading considerably below y ie ld 

s t r e s s ) , voids have been observed t o form pre fe ren t i a l ly on grain boundaries 

perpendicular t o the t e n s i l e axis [ 1 - 3 ] , suggesting tha t grain boundary void 

nucleat ion and growth play a major ro le in fracture at high temperature. 

S in te r ing , the shrinking of exis t ing voids at high temperature and 

under sustained compressive loading, i s well known in powder metallurgy and 

i s a t t r i bu t ed t o the diffusion of atoms by four main mechanisms: vapor 

evaporation and condensation, sel f -diffusion along free sur faces , se l f -

diffusion along grain boundaries, and bulk diffusion through the l a t t i c e of 

the c r y s t a l . A general view i s given by Ashby [4] who has made estimates 

of the contribution of each mechanism in re la t ion t o s in te r ing in powder 

compacts. 

I t i s reasonable t o expect then , tha t the growth of voids through dif-

fusion should play a major ro le in high-temperature f rac ture . Voids on the 

grain boundary can be nucleated at junctions of grains and at grain boundary-

inclusion in terfaces through an accumulation of vacancies. Once nucleated, 

these voids can grow by diffusion from the cavity t i p and along the grain 

boundary, or by bulk diffusion from the surface of the void t o the grain 

boundaries u n t i l the ligament i s suf f ic ien t ly reduced for f racture t o occur. 
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Numerous s tudies of the growth of voids on a planar grain boundary per-

pendicular to the applied s t r e s s have been made. Hull and Rimmer [2] and 

Speight and Harris [5] estimated the time t o rupture of a mater ial with an 

array of spher ical voids located on a planar grain boundary and in which 

atoms were transported from the surface of the cavity along the grain i n t e r -

face. A correction t o the model was made by Weertman [ 6 ] , who considered the 

appropriate boundary condition to be one of zero vacancy flux on the grain 

boundary at the midpoint between voids. Vitovec [7] then estimated the s t r a i n 

r a t e while taking in to account the change in s t r e s s acting across the grain 

boundary due t o changes in the ligament s i z e . 

Recently, Raj and Ashby [8] have done a study of void growth and nucle-

ation taking i n to account grain boundary s l i d ing . 

All the above have assumed tha t surface diffusion i s suf f ic ien t ly act ive 

t o assure t ha t the voids r e t a in shapes made up of spher ica l segments. This 

condition may not always hold and has led Chuang and Rice [9,10] t o study 

the problem of a long, crack-l ike cavity located on a planar grain boundary 

whose shape and ra t e of growth (measured as t i p veloci ty) are governed by the 

chemical po t en t i a l at the surface and grain boundary. The grains themselves 

are assumed t o be e l a s t i c and i so t rop i c . The study indicates tha t below some 

c r i t i c a l growth veloci ty an adequate model of void growth can be constructed 

by assuming the grain boundary flux such tha t the grains separate as r i g i d 

bodies. 

The present study examines 2-dimensional models of void growth tha t 

span the gap between the constant-curvature, Hull-Rimmer type of void and the 

long, crack-l ike cavity.of Chuang and Rice. The mater ia l i s considered 

to be i so t rop ic and homogeneous and the continuum viewpoint w i l l be maintained 

( lengths of i n t e r e s t are large compared t o atomic dimensions). Voids are 
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assumed t o have been nucleated and only t h e i r growth i s studied here . 

A s imi la r i ty solution in which shape and velocity are determined by the 

choice of one parameter i s obtained along with an i t e r a t i v e solut ion in which 

void shape i s a lso a function of the same parameter. Both are compared t o 

the constant-curvature and long, crack-l ike void shapes. 

For a t e n s i l e load applied perpendicular t o the grain boundary, the 

assumption of r i g i d grains i s then shown t o impose the conditions necessary 

for determination of the void shape and r a t e of growth through the chemical 

po t en t i a l and atom flux evaluated at the void t i p . The models are then com-

pared t o the Hull-Rimmer (H-R) type and Chuang-Rice (C-R) models of void 

growth. 

Although only two-dimensional models are considered h e r e , a s imi la r anal-

ys i s can be carr ied out for the axisymmetric case. 
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2. Discussion of the Chemical Potential 

Diffusion analyses usually do not consider nonhomogeneous stress fields 

as contributing to the chemical potential for diffusion, and thus the driving 

force is often expressed in terms of concentrations of the diffusing species. 

But, for those problems in which significant stress fields are present, it is 

necessary to include fluxes due to the nonhomogeneous stress field and it 

becomes convenient to express the flux J as proportional to the gradient of 

the chemical potential of the species. 

Consider a crystal at constant temperature T and subjected to a con-

stant macroscopic pressure P . The atom flux due to self-diffusion is given 

by the expression 

i = - ^ V M (2.1) 

where D i s a diffusion coeff ic ient , ft i s the atomic volume, k i s 

Boltzmann's constant , and u i s the chemical po t en t i a l defined as the work 

required t o revers ib ly add an atom to the s t ressed c r y s t a l (as an i n t e r s t i t i a l 

or in a vacancy), and i s referred t o an unstressed reference c rys t a l at T and 

P . 
o 

Stevens, Dutton, and Puis [11] have shown that assuming local equilibrium 

between vacancies, divacancies, and interstitials allows the driving potential 

V to be expressed as 

V = UA - uy (2.2) 

where u i s the chemical po ten t i a l of an atom on a l a t t i c e s i t e and p i s 

i s the chemical po ten t i a l of a vacancy. 

To determine the chemical po ten t i a l for se l f -d i f fus ion , consider a very 

large c rys ta l held r ig id ly at a large distance from i t s surface and with a 
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normal traction a applied at the surface. The chemical potential at the 

interface is uA since the surface can be considered a sink for vacancies. 

Assuming the concentration of defects just below the surface to be in equi-

librium with the surface allows the calculation of p. . It can be shown 
A 

[12,13] tha t t o the f i r s t order in s t r e s s , 

y = u - Jto - [~ + -f-)y n (2.3) 
o n vp p ' s 

where u is the chemical potential of the reference crystal, p and p„ 

are the radii of curvature of the surface (with the center of curvature taken 

outside the crystal), and y is the surface energy. 

Assuming the concentration of defects to be constant with respect to 

time, conservation of mass dictates that within the crystal, 

_V-J = 0 , (2.4) 

or combining eqns. (2.1) and (2.4), 

V2p = 0 . � (2.5) 

If the value of v can be determined at the boundaries of the crystal, the 

evaluation of the atom, fluxes in the interior reduces to finding a solution 

to Laplace's equation with the appropriate boundary conditions given by 

eqn. (2.3) 

Equation (2.3) will be used extensively in the following chapters to 

describe the chemical potential on the void surface and on the grain boundary. 
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3. The Shape of a Void on a Grain Boundary 

Changes in the shape of a void located on a grain boundary can be accom-

plished by self-diffusion along the surface of the cavity, by bulk diffusion 

through the lattice, and by evaporation and condensation. It is expected 

that at temperatures significantly below the melting point of the material it 

should be more difficult to move an atom (or a vacancy) through the lattice 

than along a free surface, and thus lattice diffusion should be negligible 

compared to surface diffusion [14]. However, as the temperature approaches 

the melting point, lattice diffusion should contribute a significant part to 

the total atom flux. 

In order to know the conditions under which surface diffusion is the 

dominant mechanism in determing the shape of the void, it is useful to com-

pare the characteristic relaxation time of a free surface with periodic cur-

vature when the atom flux is due to lattice diffusion and when it is due to 

surface diffusion. If T , the characteristic time for surface diffusion, 

s 

and T , the characteristic time for lattice diffusion, are such that 

T /T < .1 , it can be expected that surface fluxes will be the more sig-

nificant part of matter transport. Characteristic wavelengths for T /T = .1 

of some common metals at .5 T and .8 T are given in Table I and are 

ra m 

seen t o be of the same order of magnitude as observed in ter -void spacings, 

leading one t o assume tha t l a t t i c e diffusion can usually be neglected in the 

determination of void shape. (See Appendix for a more complete discussion 

and the derivation of cha rac te r i s t i c t imes.) 

In a s imi lar manner, the contribution t o matter t ranspor t from surface 

diffusion and from evaporation-condensation can be compared. Table I gives 

the c h a r a c t e r i s t i c wavelengths for T /T = . 1 of some common metals at 
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.5 T and .8 T , where T and T are the c h a r a c t e r i s t i c times for 
m m s v 

surface diffusion and evaporation-condensation respect ive ly . Since the wave-

lengths are of the same order of magnitude as the observed in ter -void spacing, 

surface diffusion can reasonably be assumed to be the dominant mechanism 

involved in determining the shape of voids. 

The problem t o be studied here i s one of a void whose shape i s a l t e r e d 

by diffusion along i t s surface and in which matter i s removed only from the 

void t i p by grain boundary diffusion. In the hope of determining shapes 

between the extremes of the constant curvature and long, crack- l ike vo ids , a 

l inear ized governing equation i s derived and two methods of solut ion are 

explored. The f i r s t leads t o a s imi la r i ty solution in which void shape i s 

determined by fixing a dimensionless parameter and the second i s an i t e r a t i v e 

scheme based on the constant curvature, equilibrium shape. 

A short derivat ion of the l imi t ing cases (corresponding t o very slow and 

very rapid growth) w i l l a l so be given t o provide a bas is for comparison and 

evaluation of the two solut ions for void shape. 

Expressions for curvature and flux at the void t i p w i l l a lso be derived 

and w i l l be shown in the next section t o be the l ink between the problem of 

determining the shape of the void and tha t of i t s growth due t o an applied 

s t r e s s . 

3 . 1 . Derivation of the Linearized Governing Equation 

For void spacings much smaller than the grain diameter, the grain can be 

modelled as a very large so l id held r i g id ly at a distance from the surface 

tha t i s large compared t o the void length. The grain boundary void can be 

represented as a symmetric, cy l indr ica l cavity on the surface of the so l id 

described by y ( x , t ) with the coordinate system fixed at the center of the 

void as in Figure 3 .1 . 
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The void t i p angle ij; i s assumed t o be cons tan t fo r a l l t ime and i s 

determined by t h e u sua l su r face energy c o n s i d e r a t i o n s , 

Yb 
cos <}> = — - ( 3 . 1 ) 

s 

where y and y are the energies for a free surface and a grain boundary 

respectively. 

Assuming the cavity shape to be governed only by surface diffusion sig-

1/3 
n i f i c a n t t o some depth 6 ( u s u a l l y taken t o be ft ) , t h e su r f ace f l u x i s 

g iven by 

where J is the surface flux ( ), D is the surface diffusion co-
s m sec s 

e f f i c i e n t , and 3s i s an increment of l eng th a long t h e s u r f a c e . 

Conservat ion of mass r e q u i r e s 

3J v 
s _ _n_ ( 3 v 

where v is the normal velocity of the void surface, and, combining 
n 

eqns. (3.2) and (3.3), 

',2 " vkT 

3s s s 

Since t h e void su r f ace i s t r a c t i o n f r e e , and s i n c e K = , eqn. ( 2 . 3 ) 

r e q u i r e s t h e chemical p o t e n t i a l t o be p r o p o r t i o n a l t o t h e c u r v a t u r e K 

u = fty K . ( 3 . 5 ) 

s 

I f t h e r a t e of change of void he igh t i s cons idered t o be s m a l l , t h a t i s , 

y ' << 1 (where t h e prime denotes d i f f e r e n t i a t i o n wi th r e s p e c t t o x ) , t h e 

cu rva tu re can be expressed as 
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< = y" , (3.6) 

and from eqns. (3 .4) , ( 3 . 5 ) , and ( 3 . 6 ) , the governing equation can be writ ten 

as 

D y & il 
where 2 = —r-= . (In p rac t i c e , y ' i s not small for most metals and 

t h i s l imi ta t ion i s discussed l a t e r . ) 

Void symmetry requires tha t the slope and flux be zero at x = 0 

( y ' ( 0 , t ) = 0 and y"* ( 0 , t ) =• 0) . The other two boundary conditions are 

obtained by specifying the void length and t i p angle ( y ( a , t ) = 0 and 

y*(a , t ) = ­ i|»). 

3.2. Limiting Cases 

The l imi t ing cases of constant curvature and long, crack­ l ike shape are 

discussed here t o f a c i l i t a t e l a t e r comparison with the s imi l a r i ty and i t e r a ­

t i v e so lu t ions . Both l inear ized and non­l inearized solutions are given and 

compared for each l imi t ing case. 

3 . 2 . 1 . Equilibrium Void Shape 

I f surface diffusion i s much more active than grain boundary diffusion 

so t ha t the void shape can be assumed t o be one of constant curvature 

K = _ s i n j t ( 3 > 8 ) 

a 

the void shape is given by 

r i „2 ■ * i 
(3.9) y = s i n <Ji 

■ , / , * • 2 . ­ cos i|» + / 1 ­ —7T s i n }\i 
V a2 

The surface flux at the void tip (J ) to be used later in coupling 
s "tip 

void shape to the rigid grain model, can be evaluated by relating the rate of 
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change of void volume t o the flux at the t i p t o get 

s t i p 
av 

n 
. 2 , s i n <|> 

- c o t <|> (3.10) 

da where v = — i s the t i p veloci ty . 

The case jus t discussed corresponds t o very slow growth since the assump­

t ion of constant curvature implies tha t each point on the void surface i s in 

equilibrium with every other point on the surface. 

3.2 .2 . Linearized Equilibrium Void Shape 

Under the l i nea r i za t i on , constant curvature implies 

y" = Constant . (3.11) 

After in tegrat ion and evaluation of the constants , the l inear ized equilibrium 

void shape can be shown t o be given by 

2 1 ­ (3.12) 

and the curvature by 

K s ­ ■£'. (3.13) 
a 

Again, relating the rate of change of void volume to the flux at the tip 

gives 
M \ ­ 2*av (3.14) 

where the volume i s evaluated by integrating, the void shape of eqn. (3 .12) . 

Since the curvature and flux at the t i p are of primary importance in the 

void growth model, the er ror introduced in the l inear iza t ion can be estimated 

by comparing the t i p curvature and flux of the equilibrium and l inear ized 

equilibrium shapes for various t i p angles. Figure 3.2 shows ­ (K) . a vs . ^ 

and Fig. 3.3 shows CC«1' ) fij/av vs. \\> . The l inear ized equilibrium shape 
s t i p 
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can be seen t o give a reasonable representat ion of the equilibrium shape for 

smaller values of t|> with la rger e r ro r as \\> approaches ir/2 . 

3 .2 .3 . Chuang-Rice Crack-like Shape 

Consider a long, crack-l ike void such tha t i t can be described as a 

semi- inf in i te cavity growing at constant velocity v . Chuang and Rice [9] 

have studied the shape of such a cavity without making the small angle 

l i nea r i za t ion and have shown the curvature and flux at the void t i p t o be 

approximated well by the expressions 

r ^1/3 

( O t i p = - ' 2 ( 1 - cos *) g j (3.15) 

and 
2 I / 3 

(J ) = /2(1 - cos ») ( „ } . (3.16) 
s t i p . ' a 

This solut ion corresponds t o the s teady-s ta te s i t ua t i on in which the void 

i s growing so rapidly that matter i s removed only from the t i p of the void and 

the surface far away i s not affected by the behavior of the t i p region. 

3 .2 .4 . Linearized Crack-like Shape 

A l inear ized form of the long, crack-l ike void can be derived as follows. 

Suppose the void can be modelled as a semi- inf in i te cavi ty growing a t con^ 

s tan t veloci ty v and tha t void shape i s dependent only on the distance from 

the t i p , 

y ( x , t ) = g U ) (3.17) 

where z; = x - a and a = a + vt . Then, 

o 

g . - r g (3.18) 

and the l inear ized governing equation becomes 
<LiL_ J L | £ = o . (3.19) 
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The void shape i s found to be 

gU> = * ( f ) 1 / 3 U - exp [(^-}1 /3C]} . (3.20) 

From eqns. (3.6) and (3.20), the curvature at the void t i p i s 

1/3 
(K)tip = " * © � ( 3 '2 1 ) 

t 

and from eqns. (3.2), (3.5), (3.6), and (3.20), the flux at the tip is 

2 i/3 

(J ) . =*^M- � (3.22) 
s tip » 

The error introduced in linearization can be estimated by examining the 

.^.1/3 ( ,VtiD ° 
curves in Fig. 3.4 which represent plots of -(ie). . (—J or % .. 

tip v (^ v2 }l/3 

vs ty for the C-R and linearized crack-like shapes. The linearized shape 

is seen to be a good approximation to the C-R shape and together with the 

linearized equilibrium shape discussed earlier, will be useful in the evalu-

ation of the similarity and iterative shapes yet to be derived. 

3.3. Similarity Solution 

An examination of the void profiles for the linearized equilibrium and 

crack-like voids given by eqns. (3.12) and (3.20) indicates the void shape 

to be independent of the physical dimensions of the void. Solutions having 

this property are known as similarity solutions which are obtained by sub-

stituting particular dimensionless variables into a partial differential 

equation, resulting in an ordinary differential equation only in terms of 

these dimensionless variables. Consider then, the pair of dimensionless 

variables 

5 = tjft (3.23a) 
(^t) 1 / 4 
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n = ^7777 (3.23b) 

where n is a function of € only. Differentiation and substitution into 
eqn. (3.7) gives a fourth order linear ordinary differential equation in 
n(5) and € , 

d£ 
For a particular choice of £ = r-jr- , the location of the void tip 

° (^t)1/H 

in dimensionless coordinates, the boundary conditions can be shown to be: 
n'(0) = o , n,M (o) =0 , n(5 ) = o , and n*U ) = ­ * . 

o o 
A power series solution of the form 

n(5) = I A £ n (3.25) 
n=0 n 

can be obtained where the coefficients are given by 

An+4 = An 4(n+l)(n+2)(n+3)(n+4) * (3.26) 
Because of the symmetry conditions (n'(0) = o and n'" (0) = 0)), the 

coefficients of the odd power terms must be zero and n can be shown to be 

n(€.) = * B Q ( l ­ A ^ _ _ l _ z* . . . .) 

+ * B 2 ( * 2 + 14^0 «6 + 58olo80 « " + ■ • • > ­ <3'27> 
where B and B„ are constants evaluated by fixing a £ and solving sub­o 2 o 
ject to the tip conditions (n(S ) = 0 and n'(€ ) = ­ <f»). ■ o o 

The void shape given in eqn. (3.27) is expressed in dimensionless quan­
tities and hence is not dependent on the actual dimensions of the void but is 
determined by the choice of £ 
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If during growth of the void, the shape changes so that 5 can be 
o 

taken to be a constant with respect to time, a relation for tip velocity can 

bs obtained by differentiating eqn. (3.23a) to get 

3 
* : ■ » $ • # « ■ » > 

where v is the void tip velocity, v = da/dt , and v* = î /ft = y D 6 /kT . 
3 

Thus, the shape can be related to the dimensionless group (a /fi)(v/v*) and 

allows the comparison of the similarity solution with the linearized constant­

curvature and long, crack­like limiting cases described earlier. 

For very small choices of 5 , a good approximation to n can be made 

by neglecting all but the first two terms of eqn. (3.27), reducing the 

expression for n to the same form as eqn. (3.12). Thus, the similarity 
3 solution approaches that of the linearized equilibrium void when (a /ft)(v/v*) 

is chosen to be very small. The shapes predicted by the similarity solution 

for £ = 1, 2 and 3 are compared to the linearized equilibrium shape in o 
Fig. 3.5. 

For somewhat larger choices of S , the power series truncated at 4 

terms gives an adequate representation of the void shape and the solution 

becomes 

n = Ao(l ­ ̂  f) + A2(£2 + ^ f) (3.29a) 
where 

and 

Ao = ^ o ( 1 + lS50 0 / ( 2 + -k C " 69120 0 (3'29b) 

A2 = " *(1 " 9? 0 / Co ( 2 + 1ST 5o " 69l2b" 0 • (3.29c) 
It will be shown in a later section that the curvature and flux at the 

void tip are needed to couple the shape to the stress applied to the rigid 
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grain model. The curvature of the similarity solution can be obtained by 

taking derivatives of eqn. (3.27) with respect to E, and the curvature at 

the void tip is 

/ \ . O r . , 1 ,2 1 _6 v 
(K)tip - i r C B o ( - 8 C o ~ 3840 5 o " « ' J 

+ B 2 ( 2 + ^ C + 6 4 i l 2 ^ + � � � » � (3.30) 

From eqns . ( 3 . 2 ) , 3 . 5 ) , ( 3 . 6 ) and ( 3 . 2 7 ) , t h e f l u x a t t h e void t i p i s 

.2 

(j ) = JL [BJ - ± £_ - ^~ C ~ � � �) 
"tip Oa s +1.„ „_2 oy 4 ^o 640 s o 

+ B2(3J€o + 8^T Si* ' ' ')] ' (3-31> 

For large choices of 5 » numerical error associated with the evaluation 

of a sufficient number of terms to assure convergence of the power series 

necessitates a different scheme for the solution of eqn. (3.24). The ordinary 

differential equation and its associated boundary conditions make up a two 

point boundary value problem amenable to solution by methods known as tvo point 

shooting techniques [15]. Although more costly to evaluate than the series 

solution, the shooting technique is much more accurate for large choices of 

If the similarity solution is a reasonable representation of void shape, 

it should approach the shape of the linearized, crack-like cavity given in 

eqn. (3.20) as £ is chosen to be very large (fast growth). Figures 3.5a 

and 3.6b compare the shapes predicted by the similarity solution evaluated 

using a two point shooting technique to those of the linearized, crack-like 

cavity having the corresponding tip velocities given by eqn. (3.28). The 

shapes are not alike since choosing a 5 imposes an acceleration and higher 
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2 2 

order time derivatives as well as a velocity. An examination of d a/dt 

reveals a deceleration of the void tip, and it is both the deceleration and 

the high velocity associated with large choices of £ that allow matter to 

be removed from the void tip to form a bulge. 

However, it should be noted that the tip profiles of the similarity and 

the linearized, crack-like shapes are very much alike and that it is the tip 
parameters (K) . and (J ) that will be of importance in the void 

t:LP s tip 

growth models discussed later. 

3.4. Iterative Solution 

In the similarity solution the assumption that the rate of change of 

dimensionless void length, d£ /dt, does not significantly contribute to the 
o 

void tip velocity is made in order to incorporate velocity in the determina-

tion of void shape. A different approach can be adopted in which the 

velocity enters explicitly in the expression of void shape. 

The governing partial differential equation as seen earlier is 
I x = _ _L 2y_ 
3x4 & 9t * 

(3.32) 

Assume that y can be represented by a series of functions, 

y = yQ + y-L + y2
 + � � � » (3.33) 

where y is the linearized constant-curvature shape of eqn. (3.12) and y 

satisfies 

-^s--k4r (3'34) 
3x4 & 3t 

for n = 0, 1, 2, . . 
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Since the boundary condition for slope at the void tip (y'(a,t) = ­ ij>) 

is satisfied by y , the boundary conditions to be satisfied by the other 

yn are: yn(0,t) = 0 , yj|» (0,t) = 0 , yn(a,t) = 0 , and y»n(a,t) = 0 . 

The first three such functions are: 

= J2. <!> 
(3.35) 

and 

\ba yl =lT 11/ x 2 
360 a " 24 (a J + 120va (­) ­ 17 

>J L * 36Q| [L* 

_ *a r 1 
2 l_18m ■ ( ­ ) 1814400 ''a'' 

10 45 x 8 (*) ­ 462 

3570 .x.1* _ 
1814400 xa 

♦a I 2 

1814400 a 

5939 ,x/ 

1814400 "a £> 
2785 

[" 
1814400 a 

10 

1814400 0«2 AJ1 2) dt 

1814400 a (T) 924 
1814400 %a 

(2i)6 + 1**280 .x.4 

1814400 va 

25778 .x* + 12424 
1814400 xa' ,](: 

3 a v 

(3.36) 

(3.37) 1814400J L^* 

As mentioned in the previous section, a disadvantage of the similarity 

solution is that it imposes a deceleration of the void tip. It is useful, 

then, to look at the iterative solution for constant velocity. The y for 

constant v can be straightforwardly obtained by computer and are shown in 
3 * 

Fig. 3.7 for a v/ftv = 5 and 1, 2, 3, 4, and 5 iterations. The shapes 

are seen to oscillate and an examination of the y suggests that for a suf­

ficient number of iterations, the solution y oscillates infinitely for any 
3 , * value of a v/fiv chosen. 

It now becomes necessary to determine under what consitions a reasonable 

estimate of void shape is given by the iterative solution. Since the itera­
3 " 7 2 2 2 tive shape is dependent on the choice of a v/ftv tx (a IQl )̂ vi a/dt ) , etc., 
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which are the same dimensionless groups found in the similarity solution, 

one can compare the two. Figure 3.8 shows the similarity solution for 

3 4 
a v/fiv* = £ /4 = 5, 10, and 20 and the two iteration solution, y = y + y + y0 

with the appropriate dimensionless velocity and acceleration groups. Good 

agreement between the two solutions gives some basis for using a two term 

iterative solution to represent a void growing at constant velocity for 

3 
a v/ftv* < 5 . These two iteration, constant velocity void shapes are shown 

in Fig. 3.9 for a3v/flv* = 1, 3, 5, and 10. 

The curvature and surface flux necessary for coupling the void shape and 

the rigid grain model of the next section can be obtained from eqns. (3.2), 

(3.5), (3.6), (3.35), (3.36), and (3.37). Evaluation of the resulting ex-

pressions at the void tip for the two iteration solution gives 

( 3 ^ 2 
a v 

(K) 
tip a 1 + 

( 3 

a v 

nv 

359 
14175 fl,v 

and 

77 f 7 A2 

a d a 14175 2 2 

\B dt J 

(J ) 
tip P.a2 

2 

3 

r 3 > 
a v 
fiv" 

4 

" 63 

r
 3

 i 
a v 

315 

? A2 'i a d a 
2 2 

(3.38) 

(3.39) 

3.5. Discussion 

A viable model of void shape should predict growth in an equilibrium 

mode for velocities considered in some sense to be small and growth corre-

sponding to the C-R model for larger velocities. 

The linearized equilibrium, similarity, iterative, and linearized Crack-
's ;'� 

like models of void shape are compared by plotting - (K) . a/i|» vs. a v/ftv 

in Fig. 3.10 and (J ) fta /tySD vs. a v/ftv" in Fig. 3.11. Curves for the 
s tip 
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constant velocity, two iteration model (eqns. (3.38) and (3.39), neglecting 

acceleration terms) are shown, as well as curves for the similarity solution 

(eqns. (3.30) and (3.31)) using the first 20 terms in the series solution 

for y . 

The curves for the similarity solution are in good agreement with those 

3 * 

of the l inear ized equilibrium model for small choices of a v/ftv and with 

the curves for the l inear ized crack-l ike model at larger va lues , indica t ing 

a smooth t r a n s i t i o n from the equilibrium mode to the steady s t a t e mode of 

3 * 

void growth at approximately a v/fiv = 5 . 

The curves for the two iteration model follow those for the linearized 

equilibrium shape closely but do not approach the behavior of the linearized 

crack-like model, leading one to expect that the iteration model is only use-

ful in a limited range, a v/fiv $ 5 . 

As noted previously, both the similarity and iterative approaches to void 

shape are based on the assumption that y' « 1 (small angle). Table II 

shows the tip angles of common metals to range from 1.2 to 1.45 and thus the 

small angle assumption cannot be justified a priori. However, as demonstrated 

by the comparison of tip curvature and flux for the linearized and non-

linearized limiting cases, the small angle assumption does not lead to gross 

errors, and since the experimentally determined values of D are often not 

even in order of magnitude agreement [16], it seems reasonable to make the 

small angle assumption in order to obtain a simple model of void shape. 
3 " 

Void shape has been shown to be determined by the choice of a v/ilv 

and in the next chapter the applied stress will be coupled to the shape 

through the curvature and surface flux evaluated at the void tip. It should 

be noted, however, that the shape predicted by the similarity solution assumes 

a particular manner of growth corresponding to £ constant. 
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4. Rigid Grain Models of Void Growth 

The growth of a void on a grain boundary is accomplished by removing 

matter from the void surface and transporting it to the grain boundary by 

diffusion through the grain or by diffusion from the void tip along the grain 

boundary. To determine the conditions under which one of the above is the 

dominant mechanism of matter transport, a comparison of characteristic times 

similar to that of the previous chapter can be made where the characteristic 

relaxation times are now for a periodic thickening at the grain interface. 

Characteristic wavelengths for T,/x„ = .1 of some common metals at .5 T 

b * m 
and .8 T , where x, and x„ are the characteristic times due to grain 

m Jb x 

boundary and lattice diffusion respectively, are given in Table I and are 

of the same order of magnitude as the observed void spacing. For this reason, 

lattice diffusion is neglected in the models considered here and only the 

flux along the grain interface is taken to account for the increase in volume 

of the void and the local grain boundary thickening 5 . (See Appendix for 

the derivation of relaxation times and a more complete discussion.) 

As mentioned earlier [10], for void tip velocities less than v 

where 

v 
-^| = 5.66 
v 

D 6 
s s 

V b 

3 ( 1/3 

ys(i-v
2) 

(4.1) 

(E is Young's modulus, v is Poisson's ratio, D, is the grain boundary 

coefficient, and 6, is the depth through which grain boundary diffusion is 

considered to act), a model of void growth can be constructed by assuming the 

grains to separate as rigid bodies, i.e., the grain boundary thickening & 

is uniform along the grain interface. 
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In this section, the relation between applied stress and void growth for 

such a model will be explored. The applied stress will be found to determine 

the void shape through the flux and curvature of the void tip. The similarity 

and iterative shapes obtained earlier v/ill be coupled to the rigid grain model 

and compared to the models utilizing the linearized equilibrium and linearized 

crack-like void shapes. 

4.1. The Rigid Grain Assumption 

In order to model the growth of voids on a grain boundary perpendicular 

to an applied stress, consider a very large crystal with a periodic array of 

symmetric, cylindrical voids with center to center spacing of 2b and located 

on a planar grain boundary as shown in Fig. 4.1. A uniform stress o is 

applied at a distance large compared to 2b. 

Conservation of mass requires 

3x ft 3t 

where 6 is the grain boundary thickening and J, is the grain boundary 

flux given by 

Jb fikT 3x * ^ * 3 ; 

On the grain boundary, the significant part of the chemical potential 

is due to the normal stress transmitted across the grain interface, o 
n 

Equations (2.3), 4.2), (4.3), and the fact that the rigid grain assumption 

implies that 6 is not a function of x give 

d2a 

j = Constant . (4.4) 
dx 

At the point midway between two voids, symmetry requires the flux to be 

zero, or from eqns. (2.3) and (4.3), 
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i 

o (b - a) = 0 (4.5) 

where the prime denotes differentiation with respect to x . The other two 

boundary conditions necessary for a solution of eqn. (4.4) are given by a 

and o* , the value of the stress and its derivative, respectively, evaluated 

at the void tip. 

The resulting expression for o is 

1 x2 

a (x) = o + c'(x - f r^-) (4.6) n. o. o 2 b-a 

and the ..applied stress is given by 

1 fb-a 

i o (x) 
b J n o o = f I o_(x)dx (4.7) 

b-a (a +^-a») . (4.8) 
b o 3 o 

4.2. Void Growth Models 

In order to obtain a complete model of void growth, the void profiles 

obtained earlier must be coupled to the rigid grain model of the previous 

section through the values of a and o' . From eqn. (2.3), equating the 

chemical potential of the surface and of the grain boundary at the void tip 

gives 

o = - y (<)^. (4.9) 

o s tip 

where K is the curvature of the void. 

Also, at the void tip, the surface fluxes must be equal to the grain 

boundary flux, or from eqns. (2.3) and (4.3) 

2(J ) = -2-H- a» (4.10) 
s tip kT ° 

where J is the surface flux. 
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The expressions for (<).,. and (J ) for the various models of 
tip s t l p 

void shape can now be used through eqns. (4.8), (4.9), and (4.10) to couple 

the shape to the applied stress. For the linearized equilibrium shape, 

eqns. (3.13), (3.14), and (4.8­4.10) give 

a = ihr b­a s b 
1 4 b­a 
a + 9 2 

s s 

I b bJ 
f 3 i a v (4.11) 

From eqns. (3.21), (3.22), and (4.8­4.10), the expression for the linear­

ized crack­like shape is 

*Y 
b­a 

s b 

( 3 

a v 
,1/3 

fiv 

2 b­a 
3 2 
a 

(D 6 s s 

Vb 

, 3 ̂ / 3 

nv 
(4.12) 

(<) . and (J ) for the similarity solution are given by eqns. tip s tip 
(3.31) and (3.32), respectively, but for a limited range of a v/ftv a four 

term solution for n may be used and from eqns. (3.28), (3.29a­c), (3.30), 

(3.31), and (4.8­4.10), 

<J»Y 
b­a 

s b {J 

f~ 

_ * ♦ * 
r 3 >, a v 1 

480 

f 3
 ^ 

fiv 

b-a s s 
2 PK6V a b b 

( 3 , a v 

ftv MS)]! 
/ ! 

2 + 

f 3 ' a v 

10 [** J 
4320 

135 

f 3
 ^ 

(4.13) 

The two iteration, constant velocity expression from eqns. (3.33), 

(3.39), and (4.8­4.10) is 
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b - a U 
a = ipy r—— <; — 

» s b ) a 

1 + 

( 3 
a v 

fiv 

359 
14175 

f 3 
a v 
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a 

rDAl 

[Db4bJ 

-

2 

9 

r 3 i 
a v 

it 
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4 
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r 3 a v 

flv 

fiv 

2 

I- ( 4 . 1 4 ) 

4.3. Discussion 

From a practical, viewpoint, it is useful to know the void growth rate as 

a function of the applied stress, geometric parameters, and material proper-

ties , but because of the nature of the similarity and iterative models of 

void shape an expression of growth rate valid for all velocities is diffi-

cult to obtain. However, eqns. (4.13) and (4.14), the expressions for o 

of the similarity model using only the first four terms of the series solu-

tion for void shape and of the two iteration model respectively, can be 

3 . * 
expec ted t o be v a l i d over a l i m i t e d range of a v/fiv and a r e e a s i l y i n v e r t e d 

t o ob t a in b v/ftv * as a func t ion of D 6 /D, 6, , a /b , and o b/ipy � 
s s b b °° s 

The l i n e a r i z e d e q u i l i b r i u m , l i n e a r i z e d c r a c k - l i k e , 4 term s i m i l a r i t y , and 

cons t an t v e l o c i t y two i t e r a t i o n models a r e compared in F i g . 4 .2 where 

3 * 
b v/fiv i s p l o t t e d a g a i n s t a / b f o r D 6 /D <5 = 10 and ojy/tyy = 10 . 

S S D JJ S 

The similarity and 2 iteration solutions agree with the linearized equilibrium 

3 * 

model fo r smal l a /b (cor responding t o smal l a v/ftv ) and p r e d i c t a c r i t i c a l 
void s i z e 

V 
cr -1 * 

b , " l 

^Y 
(4 .15 ) 

s ' 

below which void growth does not occur by diffusive mechanisms. Both solu-

tions also approach the behavior of the linearized crack-like solution for 

larger a/b (corresponding to larger a v/flv ) with the similarity solution 
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giving a smoother transition from equilibrium to crack-like growth, approach-

ing the curve for the crack-like model at a v/fiv « 5 . 

As discussed in a previous section, the similarity void shape used here 

has acceleration and higher order terms imposed when the velocity is fixed. 

However, due to the resemblance of the general behavior of the similarity and 

3 " 
constant velocity, 2 iteration models of void growth for a v/flv = 5 , . 

the similarity expression can be used with some confidence over the limited 

range. 

An adequate representation of void growth can be made by using the 

3 * 

l inear ized equilibrium or the s imi l a r i ty model for a v/flv ~ 5 and the 
3 * 

crack-l ike model for a v/flv ,t 5 . The l inear ized equilibrium model has 

the advantage of a simple expression for veloci ty in terms of applied s t r e s s , 

geometric parameters, and mater ia l p rope r t i e s , while the s i m i l a r i t y model 

gives a smoother t r ans i t i on to the crack-l ike mode of growth. 

The behavior of a two par t model based on the s imi l a r i t y and crack- l ike 

3 * 

models i s shown in Figs. 4.3 and 4 . 4 , where b v/flv v s . a/b i s p lo t t ed for 

various values of D 6 /D, 6 and aja/ihr � As the applied s t r e s s i s i n -

creased, the t r a n s i t i o n from equilibrium t o crack-l ike growth should occur 

a t lower values of a/b and i s borne out by the curves in Fig. 4.3 where 
D 6 /DL6 t i s held constant and o b/iJnr i s var ied. Also, as D 6 /D. 6, 
s s b b �» s s s D b 

becomes larger the void i s expected to remain in an equilibrium growth mode 

for la rger ve loc i t i e s and the t r an s i t i on region i s expected to occur a t la rger 

values of a/b . This t rend i s shown in Fig. 4.4 where o b/i/or i s held con-

» s 
stant as D 6 /D, 6, is varied. Thus, the 2 part model exhibits the behavior 

s s b b 
necessary for an adequate model of void growth. 
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5. Conclusion 

Two dimensional models of grain boundary void growth have been discussed. 

Void shape has been assumed to be determined by surface diffusion and the 

change of void volume has been assumed to be accomplished by diffusion from 

the void tip and along the grain boundary. Equations governing the void 

shape have been linearized and the linearization shown not to be a particu-

larly restrictive assumption. Assuming a particular mode of growth, a 

similarity solution has been obtained in which the void shape is determined 

3 " 
by the choice of a v/ftv . An iterative solution whose shape is dependent 

3 , !': 
on a v/fiv has been derived also. 

Assuming rigid grains, the similarity and iterative solutions have been 

coupled to the applied stress through the curvature and surface flux at the 

void tip. While the determination of the stress necessary for void growth at 

a given velocity can be obtained straightforwardly, the inverse problem of 

determining void growth when the applied stress is known is not as easily 

solved and, finally, void growth has been described by a two part solution in 

which either the linearized equilibrium or an approximation to the similarity 

3 " 
solution is used for a v/ftv ^ 5 , and the crack-like model is used for 

3 * 
a v/ftv > 5 . The two part model has been shown to exhibit the behavior 

expected of a reasonable model of void growth: a minimum void size for dif-

fusive growth as well as growth in an equilibrium mode at low velocities 

and growth in a steady-state, crack-like mode at larger velocities. 

It should be noted that under conditions of large applied stress and low 

D 6 /D, 6, , estimates of time to rupture based on this model may differ from 
s s a n 

those oLtain-id using Hull-Rimmer type models and these differences should be 

explored as well as void nucleation and the eventual rupture of the material 

due to plastic flow in the ligaments. 
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Appendix: Characteristic Relaxation Times 

In order to determine the conditions under which self-diffusion along 

the surface of the void and along the grain boundary are the only significant 

mechanisms of matter transport, it is useful to compare the characteristic 

relaxation time for each mode of transport due to a periodic disturbance. 

Mullins [17] has derived characteristic times for a periodic curvature on a 

free surface in the two dimensional case and the extension to three dimensions 

is given here. The characteristic times for a periodic grain boundary thick-

ening , modelled by a periodic normal stress on a free surface, are also 

derived here. 

A.l. The Free Surface 

Consider a semi-infinite, isotropic solid occupying the half space 

z > w , where w is a free surface given by 

2TTX" 
w(x,y , t ) = A(t) exp [>¥] � exp i ^-\ . (Al) 

Z 

A(t) is taken to be much smaller than both I and L . 

From eqn. (2.3), the chemical potential on a free surface is propor-

tional to the curvature and is 

(u) . = p - 0y c2 w(x,y , t ) (A2) 
surface o s 

where 

1/2 

c = Iffl-fflJ � 
A.l.l. Relaxation Due to Surface Self-Diffusion 

If only surface diffusion is considered active, and then only through 

1/3 
soT.e depth from the surface 6 (usually taken to be fi ), conservation of 

ma3S requires 
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3(J ) 3(J ) , » _ s _ x . + s _ x = 1 3 w 
3x 3y Q 3t l A H J 

where (J ) and (J ) are surface fluxes in the x and y directions s x s y J 

respectively. Substitution of eqn. (3.2) and eqn. (Al) gives 

, Sly D 6 cU 

A (t) + S ^ S A(t) = 0 , (A5) 

and the relaxation time is 
­ 2 

kT 
x s Sly D 6 s s s 

/ •2TT\^ /\2ir\ ■ (A6) 

A.1.2. Relaxation Due to Lattice Self­Diffusion 

For the case in which only lattice diffusion is active, an estimate of 

the relaxation time can be made by assuming the concentration of defects to 

be time independent. Then, continuity requires that the chemical potential 

satisfy Laplace's equation. 

It is reasonable to expect that the magnitude of the atom flux tends 

to zero at large distances from the surface, leading to the condition that 

u is equal to a constant as z ­»■ °° . The expression for \i at the surface 

is given by eqn. (A2) and the determination of the atom flux throughout the 

solid reduces to the problem of finding the solution to Laplace's equation, 

given the boundary conditions outlined above. The expression for u is 
2 u = y ­ Qy c exp [­cz] w(x,y,t) . (A7) 

o s 
Conservation of mass at the surface requires 

/ £ff=(J)z (A8) 

where (J) is the flux in the z direction, given by z 
(J)z = "4ll­ (A9) 
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Substitution of eqns. (Al), (A7), and (A9) into eqn. (A8) results in an 

ordinary differential equation in A(t) with a characteristic time 

kT 
T» = 1 *<sDl 

2 2I-3/2 

(2n\z r2v\ l 

(A10) 

A.1.3. Relaxation Due to EvaporationrCondensation 

Consider the surface to be in equilibrium with its own vapor at pressure 

P . Assuming the vapor to be a perfect gas, P can be found by equating the 

chemical potential of the solid and of the vapor at the surface, with both 

referred to a common reference crystal, and is given by 

Y a 

m (#-}= K-j^- (AID [K\ 
where P is the vapor pressure over a flat reference crystal and tc is 

the curvature of the surface under consideration. 

From kinetic theory [18] the flux from the surface can be approximated 

by 

9 - 0 = A P
 1/9 (A12) 

° (2™kT)1/2 

where 0 is the rate of evaporation from a flat surface, AP = P - P , 

and m is the mass of a molecule of the material. 

A mass balance at the surface requires 

AP 1 3w 
(2TrmkT)1/2 ' * 3 t 

(A13) 

For AP small, 

y SI 

P kT ' 

and subs t i tu t ing eqn. (Al) and (A14) in to (A13) r e s u l t s in a f i r s t order , 
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l i n e a r o rd i na ry d i f f e r e n t i a l equat ion in A(t ) with a c h a r a c t e r i s t i c t ime 

_ ( 27 rm) 1 / 2 ( kT) 3 / 2 r ­ " ­ ° ­ o T 1 

Tv 2 
p n Y 

o s 

[r2;ts 2 , 2 i r . 21" 
[I—J + i—ij • (A15) 

A.2. The Grain Boundary 

Consider a local grain boundary thickening 6 and its associated normal 

stress distribution on the grain interface a produced by placing matter 

selectively on the grain boundary. 

The grain interface can be modelled as the surface of a semi­infinite 

solid occupying z > 0 ♦ I f the solid is isotropic and linear elastic and 

the stresses at the surface are of the form 

o = o n zz = B( t ) exp [ i 312] exp [ i 22*] (A16a) 

and 

o = o = 0 , (A16b) 
yz xz 

the linear elasticity solution [19] gives a grain boundary thickening 

Gc n 

where 

1—V 
and ­77­ B(t) is much smaller than 1 . 

From eqns. (2.3) and (A16a), the expression for chemical potential on 

the surface is 

( u ) c = v - Sla . (A19) 

su r f ace o n 

A . 2 . 1 . Relaxa t ion Due t o Grain Boundary Se l f ­Di f fus ion 

I f only g r a i n boundary d i f f u s i on i s assumed t o be a c t i v e , conse rva t i on 

of mass a t t h e i n t e r f a c e r e q u i r e s 
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3(J, ) 3(J. ) �' . . 

3x 3y ft 3 t . 

S u b s t i t u t i o n of eqns . ( 4 . 3 ) , (A16a) , (A17) , and (A19) i n t o (A20) r e s u l t s i n 

a f i r s t o rder l i n e a r o r d i n a r y d i f f e r e n t i a l equa t ion in B ( t ) wi th c h a r a c t e r -

i s t i c t ime 

1-3/2 
: I filLT * ffJ!4 * 

A . 2 . 2 . Re laxa t ion Due t o L a t t i c e Se l f -Di f fus ion 

2(l-v) kT \(2^2
 Y

2^21 ,.„,, 

Now, assume bulk diffusion and neglect diffusion along the grain boundary. 

If the concentration of defects is time independent, conservation of mass re-

quires that the chemical potential satisfy Laplace's equation in the material. 

Again, it is reasonable to expect that the magnitude of the flux tends to 

zero at distances from the grain boundary that are large compared to I and 

L . The expression for u at the boundary interface is given by eqns. (A16) 

and (A19) and the determination of the flux throughout the solid then reduces 

to the solution of Laplace's equation subject to the appropriate boundary con-

ditions. The expression for u is. 

y = u - no exp [- cz] . (A22) 
o n 

Conservation of mass at the interface gives 

M* u »r° � (A23) 

Substitution of eqns. (4.3), (A16a), (A17), and (A19) into (A23) results in 

a first order linear ordinary differential equation in B(t) with character-

istic relaxation time 

1-v kT 
x ~ I G D.fi (f)2/©2]"1- . <fl2,,) 
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A.3. Remarks . 

An estimate of the contribution to the total atom flux on a free surface 

due to surface self-diffusion, lattice diffusion, and evaporation-condensation 

can be made by examining the ratios of the characteristic relaxation times for 

each mechanism. In the two-dimensional case, taking I or L tending to 

infinity, eqns. (A6) and (A10) give 

^� in-£
 (A25) 

a s s 

and eqns. (A6) and (A15) give 

P ft 

9 (£) �
 (A26

> 
x P ft l 2 

S _ Oi f_Xj * 

X « * fn ,-.xl/2" W v D & (2innkT)" 
s s 

If x�/T. « 1 and x /x « 1 for a given X , surface diffusion can s I s v b 

be expected to be the dominant mechanism of matter transport for free surface 

disturbances of wavelength less than X . 

In a similar manner, a comparison of grain boundary diffusion and lattice 

diffusion can be made. For the two dimensional case, from eqns. (A21) and 

(A24), 

^b _ D«, X (A27) 

Xl ' V b * 

and, if x, /x « 1 for a given X , grain boundary diffusion can be expected 

to be dominant for matter transport near grain boundary disturbances of wave-

length less than X . 

The diffusion coefficients are found to obey an empirical law of the 

f 0 ™ D = D exp [- -£�] (A28) 
O Kl 

where D is a constant known as the frequency factor, R is the universal 
o 

gas constant, Q is an activation energy, and T is the absolute temperature. 
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Representative values of the diffusion coefficients for some metals 

are given in Table I as well as values for X , the characteristic wave-& max 

length for the ratios of characteristic time equal to .1, at .5 T and .8 T . 

In practice, there are large discrepancies in the reported values of the 

coefficients and activation energies for surface and grain boundary diffusion 

and are usually attributed to difficulties in measurement of appropriate 

parameters and imparity effects. 



Table I . Material propert ies and X for x /x . = . 1 , x /x = . 1 , 
r max s I s v 

T ( K ) ( 1 ) 

m 
. (m 3 ) x 1 0 2 9 ( 3 ) 

Atomic weight (kg/kmol) 

D ( m 2 / s e c ) ( 2 ) 

so 
Q (kca l /mol ) 

s 
_ , 2 . , ( l ) ( a ) 
D, (m / s e c ) 
bo 

Q, (kca l /mol ) 
13 

. , 2 . . ( 1 ) 
D (m / s e c ) 

Q ( kca l /mol ) 

-At T = .5 T 
m 

D 6 /D, 6, 
s s b b 

P (P ) ( 1 ) 

o a 

X . (vnn) ( b ) 

max 
( fo r T /x„ = . 1 

s I 

X_ (pm) 
"m ax 

( f o r T /x = .1) 
S V 

X ( pm) 
max 

( fo r x. h,. = .1 ) 

and 

Cu 

1356 

1.18 

63.54 

2.0 

49.0 

3.3 x 1 0 - 5 

4S.3 

3.8 x 10~6 

5 . 1 

1.0 

T, / x . = . 1 a t T = .5 T and T = .8 T . 
b % m m 

Ag 

1234 

1.71 

107.87 

. 2 5 

41.6 

1.2 x 1 0 - 5 

21.5 

4.9 x 10~5 

44.5 

8 .1 x 10-1* 

5.3 x 10~6 

8 .8 

. 9 8 

5.5 x 103 

Zn 

694 

1.52 

65.37 

9.4 x i o - 6 

6.17 

2.2 x i o " 5 

14.3 

-5 
3.55 x 10 

23.0 

2 . 8 x i o 2 

2.6 x i o " 3 

1.7 x 10 ^ 

5.8 

30. 

aFe 

1809 

1.18 

55.85 

10. 

55.6 

. 2 . 5 x I O - 4 

40.0 

1.9 x i o - 4 

57.2 

3 . 1 

io"7 

18. 

2.2 x i o 2 

3.0 

yFe j 

1809 j 

1.18 

55.85 

.4 

49.0 

3 .4 x i o " 4 

39.0 

1.8 x I O - 5 

64.5 

2 . 0 

io"7 . 

1.8 x 10 4 

2.8 x 102 

4 .3 x IO3 

Ni 

1723 

1.10 

58 .71 

4 .2 x 10~2 

47.7 

1.75 x I O - 4 

28.2 

2.59 x I O - 4 

69.5 

1.2 x i(f3-

7.4 x i o - 7 

7.7 x IO3 

2G. 

3.2 x i o 6 

CO 



Table I , (Continued) 

At T = .8 T 
m 

D s V V b 

P (P ) ( 1 ) 

o a 
X ( u m ) ( b ) 

max 
( f o r x /x = 

s 2. 

X (,pm) 
max 

( f o r x /x = 
s V 

X (pm) 
max 

( f o r x b / T j l = 

.1 ) 

� 1) 

. 1 ) 

Cu 

6.2 x 1 0 - 2 

6 .3 

8.4 

Ag 

.38 

2.9 x 1 0 - 2 

3.6 

8.7 

4 .8 

Zn 

3.4 

4 . 1 

1.8 

.89 

.26 

aFe 

80. 

2 .3 x 10~4 

13 . 

1.7 x IO3 

8.2 x 10~2 

yFe 

17. 

- 4 
2 .3 x 10 

7.0 x IO2 

1.1 x IO3 

2 1 . 

Ni 

8.5 x i o - 2 

8.5 x i o " 3 

65. 

5 1 . 

3.8 x i o 2 

References : (1) S m i t h e l l s , C. J . , "Metals Reference Book," 4th ed . , But terwor th (1967) . 

(2) Neumann, G. , and Neumann, G. M. , "Surface Se l f -Di f fus ion of Me ta l s , " Diffusion Information 

Center (1972) . 

(3) "Handbook of Mate r i a l s S c i e n c e , " ed. C. T. Lynch, CRC Press (1974) . 

( a ) Values for 6, = 5 x 10 
b 

- 4 

(b) Ca lcu la t ed assuming 6 = ft 

um . 

1/3 

CO 
CD 
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Table I I . Values of y , y 
. g ? 

and i/; fo r some m e t a l s . 

Material 

Ag 

Au 

Cu 

Fe 

Ni 

Pt 

^ergSv 
Yg( 2 ) 
6 cm 

790 

364 

646 

780 

690 

1000 

cm 

1140 

1485 

1725 

1950 

1725 

3000 

-1 A V = cos ^ 
s 

1.22 

1.45 

1.38 

1.37 

1.37 

1.40 

Data from P . J . H i r t h and J , Lo the , "Theory of Dis -
l o c a t i o n s , " McGraw-Hill (1968) . 
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Figure Captions 

Coordinate system for void shape. 

Comparison of - ( K ) . a for equilibrium and l inear ized equilibrium 

void shapes for various t i p angles. 

Comparison of ( J ) . ft/av for equilibrium and l inear ized equilibrium 

void shapes for various t i p angles. 

1/3 2 1/3 
Comparison of - d e ) . ( ^ / v ) or (J ) . ft/(^v ) for the Chuang-

t i p s t i p & 

Rice and l inear ized crack-l ike void shapes for various t i p angles. 

Void shapes predicted by the s imi la r i ty solut ion for £ = 1, 2 , and 3. 

Comparison of void shapes predicted by the s i m i l a r i t y and l inear ized 

crack-like solut ions for (a) £ = 8 and (b) £ = 16 . 
o o 

Void shapes predicted by the i t e r a t i v e solut ion for constant ve loc i ty , 
3 * 

v , where (a v/ftv ) = 5 . 

Comparison of the two i t e r a t i on and s imi l a r i ty void shapes for 

(a3v/Siv") = 5, 10, and 20. 

Void shapes predicted by the two i t e r a t i o n solut ion for constant 

velocity v where (a v/ftv ) = 1, 3 , 5 , and 10. 
3 * 

Plots of (tc) . (a/il») vs. (a v/ftv ) for the l inear ized equil ibrium, 
t i p 

s i m i l a r i t y , constant veloci ty two i t e r a t i o n , and l inear ized crack- l ike 

void shapes. 

2 ,-, 3 * 
Plots of (J ) . (fta /\l>£&) vs. (a v/ftv ) for the l inear ized equ i l i b -

s t i p 

rium, s i m i l a r i t y , constant velocity two i t e r a t i o n , and l inear ized 

crack-l ike void shapes. 

Coordinate system for the r ig id grain model. 
Void growth models using the l inear ized equi l ibr ium, 4 term s i m i l a r i t y , 

constant veloci ty two i t e r a t i o n , and l inear ized crack-l ike void shapes 

for (Do /D 6,) = 10 and (o b/*Y ) = 10 . 
s s b b oo s 
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4 . 3 . Void grov/th using a 2 part solut ion (4 term s imi la r i ty and l inear ized 

crack-l ike) for (D 6 M O = io and (a h/^y ) = (a) 1, (b) 10, 
s s b b °^ s 

and (c) 20 . The dashed l ine indicates t r ans i t ion at (a v/ftv) = 5 . 

4 .4 . Void growth using a 2 part solut ion (4 term s imi la r i ty and l inear ized 

crack-l ike) for (o My ) = 10 and (D 6 /D,6, ) = (a) 2 , (b) 10, 
°°b s � s s b b 3 £ 

and (c) 100 . The dashed l ine indicates t r ans i t i on at (a v/ftv ) = 5 . 
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FIGURE 3.2 
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FIGURE 3.3 
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