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Abstract

We present a general model of software development environments that consists of three
components. structures, mechanisms and policies. The advantage of this model is that it
distinguishes intuitively those aspects of an environment that are useful in comparing and
contrasting software development environments. Our initial application of the model is to
characterize four classes of environments by means of a sociological metaphor based on scae:
the individual, the family, the city and the state models. The utility of the IFCS taxonomy is that
it delineates the important classes of interactions among software developers and exposes the
ways in which current software development environments inadequately support the
development of large systems. We demonstrate the generality of our model by also applying it
to a previously published taxonomy that categorizes environments according to how they relate
to four historica trends: language-centered, structure-oriented, toolkit and method-based
environments.
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delim $$ A model is useful primarily for the insight it provides about particular instances and collections of in-
stances. By abstracting away non-essential details that often differ in trivial ways from instance to instance and by
generalizing the essential details into the components of the model, we derive a tool for evaluating and classifying
these instances — in ways that we had not thought of before we constructed our model. It is with this purpose in
mind — classification and evaluation — that we introduce a general model of software development environments
(SDEs). Our model consists of three components: policies, mechanisms and structures. Once we have defined this
general model of software development environments, there are various points of view from which we might classi-
fy environments. We might, for example, classify the SDEs according to their coverage of the software life cycle;
or classify them according to the kinds of tools that they provide, contrasting those that provide a kernel set with
those that provide an extended set; etc. Each of these classifications yields useful comparisons and insights. Anoth-
er important point of view, which we have not seen in the literature, is a classification of SDEs relative to the prob-
lems of scale — what is required of software development environments for projects of different sizes taking into
account the numbers of people and the length of the project as well as the size and complexity of the system. Note
that the distinction between programming-in-the-small and programming-in-the-large [5] has some intimations of
the problems of scale. However, this distinction is basically one of single-unit versus multiple-unit systems and cap-
tures only a small part of this problem. We build software systems that range from small to very large, and will be
able to build even larger systems as hardware gets cheaper and more powerful. What has not been sufficiently con-
sidered is the effect of the scale of systems on the tools needed to build them*. For example, Howden [15] consid-
ers SDEs for medium and large systems only from the standpoint of capitalization and richness of the toolset. Thus,
the main focus of this paper — and, indeed, of our research — is the problem of scale. We introduce a classification
of SDEs in terms of a sociological metaphor that emphasizes this problem of scale and provides insight into the en-
vironmental requirements for projects of different sizes. This metaphor suggests four classes of models: individual,
family, city and state. The individual and family classes are the current state of the art but are inadequate for build-
ing very large systems. We argue that the city model is adequate but that very little attention has been given to this
class. Further, we argue that future research and development should address the city model and the proposed state
model. In section 2, we present our model of software development environments, discuss the individual com-
ponents and their interrelationships, and illustrate various distinctions that we make with environments from the
literature. We do not describe any of these environments, since this article is not intended to be a survey, but acces-
sible references are provided. In section 3, we classify SDEs into the four classes suggested by our metaphor,
characterize these classes, present a basic model for each class, and categorize a wide variety of existing environ-
ments into the individual, family and city classes (we know of no examples of the state class). Finally, in section 4
we summarize the contributions of our model and classification scheme. We confine our discussion in the sections
below primarily to those environments concerned with the problems of implementing, testing, and maintaining
software systems — that is, those environments that are concerned about the technical phases of the software
development process. We believe that environments that concentrate on the full life-cycle and project management
issues also could be described with this model and categorized according to our classification scheme presented in
section 3. Our general model of software development environments consists of three interrelated components: pol-
icies, mechanisms and structures. General SDE Model = ( { Policies }, { Mechanisms }, { Structures } ) Policies
are the rules, guidelines and strategies imposed on the programmer* We use the term programmer in a generic
sense to include any user of the environment and use the two terms interchangeably. by the environment; mechan-
isms are the visible and underlying tools and tool fragments; and structures are the underlying objects and object ag-
gregates on which mechanisms operate. In general, these three components are strongly interrelated: decisions
about one component may have serious implications for the other two components and place severe limitations on
them. We discuss each of these components of the model, illustrate them with examples from the SDE literature,
and discuss their interdependencies. Policies are the requirements imposed on the user of the environment during
the software development process. These rules and strategies are often hard-coded into the environment by the
mechanisms and structures. For example, static linker/loaders generally require all externally referenced names to
be defined in the set of object modules that are to be linked together. This requirement, together with the require-
ment that only linked/loaded objects may be executed, induces a policy of always compiling the modules before
linking them. A different strategy is possible for execution preparation tools that provide dynamic linking and,
hence, a different policy: for example, Multics’ segmentation scheme [34] allows externally referenced names to be
resolved at run-time. In most cases, the design of the tools and the supporting structures define or impose the poli-
cies. But policies need not be hard-wired — that is, implicit in the mechanisms and structures. A few architectures
allow the explicit specification of policies. For example, Osterweil’s process programming [35, 56] provides the
ability to program the desired policies with respect to the various mechanisms and structures available; Darwin’s
law-governed systems [30] consist of declaratively defined rules restricting the interactions of programmers and
tools. These approaches provide a way of explicitly imposing policies on the programmers independently of the
mechanisms and structures. An orthogonal distinction is whether the policies are supported or enforced. If a policy
is supported, then the mechanisms and structures provide a means of satisfying that policy. For example, suppose
that top-down development is a supported policy. We would expect to find tools and structures that enable the pro-
grammer to build the system in a top-down fashion; by implication, we would also expect to find tools and struc-
tures to build systems in other ways as well. If a policy is enforced, then not only is it supported, but it is not possi-
ble to do it any other way within the environment. We call this direct enforcement when the environment explicitly
forces the programmer to follow the policy. A slightly different kind of enforcement is that of indirect enforcement:
policy decisions are made outside the environment either by management or by convention but once made they are
sunnorted hut not enforced bv the environment For examnle manaaement decides that all svstems are to be aen-



erated only from modules resident within the Source Code Control System (SCCS) [47]. The environment supports
configuration management with SCCS; however, it is the management decision that forces the programmers to con-
trol their modules within SCCS. There is a further distinction to be made between those policies that apply to
mechanisms and structures and those that apply to other policies. We refer to the second as higher-order policies.
For example, “all projects will be done in Ada’ is a higher-order policy. Mechanisms are the languages, tools and
tool fragments that operate on the structures provided by the environment and that implement, together with struc-
tures, the policies supported and enforced by the environment. Some of these mechanisms are visible to the pro-
grammers; others may be hidden from the user and function as lower-level support mechanisms. For example,
UNIX [23] provides tools directly to the user, while Smile [17] hides these tools beneath a facade that provides the
programmer with higher-level mechanisms (that in turn invoke individual UNIX tools). Policies are encoded in
mechanisms in one of two ways: either explicitly by policy makers for a particular project, or implicitly by the
toolsmiths for a particular environment. In the first case, mechanisms such as shell scripts [16], CLF’s [61] or
Marvel’s rules [18] enable the policy maker to define explicitly, as process programs, the policies to be supported by
the system. Whether these policies can also be enforced depends on how well the mechanisms restrict the program-
mer in using the environment. In the second case, the examples from the preceding section (illustrating hard-wired
policies) exemplify implicit encoding. In most SDEs, policies are implicitly encoded in the mechanisms. There are
good historical reasons for this situation: we must work out particular instances before we can generalize. Particular
mechanisms and structures must first be built that implicitly encode policies in order to reach a sufficient under-
standing of the important issues. Once we have reached this level of maturity, we can then separate the
specification of policies from mechanisms and structures. Structures are those objects or object aggregates on which
the mechanisms operate. In the simplest (and chronologically, earliest) incarnation, the basic structures — the ob-
jects with which we build systems — are files (as in UNIX, for example). The trend, however, is towards more
complex and comprehensive objects as the basic structures. One reason for complex basic structures is found in in-
tegrated environments, particularly those centered around a syntax-directed editor [9, 44]. These SDEs share a
complex internal representation such as an abstract syntax tree [7] or a graph structure [24, 53, 62] to gain efficiency
in each tool (because, for example, each tool does not need to reparse the textual form, but uses the intermediate,
shared representation). The disadvantage of this approach is that it is difficult to integrate additional tools into the
environment, particularly if the structure provided does not support well the mechanisms and their intended policies.
Garlan’s tool views [11] provide a partial* We say partial in the sense that Garlan’s views do not help at all if the
environment and its tools already exist independently of Garlan’s mechanisms and new tools need to be added. It is
a full solution in the sense that if one develops the entire environment with Garlan’s views, then adding a new tool
requires that one adds the view needed by that tool to the original set and generates the newly integrated structure.
solution: a structure and a mechanism for generating the underlying common structure consistent with all the re-
quirements of the different tools in the SDE. Another reason for this trend is to maintain more information about
software objects to support more comprehensive mechanisms and policies. For example, the use of project data-
bases has been a topic of considerable interest in the recent past [2, 32]. The basic structure currently generating a
large amount of interest is the objectbase [14, 38, 48] — it is hoped that this approach will solve the deficiencies of
files and databases. These basic structures are the foundation for building more complex and more comprehensive
higher-order structures. For example, Inscape [39, 40] maintains a complex semantic interconnection structure
among the system objects to provide comprehensive semantic analysis and version control mechanisms and policies
about semantic consistency, completeness and compatibility among the system objects. Smile’s experimental data-
base is a higher-order organization of basic structures that supports mechanisms and policies for managing changes
to existing systems. The Project Master Data Base (PMDB) [37] provides an entity-relationship-attribute model [4]
to represent, for example, problem reporting, evaluation and tracking processes. CMS’s Modification Request
Tracking System [49] builds a structure that is intertwined with SCCS’s configuration management database (which
in turn is built on top of the UNIX file system); it coordinates change requests with the actual changes in the system.
Finally, Apollo’s Domain Software Engineering Environment (DSEE) [26] provides a comprehensive set of struc-
tures for coordinating the building and evolving of software systems; these structures support, for example,
configuration control, planning and programmer interactions. In general, structures tend to impose limitations on
the kinds of policies that can be supported and enforced by SDEs. Simple structures such as files provide a useful
communication medium between tools but limit the kinds of policies that can be supported. The more complex
structures required by integrated environments such as Gandalf [33] enable more sophisticated policies, but make it
harder to integrate new mechanisms and policies into the environment. Higher-order structures such as Infuse’s
hierarchy of experimental databases [21] and Cosmos’s versions, configurations and histories [60] make it possible
to enforce policies that govern the interactions of large groups of programmers, but do not allow the policy maker
the ability to define his or her own policies. One fact should be clear: we have not yet reached a level of maturity in
our SDEs with respect to structures. There is still a feeling of exploration about the kinds of structures that are
needed. Indeed, there is the same feeling of exploration about the policies that can or should be supported by an
SDE, particularly for those SDEs that are concerned with large-scale projects. We present a classification of SDEs
from the viewpoint of scale: how the problems of size — primarily the numbers of programmers, but by implication
the size of the system as well — affect the requirements of an SDE that supports the development of those systems.
The classification is based on a sociological metaphor that is suggestive of the distinctions with respect to the prob-
lems of scale. >From a continuum of possible models, we distinguish the following four classes of SDE models:
move right 0.25i A: box ht .01i wid 5.5i "e" at A.w + (.5i,0) "Individual" at A.w + (.5i, .25i) "e" at A.w + (2i,0)
"Family" at A.w + (2i, .25i) "e" at A.w + (3.5i,0) "City" at A.w + (3.5i, .25i) "e" at A.w + (5i,0) "State" at A.w + (5i,
281) Basicallv each class incornorates those classes to its left a familv i< a collection of individuals a citv is a col-



lection of families and individuals, and a state is a collection of cities; Our metaphor also suggests that there may be
further distinctions to be made to the right of the family model — for example, neighborhoods, villages, etc. How-
ever, as relatively little is known about SDEs that support city models, and nothing is known about SDEs that sup-
port the state model, we make as few distinctions as possible. The purpose of this paper is to draw attention to these
two representative classes — that is, the city and the state. We present two orthogonal characterizations for each
class. The first emphasizes what we consider to be the key aspect that distinguishes it in terms of scale from the oth-
ers. These aspects are: construction for the individual class of models; coordination for the family class; coopera-
tion for the city class; and commonality for the state class. The second characterization emphasizes the relationships
among the components. Historically, mechanisms dominate in the individual class; structures dominate in the fami-
ly class; policies dominate in the city class; and higher-order policies dominate in the state class. For each class of
models we present a description of the class and support our characterizations with example SDEs. For conveni-
ence in the discussion below, we use the term model instead of class of models. The individual model of software
development environments represents those environments that supply the minimum set of implementation tools
needed to build software. These environments are often referred to as programming environments. The mechan-
isms provided are the tools of program construction: editors, compilers, linker/loaders and debuggers. These en-
vironments typically provide a single structure that is shared among mechanisms. For example, the structure may
be simple, such as a file, or complex, such as a decorated syntax tree. The policies are typically laissez faire about
methodological issues and hard-wired for nano-management issues. Individual Model = ( {
tool-induced policies* } , { implementation tools } , { single structure } ) These We
use italics for general descriptions of the components and normal typeface for specific components. environments
are dominated by issues of software construction. This orientation has led to an emphasis on the tools of construc-
tion — that is, the mechanisms — with policies and structures assuming secondary importance. The policies are in-
duced by the mechanisms — that is, hard-wired — while the structures are dictated by the requirement of making
the tools work together. We discuss four groups of environments that are instantiations of the individual model:
toolkit environments, interpretive environments, language-oriented environments, and transformational environ-
ments. The toolkit environments are exemplified by UNIX; the interpretive environments by Interlisp [60];
language-oriented environments by the Cornell Program Synthesizer [44]; and the transformational environments by
Refine [52]. The toolkit environments are, historically, the archetype of the individual model. The mechanisms
communicate with each other by a simple structure, the file system. Policies take the form of conventions for organ-
izing structures (as for example in UNIX, the bin, include, lib and src directories) and for ordering the sequence of
development and construction (as exemplified by Make [10]). These policies are very weak and concerned with the
minutiae of program construction. However, shell scripts provide the administrator with a convenient, but not very
extensive, mechanism for integrating tools and providing support for policies beyond those encoded in the tools.

The notation “*. . .”” at the end of the list indicates that additional facilities may be available. Toolkit Model =
( { tools-induced policies, script-encoded policies, ...** } , { editors, compilers,
linker/loaders, debuggers, ... }, { file system } ) Interpretive environments are also an early in-

carnation of the individual model. They consist of an integrated set of tools that center around an interpreter for a
single language such as Lisp or Smalltalk. The language and the environment are not really separable: the language
is the interface to the user and the interpreter the tool that the user interacts with. The structure shared by the vari-
ous tools is an internal representation of the program, possibly with some accompanying information such as pro-
perty lists. These environments are noted for their extreme flexibility and there are virtually no policies enforced
(or, for that matter, supported). Thus, in contrast to the toolkit approach where the tools induce certain policies that
force the programmer into certain modes of operation, programmers can essentially do as they please in the con-
struction of their software. Interpretive Model = ( { virtually no restrictive policies } ,

{ interpreter, underlying support tools } , { intermediate representation } ) Language-oriented en-
vironments are a blend of the toolkit and interpretive models. They provide program construction tools integrated
by a complex structure — a decorated syntax tree. Whereas the tools in the toolkit environments are batch in nature
and the tools in the interpretive environments are interactive, the tools in language-oriented environments are incre-
mental in nature — that is, the language-oriented tools try to maintain consistency between the input and output at
the grain of editing commands. A single policy permeates the tools in this model: early error detection and
notification. These environments might be primarily hand-coded, as in Garden [42], or generated from a formal

specification, such as by the Synthesizer Generator [43]. Language-Oriented Model = ( { error
prevention, early error detection and notification, ... }, { editor, compiler, debugger, ... } , {
decorated syntax tree } ) Transformational environments typically support a wide-spectrum language (such

as V [52]) that includes a range of object and control structures from abstract to concrete. Programs are initially
written in a abstract form and modified by a sequence of transformations into an efficient, concrete form. The
mechanisms are the transformations themselves and the machinery for applying them. The structure is typically a
cross between the intermediate representation of the interpretive model and the decorated syntax tree of the
language-oriented model. As in the language-oriented environments, a single policy defines the style of the en-
vironment: the transformational approach to constructing programs (as, for example, in Ergo [27] and PDS [3]).
Programmer’s apprentices, such as KBEmacs [45, 46], are a variation of this policy in that the programmer can
switch between the transformational approach and interpretive approach at any time. Transformational Model =
( { transformational construction, ... }, { interpreter, transformational engine, ... },

{ intermediate representation/decorated syntax tree, ... } ) We have discussed four different

groups of individual models and cited a few of the many environments that are examples of these different models.
Most research environments and manv commercial environments are instances of these individual models The



family model of software development environments represents those environments that supply, in addition to a set
of program construction tools as found in an individual model, facilities that support the interactions of a small
group of programmers (under, say, 10). The analogy to the family for this model is that the members of the family
work autonomously, for the most part, but trust the others to act in a reasonable way; there are only a few rules that
need to be enforced to maintain smooth interactions among the members of the family. These rules, or policies, dis-
tinguish the individual from the family model of environments: in the individual model, no rules are needed be-
cause there is no interaction; in the family model, some rules are needed to regulate certain critical interactions

among the programmers. The notation “*. . .”” at the beginning of the list indicates that we include the policies,
mechanisms and structures from the previous level. Family Model = ( { ...*, coordination poli-
cies }, { ..., coordination mechanisms } , { ..., special-purpose databases } ) The

characteristic that distinguishes the family model from the individual model is that of enforced coordination. The
environment provides a means of orchestrating the interactions of the programmers, with the goal that information
and effort is neither lost nor duplicated as a result of the simultaneous activities of the programmers. The structures
of the individual model do not provide the necessary (but weak form of) concurrency control. Because the individu-
al model’s structures are not rich enough to coordinate simultaneous activities, more complex structures are re-
quired. These complex structures dominate the design of the environment, where in the individual model the
mechanisms dominate; the mechanisms and policies in the family model are adapted to the structures. We discuss
four groups** These groupings are not necessarily mutually exclusive. In particular, either distributed or project
management aspects can be mixed and matched with either extended toolkit or integrated environments. of environ-
ments that are instantiations of the family model: extended toolkit environments, integrated environments, distribut-
ed environments, and project management environments. The extended toolkit environments are exemplified by
UNIX together with either SCCS or RCS [58]; the integrated environments by Smile; the distributed environments
by Cedar [55]; and the project management environments by CMS. The extended toolkit model directly extends the
individual toolkit model by adding a version control structure and configuration control mechanisms (see, for exam-
ple, UNIX PWB [6]). Programmer coordination is supported with these structures and mechanisms; enforced coor-
dination is supplied by a management decision to generate systems only from, for example, SCCS or RCS data-
bases. Thus, this kind of family environment provides individual programmers a great deal of freedom with coordi-
nation supported only at points of deposit into the version control database. The basic mechanisms for program
construction from the individual toolkit model are retained. However, these tools must be adapted to the family
model structure — for example, Make must be modified to work with RCS or SCCS. Alternatively, the tools may
be constructed in conjunction with a database — e.g., the Ada program support environments (APSEs) [31]. Ex-
tended Toolkit Model = ( { ..., support version/configuration control } , { ..
version/configuration management } , { ..., compressed versions, version trees } ) The integrate

model extends by analogy the individual language-oriented model, where the consistency policy permeates the
tools. Here consistency is maintained among the component modules in addition to within a module. As in the indi-
vidual model, the mechanisms determine consistency incrementally, although the grain size ranges from the syntax
tree nodes of the Gandalf Prototype (GP) [12], to procedures in Smile, to entire modules in Toolpack [36] and $R
sup n$ [6]. This model’s structure is typically a special-purpose database, perhaps most prominent in SMS’s [50]
use of an object-oriented file system, although generic architectures such as CLF and Marvel populate their object-
bases with respect to a data model. The structures vary in their support >from simple backup versions to both paral-

lel and sequential versions [13, 19]. Integrated Model = ( { ..., enforced version control, en-
forced consistency } , { ..., version description languages, consistency checking tools } , {..
special-purpose database } ) The distributed model expands the integrated model across a number of

machines connected by a local area network. Additional structures are required to support reliability and high avai-
lability as machines and network links fail. For example, Mercury [20] is a multi-user, language-oriented environ-
ment that depends on a distributed, static semantic analysis algorithm to guarantee consistency among module inter-
faces; NSE provides most of facilities of DSEE [25], and adds multi-user integration environments [1] that require
extensions to Sun’s network file system to support loop-back mount structures. Distributed Model = (
{..}, { ..., network mechanisms } , { ..., distributed objects } ) The project
management model is orthogonal to the progression from the extended toolkit model to the distributed model.
These environments provide additional support for coordinating changes by assigning tasks to individual program-
mers. In DSEE, structures and mechanisms are provided for assigning and completing tasks that may be composed
of subtasks and activities. CMS adds a modification request (MR) tracking system on top of SCCS in which indivi-
dual programmers are assigned particular change requests and the changes are associated with particular sets of
SCCS versions. Project Management Model = ( { ..., support activity coordination } ,
{ ..., activity coordination mechanisms } . { ..., activity coordination structures } ) The family
model represents the current state of the art in SDEs. In general, it is an individual model extended with mechan-
isms and structures to provide a small degree of enforced coordination among the programmers. The policies are
generally laissez faire with respect to most activities; enforcement of coordination is generally centered around ver-
sion control and configuration management. The most elaborate instance of the family model with respect to
mechanisms is CLF; the most elaborate with respect to structures is NSE. As the size of a project grows to, say,
more than 20 people, the interactions among these people increase both in number and in complexity. Although
families allow a great deal of freedom, much larger populations, such as cities, require complicated systems of rules
and regulations with their attendant restrictions on individual freedom. The freedom appropriate in small groups
produces anarchy when allowed to the same degree in larger groups. It is precisely this problem of scale and the
combplexitv of interactions that leads us to introduce the citv model Citv Model = ( V.



cooperation policies } , { ..., cooperation mechanisms }, { ..., structures for cooperation }

) The notion of enforced coordination of the family model is insufficient when applied to the scale
represented by the city model. Consider the following analogy. On a farm, very few rules are needed to govern the
use of the farm vehicles while within the confines of the farm. A minimal set of rules govern who uses which vehi-
cles and how they are to be used — basically, how the farm workers coordinate with each other on use of the vehi-
cles. Further, these rules can be determined in real time — that is, they can be adjusted as various needs arise or
change. However, that set of rules and mode of rule determination is inadequate to govern the interactions of cars
and trucks in an average city: chaos would result without a more complex set of rules and mechanisms that enforce
the cooperation of the people and vehicles. The alteration of rules necessarily has serious consequences because
they affect a much larger population (consider the problem when Europe changed from driving on the left to driving
on the right side of the road). Thus, enforced cooperation is the primary characteristic of the city model. It is our
contention that the family model is currently being used where we need a city model, and that the family model is
not appropriate for the task. Because the family model does not support or enforce an appropriate set of policies to
handle the problems incurred by an increase in scale, we generally apply a set of methodologies and management
techniques that attempt to stave off the anarchy that can easily occur. These methodologies and management tech-
niques work with varying degrees of success, depending on how well they enforce the necessary cooperation among
programmers. Little work has been done on environments that implement a city model — that is, that enforce
cooperation among programmers. We discuss two such environments: Infuse* Infuse is the change management
component of the Inscape Environment (which explores the use of formal interface specifications and of a semantic
interconnection model in the construction and evolution of software systems). The management issues of how to
support a large number of programmers are sufficiently orthogonal to the semantic concerns of Inscape to be appli-
cable in a much wider context (for example, to environments and tools supporting a syntactic interconnection
model) and to be treated independently. For this reason, Infuse has been implemented separately. [41] and ISTAR
[8]. Infuse focuses on the technical management of the change process in large systems, whereas ISTAR focuses on
project management issues. In both cases, the concern for policies of enforced cooperation dominate the design and
implementation: in Infuse, the policy of enforced cooperation while making a concerted set of changes by many
programmers has led to the exploration of various structures and mechanisms; in ISTAR, the contractual model and
the policies embodied in that model dominate the search for project management structures and mechanisms. The
primary concern of Infuse is the technical management of evolution in large systems — that is, what kinds of poli-
cies, mechanisms and structures are needed to determine the implications and extent of changes made by large
numbers of programmers. Infuse generalizes Smile’s experimental databases into a hierarchy of experimental data-
bases, which serves as the encompassing structure for enforcing Infuse’s policies about programmer interaction.
These policies enforce cooperation among programmers in several ways [21]. Infuse automatically partitions [29]
the set of modules involved in a concerted set of changes into a hierarchy of experimental databases on the basis of
the strength of their interconnectivity (this measure is used as an approximation to the oracle that tells which
modules will be affected by which changes). This partitioning forms the basis for enforcing cooperation: each ex-
perimental database proscribes the limits of interaction (however, see the discussion of workspaces below). At the
leaves of the hierarchy are singleton experimental databases where the actual changes take place. When the
changes to a module are self-consistent it may be deposited into its parent database. At each non-leaf database, the
effects of changes are determined with respect to the components in that partition, that is, analysis determines the lo-
cal consistency of the modules within the database. Only when the modules within a partition are locally consistent
may the database be deposited into its parent. This iterative process continues until the entire system is consistent.
When changes conflict, the experimental database provides the forum for negotiating and resolving those conflicts.
Currently, there are no formal facilities for this negotiation, but only the framework for it. Once the conflicts have
been resolved, the database is repartitioned and the change process repeats for that (sub-) partitioning. Because the
partitioning algorithm is only an approximation of the optimal oracle, Infuse provides an escape mechanism, the
workspace, in which programmers may voluntarily cooperate to forestall expensive inconsistencies at the top of the
hierarchy. Thus the rules for interaction are encoded in the mechanisms, with the hierarchy providing the support-
ing structure.* We are also investigating the utility of this structure for cooperation in integration testing [22]. With
a notion of local integration testing analogous to our notion of local consistency checking, we are able to assist the
integration of changes further by providing facilities for test harness construction and integration and regression

testing within this framework. Infuse Model = ( { ..., enforced and voluntary cooperation } ,

{ ..., automatic partitioning, local consistency analysis, database
deposit, local integration testing, -}, { ..., hierarchy of experimental
databases } ) Whereas Infuse is concerned with the technlcal problems of managing system evolution, I1S-

TAR is primarily concerned with managerial problems. ISTAR is an integrated project support environment (IPSE)
[28] and seeks to provide an environment for managing the cooperation of large groups of people producing a large
system. To this end, it embodies and implements a contract model of system development. ISTAR does not direct-
ly provide tools for system construction but instead supports "plugging in" various kinds of workbenches. The con-
tract model dictates the allowable interactions among component programmers [54]. The client specifies the re-
quired deliverables — that is, the products to be produced by the contractor. Further, the client specifies the terms
of satisfaction for the deliverables — that is, the specific validation tests for the products. The contractor provides
periodic reporting about the status of the project and the state of the product being developed. Clients are thus able
to monitor the progress of their contracts. ISTAR provides support for amending the contracts as the project
develops. Thus, the contract structure can change in the same ways that the products themselves can change. A
contract database nrovides the underlvina structure for this environment Thus the interactions hetween the clients



and the contractors are proscribed by the underlying model and the mechanisms in the environment enforce those
rules of interaction. The exact interaction of tools in the construction of the components of the system is left
unspecified, but the means of contracting for components of a system are enforced by the environment. ISTAR
Model = ( { ..., contract model } , { ..., contract support tools } , {..., con-
tract data base } ) Pursuing our metaphor leads to the consideration of a state model. Certainly the notion of
a state as a collection of cities is suggestive of a company with a collection of projects.* Shy, Taylor and Osterweil
[51] propose a corporation model that provides a comprehensive framework in which to build not only a city model
SDE, but a state model SDE as well. There are, we think, intimations of this model in the following: the Depart-
ment of Defense standardizing on a small number of languages, such as Ada and Common Lisp, for all its projects;
a company trying to establish a uniform development environment such as UNIX and C/C++ for all its projects; a
project attempting to develop a new standard tool, such as X windows; a company establishing a common metho-
dology and set of standards to be used on all its projects. It is easy to understand the rationale behind these deci-
sions: reduction in cost and improvement in productivity. If there is a uniform environment used by several pro-
jects, programmers may move freely between projects without incurring the cost of learning a new environment.
Further, reuse of various kinds is possible: tools may be distributed with little difficulty; code may be reused; design
and requirements may be reused; etc. State Model = ( { ..., commonality policies } , {
..., supporting mechanisms } , { ..., supporting structures } ) In this model, the concern for com-
monality, for standards, is dominant. This policy of commonality tends to induce policies in the specific projects
(that is, in their city model environments). Thus, the policies of the state model are higher-order policies because
they have this quality of inducing policies, rather than particular structures and mechanisms. While one can imagine
the existence of instances of this model (and there are certainly many cases where it is needed), we do not know of
one. Our intuition* See various position papers and discussions in the 4th International Software Process Workshop
[59]. suggests the following general description. Provide a generic model with its attendant tools and supporting
structures for software development to be used throughout a particular company. Instantiate the model for each pro-
ject, tailoring each instance dynamically to the particular needs of the individual project. Manage the differences
between the various instances to support movement between projects. Thus, while little is known about the state
model, it appears to be a useful and fruitful area for investigation. ldeally, scaling up from one class to the next
would be a matter of adding structures and mechanisms on top of an existing environment. In at least one case this
has been done without too much difficulty: scaling up from the individual toolkit model to the family extended
toolkit model. This example involves only a small increment in policy. It is extremely attractive to think of the
higher-level models as using the lower-level models as components upon which to establish new policies, mechan-
isms and structures. Unfortunately, there are several difficulties. First, there is the problem of the tightness of cou-
pling between structures and mechanisms. Even in scaling up from the toolkit to the extended toolkit environments,
retrofitting of old tools to new structures is necessary. This raises the fundamental question of whether it is more
profitable to retrofit changes into the system or to reconstruct the entire environment >from scratch. For example,
environment generators assume a common kernel that is optimized for a specific model, and often a particular group
within the model. Consequently, they are difficult to scale up. Mercury scales up the Synthesizer Generator by ex-
tensive modifications to its common kernel rather than by adding something to coordinate generated editors. Infuse
provides another example: since it is a direct generalization of Smile, we initially attempted to extend Smile’s im-
plementation. This strategy failed and the current implementation is completely independent of Smile. NSE, on the
other hand, did succeed in scaling up UNIX to support optimistic concurrency control, but this required
modifications to the operating system’s kernel. Second, problems arise from the lack of structures and mechanisms
in the base-level environment suitable for the next level. For example, multi-user interpretive environments are ex-
tremely rare. Further, this lack of suitable structures and mechanisms is particularly important in moving >from the
family model to the city model where enforcement is a much more serious issue. Building security measures on top
of a permissive environment (such as UNIX) is particularly difficult; it is too easy to subvert the enforcement
mechanisms. Last, there is the problem of how well the granularity of the structures and the mechanisms of one lev-
el lend themselves to supporting the next level. For example, the file system in the toolkit approach is easily adapt-
ed to the extended toolkit. However, some of the higher-level structure of the extensions is embedded, by conven-
tion, within the lower-level structure, as in SCCS where version information is embedded by an SCCS directive
within the source files. Note that most of our examples illustrating scaling difficulties are, of necessity, >from the
individual to the family model. Since this increment is much smaller than from family to city, we can expect greater
obstructions in scaling from the family to the city model. The fundamental source of these various problems lies in
the fact that the policies, mechanisms, and structures required for the higher levels of environments are, in some
sense, more basic and must be designed in rather than just added on. A substantial part of our research focuses on
the problems of large-scale systems. This led us to consider why existing environments are inadequate for solving
these problems. In order to characterize and compare environments with respect to their suitability to large-scale
systems, we developed our model of software development environments and introduced our metaphorical
classification scheme. We summarize our contributions as follows: Our general model distinguishes precisely those
aspects of an environment that are useful in evaluating SDEs: policies, mechanisms and structures. Our taxonomy
delineates four important classes of interaction among software developers with respect to the problems of scale.
The individual and family models represent the current state of the art in SDEs. We explain why these two models
are ill-suited for the development of large systems. We show that the city model introduces the qualitative differ-
ences in the policies, structures and mechanisms required for very large software development projects. We pro-
pose a state model, which is in need of further clarification, understanding and implementation. We conclude that
there i< a nressing need for research in both the technical and manaaerial asnects of citv model environments and in
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