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STOCHASTIC MODELS OF SPATIAL AND TEMPORAL DISTRIBUTION OF

THUNDERSTORM RAINFALL '

By H. B. Osborn, L. J. Lane, and R. S. Kagan*

Abstract

A simplified stochastic model based on airmass

thunderstorm rainfall data from the 58-square-mile

Walnut Gulch Experimental Watershed in south

eastern Arizona is being developed at the Southwest

Watershed Research Center, Tucson, Ariz. Records

from the 95 rain gage network on this watershed pro

vide valuable information on airmass thunderstorm

rainfall in the Southwestern United States. Proba

bility distributions are being used to model random

variables—number of cells, spatial distribution of

the cells, and cell center depths—of thunderstorms

in a summer rainy season. A computer program

produces synthetic thunderstorm rainfall based on

these distributional assumptions. The synthetic data

are compared, with respect to storm center depths

and isohyetal map characteristics, with data from

the dense rain gage network on Walnut Gulch.

The daily and hourly chances of occurrence of

seasonal airmass thunderstorm rainfall are modeled.

Efforts are being made to model the temporal dis

tribution of rainfall from individual cells within the

airmass thunderstorm.

Finally, the question of model transferability

to other regions and locations is tied to defining

regional meteorology and local topography.

Introduction

Chow (7) and others have defined and differ

entiated among deterministic, stochastic, and prob

abilistic processes and models in hydrology, pointing

out that stochastic processes follow probabilistic

laws and are time dependent, whereas purely prob-
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abilistic models are time independent. In short,

stochastic modeling in hydrology is the sequential

generation of hydrologic information considered

wholly or partly random in nature. In this paper,

stochastic models of the spatial and temporal

distribution of thunderstorm rainfall are considered,

and an example based on airmass thunderstorm

rainfall is formulated. The authors are more familiar

with thunderstorms of the Southwestern United

States than for any other region, so the discussion

and analyses will be based on southwestern

thunderstorms.

Thunderstorms

Thunderstorms are an important source of rain

fall in the Southwest. Because of the extreme

variability in thunderstorm rainfall both in time and

space and the difficulty in measuring this variabil

ity, most publications on the subject have been more

qualitative than quantitative. Among the publica

tions of interest are those by MacDonald (9, 70),

Sellers (21), Woolhiser and Schwalen (22), Osborn

and Reynolds (78), Osborn (74, 75), Osborn and

Hickok (76), Drissel and Osborn (3), Fogel (5),

and Fogel and Duckstein (6). The last nine of these

publications also contain attempts at quantifying

thunderstorm rainfall as well as containing quali

tative description.

Petterssen (79) made the following distinction

between thunderstorm types.

Outside the intertropical belt, thunderstorms are observed

to occur in three easily recognized patterns. (1) When an air mass

is convectively unstable, sufficiently warm and moist, thunder

storms will be released in the upglide motion associated with

frontal zones. Although the storms may be widely scattered, the

general pattern moves along with the fronts with which they are

associated. They are usually referred to as frontal thunderstorms.

(2) Within more or less uniform air masses one finds an irregular

pattern of individual storms, or clusters of such storms. These,

which are usually referred to as air-mass thunderstorms, show

a pronounced diurnal variation with a maximum in the afternoon
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or early evening. (3) Analyses of radar scopes show that thunder

storms not associated with fronts often have a tendency to be

arranged in lines or bands more or less along the direction of the

wind at low levels. These are called line thunderstorms.

Unfortunately, the delineation between thunder

storm types is not always so easily recognized. Re

gions subject to significant numbers of airmass

thunderstorms, such as the Southwestern United

States, also may be subject to varying degrees of

frontal activity, and sometimes these fronts are

difficult to detect. Also, different types of thunder

storms may be dominant in different parts of a

region, and frontal activity may vary within a region.

For example, on the arid and semiarid rangelands

of southeastern Arizona and southwestern New

Mexico (as well as many other regions), airmass

thunderstorms produce well over one-half of the

average annual precipitation and almost all of the

annual surface runoff. In other arid and semiarid

regions of the Southwest, frontal activity is more

common, and either frontal, airmass thunderstorms,

or both, are common. At higher elevations in the

Southwest, winter rain and snow are more important

sources of water yield to the valleys below.

The Southwest is a region where fronts tend to

dissipate or disappear from weather maps; yet they

may still influence thunderstorm activity. Thunder

storm buildup will vary with the amount and dis

tribution of moist air aloft, temperatures at various

levels, and the winds aloft. In southern Arizona, for

example, airmass thunderstorms result from a

combination of convective heating and moist air

moving into the region from the south, generally

from the Gulf of Mexico, but occasionally from the

Pacific Ocean. Moist air from the Gulf of Mexico

usually is drier than that from the Pacific (because

of distance traveled and mountains crossed), and

when thunderstorm activity on a given day or during

a few consecutive days is more prolonged and the

thunderstorms are more closely spaced than usual,

the source of moisture is usually the Pacific Ocean.

However, there are "in-between" regions where,

without meteorological information, one cannot

guess the origin of the moisture. Also, if atmospheric

conditions are such that the flow of moist air from

the Gulf of Mexico continues uninterrupted for a

long enough period, thunderstorm activity may be

similar to that which occurs when moist air moves

into the region from the Pacific. In southeastern

Arizona, almost all runoff-producing rainfall on

watersheds of 100 square miles or less appears, at

least from analysis of recording rain gage records,

to result from airmass thunderstorms.

Sellers (21) described occasional September

storms as "rampaging" across southern Arizona.

These storms develop as warm, moist air is pushed

into southern Arizona from the Pacific by tropical

storms. A combination of one or more of three con

ditions—orographic lifting, convective heating, and

colder air pushing from the north under the advanc

ing warm, moist air—produces more general rains

with thunderstorm activity throughout the period,

rather than just in the afternoon and evening hours.

In reality, these storms probably should be a sub

class under frontal thunderstorms because convec

tive heating is an important part of much of the

thunderstorm activity within the overall storm

period. Possibly, they should be classified as frontal-

convective thunderstorms.

In general, the occurrence of a thunderstorm at

a particular point or over a particular small area

within a climatic region appears purely random, and

the depth and intensity of rainfall and the area

covered by varying depths and intensities of rain

fall appear, within limits, to be random. Therefore,

thunderstorm rainfall appears to fit very neatly the

definition of a stochastic process in hydrology. How

ever, there should be considerable latitude in the

assumptions and mathematical representations of

such thunderstorms depending upon the amount

and accuracy of available information and the pro

posed use of the model.

Stochastic Thunderstorm Models

Storm systems producing thunderstorms are

difficult to classify without simplification; yet

simplification is necessary both in definition and

classification of the systems and in the eventual

modeling of the systems. Rosenblueth and Wiener

(20) stated:

No substantial part of the universe is so simple that it can be

grasped anil controlled without abstraction. Abstraction consists

in replacing the part of the universe under consideration by a

model of similar but simpler structure. Models, formal or intel

lectual on one hand, or material on the other, are thus a central

necessity of scientific procedure.
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In general, stochastic thunderstorm rainfall

models are either physically based, data based, or

both. Ideally, models based on atmospheric and

topographic conditions might be preferred, but

realistically, most models are based on data col

lected at the ground surface and are developed

without atmospheric parameters. Since thunder

storm rainfall is highly variable both spatially and

temporally in space and this variability is difficult

to measure, any great degree of sophistication of

thunderstorm rainfall models not based on atmos

pheric data may be suspect. This is particularly

true if the end result is to predict runoff, where

uncertainties in watershed response add to the

uncertainty of the output and may limit runoff

models to rather simple inputs and "black box"

techniques.

LeCam (8) developed a theoretical model for

rainfall as a random phenomenon incorporating

yearly periodicity. The model was described as a

clustering process of the type presented by Neyman

and Scott (12, 13). LeCam's lucid description of

rainfall occurrence and his comments on validating

or testing such models are especially relevant as

the complexity of models increases.

Airmass Thunderstorm Rainfall

Model

As an example, a simplified stochastic model

incorporating the spatial and temporal distribution

of thunderstorm rainfall was developed from rain

gage records of airmass thunderstorm rainfall on

the Walnut Gulch Experimental Watershed, Tomb

stone, Ariz. (fig. 1). The Southwest Watershed

CITY OF

TOMBSTONE

V

LOCATION OF

WALNUT GULCH

WATERSHED

I 2 3 4

SCALE IN MILES

WATERSHED BOUNDARIES

MAIN CHANNELS

4

Figure l.-The Walnut Gulch Watershed.
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Research Center of the Agricultural Research

Service operates this 58-square-mile experimental

rangeland watershed. The watershed is representa

tive of semiarid rangelands throughout much of the

Southwest. Of the 95 recording rain gages on the

watershed, 80 have been in continuous operation

for over 10 years. The means and ranges of the

variables used in this model were determined from

the records from Walnut Culch. Total storm rain

fall for eight selected events is shown to illustrate

the variability of thunderstorm rainfall and to

indicate visually the difficulties in modeling such

rainfall (fig. 2(A-H)).

A stochastic model of thunderstorm rainfall for

Walnut Culch is being developed in three parts.

The first part, or routine, in the model determines

the chance of daily and hourly occurrence of a

significant event. Included in this routine is the

chance of more than one event occurring on the

same day. The second part of the model generates

the total storm rainfall through addition of in

dividual synthetic storm cells regardless of time

of occurrence within the storm. Significant progress

has been made on the first two parts of the model.

The final part of the model involves generating

the ceUs sequentially and continuously, possibly

describing the storm with a series of isohyetal

maps of short duration (possibly 10 minutes).

Development of the third part of the model will

continue after possible modifications and final

verification of the first two parts.

Occurrence of an Airmtiss Thunderstorm

Event

An initial attempt at modeling the probability of

a thunderstorm occurring during the summer rainy

season involved assuming a probability distribution

for the start of the rainy season. Once the season had

started, the occurrence or nonoccurrence of an

event was modeled as a Bernoulli variable with con

stant parameter throughout the season. However,

considering the assumptions about moist air move-

.ment stated in the previous section, the assumption

about constant probability of occurrence (Ber

noulli parameter) throughout the season was not

consistant. Analysis of rainfall data from the Walnut

Culch Experimental Watershed indicates that the

probability of storm occurrence varies considerably

within the rainy season.

Therefore, a variable probability of occurrence of

significant thunderstorm rainfall based on 10 years

Figure 2. - Isohyetal maps of selected thunderstorm rainfall. Walnut Gulch watershed precipitation (in inches): A, Storm of August 12,

1963 (1200). B, Storm of August 16,1963 (1640). C.Storm of July 13,1964 (1600). D, Storm of September 11,1964 (1700). E, Storm

of July 29, 1966 (1830). F, Storm of July 7, 1967 (1500). G, Storm of August 3, 1967 (1700). H, Storm of August 13,1967 (1400).
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of precipitation data from Walnut Gulch is used to

estimate the probability of a significant storm oc

curring somewhere over the 58-square-mile water

shed. A significant storm is specified as one with at

least 0.25 inch of rainfall recorded on at least two

adjacent rain gages. Effects of modeling the seasonal

distribution of daily rainfall by incorporating a

varying Bernoulli parameter are discussed in Ap

pendix I. Figure 3 shows the 5-day running mean

for the number of significant storms recorded

(1960-69) on the Walnut Gulch watershed. The

smoother curve shown in figure 3 is arbitrarily

adopted in the model. The curve is similar in shape

to the point frequency value from long-term U.S.

Weather Bureau records from Tombstone, Ariz.

Additional work is in progress to facilitate extrap

olating point frequencies from Weather Bureau

and other data to provide storm frequencies for

finite-sized watersheds throughout the Southwest.

The relationship between point and areal frequency

on finite sized watersheds for different climates and

topographies is essential in regionalizing such a

model (25).

The procedure used here for generating synthetic
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airmass thunderstorm rainfall data over a finite-

sized area is summarized in figure 4. A table of

probabilities derived from the "smoothed" curve

in figure 3 is used as the Bernoulli parameter p,

that is, the probability of a significant storm occur

ring anywhere on the watershed on a given day, in

the sequential generation of a Bernoulli variable.

If the Bernoulli variable is equal to zero (a failure),

then there is no significant storm on the given day.

The date is then indexed and the next Bernoulli

variable simulated. If there is a significant storm,

then the beginning time of the storm (0000 to 2400

in military time) is generated as a truncated normally

distributed random variable with mean starting

time 1700 (5:00 p.m.) and a standard deviation of

3.5 hours (2).

The next step is to simulate the airmass thunder

storm, (described in the next section) and to print

.4

o~\

.2

E
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thenecessarydataastodate,time,location,and

magnitude.Themodelalsoallowsformultiple

stormsoccurringonthesameday.Ifastormoccurs

between0500and1700,thereisareducedprob

abilityofanotherstormoccurring3hoursormore

afterthebeginningofthefirststorm.Ifthesecond

stormalsooccursbefore1700,thesamereduced

probability,determinedbytrialanderrorasone-

fifththeoriginalrainfallchance,isusedtopredict

athirdstorm,andsoon.Thatis,theoccurrenceof

subsequentstormsisalsomodeledasaBernoulli

variable.

Logically,themodelshouldallowforpersist

ence—thetendencyforwetdaystofollowwetdays

anddrydaystofollowdrydays.However,persist

encewasnotincludedinthissimplifiedmodeL
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Simulation of Air mass Thunderstorms for

Once the date and starting hour have been deter

mined, the synthetic storm itself is generated

through a group of equations implemented by a

program referred to as CELTH-4 (fig. 5). CELTH-4

consists of a unit cell model coupled with a tech

nique of randomly grouping these cells as a means

of describing thunderstorm rainfall shapes and

distributions. The model development was a com

bination of simplification, abstraction, physical

arguments, and trial and error, with the output

as the final test of the combination of distributions.

The unit cell, building block of this rainfall model,

was initially chosen to be circular, with the rainfall

(D) at any point within the cell dependent only on

distance (r) from the center. Individual cells appear

more elliptical than circular with a long-short axis

ratio of 14:1 (6, 75), and such a further refinement

might be justified depending upon the stated use

of the model. Analysis of rainfall data collected

from the Walnut Gulch Experimental Watershed

(77) indicates that the approximate relationship

between the distance r and corresponding rainfall

D (in inches) is:

D = O.90o [I-Kin (Vtt/-)] (1)

for

r 3= l/Vw miles and

r ^ 1/Vtt miles

where Do is the center depth (in inches) of the unit

cell, K=l/ln (Vtt/?); R is the cell radius; and In

is the log,..

Total storm radius R and the center depth Do are

considered constant within each cell. To insure

flexibility in both shape and rainfall distributions

between unit cells, Do is randomly generated for

each cell. Rainfall records on Walnut Gulch suggest

that individual cell center depths can be approxi

mated by a negative exponential distribution gen

erated by the equation:

Do = Do In (l-U) (3)

where D» is the mean cell center depth obtained

from rainfall data and U is a uniform random vari

able, 0

D = Do [1 - Vw r/10] (2)

In this distribution and in subsequent distributions,

LI is approximated by pseudo-random numbers

from a random numbers generator. By keeping R

constant and varying Do in this manner, a variety

of rainfall configurations are obtained, and the

rainfall at any point within the cell, is determined in

terms of the generated parameter, Do, and the vari

able, r.



PROCEEDINGS OF THE SYMPOSIUM ON STATISTICAL HYDROLOGY 219

The choice of the exponential distribution for in

dividual cell center depths also arises from assum

ing a multicellular model with total storm rainfall

modeled as a gamma variable. Specifically, the sum

mation of A' exponential variables produces a

random variable with a gamma distribution since the

gamma densities are closed under convolution (4).

The next step was to describe shapes and rainfall

distributions of entire storms by grouping these

cells.

One might assume that cell occurrence is uni

formly random across the rain gage network.

However, although the center of each storm has an

equal chance of occurring at a given point on the

grid, the clustering of cells and analysis of rainfall

with respect to time on recorded rainfall isohyets

suggests that only the location of theirs* cell is truly

random. The remaining cells of the storm tend to

group around the first cell and at the same time pre

serve a direction of storm movement. These ob

servations motivated the introduction of two basic

storm parameters: the average number of cells per

storm, N, and the preferred direction of cell place

ment, 00-

N, determined from rainfall data, is used to govern

the number of cells generated per storm (N). Since

/V is a discrete random variable, and the occurrence

rate of cells within the duration of rainfall is assumed

constant, it is assumed to have a Poisson distribu

tion limited at the lower end by three cells as sug

gested by Petterssen (79). The average number of

cells was determined roughly from Walnut Gulch

data, and the chance of having more than seven

cells in one storm was very small.

So, on the other hand, is used to locate the direc

tion of the next cell generated. It is the direction

of the second cell from the first and is altered by an

amount A9 for each additional cell so that 0i is the

direction of movement, in degrees, after the i'th

cell, or:

6l = 0t-1 + AOi-l (4)

where i goes from 1 to N and Ado = 0°.

S DAY RUNNING MEAN

FIGURE 3.—Empirically derived curve for the probability of significant storms on Walnut Gulch watershed.
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Although do has an equal chance of being in any

direction (and so, is a uniform random variable),

A0O has a directional component, and was initially

abitrarily assigned a normal distribution about a

mean of 0° with a standard deviation of about 60°.

Although arbitrary, this did tend to sustain the direc

tion of storm movement in a manner similar to that

observed in real events.

The next step involves determining the distance

between cell centers. This is the third storm

parameter d, governed by its corresponding mean

d as calculated from rainfall information. However,

unlike N, 0, and Ad, its distribution is more difficult

to determine from available storm data. The

distribution is approximated by two lines and

generated by:

(START)

\
READ TABLE OF

PROBABILITIES 7
SET DAY INDEX

1= 1

SIMULATE BERNOULLI

VARIABLE

B

PERSISTENCE

? ? ?

NO

YES

GENERATE BEGIN TIME

OF STORM

SIMULATE AIR-MASS

THUNDERSTORM

. PRINT WATERSHED

LDATE, TIME,

STORM DATA

NO

500< BEGIN TIME < 170

Figure 4. —Flow chart for generation of seasonal synthetic rainfall data.
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( START J

READ STORM

AND CELL

.INPUT PARA-j

METERS

GENERATE THE STORM

PARAMETERS: NUMBER

OF CELLS IN STORM (N)

AND THE PREFERRED

DIRECTION OF STORM

GENERATE COORDINATES OF

CELL CENTERS FROM: LOCATION

OF FIRST CELL, GENERATED

CHANGE (&■©) IN-0-, AND

GENERATED CENTER SEPARATION (d).

GENERATE CENTER DEPTHS

(D ) FOR EACH CELL

CALCULATE TOTAL DEPTH OF

RAINFALL AT EACH GAGE

DUE TO N CELLS AND

STORE IN ARRAY T.

IF

LAST STOR

FOR THIS

SET

FIGURE 5—Flow chart for simulation of individual airmass thunderstorm rainfall.
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d = VlO£/ for U « 0.4 (5)

</= 0.5 (10 - V60 - 60f/) for U 3* 0.4 (6)

where U is a uniform random variable, 0< U <£ 1,

such that the total storm rainfall covers an average

of about 40 square miles and a maximum of about

90 square miles with the long axis never greater

than about 18 miles (77).

The final step in the synthesis involves calculat

ing the location of the first storm rain cell on the

Walnut Gulch network. This is done by using a

uniform random variable to generate a rain gage

number. For example, on a 100-rain-gage grid, the

equation used is:

/= 100U + 1 (7)

where / is the rain gage number and U is a uniform

random variable, 0 < U < 1.

For Walnut Gulch, the first cell of each storm has

an equal chance of occurrence at any rain gage on

or immediately adjacent to the watershed. This

step completes the processes involved in storm

generation from cell definition to method of place

ment. Any number of storms can be generated

from the cell and storm parameters in CELTH-4.

Results

Ten years of thunderstorm rainfall were generated

for the Walnut Gulch watershed. The first 4 years of

synthetic record are shown in figure 6, along with 1

year of actual data, 1963, which was chosen

randomly from the 1960 through 1969 records. The

horizontal scale in figure 6 represents the summer

rainy season from June 15 through October 15. The

vertical scales represent the maximum total depth

of point rainfall for each storm. The average annual

number of storms exceeding given depths and

ranges in annual values for the 1960-69 data and

the synthetic data are compared in table 1. The

location within the season, the length of season, the

number of events per season, and the maximum

storm depths for the actual and synthetic data

appeared to correspond fairly well. However, com

parison of the synthetic and real data suggest that

persistence is a significant factor in thunderstorm

rainfall and should be added to the model. Also,

the maximum recorded depth in 10 years of record

(1960-69) was 3.45 inches compared to 2.57 inches

in the 10 years of synthetic data. For the real data,

the range of annual maximum rainfall depths was

1.63 inches to 3.45 inches with a mean of 2.48 inches.

For the synthetic data, the range was 1.70 inches

to 2.57 inches with a mean of 2.13 inches. Further

analysis is necessary to determine whether the 3.45-

inch storm has a recurrence interval greater than

10 years, whether the model underestimates maxi

mum depths, or both.

Frequency plots of storm beginning times do not

contradict the normality assumption for beginning

time, and the mean and standard deviation values

of 1700 and 3.5 hours appear reasonable. Other

studies of precipitation (11) and of runoff (2) also

point to a preponderance of late afternoon and early

evening storms in southeastern Arizona.

As an example, eight synthetic events from year

5 (fig. 7 A—H) were chosen to compare with the real

events in figure 2 A~H. Comparison of eight iso-

hyetal maps, as well as the full 10 years of synthetic

data with real rainfall maps, suggests that while

the synthetic storms compare to some real events,

Table I.—Comparison of maximum storm depths between 10 years of Walnut Gulch data (1960-69) and 10

years of synthetic data

■turn

Actual data (1960-69)

Synthetic data (10 years)

Number of events annually equal to or exceeding given depths of—

0.6 inch

Max.

25

27

Min.

10

13

Ave.

19

20

1.0 inch

Max.

13

14

Min.

6

6

Ave.

10

10

1.4 inches

Max. Min.

2

3

Ave.

5

5

1.8 inches

Max.

6

4

Min.

0

0

Ave.

3

2
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the actual thunderstorm rainfall is far more complex

than this simplified model. Further sophistication

such as elliptical cells might improve the model,

but within the limited ability to test the accuracy

of the model such a refinement might not be

justified at present.

Discussion

The synthetic data produced were compared

both on seasonal characteristics and on individual

storm center depths and isohyetal map character

istics with data from the dense rain gage network

on Walnut Culch. These comparisons indicated

2.0
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Figure 6.—Seasonal distribution of significant airmass thunderstorm events; 1 year of actual data, 4 years of synthetic data.
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that such a model may generate simplified events

which have some uses, such as runoff prediction,

but it is a rather crude approximation and does not

represent all of the observed variability in thunder

storm rainfall.

The generated data correspond roughly to in

dividual thunderstorms occurring over a finite-

sized area. The storms could be superimposed over

a smaller area to completely cover it, or on to larger

areas (greater than 100 square miles) in groups to

simulate the areal distribution of several multi-

cellular storms over an entire region. Potential

uses of the synthetic data would determine their

application. However, additional research is

needed to determine if better, simpler, or more

complex models can be developed from available

information.

LeCam (8), in referring to his complex precipita

tion model, stated, "The main difficulty in such

circumstances is that, in a model of this com

plexity, it becomes more and more difficult to

estimate or test anything through purely statistical

JULY 3 (1710)

5 CELLS

X CENTER OF FIRST CELL

WATERSHED BOUNDARY

3

SCALE IN MILES

Ficure 7.— Isohyetal maps of selected synthetic thunderstorm events: A. July 3 (1710) 5 cells center of first cell watershed boundary.

B, July 4 (1723) 3 cells center of first cell watershed boundary. C, July 9 (1733) 4 cells center of first cell watershed boundary. D,

Aug. IS (1300) 5 cells center of first cell watershed boundary. E, Aug. 16 (19S7) S cells center of first cell watershed boundary. F,

Aug. 29 (1641) S cells center of first cell watershed boundary. C, Sept. 11 (1641) 5 cells center of first cell watershed boundary. H,

Sept 13 (1835) 5 cells center of first cell watershed boundary.
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methods." He continued that, "it is then necessary

to specify some of the elements through purely

physical arguments." These same observations

became apparent to the authors during the de

velopment of the Walnut Gulch stochastic thunder

storm rainfall model.

The question of accuracy must also be answered

before such models can be put to practical use.

Although the model is based on measurement of

thunderstorm rainfall from a dense network of

recording gages, there are still considerable areas

for error. The statistical distributions have been

chosen largely for their simplicity since more in

volved distributions may not be justified from known

informatioivTo date, the overall test of the model

has been somewhat subjective; that is, within afore

mentioned limits it looks good visually. More objec

tive methods, if possible, would be valuable. These

could include investigations of persistence of wet

and dry periods throughout the region, and possibly

direct comparison of volumes of rainfall above

specified depths between the real and synthetic

data. Furthermore, work is in progress to facilitate

using point frequencies from long-term precipitation

data to estimate storms on a finite-sized area. Thus,

frequencies of storm occurrence could be predicted

from point frequencies which are more widely

known.

Preliminary evaluations reported here suggest

that the model may generate usable synthetic air-

mass thunderstorm rainfall data, depending on what

is wanted from the model. However, extensive evalu

ation procedures, such as those developed by Lane

and Renard (7), need to be implemented. Such

procedures, allowing for large sample tests of the

model, would allow for a more comprehensive evalu

ation and are being investigated.

For general use, the variables in this model,

revised models, or other similar thunderstorm rain

fall models, must be tied to meteorological and

topographical differences locally and between re

gions. For example, in the Southwest, east of the
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Continental Divide, more intense, longer lasting

thunderstorms have been recorded than in south

eastern Arizona. These storms have added com

ponents for frontal activity and added moisture aloft.

Variables representing frontal "strength" and

available moisture could be added to the model for

airmass thunderstorms. The chance of a front mov

ing across a specific watershed when airmass

thunderstorms are expected to develop can be

assigned a seasonal probability, just as pure airmass

thunderstorms are assigned probabilities within a

season. Available moisture would increase or de

crease the magnitude of the event. There is a cer

tain chance that pure airmass thunderstorms will

occur, with the magnitude conditional on available

moisture, along with a chance that a front also will

add to the magnitude of rainfall for specific events.
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Appendix

List of Variables and Parameters Used To

Describe Multicellular Airmass Thunder

storms

K Constant used in rainfall relationship and

dependent only on cell radius.

d Distance between cell centers generated

using a "triangular" distribution and used in

grouping cells.

D Rainfall in inches with each cell; a function of

center depth Do and distance from the center r.

Do Cell center depth generated using a negative

exponential distribution with a mean of Do.

Do Mean cell center depth estimated from

Walnut Culch rainfall data.

/ Rain gage number where the first cell is

located; generated from a uniform distribu

tion where / is an integer.

N Number of cells per storm generated from a

Poisson distribution using N as the mean.

N Mean number of cells per storm estimated

from Walnut Culch rainfall data.

r Distance from the cell center.

R Radius of unit cell estimated from isohyetal

maps of Walnut Culch data.

0o Direction of the second cell as measured in

degrees from the first cell where east is defined

to be 0°; generated from a uniform distribution.

0/ Direction of cell number i +1 as measured in

degrees from the t'th cell where east is defined

to be 0° and calculated from the equation
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Adi Change in the direction of cell placement

generated from a normal distribution with a

mean of 0° and a standard deviation of 60°.

U Uniform random variable approximated by

pseudo-random numbers from a random

number generator (0 < U ^ 1).

A Note on the Variability of the Number of

Storms in a Season Where the Occurrence

of Storms is Modeled as a Bernoulli Variable

In the absence of persistence in daily rainfall, the

occurrence of a storm can be modeled as a Bernoulli

variable where:

xk=
1 if there is a storm on day k

0 otherwise

and

(1)

(2)

With the above definitions,

(3)

will be the number of rainy days in a period of length

n days.

Of interest in this discussion is the expected

value of Sn and the variability of Sn. Mathematical

expectation leads to

and

E{Stt) = np, (4)

where Var denotes variance, and p is the "average"

probability of rain, such that
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P = (Hn) £ Pk.
fc-i

(6)
Let THl be the sum when all but two of the Pk — P,

and the other items are Pj = p + € and Pj-n = p — e

for some 7', then:

For example, see Feller (4).

The assertion is that the variance of Sn is maxi

mum in the absence of strong seasonality. That is,

for the same p, the variance of 5n is maximum when

the Pk values do not vary in the season. The proof

of this assertion is complete if we can show that in

equation 5, the second term is minimum when

Pk — P for all k.

Let Tn, be the sum when all Pk — P, then

Tn,= (p + e)* + (p -e)* +

and thus,

= np* + 2c-.

(8)

(8a)

(8b)

Pl = (7)
Clearly, 7V, > Tn, for all € > 0, and the proof for

more than two of the p* = p follows by induction.

H
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STOCHASTIC MODEL OF DAILY RAINFALL >

By P. Todorovic and D. Woolhiser 2

Abstract

An application of stochastic processes for

description and analysis of daily values of precip

itation is presented. The total amount of precipita

tion S(n) during an n-day period is a discrete

parameter stochastic process such that O^S(n)

=sS(n+l). The most general form of the distribu

tion function, mathematical expectation, and

variance of S(n) are determined. The following

special cases for the sequence of daily rainfall

occurrences are considered: (1) Sequence of inde

pendent identically distributed random variables,

(2) sequence of independent random variables,

and (3) Markov chain. In addition, assuming that

certain regularity conditions hold, it has been

proved that S(n) is asymptotically normal The

first passage time of S(n) and the corresponding

distribution function are also considered. A numer

ical example for cases (1) and (3) is presented

assuming that the daily rainfall amounts are expo

nentially distributed.

temperature, winds, and origin of airmasses, are

not taken into account. Therefore, the model can

not provide physical explanations of features of

rainfall phenomena.

Consider a certain period of time which, for

example, consists of n days. To each day of the 71-

day period is associated a random variable rjj

which assumes only two values, 0 and 1, defined as

follows:

{1 if 7th day is wet

0 if 7th day is dry

where j= 1, 2 n. According to this definition,

the number of rainy days Na in this period is obvi

ously equal to the following sum:

(1.1)

, = 0, 1 n).

1. Introduction

In this paper, an attempt is made to develop a

stochastic model for description and analysis of

certain aspects of the rainfall phenomenon utilizing

daily precipitation records. The primary reason

for constructing such a model is the fact that daily

rainfall data are the most readily available and

are sufficient for many hydrological problems.

In this report, we are concerned with merely a

probabilistic treatment of the observed record.

Various climatological and other factors, such as

1 Contribution from the Colorado State University Experiment

Station and the Agricultural Research Service, USDA.

'Associate professor civil engineering, Colorado State Uni

versity, and research hydraulic engineer, USDA, Fort Collins,

Colo.
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Let gv, v — 1, 2, . . ., n denote the daily value of

precipitation of rth rainy day, then the total amount

of precipitation S(n) of this n-day period is given by

(1.2)

where by definition S(n) = 0 if Nn = 0. Since & > 0

for all v= 1, 2, . . ., n it follows that

S(0) «S(2) =s. (1.3)

Provided {£,.} f is a sequence of random variables

for which the central limit theorem holds, then if

certain regularity conditions are satisfied S(n) is

asymptotically normal

Finally, in connection with random variables

Nn and S(n), we will consider the following two


