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All words of the languages we know are stored in the mental lexicon. Psycholin-
guistic models describe in which format lexical knowledge is stored and how
it is accessed when needed for language use. The present article summarizes
key findings in spoken-word recognition by humans and describes how models
of spoken-word recognition account for them. Although current models of
spoken-word recognition differ considerably in the details of implementation,
there is general consensus among them on at least three aspects: multiple word
candidates are activated in parallel as a word is being heard, activation of word
candidates varies with the degree of match between the speech signal and stored
lexical representations, and activated candidate words compete for recognition.
No consensus has been reached on other aspects such as the flow of information
between different processing levels, and the format of stored prelexical and lexical
representations. © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

In order to understand the utterance ‘The sun
began to rise’, listeners must recognize the

individual words in that utterance. This decoding
of the message must be achieved by mapping the
auditory information in the speech input onto stored
representations of words in the mental lexicon.
Although the mapping task is usually perceived to be
effortless for listeners, the underlying decoding process
is in fact very complex. Particularly, three aspects of
spoken language make the mapping difficult. First,
words resemble each other. As languages build large
vocabularies from a limited set of phonemes, words
are necessarily alike (e.g., sun, sum, suck, and such
only differ in their final consonant), and short words
are often embedded within longer ones (e.g., rye and
eye in rise). Second, speech is highly variable. The
acoustic realization of sounds and words is different
for each speaker; speaking style, speaking rate, and
phonological context additionally cause variability in
the signal (e.g., sun is usually pronounced as sum when
followed by a bilabial stop consonant as in began).
Third, speech is transitory and continuous. Not only
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is spoken language distributed in time and fades
quickly from the perceptual field, the acoustic speech
signal is also continuous with no clear boundaries
for individual words. As shown in the spectrogram in
Figure 1, breaks in the speech signal do not necessarily
correspond to word boundaries (e.g., there is no break
between the sun but there is one in began). This
also implies that embedded words can span word
boundaries (e.g., ant is embedded in began to).

Psycholinguistic research investigates how listen-
ers master the decoding of speech. In the following, we
will selectively describe those findings that highlight
some of the most important findings in spoken-word
recognition. Probably the most central finding is that
the comprehension process is incremental. That is,
listeners do not wait until the end of a word or
an utterance before they interpret the input. Rather
they consider multiple word candidates simultane-
ously that are consistent with the incoming speech.
Parallel activation has been shown repeatedly in prim-
ing studies in which a word onset that is consistent
with two words (e.g., /kæp/ can start capital and
captain) facilitates the recognition of semantically
related words for both possible continuations (money
and ship1). Parallel activation has also been found
for embedded words (e.g., bone in trombone facil-
itates recognition of the semantically related rib2,3)
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FIGURE 1 | Waveform and spectrogram of the utterance ‘‘The sun began to rise’’. The horizontal axis represents time and the vertical axis
amplitude for the waveform and frequency for the spectrogram, with greater energy being represented by darker shading. White spaces in the
spectrogram correspond to breaks in the speech signal. The vertical dotted lines are aligned as closely as possible with word boundaries.

and words that are spanning a word boundary.4

More recently, the eye-tracking paradigm has been
used to demonstrate this core process of spoken-word
recognition: when being presented with a display of
objects, listeners take longer to look at a target object
mentioned in an utterance when the display includes
objects with similar names (e.g., later looks to candle
when the display also shows candy5). This suggests
that listeners temporarily consider the two objects
with similar names as possible targets.

Lexical activation is furthermore modulated by
acoustic-phonetic detail. Specifically, the goodness of
match between the speech signal and stored represen-
tations co-determines how strongly word candidates
are activated. It has been shown, for instance, that
soup is recognized more slowly when the formant
transitions following the /s/ are manipulated to be
typical of a different fricative than when they are typ-
ical of /s/.6 Connine et al.7,8 have found in priming
studies that words that mismatch with the signal on
multiple articulatory features are less strongly acti-
vated than words that mismatch on one feature.
But also phonological context influences the effect
of mismatch: [gri:m] can be recognized as green in
the context of green bench where the bilabial stop
onset in bench licenses the place assimilation of the
preceding nasal /n/.9–11 Many more studies using dif-
ferent paradigms have confirmed that the degree of
lexical activation varies in response to fine-grained
acoustic–phonetic information.12–14

Word candidates are not only activated in paral-
lel, they also compete for recognition. That is, a candi-
date’s activation is not independent of the activation
of other candidates, and the more candidates are

active, the more they inhibit each other. Competi-
tion has been shown with a variety of behavioral
paradigms, and it is a generally assumed component
of spoken-word recognition. Listeners in a word-
spotting task, for instance, find it more difficult
to spot short embedded words in word onsets of
longer words than in onsets of nonwords: sack is
harder to spot in /sækr ef/, the beginning of sacri-
fice, than in [sækr ek] which has no possible word
continuation.15 This presumably reflects the competi-
tion between sack and sacrifice. Furthermore, it has
repeatedly been found that lexical decision times are
influenced by the number of similar-sounding words
in the lexicon,16,17 as well as by preceding words
that are phonologically related.18 Although compe-
tition alone can correctly parse an utterance into a
sequence of individual words, listeners use a variety
of cues to likely word boundaries to further help the
segmentation process. These cues include phonotactic
constraints and probabilities,19–22 metrical cues,23–25

and fine-grained acoustic information.26–28

MODELS OF SPOKEN-WORD
RECOGNITION
Early models of word recognition were developed on
the basis of data obtained in reading tasks,29,30 but
were often assumed to account for spoken-language
processing as well. Morton30 introduced in his logogen
model the powerful metaphor of activation, which
conveys that multiple words in our mental lexicon
are responsive to the speech signal. The metaphor of
activation still features in many subsequent models
as it captures the notion of parallel availability that
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behavioral studies have shown to be at the heart of
spoken-word recognition. Only later was it realized
that the temporal nature of the speech signal has far
reaching consequences for the comprehension process,
and that models of spoken-word recognition must
account for the transitory nature of speech, acoustic–-
phonetic and phonologically conditioned variation, as
well as the continuity of the speech signal. Since the
1980s, a number of models have then been developed
specifically for spoken-word recognition.

From a theoretical point of view, current models
of spoken-word recognition differ particularly in two
aspects. First, they vary in their assumptions about the
abstractness of the representations that make contact
with the lexicon, as well as the nature of the lexical
representations themselves. Second, the models differ
with respect to information flow between levels of
the processing system. Different levels are responsible
for different processing stages and are ordered from
relatively low-level acoustic–phonetic processing to
higher stages involving the lexicon. Interactive models
not only allow information to flow from lower to
higher levels but also top-down information flow,
whereas autonomous models assume that flow of
information is unidirectional from the bottom up.

Models not only vary in their theoretical assump-
tions but also in type, and different terms have been
suggested in the literature for the varying types of
models.31 In the present review we use the term verbal
for models that explain the stages and mechanisms of
spoken-word recognition descriptively, the term math-
ematical is used for models that capture the processes
of spoken-word recognition with a mathematical
form, and simulation models are models that aim to
account for the cognitive processes in speech compre-
hension. All mathematical and simulation models are
computationally implemented as computer programs.
Most current models of spoken-word recognition are
computational models. An advantage of computa-
tional models is that they can be used to simulate the
conditions of behavioral research and to compare a
model’s predictions with behavioral results obtained
from human listeners. A criticism of computational
models is that in order to build a functioning model,
theoretical and implementational assumptions need to
be made that are possibly unspecified in the behav-
ioral research.32,33 An example of this are the different
assumptions models make about the form of prelexi-
cal representations (e.g., multidimensional features in
TRACE and phonemes in Shortlist; see also below).
Thus, behavioral findings are not necessarily a direct
validation of how aspects of spoken-word recognition
are incorporated in a computational model (see the
demand for a linking hypothesis in Ref 34).

The Cohort Model
The Cohort model35,36 was the first psycholinguistic
model of word recognition specifically developed
for spoken language. Central to this verbal model
is the temporal aspect of spoken language, that is,
the availability of acoustic–phonetic information over
time. The Cohort model provided many predictions
about the time-course of recognition, and it motivated
substantial research that paved the way for the further
development of models.

In the Cohort model, spoken-word recognition
takes place in three stages: access, selection, and inte-
gration. During access, acoustic–phonetic elements in
the speech signal are mapped onto words in the lex-
icon. Words that match with the input are activated
simultaneously and make up the cohort. This simul-
taneous consideration of multiple candidate words
is central to all subsequently developed models. In
the Cohort model, however, only words that are
aligned with the onset of the input are activated.
For example, the Cohort model assumes that after the
initial 150–200 ms (roughly consistent with the first
two phonemes of a word), all words beginning with
those phonemes will be activated. During selection,
candidate words that mismatch the incoming speech
signal by more than a single feature are removed from
the cohort. For example, on hearing /fε/, all words
beginning with /fε/ are activated; when the subse-
quent sound is /b/, words that do not begin with /fεb/
drop out of the cohort. This process repeats until
(ideally) the cohort is reduced to one member. The
focus on onset overlap implies that words can be rec-
ognized before their offset. February, for instance, can
be recognized by the third segment, because no other
English word begins with /fεb/. During integration, the
syntactic and semantic properties of activated words
are retrieved and checked for integrability with higher
levels. A mismatch with contextual constraints, for
instance, can result in the removal from the cohort.
Sentential context can thus affect the selection stage
in the original Cohort model. The candidate words in
the cohort do not actively compete with one another;
it is just the presence of other candidate words that
forms the recognition process. Segmentation of the
speech stream follows implicitly from the recognition
of individual words: a word’s offset signals the start
of a new word.

A number of behavioral findings challenged the
Cohort model. It had been found, for example, that lis-
teners can recognize words that mismatch acoustically
or contextually,37 but the removal of mismatching
words from the cohort entails that the model can-
not recover from mismatches. Also listeners recognize
frequent words more easily than infrequent ones,38
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but the Cohort model cannot capture word-frequency
effects.

The successor version Cohort II39–41 adjusted its
architecture to account for these findings. In con-
trast to the original version, Cohort II is a fully
bottom-up model. Words that (minimally) mismatch
the input can now enter the cohort and can therefore
be recognized; one part of the solution for handling
mismatches is the introduction of word activation
with selection and activation being dependent on the
goodness of fit with the word input. In addition,
the input to the model is now more fine-grained. To
account for word-frequency effects, candidate words
were assigned resting activation values in Cohort II,
with higher values for frequent than for infrequent
words, which makes frequent words reach the thresh-
old for recognition faster.

The main challenge for the Cohort model, how-
ever, proved to be analyses of on-line dictionaries
that showed that relatively few words can be uniquely
identified before word offset,42 and that listeners do
not recognize the majority of words correctly until
after word offset.43 It was therefore a logical conse-
quence that ensuing models should no longer consider
only word candidates that match in onset with the
speech input but also allow later parts of a word to
be relevant. Allowing the activation of candidates that
match with later parts is also a prerequisite for being
able to handle the segmentation of continuous speech.

TRACE
TRACE44,a was the first computationally implemented
model of spoken-word recognition. It is a localist (i.e.,
one node represents one representational unit) connec-
tionist interactive-activation framework45 with three
layers of nodes: a feature, a phoneme, and a word
layer (see Figure 2). The input to TRACE consists of
multidimensional features, and words are represented
as phonemic strings. TRACE was the first model that
instantiated the activation of multiple word candi-
dates that match any part of the speech input. That
is, nodes are activated in proportion to their degree of
fit to the input, with activation spreading through the
layers (e.g., activated feature nodes spread activation
to matching phoneme nodes and on to word nodes), so
that on hearing the word sun, overlapping words like
under and run are also considered in parallel. More-
over, this mechanism ensures that TRACE is able
to handle ambiguous or distorted speech. Activated
nodes on the phoneme and word layer receive active
inhibition from other nodes compatible with the same
portion of input. The word with the highest activation
will inhibit candidate words with lower activation

during competition, and finally the candidate word
best matching the input will be recognized. Inhibitory
connections on the word level help to solve acti-
vation of multiple word candidates (i.e., the fewer
the word candidates that actively compete with each
other, the easier recognition is). There is no inhibition
between layers in TRACE, and word activation does
not decrease in the presence of mismatching input.
The temporal aspect of speech is handled by TRACE
by duplicating all phoneme and word nodes across
time (e.g., the phoneme node /s/ is duplicated for all
time slices of the word sun, but it is activated the
strongest when the feature nodes representative of /s/
are aligned in time). Feedback connections from the
word layer to the phoneme layer make TRACE an
interactive model. Through these connections, lexical
knowledge can affect perception.

Word-frequency effects were not accounted
for in the original TRACE model. However, they
were later implemented by Dahan, Magnuson, and
Tanenhaus,46 who proposed three possible ways of
incorporating frequency in TRACE: by adjusting
resting-activation levels, by adjusting connection
strengths, or as a post-activation decision bias.

TRACE successfully simulated a wide range of
behavioral findings, including the Ganong effect47

and the finding that lexical information is not used
for phoneme monitoring.48 For simulations, TRACE
relies on a large number of parameters that have to be
set correctly. A strength of TRACE is that the param-
eter settings as determined by McClelland and Elman
have been used for all simulations in the original paper
and were only changed slightly for later simulations.
Thus, TRACE’s parameters do not have to be tweaked
to fit individual data.

Continuous mapping of speech input to lexical
representations as in TRACE predicts activation of
word candidates that overlap in onset earlier than
those that overlap in rhyme with the speech input.
Such a difference in the time course of activation
was indeed found in a seminal eye-tracking study
by Allopenna et al.49 In this study, listeners looked
earlier and more at onset competitors than rhyme
competitors, with the pattern of eye fixations closely
matching the pattern predicted by TRACE. The results
convincingly showed that continuous mapping models
can generate quantitative predictions about the word
recognition process over time.

The two most controversial components of
TRACE are the implausible duplication of the
network,44,50 and the existence of the lexical feed-
back loop.51 In order to recognize words over time,
the entire lexical network in TRACE needs to be
duplicated many times. Consequently, TRACE can
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FIGURE 2 | Recognition process of the word sun by TRACE. For every time slice the entire network is copied, for better visualisation this
duplication is not depicted in the figure. Activation in the lower layers flows upwards to the higher levels to all nodes that incorporate the lower layer
node. Activation from the word layer also flows back to the phoneme layer.

only handle unrealistically small lexicons. Simulations
typically involve lexicons of just a few hundred words,
and use only a limited subset of English phonemes.
Lexical feedback on the other hand, has been argued
to be unnecessary since it cannot speed processing
or improve accuracy,52 and it can furthermore pre-
vent recovery from mispronunciations.53 Proponents
of interactive models have pointed out that lexical
feedback is in line with research showing that lexical
knowledge allows listeners to quickly adapt to speak-
ers with unfamiliar pronunciation,54 but proponents
of feed-forward models have countered that feed-
back for perceptual learning is different from online
feedback as is implemented in TRACE.55,56

Shortlist
Shortlist50 was developed in response to the criticism
of duplication and lexical feedback in TRACE, and

combines aspects of feed-forward models, such as
the phoneme decision model Race57 and Cohort
II, with the competition mechanism of TRACE.
The duplication of the entire network for each
input feature in TRACE is avoided by implementing
Shortlist as a two-stage model in which the generation
of lexical candidates and the competition process
are separated (see Figure 3). The first stage consists
of an exhaustive serial lexical search (although it
is assumed that the search in humans occurs in
parallel), which results in a shortlist of maximally
30 candidate words that match the input processed
so far. Subsequently, these word candidates are
wired into a small interactive-activation network
(the second, competition stage) in which the words
that receive support from the same section of the
input are connected via inhibitory links and compete
with one another. Activation of candidate words is
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FIGURE 3 | Recognition process of the word sun by Shortlist. For every time slice, a new shortlist (indicated with the gray box) is created, which is
subsequently wired into the competition stage. For better visualisation this repetition is not depicted in the figure. Candidate words that overlap
with each other at any position compete with one another. In this example, all candidate words would inhibit one another; however, for better
visualisation not all inhibitory connections are shown.

determined by their degree of fit with the input,
where word activations decrease with mismatching
information. The word with the highest activation will
inhibit candidate words with lower activation during
competition, and finally the candidate word best
matching the input will be recognized. The interactive-
activation network is equivalent to the word layer of
TRACE. The entire process is repeated with each
new phoneme that becomes available, so that there
is a separate shortlist and word layer for each input
phoneme. Shortlist is a feed-forward only model.

The two-stage set-up makes it possible for Short-
list to use a more realistically sized lexicon of over
26,000 words. As in TRACE, words in the lexicon are
represented as phonemic strings, and word candidates
can be activated at any moment in time; word begin-
nings and endings are not explicitly marked. Word-
frequency effects are not accounted for in Shortlist.

Shortlist has two unique features: lexical stress
can constrain word activation (as has been found
for speakers of stress-timed languages such as
English and Dutch, who use the rhythmic dis-
tinction between strong and weak syllables for
segmentation15,23,25,58–60), and activation of candi-
date words is decreased when they leave adjacent
input that cannot constitute a viable word (e.g., since
a single consonant cannot be a word in English,
activation of apple in fapple is reduced61) through
the implementation of the possible-word constraint.
Much like TRACE, Shortlist can make detailed pre-
dictions of word activation over time. Shortlist suc-
cessfully simulated various behavioral findings, such
as the right-context problem43,58,62 as well as results

from cross-model priming studies regarding the time
course of multiple word activation, competition, and
selection.15,59

Shortlist B is a newer version of the original
Shortlist model (ever since called Shortlist A, A for
activation53), which argues that human listeners are
‘optimal Bayesian recognizers’ (p. 357). The theoret-
ical assumptions underlying Shortlist B are identical
to Shortlist A, but the implementation of the model
is fundamentally different. First, Shortlist B is based
on Bayesian principles; word candidates no longer
have word activations, but word probabilities that
were developed using techniques from the field of
automatic speech recognition.33,63 Second, the input
no longer consists of handcrafted phoneme strings,
instead it is a sequence of phoneme probabilities over
three time slices per segment, derived from a large-
scale gating study.64 Shortlist B incorporates word
frequencies as prior probabilities, and is able to handle
mismatches in the input through the computation of
likelihoods. Shortlist B successfully simulates various
behavioral findings, including data on the segmen-
tation of continuous speech43 and word frequency
effects.46,65 Shortlist B can be used to make detailed
predictions on the ‘optimality of the word recognition
process’53 (p. 391).

Fine-Tracker
Fine-Tracker33 was specifically developed to account
for the accumulating evidence that fine-phonetic
detail, as provided in durational and prosodic infor-
mation, is important in word recognition.12,66,67 The

392 © 2012 John Wiley & Sons, Ltd. Volume 3, May/June 2012



WIREs Cognitive Science Models of word recognition

0

1

0

1

0

1

0

1

Nasality

Input

Feature vector representation layer

Word layer

Implemented as a lexical tree with word-initial cohorts 
Matching of feature vectors and lexical representation 

using a probabilistic search

Obtained using artificial neural networks

Acoustic signal

Back vowel

Frication

Sun

Sunday summary

song
fort
folly

n m

Λ

B

s

o o

f

η

... ...

...

Time

FIGURE 4 | Recognition process of the word sun by Fine-Tracker. The acoustic signal is transformed into a sequence of feature vectors over time
by a set of artificial neural networks. At the word layer, words are represented as feature vectors, for better visualisation they are depicted as
phonemes in the figure. Fine-Tracker’s lexicon is implemented as a lexical tree, with ‘B’ as the beginning of the tree. Not all possible paths in the
lexical tree are shown. Each node can be followed by multiple other nodes, indicated with the dotted arrows as examples. The input feature vectors
and the lexical feature vectors are mapped onto one another using a probabilistic word search.

role of subtle phonetic information is problematic for
computational models that assume a discrete, abstract
level between input and lexicon, because the abstract
representations are too coarse to capture phonetic
details. Unlike humans, these models cannot use dura-
tional information to avoid activation of (the slightly
longer) ham in hamster.67

Fine-Tracker is based on the theory underlying
Shortlist, and, like its predecessor SpeM,63 takes the
actual acoustic signal as input. It consists of two mod-
ules (see Figure 4). The first module is an artificial
neural network (ANN) consisting of an input, hid-
den, and output layer, which converts the acoustic

signal into ‘articulatory feature’ vectors, created over
small time steps. The value for each of the articula-
tory features can be regarded as the likelihood of that
articulatory feature. The feature vectors are then the
input to the word recognition module. In the Fine-
Tracker lexicon, words are represented in terms of
articulatory feature vectors. Because these vectors can
take any value between 0 and 1 (which are the canon-
ical values for lexical vectors), contextual phenomena
like assimilation and nasalization of vowels can be
encoded through feature spreading. Fine-Tracker’s
word recognition module uses a probabilistic word
search (dynamic time warping, a standard technique in
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automatic speech recognition) to match the prelexical
feature vectors onto the candidate words in the lexicon
in order to find the most likely sequence of words; mul-
tiple prelexical vectors (one for every 5 ms of speech)
are sequentially mapped onto a single lexical feature
vector. For each of the prelexical vectors the degree of
fit with the lexical vector is calculated and affects the
likelihood of a word. The number of feature vectors
can be set for each phoneme or word separately in the
lexical vector thus ensuring that the model can deal
with durational information. In this way, lexical rep-
resentations can vary in duration (e.g., the duration of
‘ham’ in ham and hamster). Fine-Tracker incorporates
word and word co-occurrence frequencies. Similar
to Shortlist B, multiple activations, competition, and
selection are thus implemented as a probabilistic word
search. Words can start and end at any time, and there
is no explicit segmentation process. Unlike in TRACE
or Shortlist, candidate words do not actively suppress
or inhibit each other. The output of the word recog-
nition module consists of an ordered list of the best
matching hypothesized parses.

A strength of Fine-Tracker is that it can be
tested with real speech rather than an abstract form
of input representation as is used by other models of
word recognition. Moreover, the activation flow of
candidate words over time in Fine-Tracker has been
successfully linked to word activation in eye-tracking
studies33 that examined the use of durational cues in
word recognition.67,68 A shortcoming of real-speech
models is that due to limitations of the speech con-
version module, i.e., the imperfect conversion of the
speech signal to prelexical representations, such mod-
els are currently only able to use a small subset of a
language’s vocabulary.63,69 Obviously, if the speech
conversion module fails, everything downstream will
as well. Better speech conversion modules are there-
fore of paramount importance in the development of
better real-speech models.

NAM/PARSYN
The neighborhood activation model (NAM65) is a
mathematical model of spoken-word recognition. It
was developed to examine effects of number of simi-
lar words and their word frequencies on spoken-word
recognition. In NAM, the input is assumed to activate
a set of words (stored as acoustic–phonetic patterns)
that differ maximally by one phoneme from the input.
The difference can be by deletion, addition, or sub-
stitution. Activation is determined by degree of fit
with the input; that is, NAM computes a frequency-
weighted neighborhood probability for each word.
The acoustic–phonetic patterns then activate word

decision units. Activation of word decision units is
determined by activation of the acoustic–phonetic pat-
terns, by higher-level lexical information (i.e., word
frequency, which is calculated by weighting each
neighbor in the metric by its log frequency), and
by overall level of activity in the entire system of
word decision units. Decision values are computed
on the basis of a frequency-biased, activation-based
version of R.D. Luce’s choice rule.70 The choice rule
in NAM approximates the competition process. A
word is recognized if its decision value is above a
certain threshold. NAM makes several predictions
about the effects of the number of similar words
and their word frequency on spoken-word recogni-
tion, for which there now is considerable evidence
from behavioral studies.42,65,71,72 As such, NAM had
a large impact on theories of spoken-word recog-
nition and research on spoken-word recognition in
general, as studies on spoken-word recognition now
often control for neighborhood density.73

PARSYN18 is the connectionist instantiation of
NAM. It consists of three levels: an input level of
position-specific allophones, a level of allophones,
and a word level. Like in the previously discussed
connectionist models, activation spreads bottom-up
through the levels. Competition is implemented as
inhibitory connections between the words on the word
level. Word boundaries are explicitly marked in the
input. Unlike TRACE, Shortlist, and Fine-Tracker,
NAM and PARSYN are only able to recognize words
in isolation, but not in continuous speech. PARSYN
successfully replicated the findings NAM was able to
simulate and extended on that, e.g. with the simulation
of findings from priming studies which showed
that phonetic priming does not depend on target
degradation, but that it affects processing times.18

Minerva2
Minerva2 is an episodic (or exemplar) model of
memory.74 Whereas all earlier described models
assume abstract prelexical and lexical representations,
an episodic theory of spoken-word recognition
considers acoustic variability due to speaking rate
or voice characteristics, for instance, an integral part
of the theory and keeps this information in memory.
Goldinger75 used Minerva2 to investigate an episodic
view of spoken-word recognition, motivated by the
fact that the speech signal is highly variable (i.e., the
lack of invariance), and that listeners’ good memory
for surface forms of words is well attested.76 Minerva2
simulates episodic memory by storing numerous,
independent memory traces for every word. When
a new word is presented at the model’s input (the
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‘probe’ in the form of a vector of numeric elements),
it is compared to all traces in memory. Activation of
the traces is then dependent on the degree of fit with
the probe. Subsequently, an ‘echo’ is retrieved, which
constitutes essentially a weighted composite of all
activated traces, and which may contain information
not present in the probe, such as its word class. The
intensity of an echo corresponds to word activation in
abstract models. In Minerva2, words are represented
by vectors of numeric elements. Note that although
Minerva2 is a pure episodic model, it can mimic
abstract behavior due to the blending of probes
and stored traces, forming experience. Repeated
presentation of multiple tokens of a word will thus
result in an echo that mainly captures common
aspects of traces (thereby eliminating the idiosyncratic
characteristics stored in individual traces).

The issue of feedback from the lexical to the
prelexical level does not arise, because episodic models
like Minerva2 do not have an intermediate level
between input and lexicon. Abstract intermediate
representations have been argued to render word
recognition more efficient by avoiding redundancy
at the lexical level: when acoustic knowledge about
a sound is stored prelexically, it need not be stored
separately for every word containing that sound on
the lexical level.56,77,78 However, recoding the speech
signal into abstract representations is very difficult due
to the high variability and complexity of the speech
signal.

Because of its nature, Minerva2 incorporates
fine-grained speaker-specific information and uses it
for word recognition. Minerva2 correctly predicts for
instance the tendency of participants in a shadowing
task to imitate the acoustic pattern of the word they
have to repeat,75 and the sensitivity of listeners to
words spoken in the same voice and different voices.79

The model offers currently no solution for
recognizing continuous speech; episodes are always
single words, and it is not clear how multiple words
in an utterance could be identified. Furthermore, no
mechanism has been suggested for how the similarity
mapping between speech signal and stored memory
traces could be achieved (without reducing the surface
variability in some form).

Distributed Cohort Model
The Distributed Cohort Model (DCM80) works from
the key assumption of connectionist theory that
information is represented in a distributed manner81,82

and as such deviates from all previously discussed
models in that it combines recognition of form and
meaning. DCM is a connectionist model, but unlike

TRACE, Shortlist, and PARSYN, information is
represented in a distributed manner, that is, there is no
one-on-one mapping of word and node in the model.
Importantly, nodes in DCM stand for phonological
and semantic features of words. The model has an
input layer which takes binary phonetic features as
input and a hidden layer, which is connected to two
sets of output units, one for the phonological features
of a word and one for semantic features.

Because DCM is a distributed model, explicit
intermediate levels of representation are not needed;
instead DCM regards the speech recognition process
as a direct mapping from phonetic features onto dis-
tributed abstract representations of both form and
meaning simultaneously. As in the previous models,
the mapping process is based on similarity. The goal of
the model is not to explicitly recognize the phonologi-
cal form of words, but rather to retrieve phonological
and semantic information from speech input. Imme-
diate access to semantic information in continuous
speech can help, for example, to reduce the activation
of semantically implausible candidate words.83

Since all words are represented with the same
set of nodes in DCM, there is no explicit activation of
a candidate word and no direct competition between
them. Instead, activation and competition are implicit
in the blend formed by the patterns of the candidate
words. Word activation is inversely related to the
distance of the model’s output and the target word’s
representation. Competition in DCM is mediated
by the number of candidate words in the set; the
higher the number of candidate words, the lower
their activation. Semantic information starts out as a
blend of the semantic vectors of all candidate words.
As the number of candidate words is reduced with
more input being available, the blend consists of the
semantic vectors of fewer candidates and eventually
results in the vector activation of the remaining single
word candidate.

Word beginnings and endings are not explicitly
marked in the input. The binary input features are
chosen such that fine-grained information regarding
the representation of vowel transitions can be
captured, which makes DCM able to simulate the
effect of mismatching vowel transitions.14 Word
frequency can be taken into account through repeated
presentation of the word during the training phase of
the model.

One prediction of DCM is that word beginnings
with few completion possibilities (e.g., /ga:m/ can
only be completed as garment) should exhibit
stronger semantic activation than words with many
possibilities (e.g., /kæpt/ can start captive and captain)
since for the later semantic information is still a blend
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of words. This is exactly what Gaskell and Marslen-
Wilson found in a priming study.11 It has been argued,
however, that breaking the comprehension process
into separate stages is cognitively more economical
than a combined mapping of form and meaning as
put forward in the DCM.52,84 Additionally, evidence
from priming studies supports the assumption that
phonological and conceptual representations are
possibly separate and to a certain extent independent
components of word recognition.85

SUMMARY AND CONCLUSION
In the previous section, we described the basic
architecture of a number of influential models of
spoken-word recognition. We furthermore tried to
point out for each model where its strengths and
weaknesses lie. Table 1 summarizes the main aspects
of the models providing a quick overview of the
commonalities and differences between the models.

The list of models is however not complete.
The focus of our model overview is on models of
lexical processing, we therefore omitted models with
an emphasis on speech sound perception such as the
LAFS model,87 the Laff model,88 ARTWORD,89 and
FLMP.90 Although lexical aspects can act a part in
these models, the accounts usually give no explicit
description of word recognition.

Furthermore, there are two relevant issues that
we have not explicitly discussed in the model overview:
semantic and morphological processing. With the
exception of DCM,80 the models in Table 1 are con-
cerned with the recognition of word form and not of
meaning. On the other side of the spectrum, numerous
models exist that are mainly concerned with meaning
and not with phonological form. In general, these
models explain how meaning is organized in the men-
tal lexicon and less which mechanisms are used to
access meaning. Classical examples of semantic mod-
els are the hierarchical network model,91 the semantic
feature model,92 the spreading activation model,93

and the ACT model.94 The question of whether
phonological representations of words are tantamount
to semantic representations is also a matter of debate
in the field of spoken-word recognition. A typical
empirical approach to this question is to compare
form priming with semantic priming.85 Based on these
studies, it has been argued that phonological forms
are separate from conceptual representations, and that
during word recognition phonological representations
are activated first, but that activation cascades through
to conceptual representations as soon as possible (but
see e.g., Ref 95).

The main question with respect to morpho-
logical structure in lexical activation is whether

morphologically complex words are stored as whole
forms that do not reflect their morphological com-
plexity (full listing96), as multiple morphemes with
separate access representations (full parsing97), or
that storage depends on the regularity of the mor-
phological forms (dual-route98,99). Although most of
the research on morphology has been done with read-
ing, a considerable amount of research by now has
been conducted in the auditory domain (see Refs
100 and 101 for reviews); form priming102 and word
reconstruction103 are typical tasks to investigate mor-
phological processing in the auditory domain. Baayen,
McQueen, Dijkstra, & Schreuder104 proposed a model
in which phonological representations of full forms, as
well as of stems and affixes are all activated in parallel;
such an account is in line with the competition-based
models of spoken-word recognition described above.

Having summarized how standard models of
spoken-word recognition relate to models of semantic
and morphological processing, we want to turn now
to the question of where the field goes from here.
Obviously the remaining disagreement on flow of
information (feed-forward versus top-down) and form
of stored representations (abstract versus episodic)
must be settled. With respect to flow of information,
empirical evidence is needed that shows whether lex-
ical knowledge can directly influence pre-decisional
prelexical processing or not; researchers on both sides
have acknowledged that it is difficult to develop stud-
ies that can convincingly make this point (for both
sides105,106). With respect to form of representations,
it has become obvious that both purely abstract mod-
els and purely episodic models are incomplete, and
the challenge for the future is to develop a hybrid
approach that combines both abstract and episodic
representations107,108; an example of such a comple-
mentary system account can be found in Norman
and O’Reilly,109 and see also an account of Connine
and colleagues in which abstract lexical representa-
tions encode phonological variants based on variant
frequency.110

Models of spoken-word recognition have often
been developed with a focus on particular aspects
of lexical processing: the size of the phonological
neighborhood in NAM,65 for example, or lexical
segmentation in Shortlist.50 Other parts of the models
are frequently underspecified. This makes it difficult
to assess them. Not only is it hard to determine
how well the models can simulate specific empirical
findings, judging whether the theoretical assumptions
in the model are consistent with an effective
complete recognition system is nearly impossible.32,33

For example, many models make the simplifying
assumption that the word recognition process receives

396 © 2012 John Wiley & Sons, Ltd. Volume 3, May/June 2012
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a sequence of abstract units (typically phonemes or
features) as input rather than actual spontaneous
speech. If this simplifying assumption is abandoned,
it could have serious consequences for the way other
components of the model work. What is therefore
needed is a unifying theory that accounts for all aspects
of spoken-word recognition by human listeners.

NOTE
aThe actual name of the model is TRACE II. TRACE
I111 focused on the conversion of digitized speech into
a set of phonetic features, and was never connected
to TRACE II. However, TRACE is commonly used to
refer to the model of spoken-word recognition.
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