
 Open access Journal Article DOI:10.1109/MC.2009.327

Models@ Run.time to Support Dynamic Adaptation — Source link

Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey ...+1 more authors

Institutions: French Institute for Research in Computer Science and Automation, University of Rennes, SINTEF

Published on: 01 Oct 2009 - IEEE Computer (IEEE Computer Society)

Topics: Software system, Adaptation (computer science), Adaptive system and Model-driven architecture

Related papers:

 Models@ run.time

 The vision of autonomic computing

 Self-adaptive software: Landscape and research challenges

 Rainbow: architecture-based self-adaptation with reusable infrastructure

 Software Engineering for Self-Adaptive Systems: A Research Roadmap

Share this paper:

View more about this paper here: https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-
ma3vddkrz5

https://typeset.io/
https://www.doi.org/10.1109/MC.2009.327
https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5
https://typeset.io/authors/brice-morin-4sxcjjko1p
https://typeset.io/authors/olivier-barais-5a4yl0wsmz
https://typeset.io/authors/jean-marc-jezequel-apbvkuseda
https://typeset.io/authors/franck-fleurey-4yqza0eb99
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/institutions/sintef-1kkm7tyd
https://typeset.io/journals/ieee-computer-26ejlmaq
https://typeset.io/topics/software-system-27udaxu5
https://typeset.io/topics/adaptation-computer-science-3b52w1xi
https://typeset.io/topics/adaptive-system-26x66ddx
https://typeset.io/topics/model-driven-architecture-1bxx1ars
https://typeset.io/papers/models-run-time-4mynmvkgjv
https://typeset.io/papers/the-vision-of-autonomic-computing-oufkhpilif
https://typeset.io/papers/self-adaptive-software-landscape-and-research-challenges-4rt6vhdmq2
https://typeset.io/papers/rainbow-architecture-based-self-adaptation-with-reusable-4zcxj7qqyx
https://typeset.io/papers/software-engineering-for-self-adaptive-systems-a-research-3vvz0zex5m
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5
https://twitter.com/intent/tweet?text=Models@%20Run.time%20to%20Support%20Dynamic%20Adaptation&url=https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5
https://typeset.io/papers/models-run-time-to-support-dynamic-adaptation-ma3vddkrz5

HAL Id: inria-00477529
https://hal.inria.fr/inria-00477529

Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models at Runtime to Support Dynamic Adaptation
Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, Arnor

Solberg

To cite this version:
Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, Arnor Solberg. Models at Runtime to
Support Dynamic Adaptation. Computer, IEEE Computer Society, 2009, pp.46-53. ฀inria-00477529฀

https://hal.inria.fr/inria-00477529
https://hal.archives-ouvertes.fr

COMPUTER 44

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

self-adaptive systems. A DAS can be conceptualized

as a dynamic software product line in which vari-

abilities are bound at runtime.1 Similar to traditional

SPLs,2 the number of possible configurations of a DSPL

grows combinatorially with the number of variation

points and variants. In an SPL, products are derived by

human decisions and are totally independent; a DSPL

also must handle the migration paths between those

configurations.

The configurations produced by a DSPL are thus highly

dependent: The system should evolve at runtime between

its current configuration (source) and a new configuration

(target) through a safe migration path (transition). Several

stimuli trigger these transitions: context changes, user

preferences, and so on. The DSPL must provide support

for describing the adaptation logic.

A DSPL’s execution can be abstracted as a highly con-

nected state machine,3,4 where the states are the possible

system configurations and the transitions the migration

paths. Fully specifying this state machine lets the designer

perform extensive simulation, validation, and testing of the

system’s dynamic variability before actually implementing

the system.5 Model-driven engineering (MDE) techniques

then make it possible to fully generate the adaptive sys-

tem’s code4 from the state machine specification.

T
oday’s society increasingly depends on soft-

ware systems deployed in large companies,

banks, airports, and so on. These systems must

be available 24/7 and continuously adapt to

varying environmental conditions and require-

ments. Such dynamically adaptive systems exhibit degrees

of variability that depend on user needs and runtime fluc-

tuations in their contexts. Engineers can develop DASs by

defining several variation points. Depending on the con-

text, the system dynamically chooses suitable variants to

realize those variation points. These variants may provide

better quality of service (QoS), offer new services that did

not make sense in the previous context, or discard some

services that are no longer useful.

DASs range from small embedded systems to large

systems of systems and from human-driven to purely

An approach for specifying and executing

dynamically adaptive software systems

combines model-driven and aspect-orient-

ed techniques to help engineers tame the

complexity of such systems while offering

a high degree of automation and validation.

Brice Morin, INRIA

Olivier Barais and Jean-Marc Jézéquel, INRIA and IRISA, University of Rennes

Franck Fleurey and Arnor Solberg, SINTEF ICT

MODELS@

RUN.TIME

TO SUPPORT

DYNAMIC

ADAPTATION

45OCTOBER 2009

metamodels supported by design tools, such as graphical

or textual editors and validators or simulators, to assist in

modeling the DSPL at design time. Models conforming to

these four metamodels are the main data manipulated by

the runtime infrastructure responsible for dynamically

adapting component-based applications at runtime. These

models provide a high-level basis for reasoning efficiently

about relevant aspects of the system and its environment

and offer enough details to fully automate the dynamic

adaptation process. It is possible to make the design speci-

fications evolve at any time, before initial deployment or

while the system is already running.

MODEL-ORIENTED ARCHITECTURE
Figure 1 shows the architecture for managing DSPLs at

runtime, comprising three layers:

•	 DiVAStudioOnline, a platform-independent layer that

only manipulates models;

•	 CausalConnection, a platform-specific layer that links

the model space to the runtime space; and

•	 BusinessArchitecture, an application-specific layer that

However, this approach suffers

from two main drawbacks related

to adaptation management and

evolution management:6

•	 Explosion in the number of ar-

tifacts. Even when the designer

specifies the state machine at

a high level of abstraction, the

number of configurations and

transitions to be described

grows rapidly. For example,

in combining the features

of one dynamic customer

relationship management

(DCRM) system, we counted

92,160 configurations;7 this

leads to 92,160 × 92,159 =

8,493,373,440 possible tran-

sitions and triggers among

these configurations. Vali-

dating all these artifacts can

soon become a problem: The

number of configurations ex-

plodes in a combinatorial way

with regard to the number of

variants, and the number of

transitions is quadratic with

regard to the number of con-

figurations. While it is still

possible to specify this state

machine for simple adaptive systems, this rapidly

becomes a daunting task in the case of large systems

comprising a wide range of variation points.8

•	 Evolution of the adaptive system. Once the adaptive

system is deployed and running, it can evolve based

on new user needs, detection, and correction of limi-

tations or security weaknesses. Evolving an adaptive

system involves dynamically changing the adaptation

state machine: adding and removing states and transi-

tions. Applying a classic MDE approach to generate all

the application code from higher-level specifications

would be impractical: The system would have to be

stopped and decommissioned before a new system—

based on modifications to the state machine—could

be deployed and started. This would make the system

unavailable for a long period, which in many cases

would be unacceptable.

In our work on the EU-ICT DiVA project (Dynamic Vari-

ability in complex, Adaptive systems; www.ict-diva.eu), we

address these two drawbacks by using software models

at runtime as well as at design time. We rely on four

Architecture

Architecture

Architecture

DSPL
DSPL

Reasoning

Goal-
based

reasoning

Aspect
model
weaver Configuration

invariant
checker

DiVAStudioOnline

Context

Context

Runtime events

Runtime events

Factory
servicesComplex

event
processing

CausalConnection

Configuration
manager

BusinessArchitecture

Notifier
factory

Bandwidth
sensor

User
interface
factory

Access
point

sensor

DSPL

Figure 1. Runtime architecture to support dynamic software product lines.

COVER FE ATURE

COMPUTER 46

model, with a naming convention to refer to architectural

fragments, or aspect models, refining the features. In this

way, engineers can exploit any existing feature model

tools—graphical editors, checkers, and others—with no

modification.

Context. This model specifies the system’s environ-

ment. A set of context variables specifies those aspects of

the environment relevant to adaptation. At runtime, the

variable values are provided by context sensors, and these

may trigger a system reconfiguration.

Reasoning. This model describes selection of the

DSPL’s features according to context. Several formal-

isms exist such as event-condition-action (ECA) rules9 or

goal-based optimization rules.7 We do not impose any

particular reasoning model. An ECA model will typically

describe, for particular contexts, which features to select.

A goal-based model will typically describe how features

impact QoS properties—using, for example, help and hurt

relationships10—and specify when QoS properties should

be optimized, for example, when a property is too low.

defines factory components, which simply provide

services to instantiate multiple component instances.

This layer is not part of the infrastructure for manag-

ing DSPLs.

Five components—a complex event processor, a goal-

based reasoning engine, an aspect model weaver, an

online configuration checker, and a configuration man-

ager—interact by exchanging models conforming to the

metamodels.

Metamodels
The components exchange four kinds of metamodels:

DSPL, context, reasoning, and architecture.

DSPL. This is a feature model that describes the sys-

tem’s variability. Commonly used in the SPL community,2

feature models describe hierarchies with mandatory fea-

tures, options, alternatives—n among p choices, and so

on—as well as constraints (requires, excludes) among

features. The DSPL model is a regular feature diagram

I n DiVA, we leverage aspect-oriented modeling (AOM) techniques

to refine features and automatically build complete configurations

before the actual adaptation. A base model refines the system’s

commonalities—elements present in all the configurations—as an

architecture made of components and the connections between

them, or bindings. Aspect models refine the system’s variants by

specifying their precise architectures: Each model is an architectural

fragment that contains all the information needed to be easily

plugged into the base architecture.

As Figure A shows, an aspect model consists of three parts:

•	 Advice	model.	This architectural fragment specifies what is

needed to realize the associated variant. An advice model

need not be fully consistent. The base model should bring

the missing elements needed to make the advice model con-

sistent when weaving the aspect.

•	 Pointcut	 model.	 This architectural fragment specifies the

components and bindings that the aspect model expects

from the base model to be woven—that is, where the aspect

should be woven. The most precise is the pointcut model, the

smallest is the set of potential places where the aspect can be

woven, and vice versa. For example, if a component’s type is

not specified in the pointcut model, this component would

be matched by any of the base architecture’s components,

irrespective of its real type.

•	 Composition	 protocol.	 This describes how to integrate the

advice model into the pointcut model. When weaving the

aspect, the places matching the pointcut model automati-

cally contextualize the composition protocol to actually

weave the aspect into the base model.

 Refining features as aspect models allows the designer to vali-

date the adaptive system one step further. Since AOM relies on a

strong theoretical background, such as graph theory, it is possible

to perform analysis—for example, critical pair or confluence anal-

ysis—to detect previously undetected aspect dependencies and

interactions.1 The designer can update the DSPL and reasoning

models’ constraints to avoid invalid interactions. It is also possible

to refine the simulation step by actually producing, via aspect

weaving, and validating some detailed configuration correspond-

ing to foreseen contexts.

Reference
 1. P. Jayarman et al., “Model Composition in Product Lines and

Feature Interaction Detection Using Critical Pair Analysis,”

Proc.	10th	Int’l	Conf.	Model-Driven	Eng.	Languages	and	Systems

(MoDELS 07), LNCS 4735, Springer, 2007, pp. 151-165.

DESIGNING FEATURES AS ASPECT MODELS

Driving notifier Voice channel

Address DB

Calendar

Pointcut model

Advice model

Forward

telephony

Figure A. Aspect model. An advice model specifies what

is needed to realize the associated variant, a pointcut

model specifies the components and bindings that the

aspect model expects from the base model to be woven,

and a composition protocol describes how to integrate the

advice model into the pointcut model.

47OCTOBER 2009

metamodels for the DSPL and contexts. We previously

used ECA models to specify the adaptation logic;5 we are

now using a goal-based optimization model. Once a de-

signer has chosen the four metamodels, they strongly type

the architecture.

Leveraging the models
The sequence diagrams shown in Figure 2 specify the

interactions between the architectural components. The

key idea is to maintain a context model and an archi-

tectural model that both synchronize with the runtime

system.

The context model is updated when relevant changes

appear in the running system’s execution context—for ex-

ample, CPU load, free memory, or bandwidth. This model

is not causally connected with the runtime system—it

reflects what happens at runtime (in the execution con-

text), but it should not be directly modified to adapt the

running system. On the contrary, the context model serves

as a basis for reasoning about the environment and deter-

mining a new configuration more adapted to the current

context, if necessary.

The architectural model is updated when the running

system evolves—that is, when components and bindings

are added or removed. Note that this model is not directly

manipulated to adapt the running system. On the contrary,

the aspect model weaver component produces another ar-

chitectural model (configuration) when the system should

Architecture. This model

describes component-based

a rchitectures. Designers

can use any metamodeling

framework, such as the Uni-

f ied Model ing L a nguage

(UML) or Service Compo-

nent Architecture (SCA), or

any architecture description

language, to describe the archi-

tecture. Because our dynamic

adaptations are currently

reconfigurations, our focus is

on components and bindings,

concepts that are present in

metamodels. In practice, we

have defined our own mini-

mal metamodel11 to reduce

memory overhead at runtime.

Other metamodels map to our

metamodel via model trans-

formations in Kermeta (www.

kermeta.org).12

The architecture model re-

fines each leaf feature of the

DSPL model into an archi-

tectural fragment. As the “Designing Features as Aspect

Models” sidebar describes, we use aspect-oriented model-

ing (AOM) techniques to design and compose features into

a core model containing the mandatory elements.

Designing the models
Engineers design these models offline before the initial

system deployment or while the system is already running,

but independently of the running system, and leverage

them at runtime to drive the dynamic adaptation process.

The quality and correctness of models conforming to these

metamodels are crucial and must be checked as early as

possible. Since the components of the DiVAStudioOnline

layer exchange only models conforming to these four

metamodels, it is very easy to validate the adaptation logic:

A test component simply produces a set of input models,

and another test component analyzes the models produced

by the DiVAStudioOnline components. For example, a test

component provides a DSPL model, a reasoning model,

and a scenario (sequence of context models) to simulate

the system’s adaptation logic,5 and another test component

checks the produced configurations.8 These configura-

tions must ensure the constraints (cardinalities, requires/

excludes) defined in the DSPL model and include features

suitable to the reasoning model.

 The choice of the four metamodels, which type the

interaction between the components, is open. We cur-

rently use SCA to design architectures and two ad hoc

opt

alt

s:offline DiVA
studio

r:goal-based
reasoning

r:goal-based
reasoning

m:configuration
manager

cep: complex event
processing

cl:context
listener

bwidth CE:context
element

load DSPL
(DSPL model)

load reasoning
(reasoning model)

load configuration (architecture model)

(a)

(c)

(b)

notify
(value) set value

(bandwidth.HIGH)
notify ()

[bandwidth = 43]

[bandwidth = 48]

[bandwidth = 46]

[bandwidth = 51]

r:goal-based
reasoning

m:configuration
manager

c:configuration
checker

w:aspect model
weaver

notify

reason

load DSPL(derived DSPL model)

is invalid(derived DSPL model)

build product

check (architecture model)

load configuration (architecture model)

Figure 2. Interactions between the components: (a) initialization; (b) monitoring; (c)

reasoning, derivation, and dynamic adaptation.

COVER FE ATURE

COMPUTER 48

any application, as well as user-defined invariants, which

depend on a given application. If the configuration is valid,

the aspect model weaver then sends the configuration to

the configuration manager.

Configuration manager. This component receives

a configuration from the aspect model weaver. It is

responsible for configuring and reconfiguring the busi-

ness architecture. To create and bind components, the

configuration manager calls the services offered by the

factories (component types).8 This component maintains

a model representing the running system by using the

introspection and observation mechanisms provided by

the platform. When a new configuration is produced, it

compares this new configuration (model) with the current

model and deduces a safe sequence of reconfiguration

commands. These commands consist of adding or remov-

ing components or binding.

DYNAMIC ADAPTATION IN ACTION
We illustrate our approach using the DCRM system de-

veloped by CAS Software, our industrial partner in the

DiVA project. A simplified version of the system is freely

available at www.ict-diva.eu/DiVA/results/tools-and-proto-

types/demo.zip/view.

The DCRM’s objective is to provide accurate client-re-

lated information depending on the context. For example,

when the user is working in his office, the system can

notify him by e-mail, via a rich Web-based client. He can

also access critical resources because he is connected to

a trusted network. When the user is driving his car to visit

a client, messages received by a mobile or smart phone

should notify him of information that is either critical or

related to the client. If he is using a mobile phone, he can

be notified via the short message service or audio/voice,

and Java Telephony API forwards phone calls from his

office. If he is using a smart phone, he can also use a light-

weight Web client.

Figure 3a shows two reconfiguration scripts generated

on the fly. Figure 3b shows the system interface, which

consists of two parts:

•	 Monitoring. In the left part of the interface (green rect-

angle), the user can simulate different environmental

variables. Actual runtime sensors are replaced by a

check box to simulate Boolean or enumeration (for

example, the access point) or sliders to simulate con-

tinuous values (for example, the bandwidth). When

these elements are activated, they generate exactly

the same kind of events as the real sensors. The user

thus simulates the environment in a transparent way

for the complex event processing component.

•	 Reasoning. The right part of the interface (orange rect-

angle) graphically represents the DSPL model. Three

main features comprise the system: notification, user

adapt, depending on the current context model. This con-

figuration is then checked, and the causal connection layer

finally realizes the dynamic adaptation,8 without having to

write low-level and error-prone reconfiguration scripts. If

the new configuration is not valid, the aspect model weaver

component simply discards it and does not proceed to the

causal connection layer. Indeed, since the running system

has not yet been adapted, it is not necessary to perform

a rollback.

Components
Each of the five architectural components has a clear

role and well-defined interactions with other components.

Complex event processor. This component observes

runtime events generated by probes integrated into the

system. When a sequence of events matches a query,

expressed in the Event Query Language (EQL), it notifies

an observer. This observer knows exactly which model

element of the context model it has to update. When

this model element is updated, it notifies the goal-based

reasoning component. Complex event processing com-

ponents, such as Esper (http://esper.codehaus.org), allow

defining advanced queries on runtime events with time

windows and aggregation functions—min, max, average,

and so on. Unlike hard thresholds, these queries simplify

dealing with permanent context oscillations, for example,

by defining thresholds on average values computed on a

time slot.

Goal-based reasoning engine. When the context

model is updated, this component computes a derived

DSPL that only contains the mandatory features and

a selection of variable features, adapted to the current

context. Although we use a goal-based reasoning model,

other reasoning models are available. This component is

initialized with a DSPL model and a reasoning model. At

any time, it is possible to update the DSPL or the reason-

ing model: add, remove, or update features or reasoning

rules, and so on.

Aspect model weaver. This component receives

a derived DSPL from the reasoning engine. For all the

features of this DSPL, the weaver composes the corre-

sponding aspect to produce a global configuration. This

configuration is then checked before it is submitted, if

valid, to the configuration manager.

Configuration checker. This online component checks

that aspect weaving obtains a consistent configuration.8

It checks general invariants, which should be enforced in

The DCRM’s objective is to provide

accurate client-related information

depending on the context.

49OCTOBER 2009

below 40 percent, it updates the context model with band-

width = low. Note that if the bandwidth’s value oscillates

around 40 percent, the context model will remain stable—

bandwidth is low. In Figure 3, this value is currently 32

percent. The reasoning component thus decides to switch

from the default ranking strategies to the low bandwidth

strategy. Similar to the previous reconfiguration, this

generates a script, as illustrated in the bottom part of

Figure 3a (purple rectangle).

RELATED WORK
Several other research approaches use architectural

models to support dynamic adaptation and software

evolution. A decade ago, Peyman Oreizy and colleagues6

promoted an architecture-based approach to self-adaptive

software systems. They stressed that an adaptive system

should be open to introducing new behaviors and adapta-

tion plans at runtime.

David Garlan and colleagues13 also used architectural

models for system monitoring and reflection. Specifically,

they monitored the executing system to translate observed

events to events that construct and update an architec-

tural model that reflects the actual running system. They

found that detected inconsistencies could be used to effect

runtime adaptations to correct certain type of faults. Simi-

interface, and ranking. For each feature, the system

defines several subfeatures. For example, the system

can adapt to provide different notification mecha-

nisms: office, driving, or meeting. An aspect model

refines each of these subfeatures. The current con-

figuration, determined by the goal-based reasoning

component, is displayed in green.

In the initial context, the user is working in his office.

His electronic calendar notifies him that he must visit a

client in 30 minutes. When the user logs off his PC and logs

on to his smart phone, the reasoning engine computes a

new configuration corresponding to a mobile environment.

The system replaces the office notifier by a driving noti-

fier, and the user interface switches from rich to reduced.

Weaving the associated aspect produces a new configura-

tion. After validating this new configuration, the system

automatically generates a reconfiguration script and ex-

ecutes it at runtime, as shown in the top part of Figure 3a

(red rectangle).

We assume that the user encounters bandwidth limita-

tion. As the monitoring sequence diagram (Figure 2) shows,

when the value exceeds 40 percent of the maximum band-

width value for 10 seconds, the system updates the context

model with bandwidth = high. As soon as the value is

Figure 3. Using the DiVA architecture to manage CAS Software’s DCRM system: (a) two reconfiguration scripts generated on the

fly; (b) the interface’s monitoring and reasoning components.

(a)

(b)

COVER FE ATURE

COMPUTER 50

disabled people remain at home.8 In this DAS, dynamic

adaptation is mostly driven by humans and depends on

such factors as the evolution of physical handicaps and

the installation of new devices. The number of possible

configurations (1014) and transitions (1028) in this system

literally explodes. In the context of the DiVA project, we

will also apply our approach to an airport crisis manage-

ment system that should adapt to different crisis types

and deal with different roles—for example, airport staff,

firemen, and medical staff.

Our tool-supported approach relies on a clear and

modular architecture in which components exchange

models related to the system’s variability, environment,

and architecture, and variability is dynamically bound

to the context. We do not impose specific metamodels

to describe these models. In the DiVA project, we have

reused some existing metamodels and designed other

ones, and we have used the OSGi platform to implement

this architecture.

At design time, engineers can avoid designing by hand

all of the system’s possible configurations and transitions

by explicitly defining a DAS as a DSPL. At runtime, the

system analyzes the context and explicitly constructs a

suitable configuration using AOM techniques; it validates

this configuration using traditional MDE techniques: in-

variant checking, simulation, and so on. Finally, the system

automatically generates a safe reconfiguration script to

actually adapt the running business system. If the pro-

duced configuration is not consistent, the system simply

discards the configuration and derives a new one. Since

the running business system has not been adapted yet,

it is not necessary to perform a rollback. This process is

open to evolution—designers can make the DSPL evolve

by seamlessly adding or removing variants, constraints,

rules, and so on.

In future work, we plan to improve our reasoning

framework and the dynamic adaptation process. In a

critical context, the system must react quickly—it can, for

example, choose a predefined, prevalidated configuration.

In a noncritical context, the system can spend some time

to reason and build a suitable configuration. We will inves-

tigate the use of bacteriological algorithms to implement

reasoning algorithms that can find solutions in a given

time budget. Currently, the dynamic adaptation process

relies on our aspect model weaver implemented in Ker-

meta. To make aspect model weaving an efficient solution

for dynamic adaptation, we will rely on the compilation

feature offered by the language’s new version.

Acknowledgments

This work was partially funded by the DiVA project (EU FP7

STREP, contract 215412, www.ict-diva.eu). The case study

presented in this article was provided by CAS Software AG

(DiVA industrial partner, www.cas.de/english).

lar to our work, they sought to compare the dynamically

determined model with the correct architectural model.

In the context of mobile applications, Jacqueline Floch

and colleagues14 used architectural models and utility

functions to describe the dynamic variability of such ap-

plications. Their system’s main adaptation mechanism

replaces the implementation of components at runtime.

For each possible implementation (variant) of a compo-

nent, a fine-grained utility function specifies a precise

context in which the variant is useful. Depending on the

context, the system integrates most useful variants into

the architecture. However, it does not provide support to

simulate or validate the adaptation logic at design time.

The Genie approach3 also uses architectural models to

support the generation and execution of adaptive systems

leveraging component-based middleware technologies.

A state machine specifies the system’s adaptive logic.

Each state represents a system configuration, and each

transition describes when and how—via reconfiguration

scripts—to dynamically switch from one configuration

to another. From these models, Genie generates various

artifacts such as configuration files and ECA adaptation

policies. These artifacts can be dynamically inserted

during execution.

Our approach goes one step further than previous ef-

forts. We explicitly design four fundamental aspects of a

DAS: its variability (using a feature diagram), the system’s

environment and the context (valuation of the environ-

ment), the adaptation logic, and the system architecture.

We particularly focus on taming the explosion in the

number of artifacts while providing a high degree of

automation and validation. We use AOM techniques to

automatically build architectures by composing aspects

associated with features, instead of fully specifying all

the possible configurations. After validation, we then use

MDE techniques to produce reconfiguration scripts that

make the system switch from its current configuration to

a target configuration more adapted to the current context.

D
ynamically adaptive systems play an increas-

ingly vital role in today’s society. In addition

to CAS Software’s DCRM system, we have

applied our process to a house-automation

system currently deployed in the Rennes

metropolitan area in Brittany, France, to help elderly or

Our approach focuses on taming the

explosion in the number of artifacts

while providing a high degree of

automation and validation.

Reach
Higher

Advancing in the IEEE Computer
Society can elevate your standing
in the profession.

•	 Application	in	Senior-grade	
 membership recognizes ten
 years or more of professional
 expertise.

•	 Nomination	to	Fellow-grade	
 membership recognizes
 exemplary accomplishments in
 computer engineering.

GIVE YOUR CAREER A BOOST

n

UPGRADE YOUR MEMBERSHIP

www.computer.org/join/grades.htm

51OCTOBER 2009

science from the University of Lille. Contact him at barais@

irisa.fr.

Jean-Marc Jézéquel is a professor at the University of

Rennes and leader of the INRIA Triskell research team. His

research interests include model-driven software engineer-

ing for telecommunications and distributed systems. He

received a PhD in computer science from the University of

Rennes. Contact him at jean-marc.jezequel@irisa.fr.

Franck Fleurey is a research scientist in the Model-Driven

Software Development Group at SINTEF ICT. His research

interests include model-driven engineering, domain-specific

languages, variability and adaptation modeling, and model

composition. He received a PhD in computer science from

the University of Rennes. Contact him at franck.fleurey@

sintef.no.

Arnor Solberg is a senior research scientist and leader of

the Model-Driven Software Development Group at SINTEF

ICT. He currently serves as technical manager for the

EU-ICT DiVA project. Solberg is an expert on software ar-

chitectures and software engineering practices. He received

a PhD in computer science from the University of Oslo.

Contact him at arnor.solberg@sintef.no.

References

 1. S. Hallsteinsen et al., “Dynamic Software Product Lines,”

Computer, Apr. 2008, pp. 93-95.

 2. P. Clements and L. Northrop, Software Product Lines: Prac-

tices and Patterns, 3rd ed., Addison-Wesley Professional,

2001.

 3. N. Bencomo et al., “Genie: Supporting the Model-Driven

Development of Reflective, Component-Based Adaptive

Systems,” Proc. 30th Int’l Conf. Software Eng. (ICSE 08),

ACM Press, 2008, pp. 811-814.

 4. J. Zhang and B.H.C. Cheng, “Model-Based Development

of Dynamically Adaptive Software,” Proc. 28th Int’l Conf.

Software Eng. (ICSE 06), ACM Press, 2006, pp. 371-380.

 5. F. Fleurey et al., “Modeling and Validating Dynamic Ad-

aptation,” Models in Software Eng., LNCS 5421, Springer,

2008, pp. 97-108.

 6. P. Oreizy et al., “An Architecture-Based Approach to Self-

Adaptive Software,” IEEE Intelligent Systems, May 1999,

pp. 54-62.

 7. F. Fleurey and A. Solberg, “A Domain-Specific Modeling

Language Supporting Specification, Simulation and Ex-

ecution of Dynamic Adaptive Systems,” to appear in Proc.

ACM/IEEE 12th Int’l Conf. Model-Driven Eng. Languages and

Systems (MoDELS 09), ACM Press, 2009.

 8. B. Morin et al., “Taming Dynamically Adaptive Systems

with Models and Aspects,” Proc. 31st Int’l Conf. Software

Eng. (ICSE 09), IEEE CS Press, 2009, pp. 122-132.

 9. P.C. David and T. Ledoux, “An Aspect-Oriented Approach

for Developing Self-Adaptive Fractal Components,” Soft-

ware Composition, LNCS 4089, Springer, 2006, pp. 82-97.

 10. H.J. Goldsby et al., “Goal-Based Modeling of Dynamically

Adaptive System Requirements,” Proc. 15th Ann. IEEE Int’l

Conf. and Workshop Eng. of Computer Based Systems (ECBS

08), IEEE CS Press, 2008, pp. 36-45.

 11. B. Morin, O. Barais, and J.-M. Jézéquel, “K@rt: An Aspect-

Oriented and Model-Oriented Framework for Dynamic

Software Product Lines,” Proc. 3rd Int’l Workshop Models@

run.time (MoDELS 08); www.irisa.fr/triskell/publis/2008/

Morin08e.pdf.

 12. P.A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving Ex-

ecutability into Object-Oriented Meta-Languages,” Proc.

MODELS/UML 2005, LNCS 3713, Springer, 2005, pp.

264-278.

 13. D. Garlan et al., “Rainbow: Architecture-Based Self-Adap-

tation with Reusable Infrastructure,” Computer, Oct. 2004,

pp. 46-54.

 14. J. Floch et al., “Using Architecture Models for Runtime

Adaptability,” IEEE Software, Mar. 2006, pp. 62-70.

Brice Morin is a PhD student on the INRIA Triskell research

team. His research interests include applying model-driven

and aspect-oriented techniques to tame the complexity

of dynamically adaptive systems, from design time to

runtime. He received an MS in computer science from the

University of Rennes. Contact him at brice.morin@inria.fr.

Olivier Barais is an associate professor at the University

of Rennes and member of the INRIA Triskell research team.

His research interests include model-driven software en-

gineering, component-based software engineering, and

aspect-oriented modeling. He received a PhD in computer

Selected CS articles and columns are available

for free at http://ComputingNow.computer.org

