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self-adaptive systems. A DAS can be conceptualized 

as a dynamic software product line in which vari-

abilities are bound at runtime.1 Similar to traditional 

SPLs,2 the number of possible configurations of a DSPL 

grows combinatorially with the number of variation 

points and variants. In an SPL, products are derived by 

human decisions and are totally independent; a DSPL 

also must handle the migration paths between those 

configurations. 

The configurations produced by a DSPL are thus highly 

dependent: The system should evolve at runtime between 

its current configuration (source) and a new configuration 

(target) through a safe migration path (transition). Several 

stimuli trigger these transitions: context changes, user 

preferences, and so on. The DSPL must provide support 

for describing the adaptation logic. 

A DSPL’s execution can be abstracted as a highly con-

nected state machine,3,4 where the states are the possible 

system configurations and the transitions the migration 

paths. Fully specifying this state machine lets the designer 

perform extensive simulation, validation, and testing of the 

system’s dynamic variability before actually implementing 

the system.5 Model-driven engineering (MDE) techniques 

then make it possible to fully generate the adaptive sys-

tem’s code4 from the state machine specification. 

T
oday’s society increasingly depends on soft-

ware systems deployed in large companies, 

banks, airports, and so on. These systems must 

be available 24/7 and continuously adapt to 

varying environmental conditions and require-

ments. Such dynamically adaptive systems exhibit degrees 

of variability that depend on user needs and runtime fluc-

tuations in their contexts. Engineers can develop DASs by 

defining several variation points. Depending on the con-

text, the system dynamically chooses suitable variants to 

realize those variation points. These variants may provide 

better quality of service (QoS), offer new services that did 

not make sense in the previous context, or discard some 

services that are no longer useful. 

DASs range from small embedded systems to large 

systems of systems and from human-driven to purely 

An approach for specifying and executing 

dynamically adaptive software systems 

combines model-driven and aspect-orient-

ed techniques to help engineers tame the 

complexity of such systems while offering 

a high degree of automation and validation. 
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metamodels supported by design tools, such as graphical 

or textual editors and validators or simulators, to assist in 

modeling the DSPL at design time. Models conforming to 

these four metamodels are the main data manipulated by 

the runtime infrastructure responsible for dynamically 

adapting component-based applications at runtime. These 

models provide a high-level basis for reasoning efficiently 

about relevant aspects of the system and its environment 

and offer enough details to fully automate the dynamic 

adaptation process. It is possible to make the design speci-

fications evolve at any time, before initial deployment or 

while the system is already running. 

MODEL-ORIENTED ARCHITECTURE 
Figure 1 shows the architecture for managing DSPLs at 

runtime, comprising three layers:

•	 DiVAStudioOnline, a platform-independent layer that 

only manipulates models;

•	 CausalConnection, a platform-specific layer that links 

the model space to the runtime space; and

•	 BusinessArchitecture, an application-specific layer that 

However, this approach suffers 

from two main drawbacks related 

to adaptation management and 

evolution management:6 

•	 Explosion in the number of ar-

tifacts. Even when the designer 

specifies the state machine at 

a high level of abstraction, the 

number of configurations and 

transitions to be described 

grows rapidly. For example, 

in combining the features 

of one dynamic customer 

relationship management 

(DCRM) system, we counted 

92,160 configurations;7 this 

leads to 92,160 × 92,159 = 

8,493,373,440 possible tran-

sitions and triggers among 

these configurations. Vali-

dating all these artifacts can 

soon become a problem: The 

number of configurations ex-

plodes in a combinatorial way 

with regard to the number of 

variants, and the number of 

transitions is quadratic with 

regard to the number of con-

figurations. While it is still 

possible to specify this state 

machine for simple adaptive systems, this rapidly 

becomes a daunting task in the case of large systems 

comprising a wide range of variation points.8 

•	 Evolution of the adaptive system. Once the adaptive 

system is deployed and running, it can evolve based 

on new user needs, detection, and correction of limi-

tations or security weaknesses. Evolving an adaptive 

system involves dynamically changing the adaptation 

state machine: adding and removing states and transi-

tions. Applying a classic MDE approach to generate all 

the application code from higher-level specifications 

would be impractical: The system would have to be 

stopped and decommissioned before a new system—

based on modifications to the state machine—could 

be deployed and started. This would make the system 

unavailable for a long period, which in many cases 

would be unacceptable. 

In our work on the EU-ICT DiVA project (Dynamic Vari-

ability in complex, Adaptive systems; www.ict-diva.eu), we 

address these two drawbacks by using software models 

at runtime as well as at design time. We rely on four 

Architecture

Architecture

Architecture

DSPL
DSPL

Reasoning

Goal-
based

reasoning

Aspect
model
weaver Configuration

invariant
checker

DiVAStudioOnline

Context

Context

Runtime events

Runtime events

Factory
servicesComplex

event
processing

CausalConnection

Configuration
manager

BusinessArchitecture

Notifier
factory

Bandwidth
sensor

User
interface
factory

Access
point

sensor

DSPL

Figure 1. Runtime architecture to support dynamic software product lines. 
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model, with a naming convention to refer to architectural 

fragments, or aspect models, refining the features. In this 

way, engineers can exploit any existing feature model 

tools—graphical editors, checkers, and others—with no 

modification. 

Context. This model specifies the system’s environ-

ment. A set of context variables specifies those aspects of 

the environment relevant to adaptation. At runtime, the 

variable values are provided by context sensors, and these 

may trigger a system reconfiguration. 

Reasoning. This model describes selection of the 

DSPL’s features according to context. Several formal-

isms exist such as event-condition-action (ECA) rules9 or 

goal-based optimization rules.7 We do not impose any 

particular reasoning model. An ECA model will typically 

describe, for particular contexts, which features to select. 

A goal-based model will typically describe how features 

impact QoS properties—using, for example, help and hurt 

relationships10—and specify when QoS properties should 

be optimized, for example, when a property is too low. 

defines factory components, which simply provide 

services to instantiate multiple component instances. 

This layer is not part of the infrastructure for manag-

ing DSPLs.

Five components—a complex event processor, a goal-

based reasoning engine, an aspect model weaver, an 

online configuration checker, and a configuration man-

ager—interact by exchanging models conforming to the 

metamodels.

Metamodels
The components exchange four kinds of metamodels: 

DSPL, context, reasoning, and architecture.

DSPL. This is a feature model that describes the sys-

tem’s variability. Commonly used in the SPL community,2 

feature models describe hierarchies with mandatory fea-

tures, options, alternatives—n among p choices, and so 

on—as well as constraints (requires, excludes) among 

features. The DSPL model is a regular feature diagram 

I n DiVA, we leverage aspect-oriented modeling (AOM) techniques 

to refine features and automatically build complete configurations 

before the actual adaptation. A base model refines the system’s 

commonalities—elements present in all the configurations—as an 

architecture made of components and the connections between 

them, or bindings. Aspect models refine the system’s variants by 

specifying their precise architectures: Each model is an architectural 

fragment that contains all the information needed to be easily 

plugged into the base architecture.

As Figure A shows, an aspect model consists of three parts: 

•	 Advice	model.	This architectural fragment specifies what is 

needed to realize the associated variant. An advice model 

need not be fully consistent. The base model should bring 

the missing elements needed to make the advice model con-

sistent when weaving the aspect. 

•	 Pointcut	 model.	 This architectural fragment specifies the 

components and bindings that the aspect model expects 

from the base model to be woven—that is, where the aspect 

should be woven. The most precise is the pointcut model, the 

smallest is the set of potential places where the aspect can be 

woven, and vice versa. For example, if a component’s type is 

not specified in the pointcut model, this component would 

be matched by any of the base architecture’s components, 

irrespective of its real type. 

•	 Composition	 protocol.	 This describes how to integrate the 

advice model into the pointcut model. When weaving the 

aspect, the places matching the pointcut model automati-

cally contextualize the composition protocol to actually 

weave the aspect into the base model.

 Refining features as aspect models allows the designer to vali-

date the adaptive system one step further. Since AOM relies on a 

strong theoretical background, such as graph theory, it is possible 

to perform analysis—for example, critical pair or confluence anal-

ysis—to detect previously undetected aspect dependencies and 

interactions.1 The designer can update the DSPL and reasoning 

models’ constraints to avoid invalid interactions. It is also possible 

to refine the simulation step by actually producing, via aspect 

weaving, and validating some detailed configuration correspond-

ing to foreseen contexts.

Reference
 1. P. Jayarman et al., “Model Composition in Product Lines and 

Feature Interaction Detection Using Critical Pair Analysis,” 

Proc.	10th	Int’l	Conf.	Model-Driven	Eng.	Languages	and	Systems 

(MoDELS 07), LNCS 4735, Springer, 2007, pp. 151-165.

DESIGNING FEATURES AS ASPECT MODELS 

Driving notifier Voice channel

Address DB

Calendar

Pointcut model

Advice model

Forward

telephony

Figure A. Aspect model. An advice model specifies what 

is needed to realize the associated variant, a pointcut 

model specifies the components and bindings that the 

aspect model expects from the base model to be woven, 

and a composition protocol describes how to integrate the 

advice model into the pointcut model.
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metamodels for the DSPL and contexts. We previously 

used ECA models to specify the adaptation logic;5 we are 

now using a goal-based optimization model. Once a de-

signer has chosen the four metamodels, they strongly type 

the architecture. 

Leveraging the models 
The sequence diagrams shown in Figure 2 specify the 

interactions between the architectural components. The 

key idea is to maintain a context model and an archi-

tectural model that both synchronize with the runtime 

system.

The context model is updated when relevant changes 

appear in the running system’s execution context—for ex-

ample, CPU load, free memory, or bandwidth. This model 

is not causally connected with the runtime system—it  

reflects what happens at runtime (in the execution con-

text), but it should not be directly modified to adapt the 

running system. On the contrary, the context model serves 

as a basis for reasoning about the environment and deter-

mining a new configuration more adapted to the current 

context, if necessary. 

The architectural model is updated when the running 

system evolves—that is, when components and bindings 

are added or removed. Note that this model is not directly 

manipulated to adapt the running system. On the contrary, 

the aspect model weaver component produces another ar-

chitectural model (configuration) when the system should 

Architecture. This model 

describes component-based 

a rchitectures.  Designers 

can use any metamodeling 

framework, such as the Uni-

f ied Model ing L a nguage 

(UML) or Service Compo-

nent Architecture (SCA), or 

any architecture description 

language, to describe the archi-

tecture. Because our dynamic 

adaptations are currently 

reconfigurations, our focus is 

on components and bindings, 

concepts that are present in 

metamodels. In practice, we 

have defined our own mini-

mal metamodel11 to reduce 

memory overhead at runtime. 

Other metamodels map to our 

metamodel via model trans-

formations in Kermeta (www.

kermeta.org).12 

The architecture model re-

fines each leaf feature of the 

DSPL model into an archi-

tectural fragment. As the “Designing Features as Aspect 

Models” sidebar describes, we use aspect-oriented model-

ing (AOM) techniques to design and compose features into 

a core model containing the mandatory elements. 

Designing the models
Engineers design these models offline before the initial 

system deployment or while the system is already running, 

but independently of the running system, and leverage 

them at runtime to drive the dynamic adaptation process. 

The quality and correctness of models conforming to these 

metamodels are crucial and must be checked as early as 

possible. Since the components of the DiVAStudioOnline 

layer exchange only models conforming to these four 

metamodels, it is very easy to validate the adaptation logic: 

A test component simply produces a set of input models, 

and another test component analyzes the models produced 

by the DiVAStudioOnline components. For example, a test 

component provides a DSPL model, a reasoning model, 

and a scenario (sequence of context models) to simulate 

the system’s adaptation logic,5 and another test component 

checks the produced configurations.8 These configura-

tions must ensure the constraints (cardinalities, requires/

excludes) defined in the DSPL model and include features 

suitable to the reasoning model.

 The choice of the four metamodels, which type the 

interaction between the components, is open. We cur-

rently use SCA to design architectures and two ad hoc 

opt

alt
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any application, as well as user-defined invariants, which 

depend on a given application. If the configuration is valid, 

the aspect model weaver then sends the configuration to 

the configuration manager. 

Configuration manager. This component receives 

a configuration from the aspect model weaver. It is 

responsible for configuring and reconfiguring the busi-

ness architecture. To create and bind components, the 

configuration manager calls the services offered by the 

factories (component types).8 This component maintains 

a model representing the running system by using the 

introspection and observation mechanisms provided by 

the platform. When a new configuration is produced, it 

compares this new configuration (model) with the current 

model and deduces a safe sequence of reconfiguration 

commands. These commands consist of adding or remov-

ing components or binding. 

DYNAMIC ADAPTATION IN ACTION
We illustrate our approach using the DCRM system de-

veloped by CAS Software, our industrial partner in the 

DiVA project. A simplified version of the system is freely 

available at www.ict-diva.eu/DiVA/results/tools-and-proto-

types/demo.zip/view. 

The DCRM’s objective is to provide accurate client-re-

lated information depending on the context. For example, 

when the user is working in his office, the system can 

notify him by e-mail, via a rich Web-based client. He can 

also access critical resources because he is connected to 

a trusted network. When the user is driving his car to visit 

a client, messages received by a mobile or smart phone 

should notify him of information that is either critical or 

related to the client. If he is using a mobile phone, he can 

be notified via the short message service or audio/voice, 

and Java Telephony API forwards phone calls from his 

office. If he is using a smart phone, he can also use a light-

weight Web client. 

Figure 3a shows two reconfiguration scripts generated 

on the fly. Figure 3b shows the system interface, which 

consists of two parts:

•	 Monitoring. In the left part of the interface (green rect-

angle), the user can simulate different environmental 

variables. Actual runtime sensors are replaced by a 

check box to simulate Boolean or enumeration (for 

example, the access point) or sliders to simulate con-

tinuous values (for example, the bandwidth). When 

these elements are activated, they generate exactly 

the same kind of events as the real sensors. The user 

thus simulates the environment in a transparent way 

for the complex event processing component.

•	 Reasoning. The right part of the interface (orange rect-

angle) graphically represents the DSPL model. Three 

main features comprise the system: notification, user 

adapt, depending on the current context model. This con-

figuration is then checked, and the causal connection layer 

finally realizes the dynamic adaptation,8 without having to 

write low-level and error-prone reconfiguration scripts. If 

the new configuration is not valid, the aspect model weaver 

component simply discards it and does not proceed to the 

causal connection layer. Indeed, since the running system 

has not yet been adapted, it is not necessary to perform 

a rollback. 

Components
Each of the five architectural components has a clear 

role and well-defined interactions with other components. 

Complex event processor. This component observes 

runtime events generated by probes integrated into the 

system. When a sequence of events matches a query, 

expressed in the Event Query Language (EQL), it notifies 

an observer. This observer knows exactly which model 

element of the context model it has to update. When 

this model element is updated, it notifies the goal-based 

reasoning component. Complex event processing com-

ponents, such as Esper (http://esper.codehaus.org), allow 

defining advanced queries on runtime events with time 

windows and aggregation functions—min, max, average, 

and so on. Unlike hard thresholds, these queries simplify 

dealing with permanent context oscillations, for example, 

by defining thresholds on average values computed on a 

time slot. 

Goal-based reasoning engine. When the context 

model is updated, this component computes a derived 

DSPL that only contains the mandatory features and 

a selection of variable features, adapted to the current 

context. Although we use a goal-based reasoning model, 

other reasoning models are available. This component is 

initialized with a DSPL model and a reasoning model. At 

any time, it is possible to update the DSPL or the reason-

ing model: add, remove, or update features or reasoning 

rules, and so on. 

Aspect model weaver. This component receives 

a derived DSPL from the reasoning engine. For all the 

features of this DSPL, the weaver composes the corre-

sponding aspect to produce a global configuration. This 

configuration is then checked before it is submitted, if 

valid, to the configuration manager. 

Configuration checker. This online component checks 

that aspect weaving obtains a consistent configuration.8 

It checks general invariants, which should be enforced in 

The DCRM’s objective is to provide 

accurate client-related information 

depending on the context.
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below 40 percent, it updates the context model with band-

width = low. Note that if the bandwidth’s value oscillates 

around 40 percent, the context model will remain stable—

bandwidth is low. In Figure 3, this value is currently 32 

percent. The reasoning component thus decides to switch 

from the default ranking strategies to the low bandwidth 

strategy. Similar to the previous reconfiguration, this  

generates a script, as illustrated in the bottom part of 

Figure 3a (purple rectangle).

RELATED WORK
Several other research approaches use architectural 

models to support dynamic adaptation and software 

evolution. A decade ago, Peyman Oreizy and colleagues6 

promoted an architecture-based approach to self-adaptive 

software systems. They stressed that an adaptive system 

should be open to introducing new behaviors and adapta-

tion plans at runtime.

David Garlan and colleagues13 also used architectural 

models for system monitoring and reflection. Specifically, 

they monitored the executing system to translate observed 

events to events that construct and update an architec-

tural model that reflects the actual running system. They 

found that detected inconsistencies could be used to effect 

runtime adaptations to correct certain type of faults. Simi-

interface, and ranking. For each feature, the system 

defines several subfeatures. For example, the system 

can adapt to provide different notification mecha-

nisms: office, driving, or meeting. An aspect model 

refines each of these subfeatures. The current con-

figuration, determined by the goal-based reasoning 

component, is displayed in green.

In the initial context, the user is working in his office. 

His electronic calendar notifies him that he must visit a 

client in 30 minutes. When the user logs off his PC and logs 

on to his smart phone, the reasoning engine computes a 

new configuration corresponding to a mobile environment. 

The system replaces the office notifier by a driving noti-

fier, and the user interface switches from rich to reduced. 

Weaving the associated aspect produces a new configura-

tion. After validating this new configuration, the system 

automatically generates a reconfiguration script and ex-

ecutes it at runtime, as shown in the top part of Figure 3a 

(red rectangle).

We assume that the user encounters bandwidth limita-

tion. As the monitoring sequence diagram (Figure 2) shows, 

when the value exceeds 40 percent of the maximum band-

width value for 10 seconds, the system updates the context 

model with bandwidth = high. As soon as the value is 

Figure 3. Using the DiVA architecture to manage CAS Software’s DCRM system: (a) two reconfiguration scripts generated on the 

fly; (b) the interface’s monitoring and reasoning components.

(a)

(b)
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disabled people remain at home.8 In this DAS, dynamic 

adaptation is mostly driven by humans and depends on 

such factors as the evolution of physical handicaps and 

the installation of new devices. The number of possible 

configurations (1014) and transitions (1028) in this system 

literally explodes. In the context of the DiVA project, we 

will also apply our approach to an airport crisis manage-

ment system that should adapt to different crisis types 

and deal with different roles—for example, airport staff, 

firemen, and medical staff.

Our tool-supported approach relies on a clear and 

modular architecture in which components exchange 

models related to the system’s variability, environment, 

and architecture, and variability is dynamically bound 

to the context. We do not impose specific metamodels 

to describe these models. In the DiVA project, we have 

reused some existing metamodels and designed other 

ones, and we have used the OSGi platform to implement 

this architecture. 

At design time, engineers can avoid designing by hand 

all of the system’s possible configurations and transitions 

by explicitly defining a DAS as a DSPL. At runtime, the 

system analyzes the context and explicitly constructs a 

suitable configuration using AOM techniques; it validates 

this configuration using traditional MDE techniques: in-

variant checking, simulation, and so on. Finally, the system 

automatically generates a safe reconfiguration script to 

actually adapt the running business system. If the pro-

duced configuration is not consistent, the system simply 

discards the configuration and derives a new one. Since 

the running business system has not been adapted yet, 

it is not necessary to perform a rollback. This process is 

open to evolution—designers can make the DSPL evolve 

by seamlessly adding or removing variants, constraints, 

rules, and so on.

In future work, we plan to improve our reasoning 

framework and the dynamic adaptation process. In a 

critical context, the system must react quickly—it can, for 

example, choose a predefined, prevalidated configuration. 

In a noncritical context, the system can spend some time 

to reason and build a suitable configuration. We will inves-

tigate the use of bacteriological algorithms to implement 

reasoning algorithms that can find solutions in a given 

time budget. Currently, the dynamic adaptation process 

relies on our aspect model weaver implemented in Ker-

meta. To make aspect model weaving an efficient solution 

for dynamic adaptation, we will rely on the compilation 

feature offered by the language’s new version. 
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lar to our work, they sought to compare the dynamically 

determined model with the correct architectural model.

In the context of mobile applications, Jacqueline Floch 

and colleagues14 used architectural models and utility 

functions to describe the dynamic variability of such ap-

plications. Their system’s main adaptation mechanism 

replaces the implementation of components at runtime. 

For each possible implementation (variant) of a compo-

nent, a fine-grained utility function specifies a precise 

context in which the variant is useful. Depending on the 

context, the system integrates most useful variants into 

the architecture. However, it does not provide support to 

simulate or validate the adaptation logic at design time.

The Genie approach3 also uses architectural models to 

support the generation and execution of adaptive systems 

leveraging component-based middleware technologies. 

A state machine specifies the system’s adaptive logic. 

Each state represents a system configuration, and each 

transition describes when and how—via reconfiguration 

scripts—to dynamically switch from one configuration 

to another. From these models, Genie generates various 

artifacts such as configuration files and ECA adaptation 

policies. These artifacts can be dynamically inserted 

during execution.

Our approach goes one step further than previous ef-

forts. We explicitly design four fundamental aspects of a 

DAS: its variability (using a feature diagram), the system’s 

environment and the context (valuation of the environ-

ment), the adaptation logic, and the system architecture. 

We particularly focus on taming the explosion in the 

number of artifacts while providing a high degree of 

automation and validation. We use AOM techniques to 

automatically build architectures by composing aspects 

associated with features, instead of fully specifying all 

the possible configurations. After validation, we then use 

MDE techniques to produce reconfiguration scripts that 

make the system switch from its current configuration to 

a target configuration more adapted to the current context. 

D
ynamically adaptive systems play an increas-

ingly vital role in today’s society. In addition 

to CAS Software’s DCRM system, we have 

applied our process to a house-automation 

system currently deployed in the Rennes 

metropolitan area in Brittany, France, to help elderly or 

Our approach focuses on taming the 

explosion in the number of artifacts 

while providing a high degree of 

automation and validation.
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