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Abstract

In this article we consider a pq-dimensional random vector x distributed
normally with mean vector θ and the covariance matrix Λ, assumed to
be positive definite. On the basis of N independent observations on the
random vector x, we wish to estimate parameters and test the hypothesis
H: Λ = Ψ ⊗Σ, where Ψ = (ψij) : q × q and Σ = (σij) : p × p, and Λ =
(ψijΣ), the Kronecker product of Ψ and Σ. That is instead of 1

2pq(pq+1)
parameters, it has only 1

2p(p + 1) + 1
2q(q + 1) − 1 parameters. When

this model holds, we test the hypothesis that Ψ is an identity matrix,
a diagonal matrix or of intraclass correlation structure. The maximum
likelihood estimators (MLE) are obtained under the hypothesis as well
as under the alternatives. Using these estimators the likelihood ratio
tests (LRT) are obtained. Moreover, it is shown that the estimators are
unique.
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1 Introduction

When analyzing multivariate data it is often assumed that the m-dimensional
random vector x is normally distributed with mean vector θ and covariance
matrix Λ. In many data analysis, it is often required to assume that Λ has
the intraclass correlation structure, that is,

Λ = σ2[(1− ρ)Im + ρ1m1′m],

where − 1
m−1 < ρ < 1, σ2 > 0, Im is the m×m identity matrix, and 1m is an

m-vector of ones, 1m = (1, . . . , 1)′. In other cases it is assumed that Λ has a
block compound symmetry structure which, when m = pq, can be written as

Λ =




A B · · · B
...

. . .
...

...
. . .

...
B B · · · A




,

where A : p × p is a positive definite (written later A > 0), and B = B′ such
that Λ > 0.

The estimation and testing problems that arise in the intraclass correlation
model and compound symmetry models have been considered extensively in
the literature, see for example, Wilks (1946), Votaw (1948), Srivastava (1965),
Olkin (1973), and Arnold (1973).

However, not much work has been done for a positive definite block co-
variance matrix Λ, namely when Λ = Ψ ⊗ Σ, where Ψ ⊗ Σ is the Kronecker
product of a q × q matrix Ψ = (ψij) with a p× p matrix Σ = (σij) given by

Λ = (ψijΣ) : pq × pq, m = pq.

When Λ is unstructured the model belongs to the exponential family whereas
when Λ = Ψ ⊗ Σ it belongs to the curved exponential family. Thus we may
expect that estimation and testing are more complicated under the ”Kronecker
structure” than in the unstructured case.

As an example of a block covariance matrix, consider a p-dimensional
random vector x representing an observation vector at p time-points on a
characteristic of an individual or a subject. If we take observations on q
characteristics at p time-points, then these observations can be represented
as x(1), . . . , x(q), where x(i)’s are p-vectors. Since the observations have been
taken on the q characteristics of the same individual, x(i)’s may not be inde-
pendently distributed. If the mean vector of x(i) is µ

(i)
, then we need to define
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the parameter

cov(x(i), x(j)) = E[(x(i) − µ
(i)

)(x(j) − µ
(j)

)′],

i, j = 1, . . . , q, called the covariance between the p-vectors x(i) and x(j).
When we choose

cov(x(i), x(j)) = (ψijΣ), i, j = 1, . . . , q (1.1)

and assume normality, then the distribution of the pq random vectors

(x′(1), . . . , x
′
(q))

′ ∼ Npq(µ, Ψ⊗ Σ), (1.2)

where

µ = (µ′
1
, . . . , µ′

q
)′. (1.3)

It may be noted that we have used the standard notation for defining the
vectorization of a matrix, namely,

vec(x(1), . . . , x(q)) = (x′(1), . . . , x
′
(q))

′.

As noted in the literature, see e.g. Galecki (1994) and Naik and Rao (2001),
since (cΨ) ⊗ (c−1Ψ) = Ψ ⊗ Σ, all the parameters of Ψ and Σ are not defined
uniquely. Thus, without any loss of generality we assume that

ψqq = 1. (1.4)

The MLE of Ψand Σ are not available in the literature. The condition(1.4) or
equivalently if we assume that for Σ = (σij) : p×p, σpp = 1 instead of ψqq = 1,
makes it technically more difficult to obtain the MLE of Ψ and Σ.

To distinguish between different cases we shall write Ψ∗ when ψqq = 1 and
write Ψρ when ψii = 1, i = 1, . . . , q. Similarly, we shall write Σ∗ when the
restriction σpp = 1 is imposed, and Ψ remains unrestricted. Naik and Rao
(2001) have also considered the problem but did not obtain the MLE of Σ and
Ψ∗.

Furthermore, Roy and Khattree (2005) gave many references where Ψ⊗Σ is
considered, in particular when Ψ has a compound symmetry structure. In time
series analysis (e.g. see Shitan and Brockwell, 1995) one has also considered the
”Kronecker structure” but unlike this paper one usually has only 1 observation
matrix and hence has to impose various structures on Ψ⊗ Σ.

In many cases, it is very likely that

ψii = 1, i = 1, . . . , q, (1.5)
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instead of only ψqq = 1. That is, x(1), . . . , x(q), have the same covariance
matrix Σ. When this assumption is made we shall write the covariance matrix
of the pq-vector (x′(1), . . . , x

′
(q))

′ as

Ψρ ⊗ Σ, Ψρ = (ψij), with ψii = 1, i = 1, . . . , q. (1.6)

For estimation and testing we require N iid (independent and identically
distributed) observations on the pq-vector (x′(1), . . . , x

′
(q))

′. These N observa-
tion vectors will be denoted by

(x′(1)j , . . . , x
′
(q)j)

′, j = 1, . . . , N. (1.7)

Let

Xj = (x(1)j , . . . , x(q)j) : p× q, j = 1, . . . , N, (1.8)
M = (µ

1
, . . . , µ

q
) : p× q (1.9)

and

X = (X1, . . . , XN ) : p× qN. (1.10)

It has been shown by Srivastava and Khatri (1979, pp.170–171) that

vec(Xj) = (x′(1)j , . . . , x
′
(q)j)

′ ∼ Npq(vec(M), Ψ∗ ⊗ Σ)

if and only if its pdf is given by

(2π)−
1
2
pq|Σ|− 1

2
q|Ψ∗|− 1

2
petr{−1

2
Σ−1(Xj −M)Ψ∗−1(Xj −M)′}, (1.11)

where etr{A} stands for the exponential of the trace of the matrix A, tr{A} =∑p
i=1 aii, A = (aij). Srivastava and Khatri (1979, pp. 54–55, pp. 170–171)

used the pdf (1.11) to define the distribution of the random matrix Xj and
used the notation

Xj ∼ Np,q(M, Σ,Ψ∗) (1.12)

to write the pdf of Xj given in (1.11) which is also the pdf of vec(Xj). We
shall follow the same notation.

From the pdf (1.11) it is clear that the role of Σ and Ψ can be interchanged
by considering the vectorization of X ′

j . For example, from (1.11), the pdf of
vec(X ′

j) will be given by

(2π)−
1
2
pq|Σ|− 1

2
q|Ψ∗|− 1

2
petr{−1

2
Ψ∗−1(Xj −M)′Σ−1(Xj −M)}, (1.13)
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and

X ′
j ∼ Nq,p(M ′, Ψ∗, Σ). (1.14)

Thus, if we wish to test a hypothesis about Σ = (σij), we may assume that
σpp = 1 for the general case and σii = 1, i = 1, . . . , p, for the second case with
no restrictions on the elements of Ψ, or, any other representation that may be
helpful in estimation and testing problems.

The organization of this paper is as follows. In Section 2, we present a
method of estimating M or µ, Σ and Ψρ, that is Ψ with diagonal elements
equal to one. The maximum likelihood method is rather messy and so we
provide a heuristic method in giving consistent estimators of Ψρ and Σ. These
estimators, however, may also be useful in taking as the initial values in solving
the maximum likelihood equations iteratively for the general case when only
ψqq=1, which is done in Section 3. In Section 4, we test the hypothesis that
the general pq × pq covariance matrix Λ = Ψ⊗Σ against the alternative that
the covariance matrix is not of Kronecker product structure, when N > pq.
The three other testing problems concerning the Ψ matrix are considered in
Sections 5 and 6. The testing problems concerning the means which may
follow the growth curve models of Pothoff and Roy (1964) as discussed in the
works of Srivastava and Khatri (1979) and Kollo and von Rosen (2005) will
be considered in a subsequent communication. In Section 7 a small simulation
study is presented and finally in Section 8 fundamental results concerning the
uniqueness of the MLEs from sections 3 and 5 are verified.

2 Estimation of M, Σ and Ψρ: heuristic method

Let X1, . . . , XN be iid Np,q(M, Σ, Ψ∗), N > max(p, q). Then the pdf of X =
(X1, . . . , XN ) is given by

(2π)−
1
2
pq|Σ|− 1

2
Nq|Ψ∗|− 1

2
Npetr{−1

2
Σ−1[

N∑

j=1

(Xj −M)Ψ∗−1(Xj −M)′]}. (2.1)

Let

X̄ =
1
N

N∑

j=1

Xj . (2.2)
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Then

N∑

j=1

(Xj −M)Ψ∗−1(Xj −M)′ =
N∑

j=1

(Xj − X̄)Ψ∗−1(Xj − X̄)′

+ N(X̄ −M)Ψ∗−1(X̄ −M)′. (2.3)

Hence, the maximum likelihood estimator of M is given by

M̂ = X̄. (2.4)

Next consider the case when the diagonal elements of Ψ are all equal to one,
that is, when Ψ is Ψρ given in (1.6). In this case, we can estimate Σ by

Σ̃ = S =
1

Nq

N∑

j=1

(Xj − X̄)(Xj − X̄)′. (2.5)

It will be shown later that (N/n)S, with n = N − 1, is an unbiased and
consistent estimator of Σ. Writing

X̄ = (x̄(1), . . . , x̄(q)),

we find that

S =
1

Nq

N∑

j=1

q∑

i=1

(x(i)j − x̄(i))(x(i)j − x̄(i))
′. (2.6)

Similarly, we can estimate ψik, i 6= k, by

ψ̃ik =
1

Np

N∑

j=1

tr{S−1(x(i)j − x̄(i))(x(k)j − x̄(k))
′}. (2.7)

It will be shown that it is a consistent estimator of ψik.
To show the unbiasedness of the estimator (N/n)Σ̃ and the consistency of

Σ̃ and ψ̃ik, we proceed as follows. Let Γ′ be an N ×N orthogonal matrix with
first row as 1′N/

√
N and the ith row given by

g′
i−1

=

(
1√

(i− 1)i
, . . . ,

1√
(i− 1)i

,− i− 1√
(i− 1)i

, 0, . . . , 0

)
, i = 2, . . . , N.(2.8)

That is, if

G = (g
1
, . . . , g

n
) : N × n, n = N − 1, (2.9)
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Γ =
(

1N√
N

,G

)
(2.10)

is an orthogonal matrix of Helmert’s type,

ΓΓ′ = IN , 1′NG = 0, G′G = IN−1, and GG′ = IN − 1
N

1N1′N .

Since Γ is an orthogonal matrix, it follows that Γ ⊗ Iq is also an orthogonal
matrix. Hence, letting

Y ≡ (Y1, Z) = (X1, . . . , XN )(Γ⊗ Iq), (2.11)

we find that the transformation from X to Y1, Z is one-to-one with the Ja-
cobian of the transformation equal to one, where Y1 : p × q, and Z : p × qn,
n = N − 1. Furthermore,

(X1, . . . , XN )(IN ⊗Ψ−1)(X1, . . . , XN )′ = Y (Γ′ ⊗ Iq)(IN ⊗Ψ−1
ρ )(Γ⊗ Iq)Y ′

= Y (IN ⊗Ψ−1
ρ )Y ′ = Y1 ⊗Ψ−1Y ′

1 + Z(In ⊗Ψ−1)Z ′. (2.12)

It follows from (2.10) that

Y1 = (X1, . . . , XN )(
1N√
N
⊗ Iq) =

√
NX̄,

Z = (Z1, . . . , Zn) = X(G⊗ Iq). (2.13)

Hence,

N∑

j=1

(Xj − X̄)Ψ−1
ρ (Xj − X̄)′ =

N∑

j=1

XjΨ−1
ρ X ′

j −NX̄Ψ−1
ρ X̄ ′

= X(IN ⊗Ψ−1
ρ )X ′ − Y1Ψ−1

ρ Y ′
1 = Y (IN ⊗Ψ−1

ρ )Y ′ − Y1Ψ−1
ρ Y ′

1

= Z(In ⊗Ψ−1
ρ )Z ′, (2.14)

and

N(X̄ −M)Ψ−1
ρ (X̄ −M)′ = (Y1 −Θ)Ψ−1

ρ (Y1 −Θ)′, Θ =
√

NM. (2.15)

Thus,

Y1 ∼ Np,q(Θ, Σ,Ψρ)

which is independently distributed of Z1, . . . , Zn, where

Zj
iid∼ Np,q(0, Σ, Ψρ).
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Let

Zj = (z(1)j , . . . , z(q)j) : p× q, j = 1, . . . , n, n = N − 1.

Then

E[z(i)j , z
′
(i)j)] = ψρiiΣ, and E(ZjZ

′
j) = (trΨρ)Σ.

Also, from (2.5)

S =
1

Nq
[

N∑

j=1

XjX
′
j −NX̄X̄ ′] =

1
Nq

[XX ′ − Y1Y
′
1 ]

=
1

Nq
[Y Y ′ − Y1Y

′
1 ] =

1
Nq

ZZ ′ =
1

Nq

n∑

j=1

ZjZ
′
j , n = N − 1. (2.16)

Hence,

N

n
E(S) = (

1
q
trΨρ)Σ = Σ, if ψρii = 1, i = 1, . . . , q.

Since (ZjZ
′
j/q) are iid with mean Σ, when ψρii = 1, i = 1, . . . , q, S is a

consistent estimator of Σ. Thus, we get the following theorem.

Theorem 2.1. Let X1, . . . , XN be iid Np,q(M, Σ, Ψρ), where Ψρ = (ψρij),
ψρii = 1, i = 1, . . . , q. Then,

N

n
S =

1
nq

N∑

j=1

(Xj − X̄)(Xj − X̄)′, n = N − 1,

is an unbiased estimator of Σ as well as consistent, if N →∞.

Corollary 2.1. When Ψ = I, S is the maximum likelihood estimator of Σ.
Similarly, in terms of z(i)j,

ψ̃ρik =
1

Np
tr{S−1

n∑

j=1

z(i)jz
′
(k)j}, i 6= k.

Since, when ψρii = 1, i = 1, . . . , q, S → Σ in probability and
Σ−

1
2 z(k)jz

′
(i)jΣ

− 1
2 , j = 1, . . . , N , are independently distributed with means

ψρikIp, it follows that ψ̃ρik are consistent estimators of ψik when all the diag-
onal elements of Ψρ are all one. Thus, we have the following theorem.

Theorem 2.2. Let X1, . . . , XN be iid Np,q(M, Σ, Ψρ), where Ψρ has all the
diagonal elements equal to one. Then, ψ̃ρik defined in (2.7) is a consistent
estimator of ψρik, i 6= k, (i, k) = 1, . . . , q.
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3 Maximum Likelihood Estimators of M , Σ and Ψ∗

(ψqq = 1)

We consider the same model as in Section 2 except that now the q× q matrix
Ψ∗ is of the general form. That is, for Ψ∗ = (ψij), we only assume that
ψqq = 1. The MLE of M remains the same as in (2.4) and therefore we start
with the likelihood

(2π)−
1
2pqN |Σ|−1

2 qN |Ψ∗|−1
2pNetr{−1

2

N∑

i=1

Σ−1XicΨ∗−1X ′
ic}, (3.1)

where

Xic = Xi − X̄, i = 1, . . . , N. (3.2)

Due to the constraint ψqq = 1, it needs special attention. Let

Ψ∗ =

(
Ψ11 ψ

1q

ψ′
1q

ψqq

)
, Ψ11 : (q − 1)× (q − 1). (3.3)

From Srivastava and Khatri (1979, Corollary 1.4.2 (i), p. 8), it follows since
ψqq = 1, that

Ψ∗−1 =
(

0 0
0 1

)
+

(
Iq−1

−ψ′
1q

)
Ψ−1

1•q
(

Iq−1 : −ψ
1q

)
,

where

Ψ1•q = Ψ11 − ψ
1q

ψ′
1q

: (q − 1)× (q − 1). (3.4)

Moreover,

|Ψ∗| = |Ψ1•q| = |Ψ11 − ψ
1q

ψ′
1q
|.

Thus (3.1) equals

(2π)−
1
2pqN |Σ|−1

2 qN |Ψ1•q|−
1
2pN ×

etr{−1
2

∑N
i=1 Σ−1(XicqX

′
icq + Xic

(
Iq−1

−ψ′
1q

)
Ψ−1

1•q
(

Iq−1 : −ψ
1q

)
X ′

ic)},
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where Xic = (Xic1 : Xicq): (p× (q−1) : p×1). By differentiation with respect
to the upper triangle of Σ−1 and Ψ−1

1•q as well as differentiation with respect
to ψ

1q
we obtain after some manipulations

NqΣ̂ =
N∑

i=1

(XicqX
′
icq + Xic

(
Iq−1

−ψ̂
′
1q

)
Ψ̂−1

1•q
(

Iq−1 −ψ̂
1q

)
X ′

ic), (3.5)

NpΨ̂1•q =
N∑

i=1

(
Iq−1 : −ψ̂

1q

)
X ′

icΣ̂
−1Xic

(
Iq−1

−ψ̂
′
1q

)
(3.6)

and

ψ̂
1q

=
N∑

i=1

X ′
ic1Σ̂

−1Xicq(
N∑

i=1

X ′
icqΣ̂

−1Xicq)−1. (3.7)

We first show that the scalar quantity in (3.7),

N∑

i=1

X ′
icqΣ̂

−1Xicq = Np. (3.8)

To prove (3.8), we post-multiply (3.5) by Σ̂−1 and take the trace. This gives

Nqp =
N∑

i=1

X ′
icqΣ̂

−1Xicq

+ tr{
N∑

i=1

Ψ̂−1
1•q

(
Iq−1 : −ψ̂

1q

)
(X ′

icΣ̂
−1Xic

(
Iq−1

−ψ̂
′
1q

)
)}

=
N∑

i=1

X ′
icqΣ̂

−1Xicq + Np tr{Iq−1},

using (3.6). This proves (3.8). Thus, we get

ψ̂
1q

=
1

Np

N∑

i=1

X ′
ic1Σ̂

−1Xicq. (3.9)

Next, we simplify (3.6). Using (3.8) we get after some calculations

NpΨ̂1•q =
N∑

i=1

X ′
ic1Σ̂

−1Xic1 −Npψ̂
1q

ψ̂
′
1q

. (3.10)
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Thus,

NpΨ̂11 =
N∑

i=1

X ′
ic1Σ̂

−1Xic1.

Hence, using (3.8), we get

Ψ̂ =

(
Ψ̂11 ψ̂

1q

ψ̂
′
1q

1

)
(3.11)

=
1

Np

( ∑N
i=1 X ′

ic1Σ̂
−1Xic1

∑N
i=1 X ′

ic1Σ̂
−1Xicq∑N

i=1 X ′
icqΣ̂

−1Xic1
∑N

i=1 X ′
icqΣ̂

−1Xicq

)

=
1

Np

N∑

i=1

X ′
icΣ̂

−1Xic. (3.12)

With Ψ̂ defined in (3.11), we can rewrite (3.5) as

Σ̂ =
1

Nq

N∑

i=1

XicΨ̂−1X ′
ic. (3.13)

Thus, we solve (3.12) and (3.13) directly subject to the condition (3.8). This
we shall call the ”flip-flop” algorithm. The starting value of Σ̂ can be based
on the estimators obtained in Section 2 and satisfying (3.8).

The next theorem which is proven in Section 8 provides us with an im-
portant result concerning the flip-flop algorithm and the MLEs. For related
works we refer to Lu and Zimmerman (2005) and Dutilleul (1999), where also
other references are given.

Theorem 3.1. Let Σ̂ and Ψ̂ satisfy the flip-flop algorithm given in (3.12) and
(3.13), satisfying the condition (3.8). If N >max(p, q), then there is only one
solution and the MLEs based on the likelihood given in (3.1) are unique.

The theorem is interesting because in general uniqueness of MLEs in curved
exponential families may not hold. For example, see Drton (2006) where the
SUR-model is discussed.

4 Testing that the Kronecker model holds

Let X1, . . . , XN be iid normally distributed p × q matrices. If the Kronecker
model holds, then Xj has the pdf given in (1.11). However, in general the
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pq-random vector

vec(Xj) ∼ Npq(vecM,Λ), (4.1)

where Λ is a pq×pq unstructured covariance matrix. It is assumed that Λ>0.
To estimate Λ, it is required that N > pq. We shall therefore assume in this
section that N >pq. Thus, we wish to test the hypothesis

H : Λ = Ψ∗ ⊗ Σ

against the alternative A 6= H. The maximum likelihood estimators of Ψ∗ and
Σ have been obtained in Section 3. The MLE of Λ, under the alternative, is
given by

Λ̂ =
1
N

N∑

i=1

(vecXcj)(vecXcj)′, N > pq. (4.2)

Thus, the likelihood ratio test (LRT) for H against A is given by

λ1 =
|Λ̂| 12N

|Ψ̂∗| 12Np|Σ̂| 12Nq
.

From asymptotic theory,

−2logλ1 ∼ χ2
( 1
2
pq(pq+1)− 1

2
p(p+1)− 1

2
q(q+1)+1)

.

This result may be compared with the result obtained in Roy and Khattree
(2005). Note that if we do not assume ψqq = 1 then we are in a testing situation
where not all parameters can be identified under the null distribution, and thus
standard asymptotic results for the LRT are not at disposal (e.g. see Ritz and
Skovgaard, 2005).

5 Testing that Ψ is of intraclass correlation struc-
ture

In order to test that Ψ is of the intraclass correlation structure, we either
assume that

Ψ = (1− ρ)Iq + ρ1q1
′
q, and Σ = (σij) > 0, (5.1)

or assume that

Ψ = σ2[(1− ρ)Iq + ρ1q1
′
q], and σpp = 1. (5.2)
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We consider the model (5.2) with N iid observation matrices Xj , j = 1, . . . , N ,
N > max(p, q), and since σpp = 1 we denote Σ by Σ∗. The approach of Section
3 will be adopted with suitable modifications. In particular the uniqueness of
the estimators has to be shown in a somewhat different way. The pdf of
X = (X1, . . . , XN ) is given by (2.1). After maximazing with respect to M ,
the likelihood function is given by

(2π)−
1
2
pqN |Σ∗|− 1

2
Nq|Ψ|− 1

2
Npetr{−1

2
Σ∗−1

N∑

i=1

XicΨ−1X ′
ic}.

Making the transformation

Ui = XicH,

where H is a q × q orthogonal matrix of the Helmert’s type used earlier in
Section 2. Then

H ′Ψ−1H = (H ′ΨH)−1 =
(

τ−1
1 0

0 τ−1
2 Iq−1

)
≡ D−1

τ ,

where

τ1 = σ2(1 + (q − 1)ρ),
τ2 = σ2(1− ρ).

Hence, the likelihood is given by

(2π)−
1
2
Npqτ

− 1
2
Np

1 τ
− 1

2
Np(q−1)

2 |Σ1•p|−
1
2
Nqetr{−1

2

N∑

i=1

Σ∗−1UiD
−1
τ U ′

i}, (5.3)

where

Σ∗−1 = dpd
′
p +

(
Ip−1

−σ′1q

)
Σ−1

1•p
(

Ip−1 : −σ1q

)

and dp is the pth unit base vector of size p. If ek denotes the kth unit base
vector of size q then

tr{Σ∗−1UiD
−1
τ U ′

i} = τ−1
1 tr{Σ∗−1Uie1e

′
1U

′
i}

+τ−1
2

q∑

k=2

tr{Σ∗−1Uieke
′
kU

′
i} (5.4)
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as well as

tr{Σ∗−1UiD
−1
τ U ′

i} = tr{dpd
′
pUiD

−1
τ U ′

i}

+tr{
(

Ip−1

−σ′1q

)
Σ−1

1•p
(

Ip−1 : −σ1q

)
UiD

−1
τ U ′

i}. (5.5)

Put U = (U1, U2, . . . , UN ) and Ui = (U ′
j1 : U ′

ip)
′. By using (5.4) and (5.5)

the likelihood in (5.3) leads after some manipulations to the following ML-
equations:

τ̂1 =
1

Np

N∑

i=1

tr{Σ̂∗−1Uie1e
′
1U

′
i} =

1
Np

tr{Σ̂∗−1U(IN ⊗ e1e
′
1)U

′}, (5.6)

τ̂2 =
1

Np(q − 1)

N∑

i=1

q∑

k=2

tr{Σ̂∗−1Uieke
′
kU

′
i}

=
1

Np(q − 1)
tr{Σ̂∗−1U(IN ⊗

q∑

k=2

eke
′
k)U

′}, (5.7)

σ̂1p =
N∑

i=1

Ui1D̂
−1
τ U ′

ip(
N∑

i=1

UipD̂
−1
τ U ′

ip)
−1, (5.8)

Σ̂1•p =
1

Nq

N∑

i=1

(
Ip−1 : −σ′1q

)
UiD̂

−1
τ U ′

i

(
Ip−1

−σ′1q

)
. (5.9)

In the next, in correspondence with (3.8), we are going to show that

Nq =
N∑

i=1

UipD̂
−1
τ U ′

ip =
N∑

i=1

d′pUiD̂
−1
τ U ′

idp. (5.10)

Equation (5.9) implies

NqIp−1 =
N∑

i=1

(
Ip−1 : −σ̂′1q

)
UiD̂

−1
τ U ′

i

(
Ip−1

−σ̂1q

)
Σ̂−1

1•p

13



and taking the trace yields

Nq(p− 1) =
N∑

j=1

tr{Σ̂−1
1•p

(
Ip−1 : −σ̂1q

)
UiD̂

−1
τ U ′

i

(
Ip−1

−σ̂′1q

)
}

= Np−
N∑

i=1

tr{dpd
′
pUiτ̂

−1
1 e1e

′
1U

′
i}+Np(q−1)−

N∑

i=1

q∑

k=2

tr{dpd
′
pUiτ̂

−1
2 eke

′
kU

′
i}

= Npq −
N∑

i=1

d′pUiD̂
−1
τ U ′

idp (5.11)

which implies (5.10). In (5.11) we used that τ̂1 and τ̂2 respectively can be
written

Npτ̂1 =
N∑

i=1

tr{dpd
′
pUie1e

′
1U

′
i}

+ tr{
(

Ip−1

−σ̂′1q

)
Σ̂−1

1•p
(

Ip−1 : −σ̂1q

)
Uie1e

′
1U

′
i},

Np(q − 1)τ̂2 =
N∑

i=1

q∑

k=2

tr{dpd
′
pUieke

′
kU

′
i}

+ tr{
(

Ip−1

−σ̂′1q

)
Σ̂−1

1•p
(

Ip−1 : −σ̂1q

)
Uieke

′
kU

′
i}.

Thus,

σ̂1p =
1

Nq

N∑

i=1

Ui1D̂
−1
τ U ′

i1

which implies that

Σ̂∗ =
1

Nq

N∑

i=1

UiD̂
−1
τ U ′

i =
1

Nq
U(IN ⊗ D̂−1

τ )U ′. (5.12)

Thus, similarly to Theorem 3.1 we have the following result which also is
proven in Section 8:

Theorem 5.1. Let Σ̂∗, τ̂1 and τ̂2 satisfy (5.12), (5.6) and (5.7), with σpp = 1
supposed to hold. If N > max(p, q), then there is only one solution and the
MLEs based on the likelihood given in (5.3) are unique.
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Next we obtain the MLE of Ψ with no restriction on the elements of Ψ.
On the lines of Section 3, it follows that for given Σ∗, the MLE of Ψ is given
by

Ψ̂ =
1

Np

N∑

i=1

X ′
icΣ

∗−1Xic.

Let

L =
N∑

i=1

XicΨ̂−1X ′
ic =

(
L11 l1p

l′1p lpp

)
.

Then the MLE of Σ1.p, Σ11, σ1p for a given Ψ are given by

Σ̂1•p =
1

Nq
[L11 −

l1pl
′
1p

Nq(p− 1)
],

Σ̂11 = Σ̂1•p +
l1pl

′
1p

(Nq(p− 1))2
,

σ̂1p =
l1p

Nq(p− 1)
,

Σ̂∗ =
(

Σ̂11 σ̂1p

σ̂1p 1

)
.

Thus, the maximum of the likelihood function under the alternative hypothesis
that Ψ is not of the intraclass correlation model is given by

(2π)−
1
2
pqN |Σ̂1•p|−

1
2
qN |Ψ̂|− 1

2
pNe−

1
2
pqN . (5.13)

Similarly, the maximum of the likelihood function under the hypothesis that
Ψ is of intraclass correlation model is given by

(2π)−
1
2
pqN |Σ̂1•p(H)|− 1

2
qN (τ̂1)−

1
2
pN (τ̂2)−

1
2
p(q−1)Ne−

1
2
pqN , (5.14)

where Σ̂1•p(H) stands for the MLE of Σ1•p under the null hypthesis. Thus,
the likelihood ratio test for testing the hypothesis that Ψ is of the intraclass
correlation structure is given by

λ2 = [Σ̂1•pΣ̂−1
1•p(H)]−

1
2
qN |Ψ̂| 12pN (τ̂1)−

1
2
pN (τ̂2)−

1
2
p(q−1)N . (5.15)

From asymptotic theory, it follows that −2logλ2 is distributed as chisquare
with 1

2q(q + 1) − 2 degrees of freedom. These results may be compared with
results obtained in Naik and Rao (2001) and Roy and Khattree (2005).
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6 Testing the hypothesis that Ψ∗=I and Ψρ=I

In most practical situations, it would be desirable to test the hypothesis

H1 : Ψ∗ = I, against the alternative A1 6= H1

and

H2 : Ψρ = I, against the alternative A2 6= H2.

We first consider the hypothesis H1 vs A1. For this we use the likelihood
ratio procedure. The maximum likelihood estimators Σ̂ and Ψ̂ of Σ and Ψ are
given in Section 3. From Corollary 2.1, the maximum likelihood estimator of
Σ when Ψ = I is S. Hence, the log of the likelihood rates under the hypothesis
and under the alternative is given by

log λ3 =
|Ψ̂∗| 12pN |Σ̂| 12 qN

|S| 12 qN

and

−2 log λ3 ∼ χ2
1
2
q(q+1)−1

asymptotically under the hypothesis H1.
For testing the hypothesis H2 against the alternative A2 when ψii = 1, i =

1, . . . , q, we consider the estimator Ψ̃ik of Ψik given in Section 2. Under the
hypothesis H2,

tik =
√

np Ψ̃ik, i 6= k

which are independently normally distributed with mean 0 and variance one.
Hence,

T =

∑
i<j t2ij − 1

2q(q − 1)√
q(q − 1)

is asymptotically normally distributed with mean zero and variance one.

7 Simulation study

In this section we present a small simulation study indicating that the proposed
algorithm in Section 3 is working practically when finding the MLEs. It is
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interesting to note that in all simulations the estimators were close to the
true value. We present results when the sample sizes equal either 100 or 250,
which are relatively small numbers when taking into account the number of
parameters. The number of observations equals 250 when either p = 15 or
q = 15. We have also performed a number of simulations (not presented here)
with N = 1000 and the results agree with those presented in this paper.

In Tables 1-6, the results based on 300 replications are presented, for six
different settings of p, q, and N in the likelihood (3.1). Estimators are found
according to the proposed algorithm in Section 3. Only the estimators of the
unknown diagonal elements of Σ and Ψ are presented together with the true
value, the standard deviation (std) as well as the minimum and maximum
values of the replications.

Table 1. p = 5, q = 5 and N = 100.

parameter true value MLE std min max
σ11 6.02 5.90 0.52 4.65 7.59
σ22 5.42 5.36 0.47 4.14 7.05
σ33 3.11 3.06 0.27 2.40 3.83
σ44 3.63 3.59 0.31 2.73 4.73
σ55 2.05 2.01 0.18 1.60 2.60
ψ11 0.43 0.45 0.04 0.34 0.60
ψ22 0.54 0.55 0.05 0.40 0.69
ψ33 0.28 0.29 0.03 0.21 0.37
ψ44 0.46 0.46 0.04 0.34 0.61

Table 2. p = 7, q = 5 and N = 100.

parameter true value MLE std min max
σ11 6.99 6.86 0.52 5.54 8.37
σ22 7.41 7.27 0.55 5.75 8.86
σ33 3.80 3.75 0.30 2.92 4.91
σ44 5.42 5.34 0.43 4.39 6.52
σ55 6.44 6.33 0.47 5.10 8.10
σ66 5.49 5.40 0.40 4.36 6.71
σ77 11.37 11.12 0.87 8.98 13.91
ψ11 0.11 0.11 0.01 0.09 0.14
ψ22 0.21 0.22 0.02 0.17 0.27
ψ33 0.26 0.26 0.02 0.21 0.32
ψ44 0.37 0.37 0.03 0.30 0.44
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Table 3. p = 15, q = 5 and N = 250.

parameter true value MLE std min max
σ11 14.56 14.53 0.66 12.70 16.33
σ22 10.06 10.20 0.45 8.62 11.36
σ33 12.83 12.80 0.60 10.98 14.70
σ44 12.84 12.77 0.60 11.35 14.82
σ55 10.81 10.77 0.47 9.52 12.40
σ66 7.35 7.31 0.35 6.29 8.45
σ77 13.32 13.32 0.59 11.81 14.87
σ88 17.45 17.44 0.80 15.59 19.70
σ99 10.89 10.83 0.49 9.29 11.94
σ1010 13.17 13.15 0.58 11.71 14.99
σ1111 25.35 25.28 1.15 22.49 29.34
σ1212 17.37 17.27 0.79 14.95 19.38
σ1313 18.72 18.62 0.83 16.31 21.12
σ1414 7.84 7.82 0.37 6.87 8.87
σ1515 12.09 12.03 0.51 10.58 13.36
ψ11 0.73 0.73 0.02 0.66 0.79
ψ22 0.14 0.14 0.004 0.13 0.15
ψ33 0.87 0.87 0.03 0.80 0.94
ψ44 0.23 0.23 0.01 0.21 0.25
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Table 4. p = 15, q = 7 and N = 250.

parameter true value MLE std min max
σ11 10.95 10.87 0.41 9.45 12.06
σ22 13.00 12.97 0.57 11.56 14.67
σ33 13.14 13.08 0.52 11.60 14.64
σ44 13.90 13.83 0.51 12.53 14.95
σ55 17.50 17.52 0.70 15.56 19.39
σ66 11.34 11.31 0.45 10.06 12.49
σ77 13.83 13.71 0.57 12.28 15.57
σ88 13.25 13.19 0.54 11.60 14.62
σ99 13.43 13.38 0.51 11.83 14.66
σ1010 7.15 7.14 0.31 6.46 7.84
σ1111 10.47 10.46 0.39 9.59 12.18
σ1212 29.49 29.43 1.15 26.35 32.64
σ1313 17.17 17.07 0.69 15.38 18.68
σ1414 19.49 19.37 0.75 17.30 21.13
σ1515 15.35 15.33 0.57 13.71 16.78
ψ11 0.68 0.68 0.02 0.62 0.73
ψ22 0.76 0.76 0.03 0.70 0.82
ψ33 0.93 0.94 0.03 0.86 1.01
ψ44 0.56 0.56 0.02 0.51 0.61
ψ55 0.55 0.55 0.02 0.50 0.60
ψ66 0.92 0.93 0.03 0.86 1.01

19



Table 5. p = 5, q = 7 and N = 100.

parameter true value MLE std min max
σ11 6.02 5.86 0.48 4.40 7.18
σ22 5.42 5.33 0.44 4.35 6.79
σ33 3.11 3.03 0.26 2.16 3.97
σ44 3.64 3.56 0.30 2.79 4.45
σ55 2.05 1.99 0.17 1.45 2.48
ψ11 0.60 0.61 0.06 0.48 0.80
ψ22 0.65 0.66 0.06 0.54 0.89
ψ33 0.49 0.50 0.04 0.40 0.63
ψ44 1.03 1.05 0.10 0.83 1.43
ψ55 0.24 0.24 0.02 0.20 0.32
ψ66 0.42 0.43 0.04 0.34 0.56

Table 6. p = 5, q = 15 and N = 250.

parameter true value MLE std min max
σ11 2.45 2.39 0.12 2.07 2.83
σ22 1.46 1.43 0.07 1.25 1.63
σ33 5.66 5.50 0.26 4.81 6.45
σ44 3.01 2.94 0.15 2.56 3.39
σ55 2.94 2.87 0.14 2.46 3.33
ψ11 1.06 1.08 0.06 0.92 1.34
ψ22 0.77 0.72 0.05 0.59 0.87
ψ33 0.73 0.75 0.05 0.63 0.88
ψ44 0.83 0.84 0.04 0.72 0.99
ψ55 0.56 0.58 0.04 0.48 0.68
ψ66 0.60 0.62 0.03 0.54 0.69
ψ77 1.16 1.19 0.07 0.97 1.42
ψ88 0.37 0.38 0.02 0.32 0.45
ψ99 0.52 0.54 0.03 0.45 0.64
ψ1010 0.73 0.75 0.04 0.64 0.89
ψ1111 0.71 0.72 0.04 0.62 0.84
ψ1212 0.84 0.86 0.05 0.72 1.02
ψ1313 1.08 1.11 0.06 0.88 1.30
ψ1414 0.94 0.96 0.05 0.82 1.14
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8 Proofs of Theorem 3.1 and Theorem 5.1

Here proofs of the theorems for uniqueness of the MLEs are presented. Firstly
it is shown that the flip-flop algorithm given by (3.12) and (3.13) only has one
solution, i.e. we obtain unique estimators. The relations in (3.12) and (3.13)
may be rewritten as

NqΣ =
N∑

i=1

(e′i ⊗ I)XcΨ−1X ′
c(ei ⊗ I), (8.1)

NpΨ = X ′
c(I ⊗ Σ−1)Xc, (8.2)

where

Xc = (X ′
1c : X ′

2c : . . . : X ′
Nc)

′, (pN × q),

and ei is a unit base vector of size N , i.e. the ith column of IN . These equations
imply that

NqΣ =
N∑

i=1

(e′i ⊗ Ip)Xc(
1

Np
X ′

c(IN ⊗ Σ−1)Xc)−1X ′
c(ei ⊗ Ip)

is to be considered which in turn is equivalent to

q

p
I =

N∑

i=1

(e′i ⊗ Ip)Xc(
1

Np
X ′

c(IN ⊗ Σ−1)Xc)−1X ′
c(ei ⊗ Ip)Σ−1 (8.3)

=
N∑

i=1

(e′i ⊗ Ip)Xc(
1

Np
X ′

c(IN ⊗ Σ−1)Xc)−1X ′
c(IN ⊗ Σ−1)(ei ⊗ Ip)

= (vec′IN ⊗ Ip)(IN ⊗Xc(X ′
c(IN ⊗ Σ−1)Xc)−1X ′

c(IN ⊗ Σ−1))
× (vecIN ⊗ Ip). (8.4)

Put

PΣ = Xc(X ′
c(IN ⊗ Σ−1)Xc)−1X ′

c(IN ⊗ Σ−1)

which is a projector (idempotent matrix). Suppose now that there are Σ1 and
Σ2 both satisfying (8.4). Then, by subtraction we obtain

0 = (vec′IN ⊗ Ip)(IN ⊗ (PΣ1 − PΣ2))(vecIN ⊗ Ip). (8.5)
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Our task is to show that the only solution of (8.5) is given by Σ1 = Σ2. It may
be noted that Σ1 = cΣ2, c 6= 1 is not a possibility since ψqq = 1 and equation
(3.13) has to be satisfied by all the solutions. Let

QΣ = IpN − PΣ = (IN ⊗ Σ)Xo
c (Xo′

c (IN ⊗ Σ)Xo
c )−1Xo′

c ,

where Xo
c is defined to be any matrix which under the standard inner product

generates the orthogonal complement to the column space generated by Xc.
Then,

PΣ1 − PΣ2 = PΣ1(IpN − PΣ2) = PΣ1QΣ2

= Xc(X ′
c(IN ⊗ Σ−1

1 )Xc)−1X ′
c(IN ⊗ Σ−1

1 )

×(IN ⊗ Σ2)Xo
c (Xo′

c (IN ⊗ Σ2)Xo
c )−1Xo′

c .

Suppose for a while that (8.5) holds if and only if PΣ1−PΣ2=0, i.e. PΣ1QΣ2=0,
which is equivalent to

X ′
c(IN ⊗ Σ−1

1 Σ2)Xo
c = 0. (8.6)

There are two possibilities for (8.6) to hold. Either Σ1 = cΣ2 or the column
space, denoted C(•), generated by Xo

c is invariant with respect to IN⊗Σ−1
1 Σ2,

i.e. the space is generated by the eigenvectors of IN ⊗Σ−1
1 Σ2. However, since

the matrix of eigenvectors is of the form IN ⊗Γ for some Γ it shows, since the
column space of Xo

c is a function of the observations, that IN ⊗ Γ does not
generate the space, unless N = 1. Thus, in order for (8.6) to hold Σ1 = cΣ2

and we have already noted that in this case c = 1, i.e. Σ1 = Σ2.
It remains to show that (8.5) is true only if PΣ1 − PΣ2 = PΣ1QΣ2 = 0, i.e.

0 = (vec′IN ⊗ Ip)(IN ⊗ PΣ1)(IN ⊗QΣ2)(vecIN ⊗ Ip). (8.7)

Since, in (8.6) we have the two projections (IN ⊗PΣ1) and (IN ⊗QΣ2) we will
study the effect of them via column spaces. Using Theorem 1.2.16 in Kollo &
von Rosen (2005) gives

C((IN⊗ P ′
Σ1

)(vecIN ⊗ Ip)) = C(IN ⊗ P ′
Σ1

)∩{C(IN ⊗ PΣ1)
⊥+ C(~IN ⊗ Ip)}

= C(IN ⊗ (IN ⊗ Σ−1
1 )Xc)∩{C(IN ⊗Xo

c ) + C(vecIN ⊗ Ip)}, (8.8)

C((IN⊗QΣ2)(vecIN ⊗ Ip)) = C(IN ⊗QΣ2)∩{C(IN ⊗Q′
Σ2

)⊥+ C(~IN ⊗ Ip)}
= C(IN ⊗ (IN ⊗ Σ2)Xo

c )∩{C(IN ⊗Xc) + C(vecIN ⊗ Ip)}. (8.9)

If (8.7) should hold the spaces presented in (8.8) and (8.9), respectively, must
be orthogonal. Thus,

C(IN ⊗ (IN ⊗ Σ−1
1 )Xc) ∩ {C(IN ⊗Xo

c ) + C(vecIN ⊗ Ip)}
⊆ C(IN ⊗ (IN ⊗ Σ2)Xo

c )⊥ + C(IN ⊗Xc)⊥ ∩ C(vecIN ⊗ Ip)⊥. (8.10)
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However, the following trivial facts hold:

C(IN ⊗ (IN ⊗ Σ−1
1 )Xc) ∩ {C(IN ⊗Xo

c ) + C(vecIN ⊗ Ip)}
⊆ C(IN ⊗ (IN ⊗ Σ−1

1 )Xc)
C(IN ⊗ (IN ⊗ Σ2)Xo

c )⊥

⊆ C(IN ⊗ (IN ⊗ Σ2)Xo
c )⊥ + C(IN ⊗Xc)⊥ ∩ C(vecIN ⊗ Ip)⊥.

Hence, if

C(IN ⊗ (IN ⊗ Σ−1
1 )Xc) ⊆ C(IN ⊗ (IN ⊗ Σ2)Xo

c )⊥ (8.11)

does not hold (8.10) as well as (8.8) can not be valid and therefore (8.11)
must always be true which is the same as stating that PΣ1QΣ2 = 0. Thus, the
flip-flop algorithm provides us with unique solutions.

Turning to Theorem 5.1 we will show that estimators satisfying

Σ =
1

Nq
U(IN ⊗D−1

τ )U ′, (8.12)

where

Dτ = τ1e1e
′
1 +

q∑

k=2

τ1e1e
′
1 (8.13)

with

τ1 =
1

Np
tr{Σ−1U(IN ⊗ e1e

′
1)U

′}, (8.14)

τ2 =
1

Np(q − 1)
tr{Σ−1U(IN ⊗

q∑

k=2

eke
′
k)U

′} (8.15)

are unique. The above given equations imply that

Σ =
p

q
(tr{Σ−1U(IN ⊗ e1e

′
1)(IN ⊗ e1e

′
1)U

′})−1U(IN ⊗ e1e
′
1)(IN ⊗ e1e

′
1)U

′

+
p(q − 1)

q
(

q∑

k=2

tr{Σ−1U(IN ⊗ eke
′
k)(IN ⊗ eke

′
k)U

′})−1

×
q∑

k=2

U(IN ⊗ eke
′
k)(IN ⊗ eke

′
k)U

′. (8.16)
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Postmultiplying (8.16) by Σ−1 and putting

A = U(IN ⊗ e1e
′
1), B =

q∑

k=2

U(IN ⊗ eke
′
k)

we obtain

I =
p

q
(tr{Σ−1AA′})−1AA′Σ−1 +

p(q − 1
q

(tr{Σ−1BB′})−1BB′Σ−1. (8.17)

Note that AB′ = 0 implies that C(A) ∩ C(B) = {0}. Now suppose that there
exist Σ1 and Σ2, Σ1 6= cΣ2, for any positive constant c 6= 1, satisfying (8.17).
The case Σ1 = cΣ2, c 6= 1 is of no interest since σpp = 1 is supposed to hold.
Thus, it follows that

0=
p

q
((tr{Σ−1

1 AA′})−1AA′Σ−1
1 − (tr{Σ−1

2 AA′})−1AA′Σ−1
2 )

+
p(q − 1)

q
((tr{Σ−1

1 BB′})−1BB′Σ−1
1 − (tr{Σ−1

2 BB′})−1BB′Σ−1
2 ). (8.18)

Since C(AA′Σ̂i) = C(A), C(BB′Σ̂i) = C(B), i=1, 2, and C(A)∩C(B)={0},
the two terms in (8.18) may be considered separately, i.e.

(tr{Σ−1
1 AA′})−1AA′Σ−1

1 = (tr{Σ−1
2 AA′})−1AA′Σ−1

2 ,

(tr{Σ−1
1 BB′})−1BB′Σ−1

1 = (tr{Σ−1
2 BB′})−1BB′Σ−1

2 . (8.19)

Because of symmetry it is enough to exploit (8.19) which, since AA′ with
probability 1 is of full rank p, is identical to

Σ2 =
tr{Σ−1

1 AA′}
tr{Σ−1

2 AA′}Σ1. (8.20)

This implies that Σ1 = cΣ2 which according to the assumptions should not
hold except when c = 1. Hence, there exist only one solution to (8.18).
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