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We analyze a quantum optical memory based on the off-resonant Raman interaction of a single broadband
photon, copropagating with a classical control pulse, with an atomic ensemble. The conditions under which the
memory can perform optimally are found, by means of a universal mode decomposition. This enables the
memory efficiency to be specified in terms of a single parameter, and the control field pulse shape to be
determined via a simple nonlinear scaling. We apply the same decomposition to determine the optimal con-
figurations for read-out.
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The conversion of optical information between photons
and atoms forms the basis of a quantum interface that is a
critical component of quantum communications networks
and distributed quantum computers �1–3�. Such quantum in-
formation processing schemes require the ability both to
move quantum information between nodes of a network, and
to store the information. An important class of quantum op-
tical memories is based on the interaction of individual pho-
tons with atomic ensembles, in which the information is
transferred coherently from a single photon to a collective
excitation of the atoms. If active feedback �4� is not used,
these memories are generally optically dense, with the den-
sity controlled dynamically using an ancillary field �5–7�.

In this paper we analyze a prototypical memory based on
the off-resonant Raman interaction of a classical pulsed con-
trol field and a broadband signal photon in an atomic me-
dium �see Fig. 1�. The temporal structure of the signal pho-
ton is transferred by the control to a long-lived collective
atomic excitation �5�, or spin wave. This differs qualitatively
from previous narrow band schemes �8�, which demonstrated
that quadrature squeezing could be transferred from optical
fields to a collective atomic spin. We show how proper shap-
ing of the control field allows the mapping of an input wave
packet of arbitrary temporal shape to an output wave packet
of a potentially different temporal shape. The dynamics are
closely related to those investigated in proposals for en-
tanglement generation via spontaneous �2,9� and, more re-
cently, stimulated �10,11� Stokes scattering. However the
photon storage process is distinct from these, in that it ex-
hibits an explicit time reversal symmetry; evinced by its fun-
damental mode structure. Spontaneous emission is sup-
pressed as long as the excited state remains empty. Lossless
unitary storage of broadband single photons—such as are
commonly used in cryptographic and teleportation experi-
ments �1,12�—can therefore be implemented by detuning
sufficiently from resonance �17�. Departure from resonance
makes our scheme robust against inhomogeneities in the en-
semble, so that solid state absorbers �e.g., semiconductor
charge quantum dots �13�� could be substituted for the atoms.
In addition, changing the detuning of the control pulse be-

tween storage and retrieval allows for control over the fre-
quency of the output state. In the following we consider
propagation in the one-dimensional limit; a fully three-
dimensional model will be considered elsewhere.

The signal and control fields are Raman resonant, with
center frequencies �s, �c, respectively. The classical control
at time t and position z is represented by the Rabi frequency
����, where �� t−z /c is the local time. The signal and spin
wave amplitudes are described by the slowly varying anni-
hilation operators A�� ,z�, and B�� ,z�, respectively �18�. The
spin wave is a collective coherence of the form B�� ,z�
����1��	3��e−i��s−�c��, where the index � runs over all atoms
with position z �10�. If the common detuning � of the signal
and control pulses from single photon resonance is much
larger than the signal bandwidth �, the control Rabi fre-
quency �, and the control bandwidth, the excited state �mi�
can be adiabatically eliminated. If the ensemble is prepared
in the collective state �0�� � i�1i�, and if the population of the
metastable state �3i� is assumed to remain negligible, a linear
theory can be used. The Maxwell-Bloch equations, in the
slowly varying envelope approximation, are then found to be
�10,11�

��� − i������2/	�B��,z� = − 
*�*���A��,z�/	 , �1�

��z − i�
�2/	�A��,z� = 
����B��,z�/	 , �2�

where 
 is the signal field coupling and 	��− i���	�e−i� is
the complex detuning, with real phase �. � arises from
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FIG. 1. �Color online� Left: the level structure of the ith atom
comprising a quantum memory for broadband photons, with band-
width �. Right: a schematic of the read-in process for the quantum
memory.
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dephasing processes, including spontaneous emission. We
have not included the Langevin noise operator that formally
accompanies these loss terms, since its contribution vanishes
when normally ordered expectation values of A and B are
taken. We neglect the slow decay of the spin wave over the
short time scale of the memory interaction.

We now introduce a new set of scaled coordinates: the
memory time ����C���� /��T�, where T is the duration of
the interaction, and the effective distance ��z��Cz /L, with L
the length of the ensemble. Here �����
0

��������2d�� is the
integrated Rabi frequency and C��
��L��T� / �	� is a cou-
pling parameter. We define dimensionless annihilation opera-
tors �� ,������T� /Ce−i���,z�A�� ,z� /���� for the optical
field �assuming 
 is real for simplicity� and �� ,��
��L /Ce−i���,z�B�� ,z� for the spin wave, where the exponent
is ��� ,z�������+ �
�2z� /	. The first term in � describes a
Stark shift due to the control field; the second represents a
modification of the signal group velocity. With these
changes, the equations of motion reduce to the simple
coupled system ���=ei��; ��=−ei��. The solution of these
equations then holds for all control pulse shapes and arbi-
trary inputs. The coupling parameter C sets the size of the
region in � ,��-space over which the memory interaction is
driven. For the case considered here, an atomic ensemble, C
can be rewritten in the form C= ��� f� /me�1/2f�NaNc /
��	�A�, where f is the geometric mean of the oscillator
strengths for the signal and control transitions, A is the
cross-sectional area of the control field, and Na�Nc� is the
number of atoms �photons� interacting with �comprising� the
control pulse. Here � f is the fine structure constant, and me is
the electron mass.

The memory read-in and read-out must be unitary to func-
tion correctly. We now show that canonical evolution of the
field operators � and � is guaranteed by the classical struc-
ture of Eqs. �1� and �2� in the dispersive limit ���. In this
case, the phase � vanishes and the following continuity rela-
tion is satisfied: ���

†�+��
†�=0. Integration of this expres-

sion over a square in � ,��-space yields the flux-excitation
conservation condition

N��C� + N��C� = N��0� + N��0� , �3�

where the number operators N�����
0
C�†� ,���� ,��d, and

N����
0
C�†� ,���� ,��d�, count the number of signal pho-

tons at an effective distance �, and the number of excitations
of the spin wave at memory time , respectively. Equation
�3� must hold for arbitrary initial amplitudes �0����� ,0�
and �0������0,��, which fixes the transformation
��0�� ,�0���→ ��C�� ,�C��� as unitary �where �C��
��� ,C� is the signal amplitude at the exit face of the en-
semble, and �C������C ,�� is the spin-wave amplitude at
the end of the read-in process�. This allows the dynamics to
be decomposed into a set of independent transformations be-
tween light-field and spin-wave modes �11,14�. In what fol-
lows we therefore concentrate on the dispersive limit, and
consider the case 	→�; �→0. The solution of the dynami-
cal equations is expressed by the scattering relations �10,15�

�C�� = �
0

C

�G1� − x,C��0�x� + G0�C − x,��0�x��dx ,

�4�

�C��� = �
0

C

�G1�� − x,C��0�x� − G0�C − x,���0�x��dx .

�5�

The integral kernels are given by G0�p ,q��J0�2�pq�, and
G1�p ,q����p�−��p�J1�2�pq��q / p, with the nth Bessel
function of the first kind denoted by Jn, and where the Heavi-
side step function � ensures that the convolutions in Eqs. �4�
and �5� respect causality.

The integral kernels G0,1—as they appear in Eqs. �4� and
�5�—share symmetry under reflection about the line C−x
=y, where y stands for the independent variable: either  or
�. This symmetry, along with Eq. �3�, allows us to decom-
pose the kernels using input and output modes related by
time reversal �or equivalently space reversal� as follows:

G0�C − ,�� = �
i=1

�

�i����i�i�C − � , �6�

G1�� − ,C� = �
i=1

�

�i����i�i�C − � , �7�

where ��i is a complete orthonormal set of real mode func-
tions and where the real, positive singular values satisfy the
constraint �i

2+�i
2=1, ∀i.

The ensemble begins the read-in process in the state �0�,
and we are free to replace �0��� by its expectation value;
�0���→0. With the above decomposition, Eq. �5� then
describes a mapping of the optical input mode �i�C−� to
the output spin-wave mode �i���, with transfer amplitude
−�i, for each i. Transforming from memory time  back
to local time �, the normalized input modes are written
�i�����C /��T�ei���,0������i�C−����. The read-in effi-
ciency can be quantified by evaluating the expectation value
of the spin-wave number operator 	N��C�� at the end of the
read-in process. Expanding an incident signal wave packet
���� using the �i, the read-in efficiency is expressed as
	N��C��=�i�i

2��i�2, with the ith overlap given by �i

�
0
T�*����i���d�. When 	N��C��=1, the read-in works per-

fectly. In Fig. 2 the first five transfer amplitudes are plotted
as a function of C. These are found using the eigenvalue
equation

�
0

C

J0�2�xy��i�y�dy = �i�i�x� , �8�

which we solve numerically using a 500�500 square grid. It
is desirable to limit the energy of the control pulse, so we
should find the minimum coupling parameter C, which per-
mits complete storage of the signal. For C�2 the lowest
mode achieves its optimal efficiency �1�1, but higher
modes remain poorly coupled. The efficiency of the memory
is therefore maximized by setting �1=1; �i�1=0, so that
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	N��C��=�1
2�1 �for C�2�. To do this, it is necessary to

shape the control field so that �1���=����. If Gaussian optics
�A�cL /�s� are used to illuminate a region a few cm long
in a typical atomic vapor �f �1� of modest density
��1020 m−3�, with 100 nJ control pulses, a 1 ps photon wave
packet can be stored optimally, with C=2. In practice mode
matching could be achieved through measurement and feed-
back: the signal and control field sources are locked to a
phase reference and operated in pulsed mode. The control
pulse profile is characterized �16�, and augmented until the
transmission of the signal is minimized. Figure 3 shows the
result of a simple optimization to find the control pulse shape
which mode matches the lowest input mode to a Gaussian
signal photon, for C=2. The photon is absorbed with
	N��C���0.96; the small transmission probability is due to
the limitations of our numerical mode matching optimiza-
tion.

Once a properly mode matched photon has been read into
the quantum memory, the ensemble is left in the output mode
�1���, with probability amplitude −�1. We now consider the
effect of sending a second control pulse, propagating in the
same direction as the initial control pulse, into the ensemble.
The center frequency, bandwidth, and intensity of this read-
out pulse may differ from that of the first control pulse
�herein the read-in pulse�. Let us use a superscript r to indi-
cate those quantities associated with the read-out. We neglect
decoherence and dephasing of the spin wave over the storage
period and set Br�0,z�=B�T ,z�. This provides us with one
boundary condition; the second is that the signal field begins
in its vacuum state at the start of the read-out process,

	N�
r �0��=0. The efficiency of the read-out depends upon the

degree to which the spin-wave mode �1�z�
��C /Lei��T,z��1�Cz /L� �written in terms of the ordinary
spatial variable z� overlaps with the input modes �i

r�z�
��Cr /Lei�r�0,z��i

r�Cr�1−z /L�� for the read-out process. The
functions ��i

r solve the eigenvalue equation �8�, with C re-
placed by Cr. A measure of the efficiency of the memory is
the expectation value of the output photon number operator
N�	N�

r �Cr��=�1
2�i�i

r2�f i�2, with the read-out overlaps de-
fined by f i�
0

L�1
*�z��i

r�z�dz. The parameter N is the prob-
ability of retrieving a photon from the ensemble at read-out,
given that a single mode matched photon was sent in with
the read-in pulse. If the detuning does not change too much,
so that ��r−�� /���r / ��
�2L���Nc

r /Na, then the phases �,
�r of the spin-wave modes approximately cancel, and then
the stored spin wave is phase matched to the read-out modes.
In Fig. 4 the variation of N, under this approximation, is
plotted as a function of the read-in and read-out coupling
parameters C and Cr. If C=Cr, then the lowest read-out
mode is just the mirror image of the spin-wave mode. For
small C, the spin-wave mode is monotonic, and relatively
flat; f1 is therefore large. However the transfer amplitudes �1
and �1

r remain small, so the retrieval probability is low. In-
creasing �1 requires a larger C, but this produces a more
asymmetric spin-wave mode, and f1 falls. It is then necessary
to increase Cr above C, so that higher modes, with which the
spin wave mode overlaps significantly, are efficiently
coupled to the optical field. The retrieval probability is maxi-
mized along the line C�2, which represents the optimal
coupling for the read-in process. However, a read-out cou-
pling parameter in excess of 10 is required to achieve N
�0.95. Note also that mode matching to the lowest mode at
read-in is the best strategy for maximizing the memory effi-
ciency. Mode matching to a higher mode, or some combina-
tion of modes, simply increases the optimal read-in coupling
above C=2 �19�.

The time reversal symmetry between the input and output
modes makes the read-out for this scheme a nontrivial prob-
lem. Simply repeating the read-in process �so that C=Cr�
results in poor performance of the memory. However, the
dramatic increase in coupling strength required to extract the
stored excitation fully, may make a naïve increase in control

FIG. 2. �Color online� The five largest singular values of the
kernel G0, plotted as a function of the coupling parameter C.

FIG. 3. �Color online� Left: the intensity 	A†�� ,z�A�� ,z�� of a
Gaussian signal photon �1��, with wave packet amplitude ����
� exp �−2 ln 2���−�0� / �2, as it propagates through an atomic en-
semble with C=2. Here  =T /8, �0=2T /3. Right: the optimized
control field intensity is shown along side the initial signal field
intensity �scaled for clarity�.

FIG. 4. �Color online� The photon retrieval probability N, for
forward read-out, plotted as a function of the read-in and read-out
coupling parameters C and Cr.
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pulse energy at read-out prohibitively difficult to realize. An
alternative method to boost the coupling is to reduce the
bandwidth of the read-out pulse, along with its detuning �r.
The photon recovered from the memory in this way would
be frequency shifted �according to the Raman resonance con-
dition�, and temporally stretched �since its bandwidth would
be diminished as well�. Such a memory would act as a pho-
ton transducer, storing broadband photons and converting
them to narrow band photons with tunable frequency on de-
mand.

Note that switching the propagation direction of the read-
out pulse sends �i�Cz /L�→�i�C�1−z /L��, so that the spin-
wave mode overlaps exactly with the lowest read-out mode
with Cr=C, and we should obtain N=�1

4. Unfortunately the
read-out process is no longer phase matched in this situation,
and the overlap integrals f i vanish. However, a solid-state
implementation might allow this kind of reverse read-out
with the use of quasi-phase-matching, in which the sign of
the read-out coupling parameter Cr is periodically flipped
along the length of the ensemble.

The phase matching problem is obviated in the limit of
vanishing Stokes shift, but then the ground state �0� must be
prepared artificially with high purity: if the state �3i� is ini-
tially populated, or if selection rules allow residual coupling
of the control to the ground state, the memory fidelity at the
level of single quanta is greatly reduced. Furthermore, if sig-
nal and control are spectrally indistinguishable, another de-
gree of freedom should be used to differentiate between
them. Typically, polarization affords discrimination to a part
in �106, but then the control should not contain more than a

million photons. A large Stokes shift is therefore desirable,
and correct phase matching at read-out is crucial for efficient
retrieval. The above considerations demonstrate the impor-
tance of propagation effects in the design of an optical quan-
tum memory.

We have shown that the off-resonant Raman configuration
for a !-type ensemble quantum memory can be used to
implement deterministic, controllable, and unitary transfer of
the temporal structure of broadband single photons to a sta-
tionary spin wave, in the adiabatic regime. The dynamics are
understood and optimized using a universal mode decompo-
sition, valid for all control pulses and arbitrary input states.
The modes are computationally simple to evaluate, and only
a few of them are required to approximate the interaction
faithfully. The optimal fidelity of the memory depends only
upon a single dimensionless parameter �C�, which defines an
equivalence class for memories with different physical
implementations.
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