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Mild to steep standing waves of the fundamental mode are generated in a narrow 
rectangular cylinder undergoing vertical oscillation with forcing frequencies of 3.15 Hz 
to 3.34 Hz. A precise, non-intrusive optical wave profile measurement system is used 
along with a wave probe to accurately quantify the spatial and temporal surface 
elevations. These standing waves are also simulated by a two-dimensional spectral 
Cauchy integral code. Experiments show that contact-line effects increase the viscous 
natural frequency and alter the neutral stability curves. Hence, as expected, the 
addition of the wetting agent Photo Flo significantly changes the stability curve and 
the hysteresis in the response diagram. Experimentally, we find strong modulations 
in the wave amplitude for some forcing frequencies higher than 3.30 Hz. Reducing 
contact-line effects by Photo-Flo addition suppresses these modulations. Perturbation 
analysis predicts that some of this modulation is caused by noise in the forcing signal 
through 'sideband resonance', i.e. the introduction of small sideband forcing can 
generate large modulations of the Faraday waves. The analysis is verified by our 
numerical simulations and physical experiments. Finally, we observe experimentally 
a new form of steep standing wave with a large symmetric double-peaked crest, 
while simulation of the same forcing condition results in a sharper crest than seen 
previously. Both standing wave forms appear at a finite wave steepness far smaller 
than the maximum steepness for the classical standing wave and a surface tension far 
smaller than that for a Wilton ripple. In both physical and numerical experiments, 
a stronger second harmonic (in time) and temporal asymmetry in the wave forms 
suggest a 1 :2 resonance due to a non-conventional quartet interaction. Increasing wave 
steepness leads to a new form of breaking standing waves in physical experiments. 

1. Introduction 

Standing waves can be created by reflection from coastlines, by interaction of ship- 
generated and ambient waves, by waves generated along the edge of a mescoscale 
current system, etc. Our motivation for investigating standing waves is to better 
interpret remotely sensed ocean surfaces, for example, those obtained by SAR (Syn- 
thetic Aperture Radar). SAR, based on the backscattering of microwaves by surface 
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features, is sensitive to surface curvature and periodicity of the sea surface. It is 
generally acknowledged that standing waves can have sharper curvature than their 
progressive wave counterparts. Therefore, standing waves, especially capillary-gravity 
standing waves with length scales on the order of the Bragg wavelength, have a strong 
influence on both the SAR return and its interpretation. 

A Faraday wave is a standing surface wave generated in a vertically oscillating 
container through subharmonic resonance (Benjamin & Ursell 1954). Here, we study 
low-mode Faraday resonance and its wave forms, especially for steep standing waves. 
In the Faraday experiment, spatial periodicity is better ensured by the fixed endwalls 
where forcing required to overcome dissipation is supplied by vertical oscillation rather 
than the endwall motion of Taylor (1953). Therefore the simulations and experiments 
on wave form are less influenced by the wave-generation mechanism. For example, 
Fultz (1962) compared experiments using Taylor’s apparatus with analytical solutions 
by Tadjbakhsh & Keller (1960) and found excessive higher harmonics in the wave 
forms. Our experience has shown that Faraday waves provide a ‘cleaner’ setting for 
the experimental study of standing waves. 

To accurately determine the wave form, especially at the crest, we excite the 
tank at a frequency that gives an entire wavelength within the tank. Then all our 
experiments are symmetric about the tank centre and a crest forms at the centreline 
away from the sidewall boundary layers. We shall call this the ‘fundamental’ mode 
even though the half-wavelength (slosh) mode has fewer zero-crossings. Here we 
emphasize three important issues that appear to be neglected in previous studies. 
First, the contact line not only increases effective damping, as revealed by previous 
studies, but also increases the natural frequency. This effect changes the neutral- 
stability curve and introduces hysteresis in the amplitude-frequency diagram. Second, 
large wave modulations observed in the experiments are explained by the influence 
of contact line and sideband noise in the forcing signal. Finally, different wave forms 
with flat or dimpled crests appear in the spatially and temporally periodic standing 
waves for larger forcing amplitude, accompanied by the more obvious breaking of 
time-reversal symmetry. These wave forms obtained by our high-resolution imaging 
system differ from our numerical simulations, but both experiments and simulations 
demonstrate strong temporal asymmetry and higher-order internal resonance. 

We first review the literature on standing waves in general in 92.1. The Faraday 
wave and contact-line effects in particular are discussed in $2.2. The linear theory 
of Faraday waves is briefly described in $3.1 for later comparison. A fully nonlinear 
numerical method is described in 53.2, and an asymptotic analysis of the ‘sideband 
resonance’ is described in $3.3. The experimental set-up and techniques are presented 
in $4. In 95 and 96, the physical experiments are compared with numerical simulations 
and asymptotic analysis for moderate and steep waves, respectively. Preliminary 
experiments on breaking standing waves are shown in $7. 

2. Literature review 

2.1. Standing waves 

A fifth-order standing wave solution was obtained by Penney & Price (1952) using 
a double Fourier series in space and time. According to their conjecture, the lim- 
iting standing wave has a wave steepness H1-l = 0.218, and a crest angle of 90”, 
where H is the peak-to-peak wave height and 1 is the wavelength. Taylor (1953) 
conducted standing-wave experiments in a channel bounded at each end by a 
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hinged-flap wavemaker. The experimental results appeared to confirm the profile 
and the conjectured limiting crest angle. Taylor observed that waves steeper than 
those of the theoretical predictions became three-dimensional and eventually broke. 
Schwartz & Whitney (198 1) developed higher-order expansions for gravity standing 
waves to obtain a maximum wave steepness of H1-l = 0.197, and suggested an 
extrapolated maximum value of HA-' = 0.208. 

A numerical investigation by Schultz & Vanden-Broeck (1990) indicated that sur- 
face tension had to be included to obtain waves as steep as those experimentally 
obtained by Taylor (1953). These waves had a crest sharper than 90" or had a 
bulbous protuberance. Penney & Price's weakly nonlinear analysis neglected surface 
tension and thus fortuitously predicted the maximum wave height when the expansion 
was extrapolated beyond the limit of its validity. For gravity standing waves, the 
wave period was found to be a non-monotonic function of amplitude, suggesting 
instability of standing waves of extreme steepness. A recent numerical study by 
Mercer & Roberts (1992, 1994) revealed superharmonic instability around extreme 
wave steepness H1-l = 0.1964. This instability corresponds to the divergence in the 
expansion of Schwartz & Whitney (1981) beyond the unextrapolated maximum wave 
steepness. 

A uniqueness condition employed by Schwartz & Whitney (1981) precluded the 
possible resonance between the fundamental wave and higher harmonics. (For 
gravity waves on deep water, a series of harmonics corresponds to 1,2,3 ... in 
frequency and 1,4,9 ... in wavenumber.) This condition was first emphasized by 
Tadjbakhsh & Keller (1960) in their third-order standing wave solutions. Amick & 

Toland (1987) further emphasized that all symmetry conditions must be satisfied to 
avoid resonance in the Schwartz-Whitney solution. The symmetry conditions in space 
and time are 

q(x, t )  = q(-x, t )  = q(x, -t) = q(-x, -t); $(x, t )  = $(-x, t )  = -$(x, -t) = -$(-x, -t) 

where a crest occurs at x = 0, t = 0. Previous analytical and numerical investigations 
have sought only temporally symmetric waves. Dissipation breaks the temporal 
symmetry condition, especially for steep and breaking waves. Our experiments indicate 
that harmonic resonances occur for steep waves, further increasing asymmetry. 

A modified Zakharov equation was used by Bryant & Stiassnie (1994) in their study 
of multiple solutions of standing waves. The weakly nonlinear interactions between 
the fundamental harmonic and the resonating harmonics were considered, thus giving 
a family of new standing wave solutions. In particular, the second harmonic can be 
significant in their results, similar to our observation. However, no conditions were 
presented regarding the physical existence of a certain solution branch. 

2.2. Faraday waves and contact-line efSects 

A review of Faraday waves was given by Miles & Henderson (1990). Of particular 
interest here are the single-mode Faraday wave experiments in a small circular cylinder 
by Henderson & Miles (1990, referred to as H&M hereafter), verifying the predictions 
of Miles (1984). Their experiments in a small rectangular tank did not agree as well. 
H&M attribute the discrepancy between the theoretical and experimental damping 
rates to contact-line dissipation, damping in corners (for rectangular tanks), straining 
of the surface film, and possible turbulent boundary layers. 

For Faraday resonance, weakly nonlinear models can be derived from the averaged 
Lagrangian approach proposed by Miles (1976, 1984) or from direct multiple-scale 
analysis (Gu & Sethna 1987). Recent studies extend these models to include third- 
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order viscous damping (Milner 1991), third-order forcing (Miles 1993) and fifth-order 
frequency detuning effects (Decent & Craik 1995). These improved models describe 
the selection of patterns in a large system with many wavelengths (Miles 1994) and 
include hysteresis effect (Craik & Armitage 1995). 

The amplitude equation for a single-mode Faraday wave is exploited in $3.3 for 
periodic forcing with sideband noise to partially explain the modulation realized 
experimentally. Similar forcing modulation was studied by Hart (1991) for baro- 
clinic instabilities, Ahlers, Hohenberg & Lucke (1985) for thermal convection, and 
Chen & Wei (1994) for bifurcation of solitary waves in shallow water. Such dynam- 
ical systems often exhibit a complicated frequency response, as demonstrated in our 
experiments. 

The significant damping effect of contact-line hysteresis has been shown by 
Miles (1967) and earlier experimental studies. A composite boundary condition on the 
wall was proposed by Hocking (1987) and later improved by Miles (1990) to represent 
the damping effect at the contact line. The complex local motion near an oscillating 
plate at high Reynolds number was shown experimentally by Ting & Perlin (1995). 
However, an accurate prediction of hysteresis effects is still lacking. Contact-line 
hysteresis can also change the natural frequency, although this has not been explicitly 
discussed in the literature. The effect of a fixed contact line on the frequency of 'free' 
surface waves in a channel was studied first by Benjamin & Scott (1979). The eigen- 
frequency of the fundamental mode is significantly larger than that of a linear wave 
without contact-line constraint. Brimful experiments in Henderson & Miles (1994) 
exhibited increased viscous natural frequencies in small cylinders. Here we use the 
theory of Benjamin & Scott (1979) to qualitatively explain the frequency increase in 
our experiments with strong contact-line influence. 

3. Theory and numerical formulations of standing waves 

We restrict our study to two-dimensional standing gravity-capillary waves. Carte- 
sian coordinates are attached to the wave tank with x in the longitudinal direction 
and the positive y-direction vertically upward from the undisturbed free surface. The 
free surface is represented by y = q(x, t )  and the surface tension is 0. The assumed 
inviscid, incompressible fluid is confined by a bottom surface at y = -h, and side- 
walls. Subsequently, we use k-' = A(2n)-' as the length scale and (gk ) - ' / 2  as the time 
scale, where A is the characteristic wavelength (the long dimension of the rectangular 
container) and g is the gravitational acceleration. As the fluid motion is irrotational, 
a velocity potential 4 ( x ,  t) satisfies 

V24 = 0, -h < y < q, (3.1) 

(3.44 b, c) 

Hence, the container is oscillated vertically with dimensionless displacement f cos q t .  
The dimensionless group K = ok2(pg) - '  is an inverse Bond number (ratio of surface 
tension to gravitational forces). To obtain a steady wave amplitude independent of 
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initial conditions and to model the experiments, dissipation using a Rayleigh-damping 
coefficient y is added to the dynamic free-surface condition (3.3). If we set f = y = 0 
and impose temporal periodicity, the above formulation also applies to free standing 
waves as studied by Penney & Price (1952). 

3.1. Faraday waves: linear stability analysis 

Following Benjamin & Ursell (1954), the surface elevation and velocity potential are 
expressed as 

tsr 

i=O 

O0 dAj cash ki(h + y) 

i=O 

cos kix, ' = dt ki sinh kih 

where the non-dimensional wavenumber is given by ki = i/2. The primary mode 
(one wavelength in the tank) represented by i = 2 is almost exclusively studied here. 
Further, the linearized free-surface condition gives the Mathieu equation for Ai(t), 

d2Ai 
- + ( p  - 2q cos 2U)Ai = 0 
du2 

(3.7) 

where 

and 

(3.8a, b) 112 
u = !jwft, wi = [ki(l + Kk?) tanhkih] 

4w2 

wf 

p = +, q = 2fkitanhkih. (3.9a, b) 

Then the parametric resonance of Faraday waves can be interpreted in the (p,q)-plane 
of the Mathieu equation. Subharmonic resonance corresponds to the neighbourhood 
of p = 1 (cof NN 2coN), where the linear stability boundary is 

p = l * q ,  (3.10) 

for small forcing amplitude ( q  << l), and ON is the inviscid natural frequency, as 
determined from equation (3.8b). The solutions to Ai(t) on the neutral stability 
curve are periodic with frequency wf2-l. The unstable solutions with exponentially 
increasing amplitude lead to finite-amplitude waves when nonlinearity or damping is 
considered. 

Benjamin & Ursell (1954) showed that the neutral stability prediction (3.10) agrees 
well with experiments when the measured natural frequency is used for coi in the 
expression for p. Although the linear theory yields the stability property for a single 
frequency wi, usually the fundamental mode, with frequency ON, several modes can 
be spawned by the periodic forcing because of the nonlinear interaction among 
them. Various types of internal resonances in Faraday waves are reviewed by 
Miles & Henderson (1990). Here, we mostly study the fundamental mode (wN = w2) 
and compare the p ,  q diagram to Benjamin & Ursell (1954) and H&M based on the 
inviscid natural frequency in equation (3.8b). The implication of internal resonance 
for the steep standing waves is discussed in $6.3. 

3.2. Cauchy integral method 

When studying unsteady and steep inviscid waves, the most efficient schemes are of 
boundary integral type. Based on the Cauchy integral theorem for complex poten- 
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tials, the Cauchy integral method is particularly effective in solving two-dimensional 
problems (Vinje & Brevig 1981). Convergence and efficiency of the spectral imple- 
mentation are discussed in Schultz, Huh & Griffin (1994) and are not repeated here. 
The rudiments of the method are described in the following paragraph. 

The tank walls are replaced by a horizontal periodicity condition and the semi- 
infinite domain of fluid is conformally mapped to an approximate unit circle for 
deep water waves. The periodicity condition effectively becomes a no-penetration 
boundary condition for the applied forcing, due to the implicit spatial symmetry in 
the initial conditions. The initial boundary value problem requires solutions of the 
complex potential w(() = 4 + iy on the free surface 5 = x + iy. The Lagrangian 
forms of the kinematic and dynamic conditions are applied on the free surface: 

(3.11) 

- 2 ~ 4 .  (3.12) 
XSYSS - XSSY, 2 = -y[l - WfZfCOS(Wft)] + 

Dt 

Here, D/Dt represents the material derivative and * denotes the complex conjugate. 
In the expression for surface curvature, xs represents the derivative of x with respect 
to s and s is a free-surface arclength parameter. 

In the Faraday wave computation, we simulate experiments using the measured 
damping coefficient and observe the temporal evolution of the Faraday wave rather 
than seeking only the temporally periodic solution. The Cauchy integral equation 

(3.13) 

is discretized to solve for w((k) at the kth node. Here, CI is 0 or 2n if the location 
of the kernel singularity, < k ,  is outside or inside the boundary, respectively. If the 
singularity is on the boundary, the above equation is changed to a principle-valued 
integral, and CI is the included angle. The singularity is removed by using a Cardinal 
function to represent the integrand and evaluating derivatives spectrally (Schultz et 
al. 1994). At the beginning of our simulation, Lagrangian markers z k  are distributed 
uniformly along the free surface. At each later time step, the algebraic equations 
(3.13) are solved iteratively by GMRES (Saad & Schultz 1986) for the unknown 
part of the complex potential w(<k). Equations (3.12) and (3.11) are then applied to 
the Lagrangian markers with a fourth-order modified Hamming predictor-corrector 
method to update & and Z k .  

A typical simulation of the wave amplitude evolution is shown in figure l(a). 
The surface wave grows from a small initial disturbance to a maximum height and 
eventually attains the wave form shown in figure l(b) with a steady amplitude. All 
simulations presented use 64 nodes in the horizontal direction with an error tolerance 
of 10-lo for time marching and iterative matrix solving. For this simulation, the 
inviscid natural frequency is 1.614 Hz, the frequency ratio cof(2co~)-' is 1.003, and 
a measured damping coefficient of 0.070 s-l is used. The capillary effect is included 
although it is not a dominant factor for IC = 0.00081 (surface tension of 72 dynes 
cm-' ). 

3.3. Sideband resonance 

We have experimentally observed persistent slowly modulated wave amplitudes for 
forcing frequencies slightly higher than 2oN. We presume that some of the modu- 
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FIGURE 1. Numerical simulation of Faraday waves. (a) Time evolution of the wave height for a 
forcing frequency of 3.23 Hz and a forcing amplitude of 2.65 mm. The surface tension is 72 dyn cm-’. 
(b)  Wave profiles with time increment of one-eleventh of the wave period at time equal to 140 s. 

lations are the result of noise in the (digital-to-analog) forcing signal and proceed 
to explain the modulated surface waves by perturbation analysis. We return to the 
discussion of sideband resonance and compare to the experiments in 95.4. 

Evolution of a 2.n-periodic Faraday-wave mode is described by the following 
amplitude equation (Miles 1984; Nagata 1989): 

(3.14) 

The complex amplitude A ( T )  is assumed to be a function of the slow time scale 
T = E2t where E is a measure of the small surface-wave amplitude. The dimensionless 
parameters for frequency detuning, forcing amplitude, damping, and nonlinearity are 
defined respectively as 

224 + 3 2 2  + 12 - 9+ a = -  , F = -  - W j f  J -  Y G =  , (3.15a,b7c,d) 
of2 - 4  

16 8~~ 4&2 &2 ’ 

where 

z = tanh h. (3.15e) 

Again, the wavenumber k and gravitational acceleration g are scaled to unity. Here, 
we examine deep water waves (G > 0) and SZ > 0 where amplitude modulation is 
observed. A steady solution, A( T )  = a0 exp(i8), 0 < 8 < 2n, of (3.14) is 

r 
and sin28 = -- 2 0. 

F 

-a (F2 - r2)1/2 
a o = (  (3.16a,b) 

(In Nagata 1989, sin28 < 0.) The dimensionless wave amplitude is described by 

qmax = ( w f a o ) ~  + 0 ( c 2 ) *  (3.17) 

These predictions agree with H&M and the present numerical simulation when the 
capillary effect is used only to modify the natural frequency. 

To explain the modulations observed in experiments (e.g. see $5.4), we assume the 
existence of sideband noise in the forcing, i.e. the forcing amplitude is a slowly-varying 
function, 

F = F~ 11 + p ( e F  + eit6)] = F~ 11 + p (e-iTd + ei”)>l . (3.18) 

Hence the sideband noise has relative amplitude 28 and slow frequency 6 = E ~ A ,  
with T = E2t. By adding modulation to the forcing signal, the amplitude equation 
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(3.14) becomes non-autonomous. To determine the amplification of the system by the 
forcing modulation, we assume a straightforward expansion for A( T )  as 

m 

A ( T )  = C P n A n ( T ) ,  (3.19) 
n=O 

where A0 is the steady solution (3.16). At O(p),  equation (3.14) reduces to 

Since (3.20) is linear with forcing (e-iTA + eiTA), Al(  T )  takes the following form: 

(3.21) ~1 = ble + b2ePiTd. 

Two algebraic equations are solved in the Appendix to determine bl and b2. We 
limit our analysis to O(p), but the second-order correction, A*( T ) ,  can be solved in a 
similar way, with terms proportional to eZiTd. 

We define the modulation amplitude of the Faraday wave as H,,, - Hmin, where 
Hma, and Hmin are the maximum and the minimum wave height (see figure l lb ) .  The 
sideband noise amplitude is specified by the difference between the maximum and 
the minimum peak-to-peak tank displacement: f m a x  - f m i n .  The amplification factor 
is then expressed as 

iTA 

(3.22) 
Hmax - Hmin - E wf  

f m a x  - f m i n  2f 
- - [ (Re{bl + b2})2 + (Im{bl - b2})2] 1’2 + 0(c2). 

This ratio is independent of the noise level p to this order. From equation (3.22), 
we define amax as the resonant modulation frequency corresponding to the maximum 
amplification. For example, if damping is neglected, the expressions for bl,  b2 are 

(3.23) 

The denominator goes to zero when 6 + 6,,, and the undamped A( T )  goes to infinity. 
For weakly damped Faraday waves, 6,,, is relatively insensitive to the damping ratio 
r . Thus equation (3.23) gives the approximate resonant modulation frequency 

6,,, = +Of { 2f [4 - (1 - 2 f ) o 3  }1’2. (3.24) 

The above estimate, limited by its lowest-order truncation and the time scale of 
modulation, nevertheless shows that amplified sideband noise leads to the modulation 
of Faraday waves. Comparison with experiments is given in $5.4. More complex 
phenomena like periodic doubling and chaotic motions are observed with the presence 
of sideband noise. We will discuss these issues in a later study. 

(fd + 2Fo)Foao 

4Fo(Fo + fi) - d2’  
b1,2 = 

4. Experimental apparatus and data acquisition 

The dimensions of the narrow, rectangular glass tank are 600 x 60 x 483 mm 
(length x width x height) with an operational water depth of approximately 300 mm. 
This tank is constructed by adding a glass sidewall in the longitudinal direction in 
a wider tank 600 x 230 x 483 mm, joined at the corner by silicone. The wider 
tank without the added sidewall is only occasionally used to study the aspect-ratio 
effect on neutral stability. To help avoid contamination of the surface, the tank 
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is scrubbed carefully before and after each use with ethyl alcohol. The rectangu- 
lar tank is fixed to a platform attached to a programmable shaker with feedback 
control. The shaker is controlled by a Macintosh Quadra 950 computer enhanced 
with National Instruments' LabVIEW software and data acquisition boards. The 
drive motor is a brushless servo motor with a low-mass, high-performance mag- 
nequench armature. The shaker is best suited to operate in the frequency range of 
0.5 Hz to 5.0 Hz. A displacement transducer and a displacement indicator monitor 
the vertical and lateral displacements of the tank. Throughout our experiments, 
the lateral displacement is always less than 3% of the vertical displacement. The 
excited wave field remains two-dimensional and symmetric about the centreline ex- 
cept when breaking occurs, in part because of the 10:l (length to width) aspect 
ratio. 

The spatial and temporal surface elevation data are obtained by a non-intrusive 
measurement technique. Figure 2 shows the high-speed-imaging system, including a 
5 W Argon-Ion laser; attendant optics (a spherical lens, a cylindrical lens, and three 
dielectric mirrors) and a high-speed, 8-bit video system with intensified imager. As 
described in Perlin, Lin & Ting (1993), a laser sheet parallel to the glass front wall 
illuminates the central plane of the tank. Fluorescent dye (fluorescein) added to the 
water absorbs the chosen 488.0 nm wavelength (blue line) light and remits 550nm 
(green line) light. The power output of the laser at this wavelength is approximately 
0.6 W. Under the illumination of the laser sheet, no disturbance is caused by local 
heating as observed using surface dye motion. The optical axis of the intensified 
imager is oriented perpendicular to the wave direction and at about a 17" angle with 
respect to the mean water surface (to remove any obstructing influence from the 
meniscus on the front glass wall). 

A Kodak Ektapro CID (charge-injection device) intensified imager and controller 
is coupled to an Ektapro EM 1012 processor (i.e. a controller and recorder). The 
image is composed of 239 horizontal pixels by 192 vertical pixels, undistorted in the 
two imaging dimensions. A camera lens with a focal length of 50 mm is used for 
the measurements. These yield an average image resolution of about 2.6 mm/pixel, 
determined by a precise resolution target. The estimated measurement error is about 
one pixel in each direction, as discussed in Perlin et al. (1993). 

The images are taken at 250 Hz and down-loaded to the Quadra 950 via a standard 
GPIB interface. The smoothed wave profiles are determined by an edge-detection 
program with a running-average technique (Ting & Perlin 1995). The repeatability of 
the profile measurements is very good, as demonstrated in figure 3 for an oscillation 
frequency of 3.23 Hz with a stroke amplitude of 2.65 mm and a water depth of 
300 mm (aN = 1.611 Hz). Five phases are presented in this figure; each includes 
three different curves. The solid and the dashed curves represent the results of two 
consecutive periods of the same experiment. The dotted curves are from a separate 
experiment with the same operational conditions. 

Three different test fluids are used: treated water, treated water with fluorescein dye 
and treated water mixed with Photo Flo 200 in the volume ratio of 1OO:l. Here, the 
water treatment systems include a 5 pm particulate pre-filter, a de-ionization tank, a 
carbon adsorption phase and a 0.2 pm particulate final filter. At a room temperature 
of 23"C, the static surface tension measured by a CSC-DuNouy tensiometer is about 
72 dynes cm-'for treated water. For the water treated with Photo Flo, the surface 
tension drops to 38 dynes cm-'immediately after the addition of Photo Flo, but 
decreases to a steady value of 31.6 dynes cm-' in approximately 15 minutes. These 
measurements are consistent with surface-tension measurements of very high-quality 
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FIGURE 2. A schematic of the high-speed-imaging measurement system: (a) front elevation, 
(b)  side elevation. 

HPLC (high-pressure liquid chromatography) water and HPLC water with Photo Flo 
that are used as a benchmark. 

Instantaneous wave elevation at a particular station can be determined from 
images of the profile. However, discussion of the damping rate and hysteresis 
is based on wave-gauge measurements. We used a capacitance-type wave probe 
with an outside diameter of 1.6 mm to measure the surface displacement at the 
horizontal centre of the tank. The measurement error is less than 1% of the 
wave height. Detailed discussion of the wave probe can be found in Perlin & 
Hammack (1991). The probe and feedback signals are filtered using two Krohn- 
Rite model 3342 analog filters with a cutoff frequency of 30 Hz. The filter does 
not affect the amplitude and phase of the spectral components in the frequency 
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FIGURE 3.  Repeatability of Faraday-wave experiments for a 3.23 Hz oscillation with a forcing 
amplitude of 2.65 mm: ~ and - -, represent profiles from two consecutive periods of the same 
experiment; . . . . . . represents the results obtained on a different day, but with the same operational 
conditions. 

range of our interest: 0-10 Hz. These signals are digitized at 200 Hz; then, the 
feedback signal is subtracted from the probe signal to obtain the actual surface 
displacement. 

The damping rate is determined as follows. The tank is oscillated at constant 
frequency with constant stroke amplitude. After waves attain stationary periodic 
motion, the shaker motion is stopped and surface displacement at the tank centre 
is recorded for 20 s with a sampling frequency of 50 to 100 Hz. The corresponding 
wave damping rate is calculated by curve fitting the measured crest-to-trough wave 
heights. 

To determine the neutral stability curves, the tank is oscillated at a constant 
frequency and amplitude for a minimum of three minutes. The forcing ampli- 
tude is increased until a Faraday wave is generated. This amplitude is termed 
the threshold forcing amplitude, accurate to the amplitude increment : 0.05 mm. 
The viscous natural frequency w, is defined as half of the forcing frequency that 
corresponds to the minimum threshold forcing amplitude (qmin in dimensionless 
form). From experimental obser- 
vation, with wf < 20, (p > pmin),  determination of the subharmonic resonance 
is rather straightforward as a jump from the null state to a finite wave ampli- 
tude occurs. On the other hand, with wf 2 20, ( p  < pmin),  the amplitude of the 
Faraday waves increases gradually from a low level so the more subtle change is 
difficult to detect. Therefore care is required to ensure that oscillations from pre- 
vious testing have decayed to a quiescent level, especially for the latter case. We 
must allow sufficient time for the instability to develop for < 2w, and care- 
fully observe the small-amplitude subharmonic component in the wave spectrum for 

To obtain the hysteresis effect in the amplitude-frequency diagram, experiments 
with increasing and later decreasing oscillation frequencies are conducted for each 
forcing amplitude. The shaker-control algorithm maintains a constant amplitude 
oscillation while varying frequency in small, discrete steps. Six to ten different 
frequencies are chosen for a 30 minute experiment; therefore, each frequency is held 
constant for 3 to 5 minutes. The difference between successive frequencies is in the 
range of 0.01 to 0.025 Hz. The resonant waves reach stationary periodic motion 
after about 150 s and a 5 s elevation record is recorded to determine the wave 
amplitude. 

The p associated with qmin is designated pmln.  

Of > 2O,. 
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FIGURE 4. A damping-rate measurement at forcing frequency 3.23 Hz and forcing amplitude 
2.65 mm with an operational water depth of 300 mm. (a) A time series of wave elevations at the 
horizontal centre of the container. ( b )  A graph of the wave-height decay where 0.050 s-l, the slope 
of the linear curve fit, represents the damping rate. H is the measured wave height, and Ho is the 
initial wave height. 

5. Faraday waves: small to moderate amplitude 

5.1. Damping rate and elevation profiles 

We found the theoretical damping rate predictions of H&M to be inadequate, as 
did they. Therefore, measured linear damping rates are used in the weakly nonlinear 
theory and numerical estimates when comparing with experiments. As described in 
$4, a typical damping-rate measurement is presented in figure 4, with treated water, a 
1O:l tank aspect ratio, a forcing frequency of 3.23 Hz, and an initial forcing amplitude 
of 2.65 mm. Part (a )  is a time history of wave elevation at the horizontal centre of the 
container after the forcing is discontinued. Linear curve fitting (log amplitude-linear 
time) in figure 4(b) estimates a damping rate of 0.050 s-'. Unless otherwise specified, 
this is the damping rate used in our numerical experiments. A series of damping-rate 
measurements with an aspect ratio of 1O:l shows that the damping rate of 0.050 s-l 
increases to 0.058 s-' when the treated water is mixed with Photo Flo (lOO:l), and 
that of water mixed with fluorescein dye is 0.070 s-'. These measurements also appear 
to apply to the steep waves discussed in 96. 

As a first comparison between numerical and physical experiments, and a (partial) 
validation of the numerical code, figures l(b) and 3 are revisited. An oscillation 
frequency of 3.23 Hz with an oscillation amplitude of 2.65 mm is used in both 
experiments. A measured damping rate of 0.070 s-l is used in the numerical simulation 
as the container is filled with a water-fluorescein mixture. As is seen by comparing 
the figures, the numerical simulation predicts the measured profiles very well. 
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FIGURE 5. Experimental records of phase information for resonant waves and wavemaker position: 
-, wave elevation signal at the tank centreline; . . . . . ., vertically exaggerated shaker position 
signal. The forcing frequencies of the records are 3.27 Hz (a) and 3.15 Hz (b) .  Graphs (a) 
and ( b )  are recorded during experiments with incrementally increasing and decreasing frequency, 
respectively. 

5.2. Subharmonic instability 

5.2.1. Phase of the Faraday waves 

In subharmonic resonance, the phase between the forcing motion and the resonant 
waves is important. The forcing motion inputs energy to the dissipative system when 
the tank acceleration supplements gravity (tank acceleration opposite to gravity) and 
the trough-to-peak wave displacement is close to a maximum. Hence, experiments 
show that the trough and crest phases of the resonant waves are approximately 
in-phase with consecutive troughs of the forcing signal. 

Two experimental records are shown in figure 5 with forcing frequencies of 3.27 Hz 
and 3.15 Hz, both with the same forcing amplitude of 2.65 mm. Note that the 
wave-probe measurement in figure 5(b) has a flat wave-elevation trace in time. This is 
simply a feature of the steep-wave form as discussed in $6. In the figure, the forcing 
signal is scaled so that its peak-to-peak value matches that of the wave elevation. Our 
experiments show that the phase of the forcing signal trough lags the wave trough 
by 9" to 17", and the phase of the forcing signal trough precedes the wave crest 
by 0 to 6". The phase lags are based on the wave (not the forcing) period and its 
relatively small magnitude is in qualitative agreement with our numerical simulation 
and weakly nonlinear theories, Miles (1984) for example. 

5.2.2. Neutral-stability diagram 

The threshold forcing amplitude of several forcing frequencies is measured and 
a stability diagram is presented in figure 6 for three slightly different fluids and 
two tank aspect ratios. Also shown is the Faraday wave with two wavelengths 
in the tank (ki = k4 = 2). This mode is generated by a higher forcing frequency 
(of = 204 w 2 4 ~ 2 )  so the resonance is still subharmonic. Figure 6(a) presents 
results from the measurements of water and mixed water with fluorescein dye and 
figure 6(b)  for water mixed with Photo Flo 200, volume ratio 1OO:l. Dimensionless 
frequency p and dimensionless forcing amplitude q are evaluated using (3.9a, b )  based 
on the inviscid natural frequency coN. If p and q lie within the upper and lower solid 
diagonal lines (unstable region), then subharmonic resonance will occur according to 
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FIGURE 6. Subharmonic-instability limit data from experiments with (a) treated water, (b)  treated 
water mixed 1OO:l  with Photo Flo. A+, Tank aspect ratio 1O: l ;  A, tank aspect ratio of 10:l 
(two 30 cm wavelengths in tank); O W ,  tank aspect ratios are 2.61:l; 0, treated water mixed with 
fluorescent dye, tank aspect ration of 1 O : l  (a = 71 dyn cm-I); o experimental data from H&M 
with 8O:l water-Photo Flo mixture (a = 42.3 dyn cm-I). -, Inviscid subharmonic-instability 
curves; - -, instability curve from H&M to predict their experimental results; . . . . . . , instability 
curve from H&M for our experimental conditions. 

the inviscid theory of Benjamin & Ursell (1954); otherwise, the liquid surface is not 
excited (stable region). The dashed curves represent predictions using the theory of 
H&M. 

According to H&M, the viscous natural frequency wo, that associated with pmin, 
should be less than the inviscid natural frequency oN. However, our experimental 
results show an increase in mu, not a decrease. As shown in figure 6(a), the pmin 
associated with each set of symbols is less than 1, implying that w , ( r  $ ~ f 1 ~ ~ ~ ~ )  
> a,. Benjamin & Scott (1979) measured waves propagating in a brimful channel 
and concluded that the contact-line effect increases the wave celerity (phase speed). 
We believe this same phenomenon is responsible for our increased w, with fixed 
wavenumber. (Note that they measured much greater increases than measured here, 
presumably because of the extended width of our tank and the stronger constraint 
of the contact line in their study.) By reducing the tank aspect ratio and by the 
addition of Photo Flo, thus lessening the relative effect of the contact line, we now 
demonstrate that this conclusion is warranted. 

The aspect-ratio effect on the frequency is seen in figure 6(a) by comparing mea- 
surements in the wider tank (aspect ratio 2.61 :1) and those in the narrow tank (aspect 
ratio of 1O:l). Owing to a weaker contact-line effect in the wider tank, w, should be 
and is smaller, corresponding to an increase in pmin. Also, since the contact line and 
wall boundary layers contribute the most to the dissipation, the effective damping in 
the wider tank is less due to the smaller surface-area-to-volume ratio. Therefore qmin 

in the wider tank is smaller. 
Figure 6(b) represent our measurements with the mixture of water and Photo Flo. 

Since the addition of Photo Flo reduces the contact-line effect, pmin and qmin are 
now more affected by viscous damping and the neutral-stability curve shifts towards 
H&M's prediction. H&M's theory still overpredicts q on the lower side of the neutral- 
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stability curve and underpredicts 0,. Their experiments (hollow symbols) agree with 
their theory quite well. Since they conducted experiments with a Photo-Flo mixture 
in a smaller container, 88.70 x 32.05 x 10 mm, viscous damping in their system has a 
more dominant effect so both pmin and qmin are larger. (The ratios of the total surface 
area to the volume are 0.40 and 1.85 for our tank and H&M’s cylinder respectively.) 

Miles (1967) and Milner (1991) stated that contact-line hysteresis makes an impor- 
tant contribution to the total damping. There is also a difference between the static 
contact-line damping encountered in infinitesimal waves, and the dynamic contact- 
line damping for finite-amplitude waves as found in the damping measurements. For 
treated water, the measured damping rate is 0 . 0 8 5 ~ ~ ’  when two wavelengths are 
present. (In this case only we used 4.68 Hz forcing to excite two wavelengths in 
the tank.) For the fundamental mode, the damping rate is 0.05s-’. The ratio (sec- 
0nd:fundamental) of dimensionless damping rates is then 1.20 for these two modes. 
From figure 6(a), the dimensionless threshold forcing associated with two wavelengths 
(qmin = 0.0177) is approximately twice that for the single wave (qmin = 0.0087). As qmin 
is proportional to the dimensionless damping rate, it implies a larger damping-rate 
ratio than the 1.20 from the direct damping measurement. For the initiation of waves 
(infinitesimal waves), the contact line plays a more dominant role than it does with 
finite-amplitude waves. This is due to a fixed contact line for very small waves when 
the contact angle is within the advancing and receding contact angles (‘stick’ motion 
described in Ting & Perlin 1995), while the contact line exhibits stick-slip motion 
when the wave amplitudes (and hence contact angles) are large. 

5.3. Response diagram and hysteresis eflects 

Weakly nonlinear predictions were validated in H&M by experiments in small cylin- 
ders. However, individual experiments were conducted using a fixed forcing frequency 
and amplitude with a calm-water initial state. Hysteresis (of the soft-spring type) in 
the limit-cycle amplitude is determined from changing the forcing frequency in steps 
without returning to quiescent conditions. 

Figure 7(a) shows the Faraday wave amplitude as a function of the forcing frequency 
in our 1O:l aspect-ratio rectangular tank for three forcing amplitudes: 2.5 mm, 3.0 mm, 
and 3.5 mm. The arrows denote the response of amplitude to the direction of frequency 
change. Solid/hollow symbols represent the experiments with increasing/decreasing 
frequency, started from the upper/lower side of the unstable regions in the p,q 
diagram. For increasing forcing frequency, the response curves (dashed lines) exhibit 
abrupt changes from zero to a finite amplitude. The frequency ratio where the jump 
occurs is larger for smaller forcing amplitude: 1.002 for 2.5 mm, 0.992 for 3.0 mm, 
0.982 for 3.5 mm forcing. The response curves, starting from the right of the unstable 
region, bypass the jump positions and increase until incipient breaking of the Faraday 
wave occurs. 

The contact line causes this single-mode hysteresis by shifting the jump positions 
and the neutral-stability curve. In the p ,  q diagram, figure 7(b) ,  solid/dashed lines with 
arrows represent excited Faraday waves with decreasing/increasing forcing frequen- 
cies, corresponding to the solid/dashed lines in figure 7(a). By starting the forcing 
frequency from the left of the backbone curve in figure 7(a), the experiment ap- 
proaches the neutral-stability curve from above (dashed arrow in figure 7b). Owing to 
the contact-line constraint (without the lubrication of Photo Flo), the viscous natural 
frequency is larger and the neutral-stability curve is shifted downward in figure 7(b) 
(dashed curve). This corresponds to a rightward shift in the jump position in figure 
7(a). When the forcing frequency approaches the jump position from the right of 



290 L, Jiang, C. Ting, M.  Perlin and u/: IK Schultz 

80 I 

0.96 0.98 1 .oo 1.02 1.04 1.06 

Of/20N 

1.15 

1.10 - 
Stable 

1.05 1 

".,d 

-\ 

--- 
-I- 

0.90 4 Stable 

0.85 
I I I f I I 

0 0.02 0.04 0.06 0.08 0.10 0.12 

4 

FIGURE 7. (a)  Faraday-wave amplitudes for varying forcing frequencies. Solid symbols represent 
frequencies varied in small steps from low to high frequency at constant forcing amplitude. Hollow 
symbols represent frequency variations in the opposite direction. Three forcing amplitudes are 
used: 2.5 mm (. and O), 3.0 mm (A and A), and 3.5 mm (+ and 0). ( b )  The path of the same 
experiments in the p ,  q diagram. Solid/dashed lines with arrows represent excited Faraday waves 
with decreasing/increasing frequency shown in (a). Inviscid and measured neutral-stability curves 
are given by ~ and - -, respectively. Solid circles and squares represent the appearance of 
modulation as discussed in 45.4. 

the backbone curve, the Faraday wave gradually grows to a finite amplitude. The 
static contact line that inhibited the infinitesimal or low-amplitude wave no longer 
affects the Faraday excitation when the forcing frequency is further reduced, passing 
the jump position. So rather than a return to the quiescent state, the wave amplitude 
keeps growing with decreasing forcing frequency until breaking occurs. 

We show in figure 8 the frequency response of the limit-cycle wave amplitudes 
for treated water versus that for treated water with Photo Flo. In figure 8(a), 

H&M's theoretical predictions agree qualitatively with our experiments with a forcing 
amplitude of 2.5 mm, except for the jump position. Wave amplitudes estimated by 
our fully nonlinear simulations agree better with the experiments over most of the 
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FIGURE 8. Faraday-wave amplitudes for varying forcing frequencies at a forcing amplitude of 
2.5 mm: . . . . . .  , H&Ms theory with our measured damping rate; -, numerical results. (a) 

Experiment conducted with treated water: W and 0 represent the data measured with increasing 
and decreasing frequencies, respectively. ( b )  Experiment conducted using treated water with Photo 
Flo in a ratio 1OO:l :  0 and 0 represent the data measured with increasing and decreasing 
frequencies, respectively. 

frequency range. Figure 8(b) shows that the addition of Photo Flo changes the 
jump position significantly. With reduced contact-line effects, the resonance curve, 
particularly the jump position, is closer to the theoretical prediction of H&M and 
inviscid analysis. 

Similar hysteresis was observed by Dodge, Kana & Abramson (1965), who also 
indicated a slight increase in the viscous natural frequency 0,. H&M predicted 
different jump positions and observed no evident hysteresis, as did Virnig, Berman 
& Sethna (1988). Note that the hysteresis shown here is not due to the available 
zero- and finite-amplitude solutions for the same forcing parameter. That type of 
hysteresis exists outside the theoretical neutral-stablity curve (to the left of the dotted 
vertical lines in figure 8) as discussed in detail by Decent & Craik (1995). The present 
experiments do not proceed beyond the theoretical neutral-stability curve because of 

strong wave breaking. 

5.4. Sideband resonance 

Comparison of figures 8(a) and 8(b) shows that on the high-frequency side of the 
backbone, better agreement with the numerical estimates is achieved by doing exper- 
iments with the mixture of water and Photo Flo, i.e. with reduced contact-line and 
surface-tension effects. A similar 'tail effect' was also observed by Virnig et al. (1988), 
i.e. the wave amplitude does not decay as rapidly to zero as the theory for increasing 
excitation frequency. They ascribed it to the effect of capillarity and removed the tail 
using Photo Flo. Based on our experiments, the contact line significantly changes the 
natural frequency; therefore, we expect that the tail is also due to the contact-line 
effect, rather than a mere surface-tension effect. 

In fact, our measurements show large modulations in the time series of the wave 
amplitude in the tail region where 1.02 < ~ f ( 2 0 ~ ) - ~  < 1.05. Figure 9(a) shows the 
probe measurement with its spectrum for a forcing amplitude of 2.90 mm, a forcing 
frequency of 3.30 Hz. A sideband frequency of 1.60 Hz is measured so the modulation 
frequency is 0.05 Hz. The magnitude of the modulation is even more significant in 
figure 9(b) with a modulation frequency of 0.03 Hz. The modulations exist in both 
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the experiments with stepped varying frequency and those starting from a quiescent 
state. As we estimate the amplitude by averaging the maxima of probe signal in a 5 s 
window, the slow modulation causes random deviations of the wave amplitude in the 
tail regions of figure 7(a) and figure 8(a).  

No modulation is observed in our fully nonlinear numerical simulations, even with 
higher harmonics in the sinusoidal forcing. Hence, the effect of higher harmonics in 
the forcing signal (figure 9) is minimal because of their small magnitudes (less than 
1-2% of the forcing amplitude). However, using the experimental forcing signal as the 
numerical input does cause modulation, albeit with less magnitude. Since no contact- 
line effect is simulated, it suggests two factors causing the modulation: contact-line 
effect and sideband noise in the forcing signal. There is a certain degree of uncertainty 
in our observation of modulation. Recent repeated experiments to reproduce figures 9 
and 10 show no observable modulations for the same forcing parameters. Change in 
the natural background noise is likely to be the reason, perhaps due to the completion 
of nearby construction. 

Decent & Craik (1995) proposed a different mechanism. According to them, 
nonlinear forcing and damping can cause hysteresis in the neutral-stability diagram 
and limit-cycle behaviour in the wave amplitude. However, in applying their criterion 
to our experiments, the modulation should mostly occur to the left of the backbone 
curve, with only a slight possibility of limit-cycle response on the high-frequency side. 
We see from the following discussion that the contact-line effect and random nature 
of the sideband noise are more important here than nonlinear damping. 

5.4.1. Modulation frequency 

Usually, the bandwidth of the forcing signal is narrow and its effect on wave 
modulation is not seen. However, from (3.24), the resonant modulation frequency 
J,,, decreases with increasing forcing frequency, eventually to within the effective 
bandwidth of the forcing signal. Owing to the large amplification of the forcing 
noise on the high-frequency side of the backbone curve, the wave modulation is 
then visible. Faraday-wave modulation as shown in figure 9 can be measured by its 
frequency and amplitude. Since the theory in 53.3 typically considers paired sidebands 
and the experiments have continuous sidebands, we can only compare the observed 
modulation frequency with the prediction of d,,, in (3.24). 

In figure 10, four experiments with modulation frequency between 0.037 Hz and 
0.05 Hz agree reasonably well with our prediction, even without the full details of 
the forcing noise. In six other experiments, we measured modulation frequencies 
between 0.02 Hz and 0.032 Hz, while the analysis predicts nearly no modulation. 
The discrepancy is explained again by the frequency shift due to the contact line. 
Figure 7(b) clearly indicates that the forcing parameters for these six cases (squares) 
are already on the stable side of the inviscid p ,  q boundary. However, the contact-line 
effect shifts the neutral-stability curve downward so that these experiments are still 
within the unstable region. As the experiments proceed toward the lower stability 
boundary, the wave amplitude becomes smaller and the contact-line effect strengthens. 
The present analysis does not account for contact-line effects, therefore it is unable 
to predict the observed modulations for the six experiments. 

5.4.2. Modulation amplitude with controlled sideband noise 

To verify the sideband-noise amplification quantitatively, we use controlled sideband 
noise in both experiments and numerical simulations. Without added sideband noise, 
the Faraday wave from physical experiments is steady with a forcing amplitude 
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FIGURE 9. Two cases of steadily modulated Faraday waves. (a) A 3.30 Hz oscillation with forcing 
amplitude = 2.90 mm. ( b )  A 3.32 Hz oscillation with forcing amplitude = 2.65 mm. The top graph 
in (a) and (b) is the forcing-signal spectrum, the second graph is a time series of wave elevation at 
the horizontal centre of the tank, and the third graph is the amplitude spectrum of the wave-probe 
signal. 
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FIGURE 10. Comparison of the predicted 6,,, with the modulation frequencies in the experiments 
with forcing frequency between 3.30 Hz and 3.34 Hz, forcing amplitude of 2.9 mm and 2.65 mm. 
Solid circles and squares are the same as those shown in figure 7(b) .  

of 2.65 mm and a forcing frequency of 3.23 Hz (figure l la) .  After 5% double- 
sideband noise is added to the forcing signal, the wave elevation, figure l l(b),  has 
the same modulation frequency as the sideband noise in the forcing signal, 0.09 Hz, 
but the modulation magnitude is increased dramatically compared to the small noise 
level in the forcing signal. Here, we define the controlled noise level as the ratio 
of each sideband-frequency amplitude to the amplitude of the primary frequency 
component. 

The effect of the detuning frequency 6 is shown for several amplitudes at each of the 
two sideband frequencies and two forcing frequencies 3.23 Hz and 3.27 Hz in figure 12. 
The prescribed noise levels are 1.0%, 2.5%, 3.75%, and 5% of the basic forcing am- 
plitude of 2.65 mm. The detuning frequency associated with the largest modulation 
amplitude is independent of the sideband amplitude. The normalized modulation 
magnitude shown in figure 12(b) is also independent of the sideband amplitude, but 
has slight changes for the different forcing frequencies. All these observations are 
consistent with predictions from equation (3.22). Another interesting feature is the 
unbalanced sidebands in the wave spectrum as shown in figure 9(a, b) and especially 
figure ll(c). The amplitude associated with the lower frequency (0~2-l-  6) is always 
larger than the amplitude associated with the upper frequency (0f2-l + 6). The 
same conclusion is drawn from the solutions for b1,2, even with zero damping rate in 
equation (3.23). 

In figure 13, the predicted amplification factor exhibits reasonable agreement with 
experimental results for different sideband frequencies. Noise is amplified as much 
as 45 times, leading to obvious modulations in the Faraday waves. Numerical 
results with added sideband frequency components agree very well with the theory, 
except at 6 = 0.15 Hz in figure 13(b). At this frequency, we observed period 
doubling that is not predicted by our first-order analysis. In both (a )  and (b), the 
asymptotic analysis agrees reasonably well with physical experiments for larger 6, 
but less satisfactory as 6 + 0. A discrete Fourier transform (DFT) of the feedback 
signal shows a forcing spectrum of finite bandwidth when 6 goes to zero, so the 
added sideband noise cannot be well represented by the asymptotic analysis with a 
discrete noise spectrum. Nevertheless, the predicted resonant modulation frequency 
a,,, is consistent with the maximum amplification from numerical and physical 
experiments. 
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FIGURE 11. Steadily modulated Faraday waves obtained by intentionally adding sideband noise to 
the forcing. The oscillation frequency is 3.23 Hz, forcing amplitude is 2.65 mm. (a) Wave elevation 
without additional sideband noise. (b)  Wave elevation with 5% sideband noise on both sides of the 
primary forcing frequency, detuning frequency 6 = k0.09 Hz. (c) The amplitude spectrum of the 
wave-probe signal shown in (b). 
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FIGURE 12. The effect of detuning frequency on the modulated wave heights with 2.65 mm forcing 
amplitude. (a) Dimensional graph: W, 2.5% sidebands with 3.27 Hz oscillation; 0, 5% side- 
bands with 3.23 Hz oscillation; A, 3.75% sidebands with 3.23 Hz oscillation; A, 2.5% 
sidebands with 3.23 Hz oscillation; +, 1% sidebands with 3.23 Hz oscillation. The verti- 
cal dashed lines correspond to the observed maximum wave modulation. (b)  Non-dimensional 
graph, where fmax - fmin is the peak-to-peak modulated forcing amplitude and 6,,, is 
the measured detuning frequency corresponding to the maximum modulated wave height. Symbol 
representations are the same as in (a). 
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FIGURE 13. Sideband amplification with intentional sideband noise: ~, first-order analysis (3.22); 
0, numerical simulation with 5% side bands; A, experiments with 2.5% side bands; , experiments 
with 5% side bands. H,,, - Hmin is the modulation amplitude of the Faraday wave and fmax - fmin 

is the modulation amplitude of the forcing signal. (a)  Forcing frequency of 3.27 Hz with forcing 
amplitude of 2.25 mm. (b )  Forcing frequency of 3.23 Hz with forcing amplitude of 2.65 mm. 

5.4.3. Single-sideband controlled noise 

In the asymptotic analysis, double-sideband noise is added to the slowly modulated 
forcing amplitude. However, both sidebands need not be present. Experimental results 
in figure 14 imply that a single sideband added on the lower side of the primary 
frequency component causes most of the modulation, while the upper sideband noise 
has very little effect. As shown in the response diagram, figure 7(a), the Faraday wave 
grows when the forcing frequency decreases from the higher-frequency side of the 
backbone curve. Hence, the lower sideband corresponds to a stronger resonance effect 
and causes large modulations. By contrast, adding an upper sideband component 
introduces an additional higher forcing frequency that has little or no resonance effect. 
This observation agrees with our numerical simulations. 

5.4.4. Contact line 

We have demonstrated that even in the absence of the contact line and surface- 
tension effects, amplification of sideband forcing noise occurs. The addition of Photo 
Flo in any experiments when sideband modulation is apparent, whether by the inten- 
tional addition of small sidebands in the forcing signal or not, causes the modulation 
to greatly diminish. With Photo Flo present and the modulations essentially removed, 
the forcing signal is altered further by increasing the sideband forcing. The mod- 
ulations in the Faraday waves reappear, again with large amplification. This then 
shows that the existence of the contact line increases the background perturbations 
(i.e. the noise floor) and acts as a catalyst to precipitate the large modulations. Of 
course, as opposed to the non-monochromatic forcing signal, the contact-line effects 
are due to fluid dynamics and directly cause modulation of the Faraday waves. A 

complete study of this phenomenon along with the effect of contamination is required 
to quantify the processes. 

5.5. Temporal asymmetry 

As defined in $1.2, time-reversal symmetry means that the surface elevation at to - t 
is the same as that for to + t ,  where to represents the instant of maximum elevation 
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RGURE 15. The detected wave profiles for a 3.23 Hz oscillation with a forcing amplitude of 2.65 mm. 
(a)  During decreasing surface elevation at the centreline (from crest to trough at the centre). (b)  
During increasing surface elevation at the centreline (from trough to crest at the centre). 

(crest) or minimum elevation (trough) and zero kinetic energy. With y = 0 in equation 
(3.3), the existence of temporal symmetry is straightforward to show since equations 
(3.1) to (3.3) are invariant under the transformation t + -t, 4 4 -4. However, 
non-zero dissipation modelled as 2y4 breaks the time-reversal symmetry in the forced 
standing waves studied here. 

Wave profiles spanning one period are shown in figure 15 with decreasing and 
increasing elevation at the centreline. Even though the Faraday waves are temporally 
asymmetric, the moderate standing waves observed in the experiments have forms 
similar to the solution of Penney & Price (1952) - hardly discernible temporal asym- 
metry and nearly stationary profiles at the moment when either crest or trough is in 
the tank centre. These observations are also supported by our numerical results. How- 
ever, forced and free standing waves become less similar when we increase the forcing 
amplitude. Symmetry breaking and nonlinear interaction lead to different wave forms 
of steep standing waves that have not been observed in previous experiments or 
analyses. 
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FIGURE 16. Same as figure 15 except that the forcing amplitude is 3.16 mm. 

6. Steep standing waves: new wave forms 

6.1. Flat and dimpled crests 

Figure 16 displays a series of spatial wave profiles during a temporal period with 
forcing amplitude 3.16 mm. Compared to Faraday waves with the same frequency 
but less amplitude (figure 15), higher harmonics are more obvious in the wave profile 
and the crest of the maximum wave elevation isflat. Temporal symmetry is broken, 
but spatial symmetry is preserved - as in all of our experiments. 

In figure 17, the maximum wave profile has evolved from ajlat  crest and features a 
dimpled crest for a larger forcing amplitude of 3.85 mm. The temporal asymmetry is 
more notable in the comparison between the increasing and decreasing crest phase at 
the tank centreline: the wave is more peaked where the surface elevation is increasing 
(part b). As soon as it achieves its maximum elevation and begins to decrease in 
height, the dimpled crest forms (part a). Previous computations of standing waves 
assumed that the maximum wave height occurs when the velocity is zero everywhere 
(zero kinetic energy). In these experiments, however, the maximum wave height with 
dimpled crest is never stationary, as the two protuberances of the wave crest are still 
rising when the velocity at the centreline is zero. Higher spatial harmonics of about 
four waves are also observed at time intervals 0.160 s, 0.468 s, and 0.524 s. Addition 
of Photo Flo does not alter the nature of these wave forms. 

In figure 18, our experiments on standing-wave forms are recorded in p ,  q parametric 
space. Since these experiments are started from quiescent conditions, the displayed 
data are enclosed by the fitted/extrapolated neutral-stability curve. The parametric 
space is divided qualitatively into four regimes based on the respective wave forms : 
moderate waves, waves with flat crest, waves with dimpled crest, and breaking waves. 
Clearly, waves steepen when either the forcing amplitude is increased ( q  is increased), 
or the forcing frequency is decreased ( p  is increased within the unstable region). 
The same conclusion can be drawn for moderate waves from the response diagram, 
figure 7(a), albeit with more effort. Strong temporal asymmetry is present in the 
flat-crested, double-crested, and breaking regions. 

6.2. Numerical simulations of steep Faraday waves 

The computational method presented in 43.2 performed well for moderate waves. For 
larger forcing amplitude, however, it is difficult to obtain a stable wave amplitude 
because of numerical (‘zigzag’) instabilities. This higher-mode instability is due to 
time-marching and aliasing errors in our algorithm. Here, we include an additional 
dissipative/dispersive term y H  &s in the dynamic free-surface condition (3.12). This 
third-order derivative, estimated spectrally, is more effective in suppressing the higher- 
mode numerical instability than high-frequency filtering (Kransy 1986), five-point 
averaging (Longuet-Higgins & Cokelet 1976) and other damping terms with higher 
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FIGURE 17. Standing wave profiles for a 3.23 Hz oscillation with a forcing amplitude of 3.85 mm. (a) 

The images and some detected profiles during decreasing surface elevation at the centreline (from 
crest to trough at the centre). ( b )  The images and some detected profiles during increasing surface 
elevation at the centreline (from trough to crest at the centre). 

derivatives. In our computation, there is only minimal effect on the physical modes 
when this smoothing term is small: y~ is chosen between 0.1% and 0.5% of the 
measured damping rate y. 

A simulated standing wave is shown in figure 19(a) for forcing amplitude 4.0 mm 
and forcing frequency 3.226 Hz (cof = 1 . 9 9 9 ~ ~ ) .  As the surface rises from the mean 
water level, the peak is more flat and even develops a dimple at a certain phase. 
However, it eventually has sharper curvature at its maximum elevation than does 
the experimental wave. The sharp crest remains as the elevation decreases towards 
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FIGURE 18. Location of the various wave forms in the p , q  diagram: -, inviscid subharmonic 
instability curves; - - - - -, curve-fit to our experimental subharmonic-instability data; - -, curve 
extrapolated from our experimental data. Shaded areas are the approximate boundaries of four 
distinguished wave-form regions. (The exact boundaries cannot be determined from our limited 
data.) A, Experiments started from quiescent initial conditions. 

the mean water level - the temporal symmetry is lost while the temporal periodicity 
is retained, as observed in the physical experiments of figure 17. Recall that in 
the physical experiments, a dimpled crest occurs at the maximum wave elevation 
and as the surface elevation decreases. In contrast, the numerical results exhibit 
a sharper crest at the maximum wave elevation and the dimpled crests are only 
obtained for increasing centreline elevation. This difference remains the same when 
the experimental forcing signal is used in our numerical study. 

A surprising result from the calculations is the disappearance of the sharper crests 
at either higher or zero inverse Bond number. Figure 19(c,d) shows simulated wave 
profiles for K = 0 (no surface tension) and figure 19(e,f) shows simulated wave profiles 
for K = 0.01 (larger surface tension or shorter waves). In both cases, the wave form 
regains its similarity to Penney & Price (1952) even for very large forcing amplitude, 
without the dimples and sharp crests shown in figure 19(a,b) for K = 0.00081. 

6.3. Temporal asymmetry and 2:1:2 internal resonance 

The standing-wave solutions derived by Penney & Price (1952) and Schwartz & Whit- 
ney (1981) are symmetric in time and the surface elevation can be represented by 
an even Fourier expansion cos t, cos 24. . *. Although dissipation breaks temporal 
symmetry, damping itself does not explain the different wave forms in both ex- 
periments and numerical simulations. Instead, development of a second temporal 
harmonic, cos4xcos(2t + cp), leads to both asymmetry and a dimpled crest in the 
otherwise symmetric standing-wave solution: Al(x) cos t + A ~ ( x )  cos 2t + . . .. In the 
present experiments, the new wave forms and the temporal asymmetry are indeed 
related to the magnitude and phase of the second harmonic (fourth harmonic in 
space). 

As discussed by Miles & Henderson (1990), 2:1:2 internal resonance (the values 
represent forcing frequency : excited primary frequency : excited resonant frequency) 
occurs when two modes exist with a frequency ratio nearly 1:2, i.e. coexistence of 
subharmonic and synchronic modes with respect to the forcing frequency. Gu & 

Sethna (1987) shows that small frequency detuning and dissipation break the time- 
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FIGURE 19. Simulated Faraday waves, forcing amplitude is 4.0 mm, forcing frequency is 3.226 Hz. 
(a) Decreasing crest elevation (from crest to trough at the centre), K = 0.00081. ( b )  Increasing crest 
elevation, IC = 0.00081. ( c )  Decreasing crest elevation K = 0. ( d )  Increasing crest elevation, K = 0. 
(e) Decreasing crest elevation, IC = 0.01, (f) Increasing crest elevation, IC = 0.01. 

reversal symmetry by shifting the phase of the resonant modes. However, it is 
assumed that the weakly nonlinear interaction of the two modes occurs at second 
order. The internal resonance for two-dimensional waves studied by Gu & Sethna 
requires capillary-gravity waves, similar to the Wilton ripple for progressive waves. 
Here, 2:1:2 internal resonance occurs for gravity waves: w~:w2 = 2, where 0 8  is the 
frequency for the second temporal mode (four wavelengths in the tank) according to 
equation (3.8b) and w2 is wN. This resonance is analogous to the quartet interaction in 
progressive waves, and corresponds to the first violation of the uniqueness condition 
given by Tadjbakhsh & Keller (1960). 

To estimate the 1 :2 resonance and temporal asymmetry quantitatively, we first 
analyse our numerical results by applying DFT to the time series of wave elevation at 
the tank centre. The phases of the first and second harmonic are defined as O2 and 08. 
In Penney & Price (1952), the two harmonics are completely in phase (Ox - 202 = 0). 

Therefore Ox - 282 is used as an indication of the degree of asymmetry. Using different 
time windows for the same signal shows the standard deviation to be less than k0.03" 
in the phase estimates. 

Shown in figure 20(a) is 88 -282 for the calculated Faraday waves with and without 
surface tension. For moderate wave amplitudes, the asymmetry is negligible, evident 
from the small phase differences. Without surface tension, the frequency ratio between 
the forcing and the two natural modes is exactly 2:1:2. The phase difference ranges 
from 0" to -12.6" and there is no evident asymmetry nor strong second harmonics. 
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FIGURE 20. Phase difference 88 - 282 and dimensionless amplitude of the second harmonic Q / U ~  

for pure gravity wave ( K  = 0) and capillary-gravity wave with small surface tension ( K  = 0.00081). 
The forcing amplitude is shown along the horizontal axis and the forcing frequency is 3.22 Hz. The 
sharper crest appears at 2.5 mm forcing with K = 0.00081. (0, K = 0; U, K = 0.00081). The dashed 
portions of the curves represent simulations with questionable resolution. 

No sharper, dimpled crest is observed even for a forcing amplitude of 4.6 mm. The 
dashed line shown for the two largest forcing amplitudes indicates computations of 
uncertain validity. 

However, a small surface tension does cause large differences in the steep waves. 
Here, the effect of capillarity is critical because it causes a detuning among the forcing 
frequency and natural frequencies. With the same forcing frequency 3.226 Hz, the 
frequency ratio becomes 1.999:1:2.013 for a surface tension of 72 dynes cm-' (JC = 

0.0008 1). Computational results suggest a phase difference of about -38" for forcing 
amplitudes larger than 2.5 mm and the large phase difference remains until the 
breaking-wave limit. Jumps at the same forcing amplitude also appear in figure 20(b) 
for the dimensionless amplitude of the second harmonic (as/az). These jumps occur 
with the appearance of sharper crests and asymmetric wave forms. With detuned 
forcing frequencies (cof < wg) and zero surface tension, we observe qualitatively 
similar waves; therefore the sharper crest observed in the computation only occurs 
for steep waves with small frequency detuning. 

Even though the results of the physical experiments are not well reproduced in 
our simulations, analysis of the wave form with dimpled crest does show an increase 
in second-harmonic amplitude and a large, positive phase difference. Flat crests in 
the physical experiments correspond to H1-l m 0.160. For the numerical results in 
figure 20, the peaked wave form first appears at a wave steepness of 0.1536 (forcing 
amplitude is 2.5 mm). Both are far less than the extreme steepness 0.208 for standing 
waves (Schwartz & Whitney 1981). 
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FIGURE 21. Same as figure 17 except that the forcing amplitude is 4.04 mm, the forcing frequency 
is 3.17 Hz, and the edge-detected profiles are not shown. 

7. Breaking standing waves 

In Taylor (1953), the extreme standing waves are three-dimensional. In our experi- 
ments with a tank aspect ratio of lO:l, the new wave form remains two-dimensional 
up to incipient breaking, corresponding to a steepness H2-l of 0.216. The ex- 
treme wave steepness is larger than the numerical estimate of H2-l = 0.2 by 
Mercer & Roberts (1992). This agrees with previous conclusions that capillarity 
can increase the extreme steepness for free standing waves (Schultz & Vanden-Broeck 
1990). 

Experimental wave profiles over a temporal period are shown in figure 21 for waves 
with incipent breaking. The forcing amplitude is 4.04 mm and the forcing frequency 
is 3.17 Hz. The wave height here is about 130 mm. Aside from the small breaking 
that occurs at the sharper crest at t = 0.580 s, the wave profile is similar to the 
non-breaking standing wave presented in figure 17. Overturning waves with small 
plunging breakers to each side of the centreline are also present with the dimpled 
crest at the beginning of the series. The waveform is still spatially symmetric about 
the centreline and the same breaking events occur at the two ends of the container 
with a half-period lag (see time = 0.372 s). 
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The numerical experiments using the third-derivative smoothing function can be 
extended to steepness larger than 0.20. However, higher harmonics are not suppressed 
indefinitely and the computation is only extended to approximately 20 wave periods 
depending on the initial conditions. This is consistent with the superharmonic 
instability that occurs at the extreme steepness for free standing waves (Mercer & 

Roberts 1992) and the observed incipient breaking with HA-‘ > 0.216. 

8. Concluding remarks 

Here, we have investigated analytically, numerically, and experimentally several 
aspects of standing waves. As recognized in the literature (H&M for example), 
damping-rate models are inadequate, so measured values are discussed and used in 
the weakly nonlinear theory and the numerical predictions. An examination of the 
p ,  q diagram reveals that the contact line significantly increases the viscous natural 
frequency, shifting the neutral-stability curve downward. Effects of the contact line 
are shown two ways : by conducting experiments in wider rectangular containers 
and by the addition of Photo Flo; both reduce the contact-line effects dramatically. 
With Photo Flo as a contact-line lubricating agent, the viscous effect dominates the 
threshold forcing amplitude and frequency, and the neutral-stability curve agrees 
more closely with the theory of H&M. 

The response diagram exhibits strong ‘soft spring’ nonlinearity through hysteresis, 
revealed by varying the forcing frequency in discrete steps with a fixed forcing 
amplitude. Experiments with and without Photo Flo show that this hysteresis depends 
strongly on the forcing amplitude and the contact-line effect. The wave amplitudes of 
the Faraday waves are in agreement with our numerical simulation and reasonable 
agreement with H&M’s theory. 

Large wave modulations are observed in the experiments in the high-frequency 
forcing regime. The modulations in the physical experiments are explained by 
the influence of ambient noise due to the contact line and noise in the forcing 
signal. The asymptotic estimate of the ‘sideband resonance’ through forcing noise 
compares favourably with controlled experiments and very favourably with numerical 
simulations. The addition of Photo Flo reduces the ambient noise level caused by 
the contact line; however, intentional sideband forcing precipitates a return of the 
modulations even with Photo Flo. 

We have observed previously unpredicted steep standing waves, although moderate 
Faraday wave forms are similar to the solution of Penney & Price (1952). Flat and 
dimpled crests appear in the forced standing waves for larger wave amplitudes and the 
kinetic energy of the standing wave is never zero. The sequential wave profiles show 
strong temporal asymmetry. Moreover, the numerical analysis demonstrates that a 
small detuning between forcing and natural frequencies, either introduced directly or 
induced by a small surface tension, leads to a wave with much sharper crest. Even 
though its profile does not resemble the wave with a dimpled crest in the physical 
experiments, both are strongly asymmetric in time and only emerge at finite wave 
amplitude. The growing second harmonic and strong asymmetry in these different 
wave forms indicate 2:1:2 internal resonance among the first and second harmonics, 
analogous to ‘quartet’ interaction. In the physical experiments, we have shown one 
manner in which two-dimensional Faraday waves break - overturning plungers to 
each side of the crest. The maximum steepness for the new wave forms exceeds the 
theoretical predictions for gravity standing waves, in agreement with the conclusion 
of Schultz & Vanden-Broeck (1990) for free standing waves with surface tension. 
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Further studies will focus on two issues. First, a more quantitative study is necessary 
on the exact contact-line mechanism responsible for the viscous-frequency shift, 
modulations, and the role of Photo Flo, in a manner similar to Ting & Perlin (1995). 
Second, to understand more about the steep standing waves and breaking, the Faraday 
wave with 2:1:2 internal resonance requires more detailed study that includes the 
‘quartet’ interaction. We plan to extend the experiments to three dimensions (using 
smaller aspect-ratio basins) and pursue the applicability of observed wave forms to 
SAR signatures. 

This research was supported by the Office of Naval Research partially under 
contract number N00014-93-1-0867 and partially under the University Research 
Initiative Ocean Surface Processes and Remote Sensing at the University of Michigan, 
contract number NO00 14-92-5- 1650. 

Appendix. Sideband resonance 

It is evident from our experiments that modulation occurs for SZ > 0. Therefore 

only the solution with the + sign is available in equation (3.16). Assuming Al = 

(A 1) 

(A 2 )  

where b; is the complex conjugate of b2 and J is the determinant of the coefficient 
matrix 

, we obtain the following algebraic equations from equation (3.20) bleiTd + b2e-iTd 

( - A  + iT - 0 - 2GIAoI2) bl - (Fo + GAE) b; = FoAi, 

- (Fo + G A i 2 )  bl + ( A  - iT - SZ - 2GIAoI2) b; = FoAO, 

J = [(a + 2GIAo12)2 - ( A  - iT)2 - IFo + GAEl2] 

=4(~;-r?) l ’~  [ ( F O Z - ~ ~ ) ’ ’ ~  -n] - ~ 2 + 2 i A r .  (A 3 )  

Using the steady solution for Ao, we get solutions for bl and b2: 

[+A - R - 2GIAoI2 - iI‘]A; + (Fo + GA;)Ao 

4 (F; - r2)1’2 [(F’ - T2)1’2 - R] - A2 2iAT 
bl,2 = FO = P1,2 cos 8 + iQ1,2 sin 8. 

(A 4) 
The coefficients P I ,  P2 and Q1, Q 2  are 

( A  + RI) - iR2 

J 
PI = 

( - A  + R1) - iR2 

J *  

( - A  + R3) - i& 

J 

( A  + R3) - iR4 
J’ 

Foao ; Foao; Qi = 

P2 = Foao; Q2 = Foao, 

where 

FO - SZ + (F: - T2)’” 
R2 = r ; R 4 = R 2 - 2 r .  

FO 

Here J’ is the complex conjugate of J .  The resonant modulation frequency as defined 
in equation (3.24) can be estimated accurately by seeking the maximum of b1,2 in 
(A 4).  It turns out that neglecting damping is a good approximation and the frequency 
estimate (3.24) is sufficiently accurate. 
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