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MODERATE DEVIATIONS AND ASSOCIATED 
LAPLACE APPROXIMATIONS FOR SUMS 
OF INDEPENDENT RANDOM VECTORS 

A. DE ACOSTA 

ABSTRACT. Let {Xj } be an i.i.d. sequence of Banach space valued r.v.'s and 
let Sn = E'J=I Xj . For certain positive sequences bn -> 00 , we determine the 
exact asymptotic behavior of E exp{(bVn)CI>(Sn/bn)} , where CI> is a smooth 
function. We also prove a large deviation principle for {2'(Sn/bn)}. 

1. INTRODUCTION 

Let {Xj} be a sequence of independent E -valued random vectors with com-
mon distribution f.i, where E is a separable Banach space, let Sn = E;=I Xj, 
and assume that {2'(Sn/n l / 2)} converges weakly. Let {bn} be a positive se-
quence such that bn/n l / 2 -+ 00. In this paper we study certain aspects of 
the asymptotic behavior of {2'(Sn/bn)} (under the further assumption (1.1), 
{P{Sn/bn E An are sometimes referred to in the literature as "probabilities of 
moderate deviations"). 

One of our results is a large deviation principle (in the sense of Varadhan 
[20]) for {2'(Sn/bn)} when {bn} is such that 

( 1.1 ) bn / n -+ O. 
We prove that, under appropriate integrability conditions, 

(1.2) lim sup bn210gP{Sn/bn E F} ::; - inf J(x) for F closed, 
n-+cx:> n xEF 

( 1.3) liminfb~ 10gP{Sn/bn E G} ~ - inf J(x) for G open. 
n-+cx:> n xEG 

The rate function J depends on f.i only through its covariance structure; this 
is in contrast to the situation that arises when bn = n (see [14]; also [8, 7, 
2]). The precise statement is given in Theorem 2.3; Theorem 2.2 is a more 
general result about triangular arrays which we need in §3. Parts of Theorem 
2.3 were obtained by Borovkov and Mogulskii [13] (see also de Acosta and 

Received by the editors November 16, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 60FlO, 60B12. 
Key words and phrases. Moderate and large deviations, exact asymptotics, Laplace approxima-

tion. 
This research was partially supported by an NSF grant and by the Department of Mathematics, 

University of Wisconsin-Madison. 

357 

© 1992 American Mathematical Society 
0002-9947/92 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358 A. DE ACOSTA 

Kuelbs [5] and Bolthausen [10]). For the case when E is finite-dimensional 
(and the covariance matrix of Xl is nonsingular), see Freidlin and Wentzell 
[17, p. 142]. Of course, in the case E = R there is an extensive literature on 
the exact asymptotics of {P{Sn/bn > x}}; for classical results in this context 
see [16, 19]. 

If <1>: E -+ R is a bounded continuous function, then by Varadhan's theorem 
(see [15, p. 51]), (1.2) and (1.3) imply 

( 1.4) lim b~ logE exp {b~ <I> (Sbn)} = sup[<I>(x) - I(x)]. 
n->oo n n n xEE 

Our main result is a refinement of (1.4), giving the exact asymptotic behavior 
of Eexp{(b~/n)<I>(Sn/bn)} when <I> is a smooth function subject to a growth 
condition and (1.1) is replaced by the stronger condition 

(1.5) bn /n 2/ 3 -+ O. 
Under appropriate integrability, tightness and nondegeneracy conditions, we 
prove that 

(1.6) Eexp{b~<I>(Sn/bn)} '" cexp{b~ sup[<I>(x) -/(X)]} ' 
n n xEE 

where the constant C depends on <I> and the covariance structure of Jl. The 
precise statement is given in Theorem 3.1 and a simple example shows that 
condition (1.5) cannot in general be relaxed; it should be remarked that (1.5) 
appears also in classical results on the exact asymptotic behavior of 
{P{Sn/bn > x}} (see e.g. [16]). In the case bn = n, results similar to (1.6) 
were obtained by Bolthausen [10] for general E and previously by Martin-LOf 
[18] for E = R; in contrast to (1.6), in their results the rate function I is re-
placed by the Cramer functional of Jl (see [7]). §3 of the present paper is close 
in spirit to Bolthausen's interesting work (he has also studied in [11] the more 
complicated situation that occurs in the case bn = n when the nondegeneracy 
assumption is dropped). For reference to previous results in the case when Jl 
is Gaussian, see [10]. 

§2 contains the proof of the moderate deviation results and §3 that of the 
Laplace approximation (1.6). 

Throughout the paper E will denote a separable Banach space and E* its 
dual space. 

2. MODERATE DEVIATIONS 

It will be convenient for the developments in §3 to prove (1.2) and (1.3) in 
a somewhat more general setting. Let {Xnj: n EN, j = 1 , ... , n} be a trian-
gular array of E-valued random vectors, each row of which is independent and 
identically distributed, and let Sn = 'LJ=1 Xnj . We will consider the following 
conditions: 
(2.1 ) 

(2.2) 

(2.3) 

EXnl = 0 for all n EN, 

{.2'(Xnd} is tight, 

supEexp(tIIXnlll) < 00 for all t> 0, 
n 
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SUMS OF INDEPENDENT RANDOM VECTORS 359 

(2.4) {£"(Sn/nl/2)} converges weakly to a centered Gaussian measure y , 

(2.5) If j. EN, j. ~ 00, j.:5 n, then {2" (t X. j fj;/2) } is tight. 

If E is a Banach space of type 2, then it is well known that (2.4)-(2.5) 
follow automatically from (2.1)-(2.3); let us recall that the class of type 2 spaces 
includes Rk, Hilbert space and V spaces for p ;::: 2 (see e.g. [6]). 

Lemma 2.1. Assume that {Xnj } satisfies conditions (2.1)-(2.4) and let ibn} be 
a positive sequence satisfoing the conditions bn / n 1/2 -+ 00 and (1.1). Then 

(i) There exist c > 0, no E N and a compact convex symmetric set K such 
that for n ;::: no, 

E exp { ~ qK(Sn) } ::; cb;/n , 

where qK is the Minkowski functional of K . 
(ii) For every e E E* , 

. n { bn } 1 J):2 d 
n~~ b~ 10gEexp n(~' Sn) ="2 '" y. 

Proof. By assumptions (2.3) and (2.4), an easy modification of Theorem 5.1 (b) 
of [4] yields: 

(2.6) supEexp{tIlSn /n l / 2 11} < 00 for all t > O. 
n 

Now using (2.4) and (2.6), and also (2.2) and (2.3), we obtain by Theorem 3.1 
of [1]: there exists a compact, convex, symmetric set K such that 

(2.7) supE exp{qK(Sn/n l/2)} < 00, supE exp{2qK(Xnd} < 00. 
n n 

We use now a well-known technique of Yurinskii [21]. For fixed n, let 
90 = {1>, Q}, 9} = U(Xnl' ... ,Xnj ) for 1::; j::; n. For j = 1, ... , n let 

17j = E[qK(Sn)I9}] - E[qK(Sn)I9}-d. 

Then 

and 

(2.8) 

Now for 0 < A. ::; 1 , 
(2.9) 

n 

qK(Sn) - EqK(Sn) = L 17j 
j=! 

E exp{ l[qK(S.) - EqK(S.)]} ~ E exp { 1 t ~j } 

~ EE [exp { 1 t ~j } 19,;-1] ~ E exp { .l ~ ~j } E[exp{ l~.} 19,;-Il· 
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360 A. DE ACOSTA 

Next, 

E[exp[().1Jn)IG;;-d :s E [ (1 + ).1Jn + ).221J~ el'lnl) IG;;-I] 
(2.10) 

).2 
= 1 + 2E[1J~el'lnllG;;-d 
:s 1 +).2 E[e21'lnllG;;_d 
:s exp{).2 Ee2(QK(Xn Il+EQK(XnIl)}, 

using (2.8). Iterating the same procedure and taking). = bn/n for sufficiently 
large n, we have by (2.7), (2.9) and (2.10), for certain constant a> 0, P > 0, 

E exp { ~n qK(Sn) } :s exp { ~n EqK(Sn) } exp { n . ~~ a} 

= exp {n~~2 EqK(Sn/n 1/2)} exp { a ~} 

:s exp {p ~~ } exp { a ~ } 

for sufficiently large n. This proves statement (i). 
(ii) It follows from (2.1), (2.3) and (2.4) that for all ~ E E* , 

(2.11 ) 

For). E R, we have by (2.1) 
E exp().~, Sn) = (E exp().~, xnl))n 

= (1 + i).2 E[(~, Xnl)2e IJ).(.;,xndW 

where 181 :s 1. Setting). = bn/n, it follows by (2.3), (2.11) and dominated 
convergence that 

}~(EeXP\~~,Sn)rlb~ =exp(~f~2dY), 0 

Let us recall that the Cramer functional of y, defined by 

/(x) = .;s~f. [(~, x) - ~ f ~2dY] , 

is given by 

(2.12) /(x) = { illxll~, 
00, 

where (Hy , 11·lly) is the Hilbert space associated to y (see [7]; also [12]). 
We obtain now a large deviation principle for {2'(Sn/bn)}. 

Theorem 2.2. Let {bn} be a positive sequence satisfying the conditions bn/n l/2 ---> 

00 and (1.1). Let / be given by (2.12). 
(i) Assume that {Xnj } satisfies (2.1)-(2.4). Then for every closed set F, 

lim sup bn2 10gP{Sn/bn E F} :s - inf /(x). 
n ...... oo n xEF 
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(ii) Assume that {Xnj } satisfies (2.1) and (2.3)-(2.5). Then for every open set 
G, 

liminf bn2 10gP{Sn/bn E G} ~ - inf /(x). 
n--+oo n xEG 

Proof. (i) Let Yn = bnSn/n, ¢(I;) = ! J 1;2 dy for I; E E*. The result will fol-
low from Theorem 2.1 of [1], taking the normalization in that result to be b~/n 
instead of n (obviously the result remains valid with this change). By Lemma 
2.1(ii), assumption (2.1) of [1] is verified. We show next that assumption (2.3) 
of [1] is satisfied. Let a > 0, and let K be as in Lemma 2.1(i). By Lemma 
2.1(i), for 0: > 0 

P { ~ Yn f/- o:K } = P { qK (Yn) > 0: ~ } 

if 0: ~ a + log e . 

~ e-a~ E exp {~n qK(Sn)} 

~ exp [-(0: -loge) ~] for n ~ no 

~ exp [-a~] for n ~ no 

(ii) We first remark that Lemma 3.1 of [5] is valid for triangular arrays under 
assumptions (2.1) and (2.3)-(2.5) (obviously the integrability assumption may 
be weakened). The proof is just a reinterpretation of that of Lemma 3.1 of [5]; 
notice that statements (3.5) and (3.6) in [5] follow from standard facts about 
triangular arrays; (2.5) is needed to verify (3.6) of [5] (see [3]). Now let G be 
an open set. We must prove that if hE G n Hy, then 

. . f n {S /b } IIhll~ 
he~ b2 log P nnE G ~ - -2- . 

n 
But this follows from Lemma 3.2 of [5]. 0 

The following result deals with the case of an independent, identically dis-
tributed sequence. In order to formulate it, we consider the following conditions 
on a probability measure p, on E: 

(2.13) j xp,(dx) = 0, 

(2.14) j etllxll p,(dx) < 00 for all t > 0, 

(2.15) {p,*n(n l / 2 (.))} is tight. 
As is well known (2.15) follows from (2.13) and (2.14) if E is a Banach space 
space of type 2 (see e.g. [6]). Under condition (2.15), {p,M(n l / 2 (.))} converges 
weakly to a Gaussian measure y with the same covariance structure as p,. Let 
(Hp., II· lip.) be the Hilbert space associated to p,; then (Hp., II· lip.) depends only 
on the covariance structure of p, and (Hp., 1I·1Ip.) = (Hy, 11'lIy), and therefore 

(2.16) /(x) = { !lIxll~, x E Hp., 
00, xf/-Hp.. 
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Theorem 2.3. Let {bn} be as in Theorem 2.2 and let I be given by (2.16). Let 
{Xj} be an independent sequence with common distribution J1, and let Tn = 
LJ=1 Xj . 

(i) Assume that J1, satisfies (2.13)-(2.15). Then for every closed set F, 

lim sup b~ 10gP{Tn/bn E F} ~ - inf I(x). n-+oo n xEF 

(ii) Assume that J1, satisfies (2.15). Then for every open set G, 

liminf bn2 10gP{Tn/bn E G} ;::: - inf I(x). n-+oo n xEG 

Proof. The first statement is a direct corollary of Theorem 2.2(i). The second 
statement follows from [5], Lemmas 3.1 and 3.2. 0 

3. LAPLACE APPROXIMATIONS 

We have adopted in this section the framework of Bolthausen [10] for the case 
bn = n. The central part of the proof of Theorem 3.1 is, however, different 
and is based on the decomposition given by Lemma 3.3(i); the use of this 
decomposition is illustrated in a simple way in the proof of Theorem 3.1(i). 

In order to formulate Theorem 3.1 we will consider a probability measure J1, 
on E satisfying the following conditions; let us observe that (3.3) is a strength-
ening of (2.15) (take ~ = 0). Let jJ,(~) = J e' dJ1, for ~ E E* . 

(3.1) J xJ1,(dx) = 0, 

(3.2) J etllxll J1,(dx) < 00 for all t > 0, 

(3.3) 
Let 

Then 

Let ~ E E* and an > 0, 

{(Vn * (L v.)*n(n1/ 2(.))) is tight. 
Condition (3.3) follows from (3.1)-(3.2) if E is a type 2 space. 

We will also consider a function <1>: E ----> R such that 

(3.4) <I> E C2 (E) in the Frechet sense, 
(3.5) <I>(x) ~ allxll + b for certain constants a > 0, b > O. 

The following two assumptions should be considered in the light of Lemma 
3.2. They also appear in [10]. 
(3.6) There exists a unique point x* E E such that <I>(x*) - I(x*) 

= sup[<I>(x) - I(x)] , where I is given by (2.16), 
xEE 

(3.7) For all ~ E E* with J e dJ1, > 0, setting L1(~) = J x(~, x)J1,(dx) , 

D2<1>(X*)(L1(~), L1(~)) < J ~2 dJ1,. 
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Theorem 3.1. Let /1 be a probability measure on E satisfying (3.1)-(3.3), let 
{Xj} be an independent sequence with common distribution /1, and let Sn = 
'LJ=I X j . Let <1>: E ---+ R satisfy (3.4) and (3.5), and assume that (3.6) and 
(3.7) hold. 

(i) Let y be the Gaussian measure to which '{/1*n(nl/2(.))} converges weakly 
by (3.3) with e = O. Then 

C = J exp {~D2<1>(X*)(Y' y)} y(dy) < 00. 

(ii) Let {bn} be a positive sequence satisfying the conditions bn/n l / 2 ---+ 00 

and (1.5). Then 

(3.8) lim exp {- b~ sup[<I>(x) - leX)]} E exp {b~ <I>(Sn/bn)} = c. 
n->oo n xEE n 

Remarks. (1) If, furthermore, it is assumed that J e3 d/1 = 0 for all e E E* , 
then (3.8) is valid for any positive sequence {bn } such that bn /n 1/ 2 ---+ 00 and 
bn/n 3/ 4 ---+ O. This follows from the proof of Theorem 3.1. 

(2) Theorem 2.2(i) is used in the proof of Theorem 3.1 (ii), but not Theorem 
2.2(ii). 

(3) The following example shows that assumption (1.5) cannot in general 
be relaxed. Let /1 = p * J_ 1 , where p is the standard Poisson distribution 
with parameter 1; then 5?(Sn/nl/2) converges weakly to y = N(O, 1). Let 
<I>(x) = x; then supA<I>(x) - lex)] = suPx[x - !X2] = !. Also cI>"(X) = 0 for 
all x, so C = 1 . Now 

{ 1 b~ } E { b~ Sn} {1 b~ b ( b /n 1)} exp - '2 n exp n' bn = exp - '2 n - n + n e n - , 

= exp { ~ (n~~3 r + nO ( (~n r) } . 
We shall need several lemmas for the proof of Theorem 3.1. For background 

information on (Hp., II . lip.) we refer again to [7, 12]. 
Lemma 3.2. (i) s = SUPXEE[<I>(X) - lex)] is attained. Moreover, if <I>(x*) -
l(x*) = s, then x* = ~(D<I>(x*)); in particular, x* E ~(E*). 

(ii) If <I>(x*) - l(x*) = s, then 

D2<1>(X*)(h, h) :::; Ilhll~ for all h E Hp.. 
Proof. (i) By (3.5), <I>(x) - lex) :::; (allxll + b) - !lIxll~. Since IIxll :::; allxllp., 
where a = sUPllxllp~1 IIxll, {x E Hp.: IIxllp. :::; r} is compact for all r 2: 0 and 
(3.4) holds, it follows that s is finite and is attained on Hp.. 

Let x* E Hp. be such that s = <I>(x*) - l(x*). For fixed hE Hp., t E R, let 
f(t) = <I>(x* + th) - l(x* + th) 

= <I>(x* + th) - !(llx*ll~ + 2t(x* , h)p. + t21Ihll~). 
Then f'(t) = D<I>(x* + th)(h) - (x, h)p. - tllhll~, and 0 = f'(O) = D<I>(x*)(h) -
(x* , h)p.. It follows that for all hE Hp., 

(~(D<I>(x*)), h)p. = D<I>(x*)(h) = (x* , h)p., 
implying ~(D<I>(x*)) = x* . 
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(ii) Similarly, 

o ~ f"(O) = D2cf>(x*)(h, h) -llhll~. 0 

Conditions (3.6) and (3.7) are a strengthening of the conclusions of Lemma 
3.2; the latter one should be viewed as a nondegeneracy condition. 

Lemma 3.3. (i) Let gl, ... ,c;d c E* be such that J C;iC;j dll = ~ij, and let 
ej = L\(C;j). For x E E, define 

k 

Pk(x) = ~)C;j , x)ej , 
j=l 

Let A be a continuous symmetric bilinear form on E x E. Then for every 
xEE, P>O, 

k 
A(x, x) :::; d(l + p2)IIQk(X)1I2 + (a + p-2 d(2) I:(C;j, X)2, 

j=l 

where d = sup{IA(x, y)l: IIxll :::; 1, lIyll :::; I}, a = sUPllxll,,~1 A(x, x), a = 
sUPllxll,,~1 IIxll· 

(ii) Assume that A satisfies: A(L\(C;) , L\(C;» < J C;2 dll for all C; E E* with 
J C;2 dll > O. Then sUPllxll,,~1 A(x , x) < 1. 
Proof. (i) Since x = Pk(x) + Qk(X) , we have 

A(x, x) = A(Qdx) , Qk(X» + 2A(Qk(X) , Pk(x» + A(Pk(x) , Pk(x» 

and therefore 

(3.9) A(x, x) :::; dIlQk(X)1I2 + aIlPk(x)lI~ + 2dIlQk(X)IIIIPk(x)lI. 

Now 

(3.10) 
k 

IIPk(X)II~ = I:{C;j, X)2, 
j=l 

2I1Qk(X)IIIIPk(x)1I :::; p2I1Qk(X)1I2 + P-21IPk(X)1I2 

:::; p2I1Qk(X)1I2 + a2p-2I1Pk(X)II~. 
The conclusion follows from (3.9)-(3.11). 

(ii) By continuity and the II· 1I ,u-density of L\(E*) in H,u, the assumption 
implies s = sUPllxll,,=1 A(x , x) :::; 1. Suppose s = 1. By the compactness of 
{x E H,u: IIxll,u :::; I}, there exists h E H,u such that IIhll,u = 1 and A(h, h) = 1. 
Now for all y E H,u, t > 0, 

A(h + ty, h + ty) :::; IIh + tYII~, 
and expanding both sides and cancelling we get 

2tA(h, y) + t2 A(y, y) :::; 2t{h, Y),u + t2I1YII~. 
Dividing by t, letting t ---+ 0 and observing that (-y) may be substituted for 
y, we have A(h, y) = (h, Y),u. But 

A(h, y) = A(h, .)(y) = (L\(A(h, .», Y),u, 
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and therefore for all y E H/1' 

(~(A(h, .)) - h, y)/1 = 0, 

implying h = ~(A(h, .)) E ~(E*), which contradicts the assumption. 0 

Lemma 3.4. Let {Ynj : n EN, j = 1 , ... , n} be a row-wise independent trian-
gular array with 

ebnrp /n . 
d.:?(Ynj ) = A b dJ1, for} = 1, ... , n, 

J1,(,":rp) 

where rp = D<I>(x*) , and let Tn = Ej=1 (Ynj-E(Ynj )). Let Un = (n/bn)E(YnJ)-
x* , and define for vEE, 

fn(v) = exp {~ [<I> (x* + Un + n~~2 V) - <I>(x*) - (rp, Un + n~~2 V )]} , 
f(v) = exp {tD2<1>(x*)(v, V)} . 

Then {.:?(fn(Tn/n l /2))} converges weakly to yo f- I . 

Proof. We first show 
(i) limn--+oo(bn/nl/2)un = o. 

By Lemma 3.2(i), x* = J x(rp, x)J1,(dx). Therefore 

bn * J xebn (rp,x)/nJ1,(dx) - P: J x(rp, x)J1,(dx) 
E(YnJ) - -x = A b 

n J1,(,":rp) 

P: J x(rp, x)J1,(dx)(1 - ft(P:rp)) + -'-'---''----.------,-----'-'--
[l(P:rp) 

Now by (3.1) and the inequality leY - 1 - yl :::; tlyl2elYI (y E R), we have 

III xebn (rp,x)/nJ1,(dx) - ~ I x(rp, x)J1,(dx) II 
= III x (ebn(rp'X)/n - 1 - ~ (rp, X)) J1,(dX)11 

:::; ~ ~1 I IIxll(rp, X)2ebn(rp,x)/nJ1,(dx). 

Similarly, 

Therefore 

II n~~2 Unll = Ilnl/2 (E(YnJ) - ~ x*) II :::; nl/2 !1 rn , 

with {rn} bounded. Since nl/2b~/n2 = (bn/n 3/ 4 )2, claim (i) follows by as-
sumption (1.5). 
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We prove next 
(ii) For every r> 0, limn-+oo sUPllvll::::r Ifn(v) - f(v)1 = 0. 

In fact, by Taylor's formula, 

Ilogfn(v) -logf(v)1 

11 2 (* ( nl/2)) ( bn bn ) = '2 D <I> x + e Un + 7i;;'v n l / 2 Un + v, n l / 2 Un + V 

- D 2tJ>(x*)(v, V)I' 

~ ~ IID2<1> (X* + e (un + n~~2 V)) -D2<1>(X*)111I n~~2Un + VII2 

+ ~ ID2ct>(X*) (n~~2 Un + v, n~~2 Un + V) - D2<1>(X*)(V, V)I ' 
where lei ~ 1 , and claim (ii) follows by assumption (3.4) and claim (i). 

By [9, p. 34] and claim (ii), the proof will be completed if we show that 

(3.11) {2'(Tn /n l / 2)} converges weakly to y. 

By assumption (3.3), {2'(Tn /n l / 2)} is tight. Therefore it is enough to show 
that {2'((~, Tn/n l/2))} converges weakly to yo~-I for ~ E E*. But it is easily 
shown that 

E(~, Tn /n l / 2 )2 -+ J ~2 dy, 

}i..~E((~, Ynl -E(Ynd)2I{I(~'Yn[-E(YnIl)I>n[/2e}) = ° 
for every e > 0, so (3.11) follows by Lindeberg's theorem (for triangular ar-
rays). 0 

Lemma 3.5. Let {Unj : i = 1 , ... , n; n E N} be a triangular array of E-valued 
random vectors such that each row is independent and identically distributed. Let 
Vn = 'LJ=I Unj , and let q be a continuous seminorm on E. Assume 

(1) For all n, E(Und=O, 
(2) For all t> 0, sUPnEexp{tq(Und} < 00, 

(3) SUPn Eq(Vn/nl/2) < 00. 

Let a = infhENlimsuPn-+oo(Eq2(h-I/2'L]=1 Unj ))1/2. Then for all p < 
(8a2) -I and sufficiently small J > 0, 

supE(exp{pq2(Vn/nl/2)}I{q(Vnl<"n}) < 00. 
n 

Proof. Let b > a. Choose h, no E N such that for n ~ no , 

(3.12) Eq2 (h- 1j2 t U'i) < b2 • 

Let in = [~] and for n ~ h, i = 1 , ... , in , define 
ih jn 

Zni = h- I/ 2 L Unj , 
j=(i-llh+1 

UJn = LZni. 
i=1 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUMS OF INDEPENDENT RANDOM VECTORS 361 

The triangular array {Zni: n ;::: h, i = 1, ... ,jn} has independent, identically 
distributed rows. Next, for all n;::: h, mEN, m > 2, 

Eqm(Znd = looo mtm- I P{q(Znd > t} dt 

(3.13) ~ looo mtm-1e-tE exp{q(Znd} dt 

~ mIL, 
where L = sUPn>h E exp{q(Znd} < 00 by assumption (2). By (3.12) and (3.13), 
we have for all n ~ max{h, no}, m ~ 2, 

(3.14) Eqm(Znd ~ (~!) b2H m- 2 

where H = max{2b-2L, 1}. 
By (3.14), applying to the nth row of {Zni} Theorem 2.1 ofYurinskii [21], 

with bJ = b2 (so B~ = jnb2), Pn = Eq(Wj.) , we have: for s > 0, setting 
Cn = Eq(Wj.U!/2) , 

P{q(Wj.) > sj!/2} = P{q(Wj.) > (~) bj!/2} 

(3.15) {1 2 ( (s - Cn)H) -I} 
~ exp - 8b2 (s - cn) 1 + 2b2 j!/2 . 

Now for 0 < A < 1, n sufficiently large, t > 0 

P {q (~2) > t} ~ p{q(hl/2Wj.) > At!/2} 

+ P{q(Vn - hl/2Wj.) > (1 - A)tn l/2} 
(3.16) ~ P{q(Wj.) > Atj!/2} 

+ supP {q (t Un}) > (1 - A)tn l/2} . 
l~h }=I 

For r > 0, I ~ h, n sufficiently large, we have 

(3. [ 7) P { q (t U,j) > ([ - A)tn l/' } :5 exp{ -Ttn II'} M, 

where M = sUPn(Eexp{r(1- A)-lq(Und})h < 00 by assumption (2). 
By (3.15)-(3.17) we have for t> 0, 0 < A < 1 and n sufficiently large, 

(3.[S) p H:'i,) > t} :5 exp { - S~' (At - c,)' ([ + (.!~b~;£J,Hr} 
+ M exp{ -rtn l / 2 }. 

Using assumption (1), it is easily seen that 

(3.19) lim sup Cn ~ lim sup Eq ( ;/2) = c, say. 
n-+oo n-+oo n 
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For i < A < 1 and sufficiently large n, we have by (3.18) and (3.19): 

E (exp {pq2 (n~;2) } I{q(v.)<Jn}) 

Jn
1
/
2 

{ (V.) } = 1 + fa 2ptePt2 p q n l;2 > t dt 

3c Jn 1/ 2 

~ 1 + [ ... + [ 2ptePt2 
10 13c 

{ 1 2 ( ()A.H(2h)l/2)-l} x exp - 8b2 (At - 2c) 1 + 2b2 dt 

Jn 1/ 2 

+ [ 2ptePJnl/2t M exp{ -rtn l/2 } dt. 13c 
It is now clear that if p < (8a2)-l, by taking b sufficiently close to a, A 
sufficiently close to 1, ~ sufficiently small and r sufficiently large, the statement 
follows. 0 

Lemma 3.6. Let {Unj: j = 1, ... , n E N} be a triangular array of E -valued 
random vectors such that each row is independent and identically distributed, and 
let Vn = E'J=l Unj . Assume 

(1) For all n, E(Und = 0, 
(2) For every bounded finite dimensional set A c E* , 

supsupE exp{I(~, Unl )!} < 00. 
n ~EA 

(3) {.2"(Und} converges weakly to f.l. 
Let gj: j E N} be such that J ~i~j d f.l = ~ij. Then for every ,., < 1 and every 
kEN, there exists ~ > 0 such that 

s~pE (exp { ~n' t (ei, ::;,)'} [{II V. lid,} ) < 00, 

Proof. Fix,., < 1 and kEN. Since I(~j, Vn)1 ~ lI~jllllVnll for j = 1, ... , k, 
it is enough to prove: for sufficiently small ~ > 0, 

(3.2Q) s~pE (exp { ~n' t (ei' ::;,)'} [m", V.)I<",i=I .... ,k}) < 00, 

Let A be the canonical Gaussian measure in Rk. Then 
(3.21 ) 

E (exp { ~n' t ( ei, :.;,)'} [me,.v.)I<" ,i=1 , ,k} ) 

~ E ([/ exp { n t zi (ei' ::;,) } A(dZ)] [{Il<" v.)I<" ,i=I"k}) 

~ / A(dz)E (exp { n t zi (ei' ::;,) } [(ll<" V.)ld, ,i=I"k}) , 

where Z = (Zl , ••• , Zk) E Rk . 
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For i = 1, ... , n, Z E Rk, let Y~r) = E7=1 Zj(ej, Uni } , and let Wn(z) = 
"n y(z) S' . 1 12 "k 2 h L..Ji=1 ni . mce, settmg Z = L..Jj=1 Zj ,we ave 

{l(ej, v,,}1 < <>n, j = 1, ... , k} c {IW~z)1 < <>lzlkl/2n}, 

by (3.21) in order to prove (3.20) it is enough to show: for sufficiently small 
<> > 0, 

(3.22) s~p J J.(dz)E (exp { t7 ~n~~ } I{IW~Z)I<t5IZln}) < 00. 

In order to prove (3.22) we estimate P{IWn(z) /nl/21 > t} by means of Bern-
stein's inequality (see [21, p. 474], or [19, p. 55]). We have E(Y~:)) = 0 for 
n E N by assumption (1). Also 

k 

E(y~:))2_ LZJ= L LZjz,[E((ej, Unl}(e" Unl })-J eje,d/1] 
j=1 j' 

:5 ~~rIE«'j, U .. )(", U,,» -/ Md,,1 (~IZjr 
:5 ~~f IE«ej, U .. )(", U,,» - / M d+ ( ~ z; ) 

and therefore by assumptions (2) and (3), given ( > 1 (to be further specified 
later), there exists no such that for n ~ no, 

(3.23) 
Next, 

P{IY~:)I > t} ~ exp { -I!I} E exp {I!IIY~:)I} 

~aexp{-I!I} , 

where a = sUPn sUPlwl9 E exp{IY~~)I} < 00 by assumption (2). Therefore, for 
m>2, nEN, 

EIY~:)lm = 1000 mtm- I P{IY~:)I > t} dt 

(3.24) ~ 1000 mtm-1a exp { -I!I} dt 

= am!lzlm ~ (~!) (lzI2(2a(-llzl)m-2, 

since we may assume 2a(-1 ~ 1. By (3.23), (3.24) and Bernstein's inequality, 
for n ~ no and t > 0 , 

(3.25) P {I ~~~ I > t} ~ 2exp { - 2~:12 (1 + nl/~~~IZI) -I} . 
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Now by (3.25), for sufficiently large n, 

E (exp { 111 ::;~~ I} I{IW;Z) /nl/2IdIZlnl/2}) 

= 1 + fo'iizl n1
/
2 

11 exP(11t)P {I ~~~~ I> t} dt 

Jlzlnl/2 {2 ( 2 )-l} 
:::; 1 + fo 11 exp(11t) ·2 exp - 2C~Z12 1 + nl/2~~IZI dt 

:::; 1 + 2 fooo 11 exp(11t) exp {- 2~:12 (1 + 2aC-2J)-I} dt 

:::; 1 + 2v'21i'11alzl exp {4(11a)2IzI2 } 

by an elementary computation, where a = CI/2(1+2aC-2J)I/2. Choosing C> 1 
and J > 0 so that 11a < 1, the result follows from (3.22). 0 

Proof of Theorem 3.1. (i) The fact that C < 00 follows from the integrability 
arguments in the proof of (ii). Nevertheless, we will give a simple direct proof 
because it illustrates the use of the decomposition given by lemma 3.3(i), which 
is later employed in a more complicated situation in the proof of (ii). 

Let {C;j: j E N} c E* be such that {d( C;j ): j E N} is an orthonormal basis 
of Hy = Hp. (see [12]). Let A = D 2ct>(x*). By (3.7) and Lemma 3.3(ii), 
a = SUPllxlly~1 A(x, x) < 1. Choose P > 0 such that p = a + p-2 d(J2 < 1. 
Since Qk(Z) --t 0 a.s. for a random vector Z with £,(Z) = y (see [12]), one 
may choose kEN such that 

(3.26) 

By Lemma 3.3(i) 

J exp {4 A(Y, Y)} y(dy) 

:::; J exp {4 d(l + p2)IIQk(X)1I2 } y(dx) 

x J exp { ~P t(~j, X)}(dX) < 00 

since the second integral on the right-hand side is 

Lk exp {4PIZI2} J.(dz) < 00 

because P < 1, where I· I is the usual Euclidean norm in Rk and J. is the 
canonical Gaussian measure in Rk. 

(ii) Let x* be as in (3.6). For the rest of the proof, we set rp = Dct>(x*) . 
Since for any C; E E*, SUP1/EE* [(11, d(C;)} - t J 112 d.u1 is attained at 11 = C; , as 
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is easily proved, we have by Lemma 3.2(i) 

I(x*) = (rp, x*) - ~ J rp2 dJl. 

Therefore we may write 

Cn = exp { - ~~ [<I>(x*) - I(x*)] } E exp { ~~ <I> (!: ) } 
= exp { - ~ ~ J rp2 d Jl } E (exp {~ [<I> (x* + (!: -x* ) ) 

-<I>(x*)- (rp, !: -x*)]}exp{~(rp,Sn)}) 
(p (~n rp ) ) n exp { _ ~ ~ J rp2 d Jl } E exp { ~ [<I> ( x* + Un + r:) 

- <I>(x*) - (rp, Un + r: )]} , 

371 

where Tn = 'L]=I (Ynj - E(Ynj )) , with {Ynj : j = 1, ... , n} independent and 

ebnrp/ n n 
d:?(Ynj ) = -'-b-dJl, and Un = bnE(Ynd -x*. 

Jl("/trp) 

Now let Fn(x) = <I>(x* + Un + x) - <I>(x*) - (rp, Un + x). Since 

{ b~ ( Tn ) } _ f, 1/2 exp nFn bn - n(Tn/n ), 

where In is as in Lemma 3.4, in order to prove limn-+oo Cn = C it is enough 
by Lemma 3.4 to prove 

(a) J~~ (p (~ rp) ) n exp { - ~ ~ J rp2 dJl } = 1. 

(b) { exp { ~~ Fn (r:) }} is uniformly integrable. 

We prove (a) first. A straightforward expansion gives 

P (~ rp) = 1 + ~ (~ r J rp2 dJl 

+ ~ (~ r J rp 3 dJl+O ((~ r) 
On the other hand, 

{ 1 b~ J 2} 1 (bn) 2 J 2 d ( (bn ) 4) exp -2n2 rp dJl =1- 2 11 rp Jl+O n 

Therefore 

• (bn ) {I (bn) 2 J 2 d } (bn ) 3 Jl nrp exp -2 11 rp Jl = 1 - 11 rn , 
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where {rn} is bounded. From assumption (1.5) it follows that 

(

A (bn ))n {I b~ J 2d } _ (1 (bn/n2/3)3 rn )n 1 Ii -rp exp --- rp Ii - - ---- . n 2 n n 
(It is clear from the argument that if J rp3 dli = 0, then the conclusion will hold 
under the weaker assumption bn /n 3/ 4 ---- 0.) 

We tum now to the proof of (b). In order to prove this assertion, it is clearly 
enough to prove: 

(I) For every J > 0, 

li~~pE (exp {~ Fn (r:) } 1{IITn/M~~}) = o. 
(II) There exist J > 0, p > 1 such that 

s~pE (exp {p~ Fn(Tn/bn)} 1{IITn/M<~}) < 00. 

In order to prove (I), it suffices to show that for any closed set D, 

(3.27) lim sup b~ log r exp {b~ Fn} dAn ~ sup[F(x) - l(x)] , 
n-+oo n iD n xED 

where An = Y(Tn/bn) and F(x) = <I>(x* + x) - <I>(x*) - (rp, x). Indeed, a 
simple computation using Lemma 3.2(i) gives 
(3.28) F(x) - lex) = [<I>(x* + x) - l(x* + x)] - [<I>(x*) - l(x*)] . 
Now let D = {x E E: IIxll ~ J}. Arguing as in the proof of Lemma 3.2(i) one 
can see that S = SUPxED[F(x)-I(x)] is attained, and assumption (3.6) together 
with (3.28) imply that s < o. Thus (3.27) implies (I). 

To establish (3.27) we first show that 

(3.29) lim lim sup bn2 log r exp { b~ Fn} dAn = -00. 
t-+oo n-+oo n i{Fn~t} n 

By assumption (3.5) and Lemma 3.4, there exist a, p > 0 such that sUPn Fn(x) 
~ allxll + P for all x E E. It follows that 

r exp{ b;Fn} dAn ~ exp {- b~ t} J exp {2 b~ Fn} dAn 
i{Fn~t} n n 

~ exp { - ~ t} E exp { 2 ~ (a II r: " + P ) } . 
By the argument in Lemma 2.1(i) (with qK replaced by 11·11), the second factor 
is bounded by exp{ b~ d / n} for some constant d > 0 and sufficiently large n. 
Therefore 

lim sup bn2 log r exp {b~ Fn} dAn ~ -(t - d), 
n-+oo n i{Fn~t} n 

which yields (3.29). We proceed now to complete the proof of (3.27). Let 
an = b~/n and fix t > o. By the argument of the proof of Theorem 2.2(i), 
given L > 0 there exist a compact set K, and no E N such that for n ~ no , 

P{Tn/bn E K;} ~ e-an ' • 
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By Lemma 3.4, Fn ---+ F uniformly over compact sets. Therefore given t5 > 0, 
we have for sufficiently large n 

l exp{an min(Fn, tn dAn 

:::; 1 exp{anmin(Fn, tndAn + r exp{ant}dAn 
DnKT JK; 

:::; 1 exp{an min(F + t5, tn dAn + e-an(r-t) . 
DnKT 

By [15, p. 321], taking into account Theorem 2.2(i) 

limsupa;;llog1 exp{anmin(F+t5, tndAn 
n-+oo DnKT 

:::; sup [min(F(x) + t5 , t) - J(x)] 
xEDnKT 

:::; t5 + sup[F(x) - J(x)] 
xED 

and it follows that 

lim sup a;; 1 log 1 exp{an min(Fn, tn dAn:::; sup[F(x) - J(x)]. 
n-+oo D xED 

Now a standard argument using (3.29) completes the proof of (3.27), and hence 
that of (I). 

We turn now to the proof of (II). By Taylor's formula, 

. ( Tn ) 1 2 (* ( Tn )) ( Tn Tn ) Fn bn = 2,D ct> X + () Un + bn Un + bn ' Un + bn ' 

where I () I < 1 , and therefore 

b~ ( Tn ) 1 2 (* ( Tn )) ( bn Tn bn Tn ) nFn bn = 2,D ct> X + () Un + bn n l / 2 Un + n1/ 2 ' n1/ 2 Un + n l / 2 . 

By the assumptions on ct> and Lemma 3.4, simple estimates show that given 
e > 0 (to be further specified later), it is possible to choose t51 > 0 and nl E N 
such that for n ~ nl , 

(3.30) ~Fn (~:) :::;e+elln~;2Ir +~A (n~;2' n~;2) on {II~:II <t5I }, 

where A = D 2ct>(x*). Let P > 1, r> 1 (to be further specified later), and define 
s > 1 by r- 1 + r 1 = 1 . Let gj: j E N} c E* be such that {~( C;j ): j E N} is 
an orthonormal basis of Hp.. By Lemma 3.3 and Holder's inequality, for any 
t5 :::; t51 , n ~ n 1 and kEN, we have 

(3.31)E (exp {p (e II n~;2Ir + ~A C~;2' n~;2) ) } I{IITnlbnll<J}) 

~ (E (exp {sp (e II n~;2Ir + ~(l + p2) IIQk (n~;2) In } I{IITnlbnll<6}) ) lis 

. (E (exp{r~(u+p-2du2)t(~j, n~;2)2}I{IITnlbnll<J})) liT 
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Since a < 1 , we may choose and fix p > 0, p > 1, r > 1 in such a way that 
rp(a + p-2 d( 2 ) < 1 . For x E E, let 

qk(X) = el / 21lxlI + (~(1 + p2))1/21IQk(X)II, 

and let Ck be such that qk :::; ckll ·11. Then the sth power of the first factor in 
the right-hand side of (3.31) is bounded by 

E( exp{ spqf (Tn/ n 1/2)} I{Qk(Tn l<t5ckn}) 
for sufficiently large n, since bn/n --+ o. By [12], one may choose kEN, 
e > 0 such that J qf dy < (8Sp)-1 . 

Since {,u*n(nl/2(.))} converges weakly to y, by the results of [4] one may choose 
hEN such that J qfd,u*h(h l/2(o)) < (8Sp)-I, 

and since {2'(Ynl - EYnd} converges weakly to ,u, we have by [4] 

(3.32) ~~p Eql (h- I/ 2 t(Y.r EY.j)) < (Ssp )-1 . 

The triangular array {Ynj - EYnj : n EN, j = 1, ... ,n} and the seminorm 
qk satisfy the assumptions of Lemma 3.5 (assumption (3) follows from Lemma 
3.4 and [4]). Therefore for sufficiently small f5 > 0, 

(3.33) 

Finally, by Lemma 3.6, it is possible to choose f5 > 0 such that the second 
factor in the right-hand side of (3.31) is bounded uniformly in n. Now assertion 
(II) follows from (3.30), (3.31) and (3.33). 0 
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