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Abstract 

We derive the upper tail moderate deviations for the length of a longest increas

ing subsequence in a random permutation. This concerns the regime between the 

upper tail large deviation regime and the central limit regime. Our proof uses a 

formula to describe the relevant probabilities in terms of the solution of a rank 2 

Riemann-Hilbert problem (RHP); this formula was invented by Baik, Deift, and 

Johansson [3] to find the central limit asymptotics of the same quantities. In con

trast to the work of these authors, who apply a third order (nonstandard) steepest 

descend approximation at an inflection point of the transition matrix elements of 

the RHP, our approach is based on a (more classical) second order (Gaussian) sad

dle point approximation at the stationary points of the transition function matrix 

elements. 

2000 Mathematics Subject Classification: Primary 60FI0, secondary 05A05, 45E05, 

60e05, I4H60. 

Key words: Viam's problem, random permutations, moderate deviations, Riemann

Hilbert problems, saddle point approximation. 

1 Introduction 

Often combinatorics provides problems with non-standard and surprising limit theorems 

in probability theory. An example, that has attracted much attention especially in the 

past five years, is Ularn '8 problem : Consider the permutation group Sn on {I, ... ,n}. 

We say that 1 ::; i 1 < .,. < ik ::; n is an increasing subsequence of length k of 1r E Sn 

iff 1r(id < ... < 1r(ik)' The length of a longest increasing subsequence of a permutation 

7r will be denoted by Ln := Ln(1r); such a subsequence in general is not unique. Ulam's 

problem asks for the typical asymptotic behaviour of Ln as n -+ 00, if 7r is chosen from 

Sn with uniform probability lin!. 

There is an alternative version of this problem: Take a Poisson process with intensity 

one in the plane. For a fixed realisation w of this point process an up/right w-path from 

(0,0) to (t, t) is a polygonal path starting in (0,0), ending in (t, t), and connecting points 

from w in such a way that it only moves upwards and to the right. Denote by Ct; := Ct{w) 

the maximal number of Poisson points in a up/right w-path from (0,0) to (t, t). Ordering 
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the x- and y-coordinates of w induces a label (nl' n2) to every point, where nl, resp. 

n2 denote the order-number of the x-coordinate, resp. y-coordinate of the corresponding 

point. These labels are almost surely well defined. They induce a permutation 1f via 

?T(nd = n2. Conditioned on the number of points in w, ?T is selected with uniform 

probability from all possible permutations. Hence C..,;x has the same distribution as LN ) 

where N is a Poisson random variable with expected value A = t2
• 

Ulam's problem also has connections to various other mathematical topics. For exam

ple, by the Schensted correspondence there is a bijection between permutations ?T E S71. 
and pairs of n-Young tableaux of equal shape with length L71.(?T) of the first row. Other 

connections are to Ulam's metric, patience sorting, random matrices, and to the Hammer

sley process. For a survey over recent developments in Ulam's problem and explanations 

of the cross-connections mentioned above, the reader is referred to a recent article by 
Deift [4]. 

Already Erdos and Szekeres [6] proved that for all n one has En [L71.l ;::: ~rn=-r (where 

En denotes the expectation with respect to the uniform distribution on 871.)' Ulam [17], 

on the basis of numerical simulations, found for 1 ::; n ::; 10 that lE[Ln] ~ 1.7yn and 

conjectured that 

c:= lim ~En [L71.] 
71. ...... 00 v n 

(1.1) 

exists. This conjecture was proved by Hammersley in 1972 [10] by an application of the 

sub additive ergodic theorem. While rigorously establishing the existence ·of c, Hammer

sley did not give a numerical value for c. Mter approximating steps by Kingman [13], 

Logan and Shepp [14] and independently Kerov and Vershik [121 showed in 1977 that 

c = 2. Following ideas of Logan and Shepp [14}, Deuschel and Zeitouni [5] determined 

the following lower tail large deviation principle for Ln: For 0 < x < 2 

1 x
2 X ( X2) (2X2) 

lim -logP[Ln :s; xVn) = -1 + - + 2 log - - 2 1 + -4 log 4 2' 
-oon 4 2 +x 

(1.2) 

The result (1.2) was derived using an analysis of Young diagrams. 

The combinatorial work in the above papers could be replaced by a "hydrodynamical 

argument" to show the same result c = 2, in two papers by Aldous and Diaconis [1] 

and SeppaJainen [15]. This argument was presented in a pure way in a recent paper by 

Groeneboom [9], who again proved that c = 2. Yet a different proof of the same result 

was given by Johansson [11]. 

Based on the paper by Seppalainen [15], Deuschel and Zeitouni [5] also derived the 

following upper tail large deviations: For x > 2: 

lim ~ logP [L71. > x- Q = -2x arcosh~ + 2';x2 - 4. (1.3) _oov n V/~ 2 

One observes the following asymptotics for the "lower end" of the upper tail: 

lim lim log]P> [Ln > (2 + t)Vn] = _ ~. 
t'\.O n-oo t 3/ 2n l / 2 3 

2 
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While all these methods could compute the value of c and thus solve Ulam's original 

problem, none of them were appropriate to analyse other statistics of Ln such as the 

variance: until the mid 1990's there was only the conjecture that Var[LnJ asymptotically 

behaves like nQ with different values for a (among them the correct a = 1/3 given by 

Kesten on the basis of arguments from first passage percolation). 

Only in 1999 Baik, Deift, and Johansson [3] came up with a method based on the 

theory of integrable systems to prove a non-standard Central Limit Theorem (eLT) for 

the quantity Ln. Their result (Theorem 1.1 in [3]) can be stated as follows: Scale Ln as 

(1.5) 

Then Xn converges in distribution as n -+ 00 to the Tracy-Widom distribution, introduced 

by Tracy and Widom in [16J. This distribution can be defined as follows: Let u(x) be the 

solution to the Painleve II equation 

Uxa; = 2u
3 + xu with 

_(2/3)a;3/2 

u(x) rv -Ai(x) rv - e
2
y'ix

1
/
4 

as x -+ 00; (1.6) 

the notation a rv b means that the quotient of both sides converges to 1, and Ai denotes 

the Airy function. Then the Tracy-Widom distribution has the distribution function 

F(t) = exp (100 

(x - t)u
2
(X)dX) . (1.7) 

Interestingly, the Tracy-Widom distribution first appeared in the context of eigenvalue 

statistics of the Gaussian Unitary ensemble. 

One observes the following upper tail of the Tracy-Widom distribution: 

e-( 4/3)t3/2 

1 - F(t) rv 167rt3/ 2 as t -+ 00. (1.8) 

Hence the the following upper-tail asymptotics of the central limit regime holds: 

lim lim logJP> [Ln > (2 + tn-
1
/
3
)y'n] = _~. 

t ..... oo n ..... oo t3/ 2 3 
(1.9) 

In order to show that the moments of XN converge to the corresponding moments of the 

Tracy-Widom distribution, Baik, Deift and Johansson also derived the following rough 

upper bound for the upper tail probabilities; see formula (1.8) in [3J: For M > 0 sufficiently 

large, there are constants c > 0 and G(M) > 0 such that if M < t :5 n 5
/
6 

- 2n1
/
3

, then 

JP>[Xn > t] :5 G(M)e-
ct3/5

. (1.10) 
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1.1 Results 

As the starting point for the present article, we observe the similarity between the upper 

end asymptotics of the central limit (CL) regime (1.9) and the lower end asymptotics of 

the upper tail large deviations (LD) regime (1.4), although these two results were proved 

using completely different methods. In fact a similar asymptotics holds in the upper tail 

moderate deviations (MD) regime, Le. the intermediate regime between the CL and the 

upper tail LD regime: 

Theorem 1.1 For all 0 < 17 < 1/3 and t > 0, 

lim logJP[Ln > (2 + tn-
71 )vfn] = _~ 

n ........ oo n(1-371)/2t3/ 2 3 
(1.11) 

This is a simplified version of the more detailed Theorem 1.2 below: On the one hand, 

(1.11) contains no uniformity information in 17 whatsoever, and it does not catch the cases 

17 ~ 0 or 17 /' 1/3. On the other hand, one can improve (1.11) and also (1.3) by finding 

the asymptotic behaviour of JP[Ln > I] with error terms on a non-logarithmic scale. In 

order to describe a refined result, we introduce a convenient parametrisation for (n, l), 
which is well suited for an easy description of the MD regime, the asymptotic CL regime, 

and the lower-end asymptotics of the LD regime: The moderate deviations regime is 

characterised by 1 » 1 - 2nl/2/l » l-2/3; thus we set 

.. 2Vii 
I'l,n := -Z-, 

l- 2Fn ( ) 2/3 
Ml,n := [1/3 . 1 - I'l,n 1 .. (1.12) 

Using these new parameters I'l,n and MI,n, the different upper tail asymptotic regimes are 

characterised as follows: 

CL: 

upper end asymptotics of the CL: 
upper tail MD: 

lower end asymptotics of the upper tail LD: 
upper tail LD: 

We set 

fl,n -+ 1 with M',n being fixed. 

first I'l,n /' 1, second M"n -,; 00. 

I'l,n /' 1 and M',n ........ 00 simultaneously. 

first MI,11. -,; 00, second I'l,n /' 1. 

M',n -,; 00 with I'l,11. being fixed. 

1 
wo(l') := viI _1'2 - arcosh-. 

I' 
(1.13) 

Then the following refinement of the moderate deviations result Theorem 1.1 and the 

large deviations result (1.3), proved by Deuschel and Zeitouni [5], holds: 

Theorem 1.2 1. Moderate deviations. The following asymptotics hold uniformly 

as I'l,n converges to 1 from below and M,,11. diverges to 00 (independently of each 

other): 

(1.14) 
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and (more roughly): 

log P[L > l] t'V _ 4v'2 (1 - 2y'ii)3/2. 
n 3 v1 (1.15) 

2. Large deviations. There are continuous functions iI, f± :]0, 1 [-i-]O, oo[ , such that 

for alll, n with 1 > 2-Jii and M1,n ;::: fl (l'I,n) we have 

IP[Ln > l] 
f-bI,n) ~ l-le21wohl,n) ::; f+bl,n)' (1.16) 

A version of (1.14) with quantitative error bounds is described in Lemma 4.2 below. We 

remark that (1.14) holds in the the full moderate deviations regime, in the asymptotic 

central limit regime (in consistency with (1.8/1.9)), and in the asymptotic large deviations 

regime (being consistent with (1.4), too). 

For the poissonised quantity, i.e. the for the random variable Ct introduced above, one 

gets even finer asymptotics: we set 

00 e->' AN 
¢!(A) := 2: N! IP[Ln ~ 1J = P [Cv>: ~ l] . 

n::::O 

(1.17) 

Then one obtains: 

Theorem 1.3 For every A > 0, 1 EN with 2v"X < l we have the following asymptotics, 
uniformly in 'YI,>.: 

( 1'1,>' + 2J1 -1'~>.) ,l,>.e21wo
(fl,.>.) 

1 - ¢l( A) ~ -'-----'----;-'--;====-

811"l(1 - ,~>.)3/2 (1 + J1 - '~A) 
as M,>, -i- 00. , (1.18) 

A quantitative bound for the error term in (1.18) is described in Theorem 3.1 below. 

Let us compare Theorem 1.2 to Theorem 1.3: On the one hand, the asymptotics of the 

poissonised probabilities ¢,(A) is explicitly known both in the LD regime and in the MD 

regime up to error terms which converge to zero. Compared to Seppalainen's result [15] we 

not only cover the moderate deviations regime, but also in the regime of large deviations 

we derive a finer asymptotics. Also note that the depoissonised quantities P[Ln > l] are 

known in the LD regime (on a non-logarithmic scale) only up to bounded factors, while in 

the MD regime the error terms still vanish asymptotically: During the "depoissonisation" 

step in the proof, which may be compared with a "deconvolution procedure" , we have to 

take some loss of precision into account. 

1.2 Review of some methods in the proof of the Baik / Deift I 
Johansson theorem 

Our proof of the theorems starts with a representation of ¢,(A) in terms of the solution 

of a certain noncommutative, rank 2 Riemann-Hilbert problem, which was derived by 
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BaikjDeiftjJohansson. In order to explain this starting point, we briefly review parts of 

the proof of the BaikjDeift/Johansson theorem. For a detailed description of the steps, 

we refer the reader to BaikjDeiftj Johansson's article [3] and the references therein. 

The first step consists of a Poissonisation, Le. instead of considering the quantity Ln 
we consider L N , where N is a random Poisson number with parameter A (this step is only 

necessary if we start with L"" since £...;x already carries the desired random structure). 

A concentration result for Poisson random variables reduces the problem of studying the 

asymptotics of lP[Ln > 1] to the study of the asymptotics of (h(A) with A rv n ~ 00. The 

reason why this Poissonisation step helps at all is the following beautiful identity derived 

by Gessel [8] in 1990: (Pt(A) = e->'D1-1(A). Here D I - 1(A) is a l x l Toeplitz determinant: 

D
I
-

1
(A) = det (l'1f' e-i(k-j)ge2...;xcos9 dO) . 

-'If' 211' O~k,j9-1 
(1.19) 

The problem is thus reduced to analysing the asymptotics of the above Toeplitz determi

nants when A ~ 00 and l rv 2vfX. It turns out that the above Toeplitz determinants are 

intrinsically related to certain orthogonal polynomials. More precisely, let 

I 

PI,>.(Z) = L KI,j(A)Zj, KI(A) := KI,I(A) > 0 (1.20) 

j=O 

be the l'th orthonormal polynomial withTespect to the weight function e2...;xcos8;! on the 

unit circle, i.e., : 

l, k 2:: o. (1.21) 

Then one can show (see (1.24) in [3]): 

2(A) = D1-1(A) 
K, D1(A) , 

(1.22) 

which leads to (see (1.25) in [3]): 

00 

log ¢1(A) = L log K~(A). (1.23) 

k=l 

At this stage Riemann-Hilbert problems (RHP's) enter the field. There are several 

equivalent versions to describe Riemann-Hilbert problems; here we describe them in 

terms of open coverings: The basic ingredients to a rank k RHP are an open covering 

(Ui)iEJ of the Riemann sphere C U {(X)} and holomorphic maps ("transition functions") 

Hi,j : Ui n Uj ~ GI(k, C), i,j E J, which satisfy the consistency condition ("cocyc1e 

relation") Hi,jHj,k = Hi,k over Ui n Uj n Uk for all i,j, k E J. Then the RHP with data 

(Ui)i, (Hi,j)i,j consists of the following: Find k x k-matrix valued holomorphic functions 

Ai : Ui ~ GI(k, C), i E J, such that Aj = AiHi,j over Ui n Uj, with the normalisation 
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condition Ajo(zo) = I for a fixed jo E J and a fixed Zo E Vjo' (I denotes the k x k identity 

matrix; sometimes other normalisation conditions than the identity matrix are useful, 

too.) We will always use Zo = 00. We remark that the solution of a Riemann Hilbert 

problem over the Riemann sphere (or more generally over compact Riemann surfaces) 

is always unique, provided a solution exists. For the particular case of interest, this is 

proven in [3], Lemma 4.1; but the same proof applies to the general case as well. 

The following transformation procedure is frequently used in BaikjDeift/ Johansson's 

article as well as in the present article: Given arbitrary holomorphic maps ("base changes") 

Bi : Ui -+ Gl(k, C), one can pass to an equivalent RHP with the same open covering (Vi)i 

and new transition functions Hi,j = Bi1 Hi,jBj; the solutions Aj of the transformed RHP 

and Aj of the original RHP are connected by Ai = BioI (Zo)AiBi; here the left factor 

Bio1(zo) has the only purpose to guarantee the normalisation condition Ajo(zo) = I for 

the transformed problem as well. 

Sometimes - especially when using Cauchy'S integral formula - it is technically easier 

to work with closed refinements (i.&)j of the open covering (f!j)j) ,!ith piecewise smooth 

curves as intersections of different Uj. The boundary curves avjnaui can be conveniently 

adapted by changing the choice of (Uj)j as long as they do not leave the domain Vi n Vj 

of the transition functions; we will use this freedom below to choose specific curves which 

run through saddle points of the transition functions. 

Fokas, Its, and Kitaev [7] discovered the following key fact: The orthonormal poly

nomials introduced in (1.20/1.21) above can be described in terms of the solution of a 
certain RHP. Baik/Deift/Johansson ([31, sections 4 and 5) then transformed this RHP 

several times according to the general transformation procedure for RHP's, which was 

sketched above. They end up with a version of the RHP (see [3], formulas (5.9/5.10)), 

which in our language reads as follows: we consider the open covering (U + = C, V. -
C· , V _ = C* U { 00 }) of the Riemann sphere, and the transition functions 

(1.24) 

with 

0< 'Y < I, qEN. (1.25) 

Of course, U+ and V_ alone would already suffice to cover the whole Riemann sphere, but 

the factorisation of H _,+ into triangular matrices is technically very convenient. 

According to [3], the RHP specified by Aj = AiHi,j over vinvj , with the normalisation 

condition A_(oo) = I, has a unique solution Ai : Vi -+ GI(k, C), i E {+, -, *}, and the 22-

entry of this solution yields the following important connection between longest increasing 

subsequences of random permutations and RHPs: With /'i,q-l from (1.20,1.22,1.23): 

(1.26) 

where 'Y = 'Yq,>. is given by (1.12). 
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1.3 Intuitive ideas for the proof 

Before starting the proofs formally, we describe roughly the intuitive ideas underlying our 

method, and we compare the method with BaikjDeiftjJohansson's approach: The first 

step consists in estimating the solution of an auxiliary RHP; the solution of this auxiliary 

RHP serves to construct a base change of our original problem: The auxiliary problem 

is specified by the artificial modification of one of the transition matrices in (1.24): The 

auxiliary transition matrices are defined as H'-.* := I, H;.+ = H'-,+ := H*,+. Here and 
in the following, an index i E {+, *, -} (and i,j E {+, *, -}) for a matrix valued function 

stands for the region Ui (and Ui n Uj , respectively) where the corresponding function is 
defined. This auxiliary specification of a RHP consists only of upper triangular 2 x 2-

matrices with l's in the diagonal; its solution can be written explicitly in terms of a 

Cauchy integral, and the solution again consists of triangular matrix valued functions 

G_, G., and G+ with l's in the diagonal: G+ = G_H'-,+ = G*H~,+. Using the solution 

(Gj)j=+,*,_ for a base change Hi,j = GiHi,jGjl, we observe that the transformed RHP has 

a simpler structure: the transformed transition matrices are H.,+ = I, H_,+ = H_,. = 
G_H_,.G;1 = G_H_,.G=I. However, conjugation of the lower triangular matrix H_,. 

with the upper triangular matrix G _ destroys the triangular structure: H _,+ is not a 

triangular matrix, and we cannot solve the transformed RHP as simply as we solved the 

auxiliary problem. To overcome this complication, one observes that on a certain circle 

C_ centered at the origin (to be described in more details below), either G_ is very close 

to a constant matrix Go (this occurs on an arc C-,1 ~ C_) or H_,. is very close to the 

identity matrix (this occurs on the complementary arc C-,2 ~ C_). In both cases one 

has H_,+ ~ GoH_,.GO
l

. Since H_,. is lower triangular with 1's in the diagonal, the 

second auxiliary RHP with transition matrices F_ + = F_ * := H_., F. + := I can be , , " 
explicitly solved in terms of a Cauchy integral, similarly to the auxiliary RHP above: Let 

(Fj)i=+,*,- denote the solution of the second auxiliary RHP; P+ = P_F_,+. (For technical 
reasons, we work with a small modification F_,+ of F_,+ in the construction of Fj in the 

formal proof below, but we ignore this technical detail in this informal explanation.) 

Then GoP+Gc/ = (GoP_Gol)(GoF_,+GOl); ,!Ience (GoPjGr/)j solves approximately the 

transformed RHP with transition matrices Hi,j. Again, the factor Go on the left hand 

side appears because of normalisation. Taking thi~ approximate solution to transform the 

transformed RHP again, we end up with a RHP very close to the trivial RHP, i.e. the RHP 

with the identity matrix I as transition matrix. The solution of such an approximation of 

the trivial RHP is close to the identity matrix; a quantitative version of this well-known 

statement (see e.g. [3], section 2) is given in the appendix, Lemma A.2, below. 

Next we discuss how to find approximate solutions to the above auxiliary RHPs via 

a saddle point approximation. First we investigate the function f given by (1.25): f is 

wildly oscillating on circles centered at the origin, unless the circle hits a saddle point of 

logf. logf has precisely two saddle points z± E R with 0 > z+ > -1 > z_. We solve 

our first (and second) auxiliary RHP using a Cauchy integral over a circle C+ (and C_) 
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through z+ (and z_), respectively: We define 

9±:= ~ 1 f(s) ds 
271"2 fc s - z 

(1.27) 

where 0 is a closed curve in C* \ {z} with winding number 1 around the origin and winding 

number 1 around z (for 9+) and winding number 0 around z (for 9_), respectively. Then 

9+ - 9- = f, and the solution of our first auxiliary RHP is indeed given by 

( 
1 -9±) 

G± = 0 1 . (1.28) 

One sees that f can be well approximated on 0 = 0+ by a Gaussian centered at the saddle 

point z+, at least for large q: this can be derived by a second order Taylor expansion of 

log f at z+ in a neighbourhood 0+,1 of z+ in 0+; in the complement 0+.2 of the arc 0+,1 

the function f is negligible. The key fact is that in the LD and MD regime the length 

scale r of 0+,1 is asymptotically much smaller than the distance Iz+ - z_l. This is to 

be contrasted to the CL regime, where these two length scales are of the same order: 

This is important, because the ratio of the two length scales determines the error term of 

the Gaussian approximation. This is why a second order Taylor expansion at the saddle 

points is insufficient to catch the CL behaviour. Indeed, Baik, Deift and Johansson [3] use 

a third order Taylor approximation near z = -1: this point is (in appropriate coordinates) 

an inflection point of log f. On the other hand, this third order approximation is not well 

suited to describe the correct MD and LD behaviour. 

Figure 1: The saddle points and the arcs O±,h 0±,2 in a complex plane. 

The ideas described above are carried out in Section 2 below. In Section 3, we es

timate the sum (1.23). Roughly speaking, the logarithm of the summands is linearly 
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approximated and the sum is compared with a geometric series. Section 4 contains the 

depoissonisation estimates, which use concentration bounds for Poissonian random vari

ables. The spirit of these depoissonisation results is roughly similar to the depoissonisation 

lemmas in Section 8 of [3]. However, those depoissonisation lemmas in the reference do 

not yield small enough error terms in the MD regime for our purposes. 

2 Saddle point approximation 

In this section, we formally estimate the solution (Aj)j of the RHP specified by (1.24). 
Let 0 < 1 < 1 and q E N. As in (1.12), we use the abbreviation M := (1 _1)q2/3; M 

and 1 - 1 serve as reference parameters. Positive constants are denoted by en, where n 

is a counting index. If Cn depends on additional "fixed" parameters, then this is denoted 

explicitly. 

We prove: 

Theorem 2.1 Given a positive number a < 1/4, there are positive numbers cl(a) and 

b1(a) 2:: 1, such that for all 1 E]O, 1[, q E N with M = (1 - 1)q2/3 2:: b1(a) the following 
holds: 

1 - (A+h2(O) = 1 + 2Vl
-1

2 

e2qwoh) (1 + R(M,'"'()) 
47rq(1 - '"'(2) 

with an error term R(M,,",() that fulfills the bound 

IR(M,1)1 < cl(a)M-3
/4+3a. 

(2.1 ) 

(2.2) 

Remark: The rate function 2wo in the exponential in (2.1) (with q removed) has the 

asymptotics 

as 1-1 ~ O. (2.3) 

One may compare this with the exponent in the bound in part 2 of Lemma 5.1 in [3]: this 

reference tells us for large M, some constant C2 and ~ :s; '"'( :s; 1 - Mq-2/3: 

(2.4) 

which is in the MD regime roughly on the same scale as the square root of the estimate 

(2.1). 

Proof of Theorem 2.1: The equation !'(z±) = 0 yields the saddle points 

10 

1 
Uo = -arcosh -, 
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and we get 

Expanding around (J = 0 gives 

(2.7) 

with Wo = woe 1) given by (1.13), W2 := VI - 12/2, and an error term f,l which is 

bounded for real (J and some real x with Ixl :::; I(JI by 

If·re(J)I < 1~31 d~3 ( VI - 12 cos X + i(x - sin x) ) I (2.8) 

1(J 13
1 I 1(J13 . 1(J13 

- VI- 12 sin x + icosx -lie-tZI =-. 
666 

(Having our goal (2.1) and Deuschel/ZeitounPs (resp. Seppruainen's) result (1.3) in mind, 

we observe that the exponential rate function e2qwO is determined - up to a square - by 

the value of the transition matrix entry f at the saddle points.) For -1[ < (J < 1[, the 
simple estimate cos (J :::; 1 - 21[-2(J2 implies the the bound 

(2.9) 

with C3 := 47r-2
• We define the length scale 

r := q-l/2+2a/3(1 _ 1)a-l/4 = M-3/4+a~. (2.10) 

(Intuitively, the choice of r arises as a compromise: on a disk of radius r around the 

saddle points, f should be approximated by a Gaussian function well enough, and outside 

this disk but on a circle through the saddle point z+, f should be small enough.) It is 

instructive to compare r with the distance between the saddle points: 

We estimate for M ~ 1: For some positive constant C41 

(2.12) 

fo the second step we used that Iqf-y«(J)I :5 qr3 /6:5 M-3/4+3a/6 is bounded and that exp 

is uniformly Lipschitz continuous on bounded domains. Let C± denote the circle through 

z±, centered at the origin. We parametrise C± by z = z±eiO
, -1[ < (J < 1[. We split 

C± further into the two arcs C±,l and C±,2) parametrised by I(JI < r and r < I(JI < 1[ 

respectively. (One observes r < 7r for M ~ 1.) 
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Next we examine the following auxiliary RHP; recall the definition (1.24) of H*,+ = 

H,-,+ from Section 1.3: 

Find holomorphic G± : U± -+ Gln(C) with 

G+ = G_H~,+, 

We introduce the abbreviation 

Here are the estimates that we need for our auxiliary RHP: 

(2.13) 

Lemma 2.2 The solution G± of the auxiliary RHP (2.19) is given by formula {1.28}. 

Given 0 < a < 1/4, there are positive constants cs(ct), C(j, C7(ct) and b2 (a) ;:::: 1 such that 

if M ;:::: b2(a) and 0 < 1< 1, then the following three bounds hold: 

sup Ig-(z) + gol < Cs (a )M-3/H3t:k go, (2.15) 
ZEC_,l 

sup Ig-{z)1 < Ctlgo, (2.16) 
zEC_ 

Ig+{O) _ Iz+le
qwO 

I < 
2y'1rQW2 

c7(a)M-3/H 3t:k Iz+le
qwO 

• 

2y'1rQW2 

(2.17) 

.' Proof oILemma 2.2. We define g± as in (1.27) and obtain the solution G±i as in (1.28) of 

. the RHP (2.13) as a consequence of the residue theorem. Using C = C+, we estimate g

over C_: We estimate the Cauchy integral (1.27) at first for z E C-,I: By splitting the 

integration path, we get g_(z) = 11 + 12 , where 

1- := _1 J f{s) ds, 
J 21ri 8 - Z 

j = 1,2. (2.18) 

C+J 

We compare 11 with 

il := ~ J eq
(wo+w2Iog2(s/z+») z+ ds = 

21r~ z+ - z_ S 

(2.19) 

C+.l -r 

for z close to z_; here log denotes the principal branch of the logarithm, and we used the 

substitution s = z+eiO
• For s E C+,b Z E C_.1 we have Is - z+1 < Iz+lr, Iz - z_1 < Iz-Ir, 

hence 

IZ: -11 < r < M-3/4+t:k - , (2.20) 

I s - z -11 < (lz+1 + Iz-Dr < M-3/HQ. (2.21) 
z+ - z_ Iz+ - z_1 - , 
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we used (2.10), Iz+1 + Iz-I = 21'-1, and Iz+ - z_I-1 = (2)1'-2 - 1)-1 :5 t{1 - 1')-1/2. 

In the estimate (2.22) below, we make use of Lipschitz continuity of multiplication and 

division at 1) more precisely of the following fact: There are positive constants Ca, Cg such 

that for every € with 0 < € :5 Cs and every x, y E C with Ix - 11 :5 € and Iy - 11 :5 € we 

have the bounds Ixy - 11 :5 L1J€ and Ix/y - 11 :5 L1J€. This fact and the estimates (2.12), 

(2.20), and (2.21) together imply 

I( s) eQ(wo-w2 1og
2
(s/z+» 

--------- (2.22) 

for 8 E C+,1, Z E C-,l, some constant ClO > 0, 0 < l' < 1, and M being large eno~gh 

(say M ~ b2(a) 1). Hence (using that the second integrand in the definition of h is 
positive): 

(2.23) 

We compare - il with a Gaussian integral over R: The bounds 

imply 

J e-
ax2 

dx < J I~I e-aa:
2 

dx = (art 1e-
ar2 

(a, r > 0), (2.24) 

Ixl>r 

(2.24) 

< 

Ixl>r 

qW2r2 - J12+ 'Y M 2a ~ ~ 1\-[2a (2.25) 

Iz+1 f eq(wo-w20
2

) d8 (2.26) 
211"1z+ - z_1 i1ol>r 

Iz+1 eq
(WO-W2

r2
) (2.14) e-QW2r2 90 (2.25) f€ _ _lM2a 

= < -M a e 2 90. 
21rlz+ - z_1 qW2r V1rqw2r2 - 11" 

Next we estimate 12 for z E C_: Using (2.9), dist(C+,C_) = Iz+ - z_l, and Iz - 81 ~ 
Iz+ - z_1 for z E C_, 8 E C+ 1 we obtain similarly to (2.26): 

with some constant Cll > O. In the next step we substitute 9-(Z) = II + 12 for z E C-,1 
and combine (2.23), (2.26), and (2.27): 

19-(z) + 901 = III + 90 + 121 :5 III - i1/ + /11 + 901 + 1121 (2.28) 

< clO M-3
/4+3a(90 + III + 901) + IiI + 901 + 1121 < cs(a)M-3

/4+3a90 

13 



for M ;::: b2(a) and some sufficiently large constant c5(a). This proves (2.15). 

We turn to the proof of (2.16): Substituting the bound (2.9) into the Cauchy integral 

(1.27) yields 

7r 

sup 19-(Z)/ < Iz+1 jeQ(WO-C3
W

2
92 )dB < C690 

zEO- 27rlz+ - z_1 
(2.29) 

for the constant C6 := c;1/2; this proves (2.16). 

Next we estimate 9+(0): We split the Cauchy integral: 

1 f d8 1 j d8 1 J ds 
9+(0) = 2' f(8) = 2' f(8) + -2' f(8)-. 

7r1, 8 7r1, 8 7rZ S 
(2.30) 

0+ 0+.1 0+.2 

Using (2.12) and (2.9) again, we obtain for M 1: 

(2.31) 

-00 

o 

We continue the proof of Theorem 2.1: We introduce the following approximations fo 

to 1/ f on C_, F_,+ to H_,. (recall definition (1.24)), and Go to G_: 

- (1 0) 
F_,+:= fo 1 ' (2.32) 

(2.33) 

The function fo fulfills the following bounds, which are analogous to (2.9) and (2.12): For 

-7r < B < 7r, 

14 
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the last estimate holds for M ~ 1. Analogously to the definition of 9± and G± we define 

P±(z) := 2~i f ~o~sl ds, P± := (p~ ~). (2.36) 

c_ 

Here p+ (p_) is defined inside (outside) the disk with boundary C_; it is continuously 

extended to the curve C_. By Cauchy's integral formula, we have again on C_: 

~ -1 
10 = p+ - p-, F_,+ = P_ P+. (2.37) 

We apply Lemma A.l in the appendix with k = Iz_l(qW2)-1/2 to 10, assuming M > 1 and 

using the bounds 

II/ollo(c_) ~ C12keqwo) 1I/~IIL""(c_) ~ c13k-1eqwO, Il/oIILoo(c_) < e qwO
, (2.38) 

to see: 

(2.39) 

Just as in (2.31) one obtains 

I
p+(O) - Iz_le

qwO I ~ c7(a)M-3/4+3a Iz_leqwo . 
2J1fQW 2 2J1fQW 2 

(2.40) 

We introduce the scaling matrix 

8:= ( ~~ ). (2.41) 

Conjugation of a matrix X with 8 is abbreviated by X S := 8-1 XS, or explicitly: 

(
Xu X12) S = (xu X12/ go ) . (2.42) 
X21 X22 X2190 X22 

We employ this operation below to "precondition" the RHP: nondiagonal terms which 

have very different orders of magnitude will be transformed to terms of comparable order. 

To deal with small perturbations of the identity matrix as transition functions, we work 

with estimates in V(C), 1 ~ p ~ 00: if X is a matrix-valued function on a curve C and 

p < 00, let IIXIILl'(C) := (fc IX(z)IP Idzl)l/p ; here 1 . I denotes any fixed submultiplicative 

matrix norm. Similarly IIXIILOO(C) is defined using the same submultiplicative matrix 

norm I . I. In the case p = 00 the estimates below should be interpreted as the limits 

as p -+ 00; especially factors (qW2)-1/(2p) simply drop out in this limit. We estimate for 

M ~ b2(a), using p-1/(2p) ~ 1 several times: 

(2.6, 
2.12,2.35) 

< 

< 

c "I L 1'1 P M-3/4-f'la 90 (L en ... -.,,0') dO )'IP 

c16lz_ll/P M-3/4+3a(qw2)-1/(2P)eqwOgo, 
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//CH_,. - 1)51/LP(C_,1) 

(2.9) 
< C17ILll/P(QW2)-1/(2p)eqwOgo, 

II(.F-,+ - 1)
5

1ILp(c_.1) 
(2.34) 
< C17IZ_ll/P(QW2)-1/(2P)eQWOgo 

(29) (1 ) IIp II (H -,* - 1)5 II Lp(C_) . C191z_1 1
/p go epQ(WO-C3W202) dO 

.2 191>r 
(2.24) 

< 

< 

hence 

II (F_,+ - 1)
5

tl>(C_.2) 

11« G=IGO)±l )51ILoo(C_) 
(2.16) 

< C23, 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.50) 

Il
cG01G_H- .G=lGO - F_ +)511 (2.51) 

, '£I>(C_) 

- IlcG01G_(H_,. - I)G=lGO - (F_,+ - 1)l IILP(C_> 

< I/(G0
1
G_ - 1)5 II LOO(C_,t) I/(H_,. - 1)5I1V(C_,1) IICG=lGo)SIILoo(C_.1) 

+ I/(H_,. - I)SII£p(C_.l) II (G=lGO - 1)5 II £,>o(C_,1) + II(H-,. - F-,+)SIILI>(C_,t) 

+ II(Go1
G-)51/LOO(C_,2) /I (H_,* - Jlll£1'(C_,2) II (G=lGo)5I1Loo(C_,2) 

+ II (F_,+ - 1)5"LI>(C_.2) 

< C24(O:) Iz_ll/P M-3/4+3a(QW2)-1/(2p)eqwOgo. 

Furthermore for M ~ 1: 

II 1 511 II 1 SII (2.39) (PI) LOO(C_) ~ 1 + (PI - J) Loo(C_) ~ 1 + c25e'fW°go < C26; (2.52) 

the last estimate follows from 

(2.53) 
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where we used that qwo is negative: 

1
1 \.11- x 2 

Wo = - dx < O. 
I X 

Using (2.37), (2.51), and (2.52) we get 

II (P_Go1
G_H_,*G::::

1
GOP;1 - 1)

s
IILP(C_) 

< IIP.~IILOO(C_) IlcGo1G_H_,*G::::IGO - F_,+)stP{C_) II(P;l)SIILOO{C_) 

< c28(a)lz_1 1/P M-3/4+30(qw2)-1/{2P)eqwO go. 

Note that also for p = 00 

(2.54) 

(2.55) 

II(p_GOIG_H_,*G::::1Gop;1 - 1)s ll LOO(C_) < c28(a)M-3/4+30eQwOgo. (2.56) 

We consider the following "error-term" Riemann-Hilbert problem: Find holomorphic ma

trix valued functions L±, with L+(z) being defined inside the disk Izl :5 Iz-I, and L_(z) 
being defined outside this disk (its boundary and 00 included), such that L_(oo) = I and 

(2.57) 

Let bl(a) ~ b2(a) be so large that c28(a)c27bl(a)-3/2+30 :5 1/2; then the condition 
M > bl(a) implies . 

(2.58) 

to see this, one uses (2.56) and (2.53). {1/2 was just chosen to have some definite number 

between 0 and 1.} Using Lemma A.2 in the appendix and (2.55), we see that the "error 

term" RHP (2.57) has a solution for M > bl(a) with 

I(L+(O) - 1)8
1 (2.59) 

< c28(a) Iz_IM-3/4+3a(qw2)-1/2eQWOgo + 2 [c2s(a) v"iZ=\M-3/4+30 (qW2)-1/4eqUlogof 

(2.53) 

< C29 (a) 1 z_1 M-3/4+3a (qW2) -1/2 eQWO go. 

The solution of the original RHP with transition functions specified by (1.24) can be 

written in terms of the solution (2.57): 

A+ = GoL+p+G'OlG+, 

since A_(oo) = I and 

17 

(2.60) 

(2.61) 



We prepare some estimates, which are applied below: First we observe 

Iz-I :5 Iz+1 + Iz+ - z_1 :5 1 + Iz+ - z_1 < 2Iz-l· (2.62) 

Second, we use the bound (2.52) together with the maximum principle for holomorphic 

functions to see 

IP!(O)I :5 C26· (2.63) 

We also need the following bounds below: as a consequence of 

19+(0)1 
(2.17) c30lz+le

qwO 
(2.64) < 

JqW2 
, 

19+(0)1 (2.64,2.14) 

C311z+ - z_1 (2.65) < 
90 

we get 

IG~(O)I _ 1 (~ -9+~O)/90)1 (2~5) c32~a)(1 + Iz+ - z-D (2~2) c32(a)lz_I,(2.66) 

I(G~l)SI _ 1 (~ ~1 ) 1 <C33' (2.67) 

We also observe the simple fact z+z_ (2.5) 1. We estimate (A+h2(O): 

I(A+ - GOP+G0
1
G+)z2(0)1 = I«A+ - GoP+G0

1G+)S)z2(0)1 (2.68) 

< I(A+ - GOP+G01G+)S(0)I :5 \Gg\\(L+{O) - I)Sllpt(O)\I(G01)SIIG!(0)1 

(2.59,2.63, 

2.66~.67) C34(a)lz_12 M-3/4+3a:(qW2)-1/2eqwogo (2.14) C3S(a) Iz_12Iz+1 M-3 /4+3Ct e
2qwo 

Iz+ - z_1 41rqw2 

(25) Iz 1 e2qwo (2.62) e2qwo 
...:. C35(a) - M-3/4+3Ct < C35(a)(1 + Iz+ - z_I-1)M-3/4+3a: . 

Iz+ - z_1 41rqW2 41rqW2 

We explicitly determine the 22-entry of the matrix product in (2.68): Using the bounds 

(2.14), (2.17), (2.40), and the fact z+z_ = 1, there exists a constant c36(a) > 0 and an 

error term IOl(M,7)1 :5 1 such that the following holds: 

(GoP+Go1G+h2 1 - (go + 9+(O»P+(0) (2.69) 

= 1 _ 1 + Iz+ - z_I-
1 
e2qwO (1 + c36(a)M-3/4+3CtOl(M, 7». 

41rqW2 

Combining (2.69), (2.68), and using (2.5) respectively (2.11), we obtain for some positive 

constant cl(a) and some I02(M,7)1 < 1: 

_ 1 _ 1 + Iz+ - z_I-
1 

e2qwO(1 + cl(a)M-3/4+3Cto2(M,7) 
41rqW2 

_ 1 _ 7 + 2.)1 - ,,/2 e2qwO(1 + Cl (a)M-3/4+3a: 02 (M, 7». 
41rq(1 - 7 2 ) 

This proves (2.1) and therefore Theorem 2.1. 
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3 Summation 

With the notation introduced in Section I, we prove in this section: 

Theorem 3.1 For every fixed 0:' with 0 < 0:' < 1/4 there are constants b3 (0:') 2: 1 and 

C37(0:') > 0 such that for every A > 0 and every lEN with Ml ,>.. > b3 (0:') we have the 
estimate 

with a bounded error term 107 (I, A, 0:') I ::; C37 ( 0:'). 

Proof of Theorem 3.1. The first step in our derivation is to expand the logarithm on the 

right hand side of (1.23): By (2.1/2.2), we know for q 2: 1: 

2qwO(-yq >.) 
C38

e . < C e2qwo(1'q,>.) M-1 

(1 _ 2 ) - 38 q,>" 
q 'Yq,), 

(3.2) 

if only Mq ,>.. = (1_'"'(q,>..)q2/3 is large enough, say Mq,>.. 2: b4 2: 1. (One takes e.g. 0:' = 1/8 in 

Theorem 2.1 and observes 'Yq,A +2J1- "I;,>.. ::; 3 for the numerator in (2.1).) We estimate 

-woC'Y) '= arcosh - - VI - "12 = dx 2: v'f=X dx = -(1 - '"'()3/2, . (3.3) 
. .. 1 11 vI - x 2 11 . 2 

. '"'( l' X l' . 3 

hence with C39 := 4/3 and Mq,>. being large enough, say Mq,>. 2: bs 2: b4 : 

(3.4) 

(3.5) 

Consequently we have for fixed positive 0:' < 1/4 if Mq ,>.. is large enough (say Mq,>.. 2: b6( 0:'): 

(3.6) 

with some bounded error terms 103(q,A)1 ::; C40, 104(q,A,0:')1 ::; C41(O:')' We sum over 

these approximations: To bound the error term, we observe that Mq,>.. is monotonically 

increasing in the argument q for fixed A. If Ml ,>. 2: b6 (0:'), a combination of (3.6) and 

(1.23) yields for some bounded error term 105(1, A, 0:')1 ::; C41(0:'): 

00 "I >. + 2 It - '"'(2 A 

-log¢I(A) = (1 + M- 3/4+30: 05 (1 A 0:')) '" q, V q, e2qwo(-Yq,>.). (3.7) 
l,>' " L.J 41rq(1 - '}'2 ) 

q=l+l q,>. 
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We derive upper and lower bounds for the sum in (3.7), starting with the upper bound: 

First we observe that for 0 < I < 1 the map I 1-4 ("I + 2 v'l - 12) / (1-"(2) is monotonically 

increasing, and for fixed A, "Iq,>. = 2..[)../ q is monotonically decreasing in q; hence 

00 Iq>' + 2· II - "12>. Ii>. + 2· II -I;>' 00 L ' V q, e2qwO(7q,>.) <' V 'L e2qwoC"lq,>.). (3.8) 
q=l+l 47rq(1 -I;,>.) - 47rl(1 - "I~>.) q=l+1 

We use a linear bound for the exponent in (3.8): An explicit calculation shows 

hence 

Therefore 

00 

8
2 

( ( )) - "Iq,>. Q. 
8 2 qwo Iq,>. - - 1\ .J < , 

q 2v ). 1 - "1\ q, 

1 
qWo("Iq,>.) < lWobl,>.) - (q -l)arcosh-. 

II,>' 

00 

L e2qwob·Q,>.) < e21wo(71,>.) L e-2karcosh7l.i 

q=L+l k=l 

and hence, using (3.7) and (3.8): 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Next we derive a lower bound for the sum in (3.7): We choose a fixed number a1 with 

o < al < 3/8, e.g. al = 1/4, and define 

r 
~A'nl 1 lV.ll >. 

ml>' := ' ) 
, arcosh "Ii:1 

(3.13) 

where r x 1 denotes the smallest integer j with j > x. It will turn out that it suffices 

to consider only ml,>' summands in (3.7) to derive a good lower bound. Observe that 
for 0 < x < 1 the bound arcoshx-1 2:: 21/2(1 - X)1/2 holds true. Therefore we get the 

following estimates for k with l :5 k :5 l + mi,>. and MI ,>. 2:: 1: 

Mnl 2Mn
l 

m < 1 + I,A < I,A 
I,A - h -1 - VI ' arcos "II,>. - Il,A 

(3.14) 
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1
1 - "Ik ,A - 11 _ 
1 - "Il,>. 

k - 1 < ml,>. < ml,>. 

"Ik,>.Z _ 2../X - "Ik,A 1 - 2../X - 1 - 2../X 
2MCX1 

< l,>. _ 2M-3/2+(n 
l(1 - "I1,A)3/2 - I,>' , 

I 
"II,>. - 11 
"Ik,>. 

_ ~ _ 1 < ml,>. < ml,A < 2M-3/2+0<1 • 
I - l - 1 - 2VJ,. - I,>' 

(3.15) 

(3.16) 

In the calculations below, we use the following Lipschitz-continuity arguments: There are 

positive constants C42 and C43) such that for all E with 0 < E < C42 and for all Xl, X2, Yl, Y2 > 
o with IxI/x2 -11 E and lyI/Y2 -11 < E the following holds: I(xi +Y1)/(X2 +Y2) -11 $; €) 

I(Xlyd/(X2Y2) - 11 $; C43E, l(xI/yt)/(x2/Y2) - 11 < C43€, 1JX1/VIi - 11 $; C43E• We get 

successively for Mz,>. being large enough, say MI,A b7(at) ~ 1: 

1
_1_+_"I_Z,,-A _ 11 (3~6) 2M-3/2+0<1 
1 + "V - l,>. , 

Iq,>' 

(3.17) 

~+ 2 
l-'q,.\ ~-1 

"II,>. + 2 

1-"11,.\ y'l-"Il>. 

(3.18) 

< M
-3/2+0<1 

C47 I,>' , (3.19) 

(3.20) 

We expand qWo(rq,>.) for I $; q $; 1+ ml,>.: We assume again that M z,>. is large enough, say 

M,,>. > b8(ad > 1: 

(3.14,3.9) 

$; 

(3.15) 

< 

21 



Using the estimates (3.20) and (3.21), we obtain: 

The last sum is bounded from below by 

mI,A 

(1 - c50MI~;/2+2al )e2IwoC"YI,A) 2:: e-2karcosh'Yi;"~ 

(3.13) 

> 

k=l 

We define an error term D6(l, A, a) implicitly'by the following equation: . 

. (.",. + 2 /1 - ry2 ) /"V
2 e21wo(-Yt,A) 

( 

-3/4+30:) . II,>. V 1,>. 11,>' 
-log <Pl(A) = 1 + D6(l, A, a)Mu ( / ) . 

, 87rl(1 - "I1~>.)3/2 1 + V 1 - "I~>. 

(3.22) 

(3.23) 

(3.24) 

We combine (3.7), (3.22), (3.23), and the last step in (3.11) to obtain a lower bound 

156(1, A, a) ;::: -c52(a) for the error term. The upper bound (3.12) tells us that 66(l, A, a) is 
bounded form above, too, hence 166 (1, A, a)1 :5 c53(a). We also need the following rough 

bound for (3.24): 

1 log <P1{A)! 
e21wohl,:I) (3.4) -3/2 M3/2 

< < M -C39 1:1 (3 25) 
c54l(1 _ 2 )3/2 - C54 I,>' e " . 

"II,>. 

hence I
-lOg <PI (A) _ 11 < M- 3/ 2 -C39M ;{2 

1 _ <P1{A) C55 I,>' e '. (3.26) 

The estimates (3.26) and (3.24) together yield (3.1); this finishes the proof of Theorem 

3.1. 

o 
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4 Depoissonisation 

We start with a quantitative continuity consideration for CPI: 

Lemma 4.1 There are constants CS6 E]O, 1/2] and CS7 > 0, and for every fixed a E]O, 1/4[ 
there are positive constants b9 (a) and cS8(n), such that for aUl, n E N with 1 > 2.,fii and 

Ml,n :2: b9 (a), for all e E JR with 

lei 
1 - "Il,n 

(4.1) 

and for A := n(l + e) the following bound holds: 

1 1 - CPI(A) < ()M-3/4+3a + CS7 '" I,n 

I I 
ICIM3/2 

og 1 _ CPI(n) - CS8 a I,n 1 - "II,n . 
(4.2) 

Proof of Lemma 4.1. Choose CS6 E]O, 1/2] small enough, take a E]O, 1/4[ fixed, set b9(a) := 

2b3(a), where b3 (a) is taken as in Theorem 3.1. Then for some positive constants CS9, C60, 

C61, C62, C57, and c5S(n) the considerations below hold true: Let l, n E N, e E lR, and A > 0 

fulfill the hypotheses of Lemma 4.1. We compare "II,n with 'YI,A: 

(4.1) 

< lei, 

1
1 - "II,A _ 11 = 'Yl,n I "II,A - 11 (~) 'Yl,n lei 
1 - "Il,n 1 - "II,n "Il,n 1 - 'YI,n 

We combine these two estimates in the form 

As a consequence, 

I 
MZ,A - 11 (122) 11- 'YI,A - 11 < lei (~) ~ 
MI,n 1 - 'Yl,n - 1 - "II,n - 2' 

(4.6) 

MZA > , 
Ml,n 

2 

Using (4.5), Lipschitz estimates similar to (3.17-3.20) yield: 

("II'A + 2Jl - "I~A) "1[,>. (1 - "If.n)3/2 (1 + Jl -"Il.n ) _ 1 

(1- "11,>.)3 /2 (1 + Jl- "II~A) ("Il,n + 2Jl- "Il.n) 'Yl,n 
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< 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 



Furthermore, 

then 

(3.1,4.7, 
4.8,4.10) 

:5 

< 

I I 3/2 
(4.9,1.12) C6l e MI 

lIWobl,,\) - WObl,n) I < 1 ,n , 

I I 
3/2 

( )M-3/4+30! + C621el + 2C61 e M1,n 
C58 a In 

, 1 - 'YI,n 1 - 'YI,n 

I I 
3/2 

. ( )M-3/4+30! + C57 e Ml,n 
C58 a In 1 . 

, - 'YI,n 

- 'YI,n 

This proves Lemma 4.1. 

(4.9) 

(4.10) 

(4.11) 

o 

For 1 E No and n E N let q',n denote the probability that the longest increasing subsequence 

in a random permutation of {I, ... , n} (with the uniform distribution) has a length Ln :5 l. 
For A > 0, let IF,\ denote the Poisson distribution with parameter A over No, and 

let N denote the identity function on No, thus N is a Poissonian random variable with 

parameter A with respect to IF,,,. The expectation operator corresponding to IF,,, is denoted 

by E",. We know (Pt(A) = E",[ql,N]i see formula (1.11) in [31. Furthermore we have the 

monotonicity ql,nH :5 ql,n for all n E No; see Lemma 8.1 in [31. We state the following 

quantitative version of (1.14): 

Lemma 4.2 There are constants ca3 E]O, 1[, C64 > 0, and for all fixed 13 EjO,3/4[ there 

are constants b12 (13) > 1 and c65(13) > 0, such that for alll,n with 'YI,n E [c63,1[ and 

Ml,n 2 b12 (13) we have 

(4.12) 
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with an error term 89 thai fulfills the bound 

Ilog8g(l, n)1 ~ C65(f3)Ml~: + C64V(1- 'Yl,n)llog(1 - 1'1,11.)1. (4.13) 

Proof of part 2 of Theorem 1.2 and of Lemma 4.2. Consider e E lR, A = n(1 + e) > ° 
such that (4.1) holds. (Specific choices for e and A will be given below.) We observe that 

dlP,\ = en
-,\ (~)N dlPn. If e < 0, i.e. if A < n, then dPn/dlP,\ is monotonically increasing, 

and if e > 0, then dlP 11./ dlP,\ is monotonically decreasing. Abbreviating 

dlP (A)n v := dlP: (n) = en
-,\ ;:;: = exp{n(log(l + e) - en (4.14) 

and So. := 1 for a > 0, So. := -1 for a < 0, we get 

(4.15) 

Furthermore the fact that n ~ ql,n is monotonically decreasing implies 

SN-n(1- ql,n) SN-n(1- ql,N)' ( 4.16) 

Using the term on the right hand side in (4.2), we abbreviate: 

-3/4+3ll< CS7 e M1,n 
{ ( 

1 I 3/2)} 
€l,n,o:(e) := exp S~ C58(a) M"n . + 1- 'YI,n ' (4.17) 

thus we can rewrite (4.2) as 

8~(1 - tPI(A)) ~ S~€I,n,o:(e)(l - 4>z(n)). (4.18) 

Using the inequality s~(1og(l + e) - e) ~ -s~e /2 (recall lei < 1), we obtain 

(4.19) 

Then 

s~(1- ql,n)(1 - v) = s~EA [(1- qZ,n) (1 -v ::) ] (4.20) 

(4.15,4.16) [ (d1P )] 
< s~IE,\ (1 - qZ,N) 1 - v dlP: = S~(EA [1 - qZ,N] - vEn [1 - ql,N]) 

(4.18) 

- se(1- 4>Z(A) - v(l - <PI(n))) < Se(€l,n,o:(e) - v)(l- <PI(n)) 
( 4.19) 

< Se(€/,n,o:(e) - e-ne/2)(1 - <pZ(n)). 
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In the case 1 > ~ ~ 0, the bound log(1 + ~) - ~ :::; -e /4 implies the upper bound 
v < e-n~2/4 for v in addition to the lower bound (4.19). Consequently we get 

€ (_1(:1) _ -ne/2 (4~O) 1 - ql,n (4~O) fl,n,a(I~I) 
l,n,a '" e - 1 _ ¢z(n) - 1 _ e-~2/4' (4.21) 

and thus, a little rougher, but more symmetrically: 

( I
tl) _~2/4 1- ql,n ( (Itl) _ne2 /4)-1 

cl,n,o: - '" - e :::; 1 _ ¢l(n) < ci,n,o: - ~ - e , (4.22) 

provided the bounds are positive. An exact maximisation of fl,n,o:( -I~I) - e-~2/4 would 

lead to a transcendental equation, but for our purposes, rougher bounds suffice. In fact 

we derive two different lower bounds for the maximum, the first one being more adapted 

to the LD regime, the second one being more useful in the MD regime. For the first 

bound, we choose positive constants C{)a so large and C{)7 so small that C{)8 := ct,/16 > 
C67 + C()6CS7 =: C69. Then we set 

(: -2( )2M-3/2 
'" := C661'I,n 1 - I'l,n l,n' 

and for M1,n being so large that 

( )M-3/H3a < -2(1 ) 
CS8 a i,n _ C()71'I,n - I'z,n 

we obtain 

n~2 (1.12) -2(1 ) 
4 C()s1",n - 1'1,n , 

(:M3/ 2 

( )M-3/4+3a + CS7I" I,n 2(1) 
C58 a I n 1 < Ca91'i:'n - 1'1,n . 

, - I'l,n 

Thus we get the following lower bound for the term in (4.22): 

€l,n,o:( -I~I) - e-ne
/
4 ~ g(')'"n) 

with 

hence by (4.22): 

( ) < 1 - ql,n < ( )-1 
9 I'l,n - 1 _ ¢z(n) - 9 1'l,n • 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Take a fixed a EJO, 1/4[. We choose a continuous function It :JO, 1[~lO, oc[ so large that 

the assumption MI,n hC'Yl,n) implies (4.24), M1,n > b9(a), C37(a)M,~:/4+3O: < 1/2, and 

C66'"Y~~(1- 1'1,n)MI~:/2 :::; C56. (The last condition is just (4.1) combined with the choice 
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(4.23) of ~.) Then Theorem 3.1 is applicable: we apply the bounds (4.29) and (3.1); then 

we get with the definitions 

( '1' + 2Vl - '1'2) '1'2 
f±('Y) := 2±1g(')')Tl 

87r(1 - '1'2)3/2 (1 + VI - ')'2) 
(4.30) 

the desired bounds (1.16) for Ml,n ~ h('Yl,n); thus we proved part 2. of Theorem 1.2. 

We derive a second bound for (4.22) next, which is well adapted for the MD regime: 

We set 

Then 

1 - 'Yl,n 

_ (1 _ '" )1/2 
11,1'1. , (4.32) 

(4.33) 

Let bg(a) be taken as in Lemma 4.1, where a is given by f3 = 3/4-3a. We choose constants 

Cei3 E]O,I[ so close to 1 and b12 (f3) > b9(a) so large that the assumptions '1'1,1'1. E [Cei3,1[ 

and M',n > b12 (tJ) imply, say, €l,n,a.( -~) ~ 1/2, c37(a)A!-1J < 1/2, (1- '1'1,1'1.)1/2 :5 1/4, and 

(4.1); see (4.17) and (4.33). Then we get for some positive constants C70,C71,C72: 

> 

and by Lipschitz arguments 

')'l,n + 2V1 - '1'11'1. 

log J ':-:; c,.,(1 - '1'1 •• )' :-:; c,.,(l - 'YI •• )'lJog(l - '1'1 •• )1 1
/'. 

1 + 1 - ')'In 

and hence (4.12/4.13) follows by (3.1) and (4.22). Thus Lemma 4.2 is proved. 

(4.34) 

( 4.35) 

o 

Proof of part 1. in Theorem 1.2 and of Theorem 1.1. The statement (1.14) is an 

immediate consequence of Lemma 4.2. We observe 

2lwO(""I,n) ~ _ 4V2
l(1 _ )3/2 = _ 4V2 (l - 2..(ii:)3/2 = 4V2 M3/2 (4.36) 

f 3 'YI,n 3 v'l 3 l,n 
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as 'Yl,n /' 1 by (2.3) and (1.12). In the estimate (4.37) below, the notation a ~ b means 

that alb converges to O. Furthermore, 

Ilog(87rl(1 - 'Y1~n)3/2)1 (Ll2) IIog(87r(1 'Yl,n)3/2) + ~ IOgMI.nl «Ml~~2 (4.37) 

as lvIl,n --I- 00. The combination of (1.14), (4.36) and (4.37) yields the claim (1.15); this 

finishes the proof of Theorem 1.2. 

To derive Theorem 1.1 we take 1 = len) := r2y'n + tn1/2- 711: We have as n --I- 00: 

'Yl(n),n /' 1, i.e. l( n) ""' 2y'n from 'fJ > 0, and 

MZ(n),n ""' tn1/2-T/l-l/3 ""' 2-1/3tnl/3-71 --I- 00 (4.38) 

from 'fJ < 1/3. Hence 

n(1-3T/)/2t3/2 '" (1- 2Fn?/2n -l/4 '" (l- 2v'n)3/2(2/l)1/2. (4.39) 

Theorem 1.1 now follows from formula (1.15). 

o 

A Appendix 

Lemma A.I There is a constant er3 > 0 such that for every circle C in the complex 

plane, every k > 0, and every fECI (C) the following bound holds: 

sup ! f(8) ds ~ k- 1 IlIlIo(c) + C73k IIf'IILoo(c) + 27r IIfllLoo(c)' (A.1) 
zEIC\C s - Z 

C 

Proof of Lemma A.1. By scaling the circle and scaling k proportional to the radius of the 

circle, we may assume without loss of generality k = 1. Given z E C \ C, let C1 and C2 

be the arcs of points sEC with Is - zl > 1 and Is - zl < 1, respectively; C2 may be 

empty, or it may be the whole circle. We have 

J 
f(s) -1 
-- ds ~ IIfll L l(cJ) sup Is - zl < 1I/IIL1(c1)' 
s - Z SECl 

(A.2) 

C1 

If C2 is empty, we are done. Else let x, y denote the start and end point of C2 ) respectively. 

(If C2 is the whole circle C, we take a point x = y E C with maximal distance Ix - zl 
from z as start point and end point of C2 .) In the calculations below with s E C2 ) 

log«s - z)/(x - z)) means J: dw/(w - z), integrated on C2• By partial integration: 

! f(s) dS=-!f'(S)log8-zdS+fCy)logY-Z, (A.3) 
s-z x-z x-z 

C2 C2 
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hence (using Ix - zl = iy - z/): 

If :~~ ds s; 1If'IIL-CC,) J IlOg ; = : Iidsl + 2rrlf(y)l· (A.4) 

~2 C2 

The integral on the right hand side of (A.4) is bounded by a constant Ci3. Indeed: We 

split C2 into pieces C2,j := {s E C2 : e-j < Is - z \ S; e-j+l}, j E N. Then the length 

of C2J is bounded by 21re- j
+1, and l1og«s - z)(x - z))i S; j + 21r for s E C2,j; the last 

statement follows from 11m log«s - z)(x - z))1 S; 21r and from IRe log«s - z)(x - z))\ = 
-log(ls - zl/ix - zl) S; -log Is - zl S; j; recall that x is a point on C2 with maximal 

distance from z and that Ix - zl < 1. Hence the integral on the right hand side of (A.4) 
is bounded by Cn := LjeN(j + 21r)21re-J+l < 00. 

Combining (A.2) and (A.4) we obtain (A.I). 

o 

The next lemma considers the (matrix-valued) Riemann-Hilbert problems with a tran

sition function I + W which is a small perturbation of the identity. Assume that W is 

defined on a circle C centered at the origin, and the RHP is specified by 

L+ = L_(I + W) on C, (A.5) 

L+ to be defined inside the disk with boundary C and L_ to be defined outside the disk. 

Lemma A.2 Assume that IIWIIL'>Cl(c) < 1. Then the RHP (A.5) has a solution L± which 
fulfills 

(A.6) 

Proof of Lemma A.2. By scaling, we may assume that C is the unit circle. Let C± : 

L2(C) ~ L2(C) denote the Cauchy operator 

. I i f(s) 
C±f(z) = hm -. --ds, 

w->z 21rz c S - W 
(A.7) 

where w is taken in the interior of the unit disk for C+ and in the exterior of the unit disk 

for C_. Then ±C± are orthogonal projectors with C+ - C_ = id; this can be seen using 

a Fourier series of f. (To be precise, C± is first defined for smooth f only and then can 

be continuously extended to L2(C), since it is a bounded operator.) We write (A.5) with 

the substitution A± = L± - I as 

(A.B) 

and 

(A.9) 
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The map K : A i--l' C_(AW) is a bounded linear operator in L2(C) with operator norm 

IIKIIL2(c)->L2(C) ::; IIWllv'o(c) < 1; hence equation (A.9) has a solution A_ with 

(A. 10) 

and therefore 

IA+(O)1 = 12~i fa (W(s) - A_(s)W(s» ~I ::; 2~ (IlW IILl(C) + IIA-IIL2(c) IIW II L2(C»)' 
(A.1l) 

The estimates (A.lO) and (A.11) together yield (A.6). 
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