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Abstract

Moderation hypotheses appear in every area of psychological science, but the methods for testing and probing moderation in two-

instance repeated measures designs are incomplete. This article begins with a short overview of testing and probing interactions in

between-participant designs. Next I review themethods outlined in Judd,McClelland, and Smith (PsychologicalMethods 1; 366–378,

1996) and Judd, Kenny, and McClelland (Psychological Methods 6; 115–134, 2001) for estimating and conducting inference on an

interaction between a repeated measures factor and a single between-participant moderator using linear regression. I extend these

methods in twoways: First, the article shows how to probe interactions in a two-instance repeatedmeasures design using both the pick-

a-point approach and the Johnson–Neyman procedure. Second, I extend the models described by Judd et al. (1996) to multiple-

moderator models, including additive and multiplicative moderation. Worked examples with a published dataset are included, to

demonstrate the methods described throughout the article. Additionally, I demonstrate how to use Mplus and MEMORE (Mediation

and Moderation for Repeated Measures; available at http://akmontoya.com), an easy-to-use tool available for SPSS and SAS, to

estimate and probe interactions when the focal predictor is a within-participant factor, reducing the computational burden for

researchers. I describe some alternative methods of analysis, including structural equation models and multilevel models. The

conclusion touches on some extensions of the methods described in the article and potentially fruitful areas of further research.
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Across areas of experimental psychology and many other sci-

entific fields, researchers are interested in questions that ad-

dress the boundaries and contingencies of certain effects they

observe. Do women feel more comfortable around men after

learning their sexual orientation, or does it depend on whether

the man is hetero- or homosexual (Russell, Ickes, & Ta,

2018)? Does fear-based advertisement always work, or will

thinking about God make these methods less effective (Wu &

Cutright, 2018)? Are all veterans equally likely to experience

post-service stress, or will certain psychological characteris-

tics impact the risk of stress (Mobbs & Bonanno, 2018)?

These are all questions of moderation or interaction.

Though some differentiate between these two terms, I will

use them interchangeably (see VanderWeele, 2009, for a

discussion of the differences from a causal modeling

perspective). Statistical moderation analysis is used to test

whether the relationship between a focal predictor, X, and an

outcome variable, Y, depends on some moderator, W. For

example, Kraus and Callaghan (2016) found that higher-

class individuals were more likely to help than lower-class

individuals in public contexts, but the opposite was true when

the context was private, where lower-class individuals helped

more than higher-class individuals. Here, the relationship be-

tween class (X) and helping (Y) depended on context (W).

Learning has been shown to improve when adjunct questions

are included in a text, but Roelle, Rahimkhani-Sagvand, and

Berthold (2017) found that when reading texts with adjunct

questions, receiving immediate feedback (X) had a detrimental

effect on learning (Y) for students who felt that answering the

questions was highly demanding (W). So, how is social class

related to helping? Does immediate feedback lead to worse

learning outcomes? It depends. Moderation analysis is a sta-

tistical method for testing whether these relationships depend

on certain proposed variables (i.e., moderators).
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In moderation analysis we test whether the relationship

between the focal predictor (X) and the outcome (Y) depends

on the moderator (W). If the analysis suggests that the answer

is “Yes,” the next natural question is “How?” An interaction

can look many different ways, and the practical implications

of significant interactions often depend on how the relation-

ship between X and Y changes across the range of W. For

example, the relationship between X and Y can increase as W

increases, or the relationship between X and Y can decrease as

W increases. A hypothesis test of moderation would say the

same thing for each of these patterns: “Yes, there is significant

moderation.” Because each pattern tells a different story, a

follow-up analysis is required to interpret these effects.

One way to understand moderation is by estimating and

probing conditional effects. A conditional effect is the effect

of one variable on another, conditioned on a third. In analysis

of variance, these are called simple effects. In moderation anal-

ysis, researchers are typically interested in the conditional effect

of X on Y at different values ofW. This helps researchers better

understand how the relationship between X and Y changes asW

changes. Probing an interaction gives us information about the

nature of this changing relationship. For example, imagine you

are researching how after-school science experience (X; e.g., in

a science club) predicts performance in science classes (Y), and

whether the effect differs by gender (W). If you find an inter-

action between experience and gender, you know that the effect

of after-school science experience is different for males than for

females. The next questions you might ask are “Does after-

school experience help boys but not girls?,” “Does it help girls

but not boys?,” and “If after-school experience helps both boys

and girls, is the effect stronger for one gender?” Probing the

interaction can help answer these questions. This is done by

estimating the effect of X on Y at a certain point (or points)

along the moderator, and testing whether this effect is signifi-

cantly different from zero. Directional tests can also be used to

understand not just whether an effect is different from zero, but

also whether it is positive or negative. Information about where

effects are positive, indistinguishable from zero, and negative

helps you understand the pattern of effects across the

moderator.

Rationale and summary

Moderation hypotheses can be investigated using a variety of

experimental designs; however, the methods for conducting

moderation analysis are not equally developed in all designs.

Here, I focus on two designs: between-participant designs

(e.g., participants are randomly assigned to condition; partic-

ipants are observed once on each outcome of interest) and

two-instance repeated measures designs (e.g., participants ex-

perience both conditions or are measured twice over time;

participants are observed twice on each outcome of interest).

Both designs are very common in psychology and other be-

havioral sciences. The defining difference between the two

designs is that each participant is observed on each outcome

only once in between-participant designs. In contrast, repeated

measures designs observe each participant multiple times

(e.g., over time, in multiple situations).

Methods for testing and probing interactions in between-

participant designs have been established, and it has become

typical for graduate students to learn how to conduct these

analyses in an introductory regression course. Easy-to-use

tools have been developed to help researchers conduct mod-

eration analyses and probe interactions in between-participant

designs (e.g., Hayes, 2018; Preacher, Curran, & Bauer, 2006).

However, less is known about how to test moderation effects

when either the moderator or the focal predictor is a within-

participant factor. Judd and colleagues (Judd, Kenny, &

McClelland, 2001; Judd, McClelland, & Smith, 1996) have

provided the only treatments of this topic in a linear regression

framework. Their two articles discuss moderation of the effect

of a repeated measures treatment on some outcome by a var-

iable that is measured once and assumed to be constant over

instances (I call this a between-participant variable).

In this article, I begin by providing a short overview of testing

and probing interactions in between-participant designs. Then I

review the methods outlined by Judd et al. (2001, 1996) for

estimating and conducting inference on interactions between re-

peated measures factors and between-participant variables using

a linear regression approach. The primary purpose of this article

is to extend the methods proposed by Judd et al. (2001, 1996) in

two ways. First, I will explain how to probe interactions in a two-

instance repeated measures design, a topic that has not yet been

discussed in the methodology literature. Second, I extend the

Judd et al. (1996) method to multiple moderator models, includ-

ing additive andmultiplicativemoderation. Using published data,

I provide a one moderator example and a two moderator exam-

ple, both with repeated measures factors as focal predictors.

Throughout the article, I will demonstrate how to use

MEMORE (Mediation and Moderation for Repeated Measures;

available at https://www.akmontoya.com), an easy-to-use tool

available for SPSS and SAS, to estimate and probe interaction

effects in which the focal predictor is a within-participant factor,

reducing the computational burden for researchers. I also include

Mplus code for estimating and probing these types of models. I

concludewith alternatives and extensions of the proposedmodels

as well as future directions, which include more than two in-

stances, alternative models of change, and moderated mediation

in two-instance repeated measures designs.

Advantages of repeated measures designs

Repeated measures designs often boast some statistical and

conceptual advantages over between-participant designs. In
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particular, with a repeated measures design each person can

act as their own control. For instance, imagine a study in

which participants read two stories, one that was sad and

one that was happy. For each story they rate how likely they

would be to help the main character. Helping tendency can

vary a lot from person to person, with some people willing to

help just about anyone and others who are the opposite. Here,

a repeated measures design would be very advantageous be-

cause participants’ helping response from the sad story can be

compared to their helping response from the happy story. In a

within-participant design, the statistical noise due to individ-

ual differences can be avoided, making the estimate of the

effect of story valence (sad vs. happy) on helping much more

precise. When it is feasible for participants to be observed in

all potential conditions in the study (i.e., when participating in

multiple conditions is possible without concerns of carryover

effects), there is a distinct statistical power advantage in using

a repeated measures design.

A particular advantage of a within-participant design is the

improved ability to observe causal effects on an individual.

Like in between-participant designs specific assumptions are

still required. When researchers are interested in cause and ef-

fect, they are typically interested in how some treatment might

change an individual person. In a between-participants design,

treatments are assigned to different sets of individuals and if

treatment is randomly assigned, then group differences reflect a

causal effect of the treatment. Here, inferential statements are

limited to what a person would have been like if they had been

in the other treatment condition, and this causal effect cannot be

directly observed on any given individual. In a within-

participant design, the information about what each participant

would have been like in each condition is known. However, we

do not know what each person would have been like if we had

observed them in each condition in a different order. To observe

causal effects, we must assume there are no carryover or order

effects from the first observation to the second (i.e., causal

transience), and there must also be an assumption of temporal

stability, which means that the observed measurements do not

depend on when they are measured (Holland, 1986). One par-

ticular advantage of the design and analysis described in this

article is that, if order is counterbalanced across individuals,

then order can be tested as a between-subjects moderator and

the causal transience assumption can be tested statistically.

However, it is important to note that traditional null hypothesis

testing procedures cannot provide support for the claim of caus-

al transience, as this would involve accepting the null hypoth-

esis; rather, these tests can be used to detect violations of this

assumption. Testing procedures such as equivalence testing

could potentially be used to support the assumption of causal

transience. If treatment order is randomized and balanced, the

assumption of temporal stability is not required in order for

estimates of the average causal effect to be unbiased (Josephy,

Vansteelandt, Vanderhasselt, & Loeys, 2015; Senn, 2002).

Moderation in between-participant designs

Before discussing moderation in repeated measures designs, I

review the principles of testing and probing interactions in

between-participant designs, in order to connect methods from

this design to those for repeated measures designs. More ex-

tensive introductions to moderation analysis in between-

participant designs can be found in Hayes (2018), Jaccard

and Turrisi (2003), Aiken and West (1991), and many other

articles and books. In a between-participant design, each par-

ticipant is measured once on all variables involved: the focal

predictor, moderator, and outcome variable.

In a standard multiple linear regression, the relationship

between X and Y is constant with respect to W. Researchers

can test for moderation by allowing the relationship between X

and Y to be a function ofW, f(Wi). In psychology, the form for

f(Wi) is typically a linear function of the moderator, W (e.g.,

f(Wi) = b1 + b3Wi).

Y i ¼ b0 þ b1 þ b3W ið ÞX i þ b2W i þ ϵi
¼ b0 þ b1X i þ b2W i þ b3X iW i þ ϵi

ð1Þ

In this model, the outcome variable for participant i, Yi, is a

function of both participant i’s responses on focal predictor, Xi,

and their response on the moderator,Wi. The error in estimating

person i’s response on Yi with this combination of Xi and Wi is

represented by ϵi. The coefficient b0 corresponds to the intercept

(predicted value of Ywhen X andWare both zero). The relation-

ship between X and Y is a linear function of W: b1 + b3Wi. The

coefficient b2 can be interpreted as the relationship between W

and Y when X is zero. This equation can be estimated using any

multiple linear regression program. When b3 is zero, the rela-

tionship between X and Y does not depend onW (i.e., b1 + 0W =

b1). A test on b̂3 is a test of moderation. (Hat notation denotes an

estimate of a parameter).

The symmetry property of moderation states that if the rela-

tionship between the focal predictor and the outcome depends on

the moderator, this also means that the relationship between the

moderator and the outcome variable depends on the focal pre-

dictor. Bymanipulating Eq. 1, it is clear that b3 alsomeasures the

degree to which the relationship betweenWand Y depends on X.

Y i ¼ b0 þ b1X i þ b2 þ b3X ið ÞW i þ ϵi

If there is evidence of moderation, the researcher’s focus

will shift toward the pattern of effects. The effect of one var-

iable on another can depend on a third in many ways, and

probing the interaction helps describe that pattern. The func-

tion b1 + b3W, which I will denote θX→ Y (W), is the condition-

al effect of X on Y, which is a function ofW. While probing an

interaction, θX→ Y (W) is estimated and inference is conducted

at different values ofW. The researcher can select values ofW

and use the estimate of the conditional effect and its standard

error to test if the relationship between X and Y is significantly
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different from zero at that value of W. There are two primary

methods of probing an interaction: the pick-a-point approach

and the Johnson–Neyman procedure.

Probing analyses are typically most informative when a test

of interaction is significant, though there may be justifiable

reasons why a researcher would want to probe an interaction

that is not significant. A hypothetical example might be if a

strong existing literature supported the relationship between X

and Y in one group (e.g., heterosexual couples), but little was

known about that relationship in another other group (e.g., ho-

mosexual couples). If the couple’s sexual orientation were the

moderator, it might be worth examining the relationship be-

tween X and Y in the heterosexual group to confirm that the

previous results were replicated. A brief warning: Researchers

who probe nonsignificant interactions often find themselves

grappling with explaining seemingly contradictory results. For

example, it may be that the relationship between X and Y is not

significantly moderated by sexual orientation of the couple.

However, when probed the analysis might show the relation-

ship between X and Y is significantly different from zero for

heterosexual couples, but not significantly different from zero

for homosexual couples. It is important to remember that a

difference in significance does not imply significantly different.

One conditional effect may be significantly different from zero

and other may not. This does not mean that these two condi-

tional effects are significantly different from each other.

Pick-a-point

The pick-a-point approach (i.e., simple-slopes analysis or

spotlight analysis) is a method for probing an interaction by

selecting a value of the moderator then estimating and

conducting inference on the conditional effect of the focal

predictor on the outcome at that specific value ofW. This helps

answer the question “Is there an effect of X on Yat w?,” where

w is a specific point on W.

The ratio of the estimate θ̂X→Y Wð Þ to its standard error can
be compared to values from a t-distribution with n − q − 1

degrees of freedom, where n is the total number of participants

and q is the number of predictors in the regression equation

used to estimate the coefficients and standard errors. By com-

paring to the t-distribution a p value can be calculated, or the

critical t value can be used to calculate a confidence interval.

The pick-a-point approach can be used for either dichoto-

mous or continuous moderators. The choice of points to probe

in the pick-a-point approach is very clear when the moderator

is dichotomous. However, when the moderator is continuous

the choice is often arbitrary. It has traditionally been recom-

mended to select the mean of the moderator as well as the

mean plus and minus one standard deviation (Aiken & West,

1991). However, these points may or may not be within the

observed range of the data. Hayes (2018) recommends

probing at percentiles (e.g., 16th, 50th, and 84th) to guarantee

that the probed points are always within the observed range of

the data. There are also instances in which certain points on

the scale are particularly informative. For example, if the mod-

erator is bodymass index, then 18.5, 25, and 30might be good

points to probe as they indicate the boundaries between un-

derweight, normal, overweight, and obese. For detailed dis-

cussions of the pick-a-point approach for between-participant

designs, see Hayes and Matthes (2009), Aiken and West

(1991), Hayes (2018), and Spiller, Fitzsimons, Lynch, and

McClelland (2013).

Johnson–Neyman procedure

The Johnson–Neyman procedure is another approach to prob-

ing interactions with continuous moderators (Johnson & Fay,

1950; Johnson & Neyman, 1936). This method removes the

arbitrary choice of points along the moderator, and instead this

method identifies important transition points (i.e., boundaries

of significance) where the effect of the X on Y transitions from

significant to nonsignificant, or vice versa. The procedure uses

the same point estimate and standard error as the pick-a-point

approach. However, rather than selecting a value of W, and

calculating the associated t-statistic, the Johnson–Neyman

procedure selects anα value and the associated critical t value,

then solves for the values ofW such that the conditional effect

of X on Y is exactly significant at the preselected α value. This

is done by setting the ratio of θ̂X→Y Wð Þ to its standard error

equal to the critical t and solving for W.

Solving for W involves finding the roots of a polynomial

equation, and as such the Johnson–Neyman procedure is lim-

ited to continuous moderators (Hayes & Matthes, 2009). The

solutions can be imaginary or outside of the range of the ob-

served data. Methodologists do not recommend interpreting

these solutions (Hayes &Matthes, 2009; Preacher et al., 2006;

Spiller et al., 2013). By finding the transition points that lie

within the observed data, this method allows the researcher to

understand the patterns of significance across the entire range

of the moderator, rather than at arbitrarily selected points.

Moderation in two-instance repeated
measures designs

Moderation analysis and probing have beenwidely described in

between-participant designs, resulting in an increasing use of

methods and new tools that made probing interactions easier

(Hayes, 2013; Hayes & Matthes, 2009). Recent advances in

probing have generalized these methods to multilevel modeling

and latent curve analysis (Bauer & Curran, 2005; Preacher et

al., 2006). However, the two-instance repeatedmeasures design

has been largely ignored when it comes to probing methods.
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Judd et al. (2001, 1996) described methods for estimating and

testing whether there is an interaction, and these methods have

been used across areas of psychology to investigate questions

of moderation. For example, among students with math diffi-

culties, those with higher working memory capacity benefited

more from strategy training (pre- to posttest) than those with

lower working memory capacity (Swanson, Lussier, & Orosco,

2015). In another example, dyads were assigned to complete a

paired task, and partners were randomly assigned to high- or

low-power roles. The dyad members in high-power positions

were more likely to dehumanize the low-power participant than

vice versa, particularly when the high-power individual offered

fewer resources to the low-power individual (Gwinn, Judd, &

Park, 2013).

In this section I review the methods described by Judd et al.

(2001, 1996) for testing whether some between-participant

variable moderates the effect of a repeated measures factor

on an outcome. I refer to the repeated measures factor as either

an “instance” or “condition,”with the understanding that what

differentiates the repeated measurements does not need to be

an experimental manipulation. For example, in the dataset

used in this article, participants were measured at two time

points: before and after treatment. The between-participant

variable can be something that is randomly assigned (e.g.,

experimental condition), or it can be something that is ob-

served but assumed to be constant across instances of repeated

measurements (e.g., eye color). I’ve created a macro, available

for SPSS and SAS, that both estimates the model required to

test moderation and gives extensive output related to the prob-

ing methods described in this article. This tool, MEMORE, is

meant to ease the computational burden of conducting a thor-

ough moderation analysis in the two-instance repeated mea-

sures design. Though not described in this manuscript,

MEMORE can also be used to estimate mediation models in

two-instance repeated measures designs (for instructions and

examples, see https://www.akmontoya.com and Montoya &

Hayes, 2017).

Running example

Lasselin, Kemani, Kanstrip, Olsson, Axelsson, Andreasson,

and colleagues (2016) investigated whether baseline inflam-

mation moderated the effectiveness of behavioral treatment

for chronic pain. They were particularly interested in whether

the treatment was less effective for individuals with higher

baseline inflammation. Patients with chronic pain were re-

cruited to the study, which involved 12 weekly sessions using

one of two behavioral treatments for chronic pain: acceptance

and commitment therapy (ACT) or applied relaxation (AR).

Participants reported their pain on a 6-point scale before

starting treatment and after completion of the sessions.

Baseline inflammation was measured by taking assays of

two pro-inflammatory markers (IL-6 and TNF-α). The

concentrations of these markers were log transformed to im-

prove linearity and combined using principal components

analysis. The analyses in this article differ slightly from the

analyses in Lasselin et al. (2016). A single outlier was dropped

for all analyses in this article. All tests are conducted at

α = .05. For the original analysis and other variables measured

in the study, see Lasselin et al. (2016). The data for this ex-

ample are available for download at https://www.akmontoya.

com. All analyses are described as if the data are in wide form

(each row of the dataset represents a participant) rather than

long form (each row of the dataset represents a participant in a

specific instance).

Testing the interaction

An interaction means that the slope that describes the relation-

ship between the focal predictor and the outcome depends on

some other variable, a moderator. Judd et al. (2001, 1996)

used this idea of varying slopes to outline the following meth-

od for testing interactions between a between-participant var-

iable and a repeated measures treatment. This procedure be-

gins with a model of the outcome variable Y predicted by W,

the between-participant variable, where the regression weights

for this model are allowed to vary by condition or instance

(denoted using the subscript j):

Y ij ¼ b0 j þ b1 jW i þ ϵij

Yij is the measure of the outcome Y for participant i in

condition or instance j. The measurement of participant i

on the between-participant variable is denoted Wi. Notice

that this measurement does not have a subscript j because

it is not measured repeatedly, but rather assumed to be

constant regardless of instance or condition. The intercept

and regression weight for Wi are represented by b0j and

b1j, respectively. Note that if there are two instances, there

are two b0js: b01 and b02. Similarly, there would also be

two b1js. The intercept and slope are allowed to differ by

condition. The ϵijs are the errors in estimation for partic-

ipant i in condition j and are assumed to be normally

distributed with mean zero, variance σ2
j , correlation ρ for

observations from the same participant, and correlation of

0 for observations from different participants.

In the case of two conditions there are two models, one for

each outcome variable:

Y i1 ¼ b01 þ b11W i þ ϵi1 ð2Þ
Y i2 ¼ b02 þ b12W i þ ϵi2 ð3Þ

The coefficient b11 represents the relationship between W

and Y in the first condition. The coefficient b12 represents the

relationship between W and Y in the second condition. When

b11 ≠ b12, the relationship between W and Y depends on the
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condition (i.e., there is an interaction between condition and

W). To test a moderation hypothesis, we test whether b11 is

equal to b12. By subtracting Eq. 2 from Eq. 3, the coefficient

for W reflects the difference between b11 and b12.
1

Y i2−Y i1 ¼ b02−b01 þ b12−b11ð ÞW i þ ϵi2−ϵi1ð Þ
YDi ¼ b0 þ b1W i þ ϵi

ð4Þ

Regress the difference of the Y variables Yi2 − Yi1 = YDi
onto W, and if b1ˆ is significantly different from zero, we

conclude that there is evidence for an interaction between

W and condition. This implies that b11 and b12 are not equal,

which means the relationship between W and Y depends on

the condition. This matches the intuitive understanding of

an interaction. Equation 4 is referred to as a simple moder-

ation model, where “simple” refers to their being one mod-

erator, W (similar to “simple regression” referring to one

predictor). The symmetry property holds in this model: sup-

port for the claim that the relationship between condition

and Y depends onW is the equivalent to saying the relation-

ship between W and Y depends on condition.

Estimation with MEMORE In Lasselin et al. (2016), the re-

searchers were interested in whether the effect of behav-

ioral treatment for chronic pain on pain intensity

depended on baseline inflammation. MEMORE can be

used to estimate this regression. One advantage of

MEMORE is that the researcher does not need to create

the difference score as an additional variable. Rather, after

installing MEMORE, the researcher can input the two

outcome variables using a MEMORE command line. If

the variables for pre-treatment pain and post-treatment

pain are stored as PrePain and PostPain, respective-

ly, and the variable for pre-treatment inflammation is

saved as inflame, then the MEMORE command for this

analysis in SPSS would be

MEMORE y = PrePain PostPain

/w = inflame /model=2

/wmodval1=0.85/jn=1.

The command MEMORE calls the MEMORE macro. The

instructions for installing the MEMORE macro can be found

at https://www.akmontoya.com. The variables in the y list are

used as the outcome variables. The difference score is taken in

the order that the variables are inputted, in this case

PrePain – PostPain . The variable in the w argument is

the moderator, in this case inflame . When there is only one

moderator, the researcher can use either Model=2 or

Model=3; the results will not differ. The two additional

commands will be explained in the probing section. See the

model templates and documentation at https://www.

akmontoya.com for more detail and instructions for SAS.

See Fig. 1 for the SPSS output. Note that the inflame

variable is mean-centered, such that zero is the sample av-

erage. The first section of the output has information about

the model, variables, calculated variables, and sample size.

This section should always be looked over carefully to

make sure the intended model is estimated.

The second section of the output includes the results of

estimating Eq. 4. The overall model information includes es-

timated R2 and a test of the overall variance explained. The

second part of this section is a table of all the regression co-

efficients and their associated significance tests and confi-

dence intervals. Each row corresponds to the results for the

predictor denoted in the left column, where “constant” denotes

the intercept. The estimated regression equation is

Ŷ pre−Ŷ post ¼ ŶD ¼ 0:20−0:40W i ð5Þ

The estimate of the intercept, bb0 ¼ 0:20, means that

when the inflammation score is 0 (the sample mean for

inflammation), the expected difference in pain is 0.20.

Pain is expected be 0.20 units lower after treatment, but

this effect is not significantly different from zero, t(38) =

1.06, p = .30. Additionally, for each unit increase in in-

flammation, there is a 0.40 unit decrease in the difference

in pain, t(38) = –2.12, p = .04. The difference was con-

structed by subtracting post-treatment pain from pre-treat-

ment pain, so lower scores reflect greater post-treatment

pain relative to pre-treatment pain. If the treatment is con-

sidered effective when post-treatment pain is low relative

to pre-treatment pain, then the treatment is less effective

for individuals with higher baseline inflammation.

This information alone is very useful, but the researchers

may have additional questions. Is the treatment still effective

for people with high inflammation, just less so? How much is

inflammation related to pre-treatment or post-treatment pain?

These questions can be answered by probing the interaction.

Next, I discuss how to probe an interaction between a repeated

measures factor and between-participant variable.

Probing the interaction

Just as in between-participant designs, the simple-slopes

and Johnson–Neyman procedures can be used to probe

moderation effects in two-instance repeated measures de-

signs, though they have not been described in this context

before. Two relationships can be probed: the effect of

1
The residuals in this equation (ϵi2 − ϵi1) are still normally distributed with

constant variance. Assume that the correlation between ϵi1 and ϵj2 is ρ for all

i = j, and zero for all i ≠ j; then, ϵi2−ϵi1∼N 0;σ2
1 þ σ

2
2−2ρσ1σ2

� �
.
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Fig. 1 MEMORE SPSS output for simple moderator model generated from theMEMORE command line used for estimation. Output explores a model

that allows the effect of treatment on pain ( PrePain vs. PostPain ) to be moderated by baseline inflammation (inflame)



Fig. 1 (continued)
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b̂0, cvar b̂0

� �
, the estimated variance of b̂1, cvar b̂1

� �
, and the

estimated covariance between b̂0 and b̂1, ccov b̂0; b̂1

� �
. The

estimates of the variances and covariances of the regression

coefficients are available through most statistical packages

that estimate regression models. However, typical programs

used to conduct regression analysis will not calculate θ̂C→Y Wð Þ
or cvar θ̂C→Y Wð Þ

� �
without addi t ional work by the

researcher.

The ratio of the estimate of θC→ Y (W) to its standard error

is t-distributed with n − q − 1 degrees of freedom, where n is

the number of observations and q is the number of predictors

in the regression model. In the case of Eq. 4, q = 1. Specific

values of W can be plugged into the equation for θ̂C→Y Wð Þ
and its cvar θ̂C→Y Wð Þ

� �
. The ratio θ̂C→Y Wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bvar θ̂C→Y Wð Þð Þ
p can be calcu-

lated and compared to a critical t-statistic with the appropriate

degrees of freedom. Alternatively, a p value can be calculated

from the calculated t-statistic.

Simple slopes with MEMORE In the chronic-pain example,

probing the effect of instance on the outcome at values of

the between-participant moderator means estimating the effect

of treatment on pain at different values of baseline inflamma-

tion. Suppose the researchers are particularly concerned with

knowing if the treatment is still effective for those with high

inflammation. They could choose to probe the effect of treat-

ment on pain at the 80th percentile of inflammation, which

corresponds to a score of 0.85 on the inflammation measure.

Based on the regression results, an estimate of the effect of

treatment on pain levels conditional on inflammation can be

calculated at 0.85. The estimates of the intercept and regres-

sion coefficient for inflammation can be drawn from the re-

gression results in Eq. 5 or Fig. 1.

θ̂C→Y 0:85ð Þ ¼ 0:20−0:40 0:85ð Þ ¼ −0:14

This means that individuals who score 0.85 on inflammation

are expected to have post-treatment pain levels 0.14 points

higher than their pre-treatment pain levels. But is this difference

statistically significant? First the variance of the estimate of the

conditional effect must be estimated. The variances of each of

the regression coefficients are just the squares of their standard

errors, which can be extracted from the results in Fig. 1. The

covariance between bb0 and bb1 is exactly zero.

cvar θ̂C→Y 0:85ð Þ
� �

¼ 0:192 þ 0:8520:192 þ 2 0:85ð Þ 0ð Þ ¼ 0:062

θ̂C→Y 0:85ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvar θ̂C→Y 0:85ð Þ

� �r ¼ −0:14ffiffiffiffiffiffiffiffiffiffiffi
0:062

p ¼ −0:56
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condition on the outcome variable at different values of

W, and the effect of W on the outcome variable in different

conditions. I will treat each of these separately, describing

both the simple-slopes method and the Johnson–Neyman

procedure where they apply.

Probing the effect of condition on the outcome

Researchers may be interested in estimating and conducting

inference on the effect of condition at specific values of the

between-participant variable W (e.g., estimating the expected

difference, pre-treatment to post-treatment, in pain for an indi-

viduals with a specific inflammation score). Howwell does this

treatment work for those who have relatively high inflamma-

tion, or for those with relatively low inflammation? A test of

interaction examines if the difference in pain differs for those

with varying levels of inflammation. However, a test of inter-

action does not estimate the treatment effect for individuals with

a specific score on inflammation. Do people with high inflam-

mation show little difference in pain from a treatment because

inflammation reflects a high physical irritation that may not be

relieved by behavioral interventions? Do people with low in-

flammation benefit from the intervention? These questions can

be tested by using probing, by estimating the effect of condition

at specific values of the between-participant variable using the

simple-slopes method. Alternatively, regions of significance

can be defined using the Johnson–Neyman method. This anal-

ysis would show both where along the between-participant var-

iable any effects of condition on the outcome were significant

and where the effects were not statistically significant.

Simple slopes The simple-slopes method relies on choosing a

point on the between-participant variableW, sayw, then estimating

the effect of condition on the outcome at the specific valueW =w.

Based on Eq. 4, the best estimate of the effect of condition on the

outcome at a specific value of W is θ̂C→Y Wð Þ ¼ b̂0 þ b̂3W ,

where C denotes condition and θ̂C→Y Wð Þ denotes the estimated
effect of condition on the outcome variable Y as a function of W.

This is the estimate of the difference in the outcome vari-

ables between conditions at a specific value of W. The

variance of θ̂C→Y Wð Þ can be estimated as2

cvar θ̂C→Y Wð Þ
� �

¼ cvar b̂0

� �
þW2 cvar b̂1

� �

þ 2W ccov b̂0; b̂1

� �
:

The estimated variance of θ̂C→Y Wð Þ is a function of the

chosen value of the moderator, W, the estimated variance of

2
Under the assumptions of linear regression, b̂0 and b̂1 are normally dis-

tributed. If X and Y are normally distributed, aX + bY is normally dis-
tributed, with variance a2 var(X) + b2 var(Y) + 2ab cov(X, Y).



The probability that a t-statistic with 38 degrees of freedom

is as or more extreme than 0.56 is p = .58. All these calcula-

tions can be done in MEMORE by including the

argument in the command line.

Figure 1 denotes the specific section of the output that corre-

sponds to this command, including a table similar to the one

described in the previous section, with estimates of the condi-

tional effect of condition on the outcome at the requested

values of the moderator and accompanying information for

inference. In addition, MEMORE probes at the mean as well

as plus and minus one standard deviation from the mean of the

moderator by default (see Fig. 1, “Conditional Effect of ‘X’ on

Yat requested values of moderator(s)” heading). See the doc-

umentation for additional probing options. The obvious

follow-up question after probing at this specific point is then,

for what values of inflammation is there a statistically signif-

icant effect of treatment on pain?

Johnson–Neyman procedure Just as in between-participant

moderation, the ratio of θ̂C→Y Wð Þ to its standard error can

be used to calculate the point(s) along the range of W where

the ratio is exactly equal to the critical t value. These points

mark the boundaries of significance for the relationship be-

tween condition and the outcome. By solving for these points,

the Johnson–Neyman technique defines the pattern of signif-

icance for the relationship between condition and the outcome

across the entire range of W.

.By setting the absolute value of the ratio of θ̂C→Y Wð Þ to its
standard error equal to the critical t value and solving for W,

these points can be found using basic algebra. The critical t

value will be denoted as t*α
2
;df . Ratios greater than t*α

2
;df will be

significant at level α.

t*α
2
;n−q−1 ¼

θ̂C→Y Wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvar θ̂C→Y Wð Þ

� �r

��������

��������

t*α
2
;n−q−1 ¼

b̂0 þ b̂1Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvar b̂0

� �
þW2cvar b̂1

� �
þ 2W ccov b̂0; b̂1

� �r
j

��������

��������

Squaring both sides eliminates the absolute value sign.

t*
2

α
2
;n−q−1 ¼

�
bb0 þ bb1W

�
2

cvar b̂0

� �
þW2cvar b̂1

� �
þ 2W ccov b̂0; b̂1

� �

Rearrange the terms to get a quadratic form,

0 ¼ b20−t
*2
α
2
;n−q−1 cvar b̂0

� �� �

þ 2b̂1b̂0−2t
*2
α
2
;n−q−1 ccov b̂0; b̂1

� �� �
W

þ b̂
2

1−t
*2
α
2
;n−q−1 cvar b̂1

� �� 	
W2

;

and the quadratic formula can be used to show that the solu-

tions to this equation are

WJNk ¼ − 2b̂1b̂0−2t
*2
α
2
;n−q−1 ccov b̂0; b̂1

� �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b̂1b̂0−2t

*2
α
2
;n−q−1 ccov bb0; b̂1

� �� �2

−4 b̂
2

0−t
*2
α
2
;n−q−1 cvar b̂0

� �� 	
b̂
2

1−t
*2
α
2
;n−q−1 cvar b̂1

� �� 	s

2 b̂
2

1−t
*2
α
2
;n−q−1 cvar b̂1

� �� 	

In its mathematical form, there are always two solutions to

this equation; however, these two solutions are not always

interpretable. Just as in the between-participant case, solutions

can be imaginary or fall outside of the range of the observed

data, neither of which should be interpreted. Even when tran-

sition points are found within the range of the data, it is im-

portant to note how much of the data is above or below these

points, in order to determine how much to trust them. Without

data surrounding the Johnson–Neyman points, there is no ev-

idence that the observed trend continues outside the range of

the observed data, and thus no evidence that these points are

either meaningful or interpretable.

The equation above looks fairly tedious to implement by

hand, and computing these values by hand could result in

rounding errors. Nonetheless, there is a closed-form solution

for these points, and these points of transition can be found

using MEMORE.

Johnson–Neymanwith MEMORE In the chronic-pain example,

it may be useful to find the scores on inflammation such that

the treatment is effective at reducing pain, on the basis of a

statistically significant difference. MEMORE calculates the

Johnson–Neyman points of transition and prints a table of

probed values to help researchers understand what ranges of

the moderator show significant (and nonsignificant) effects of

condition on the outcome. Including the term in the

command line calls for the Johnson–Neyman procedure.

Figure 1 shows an example of the output with the chronic-

pain data. The critical t-statistic for 38 degrees of freedom and

α = .05 (the default) is 2.02, so the two solutions for the tran-

sition points are

JN1 ¼ −0:63; JN2 ¼ 11:79:
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The second point is well outside the observed range of

inflammation (Range = –1.73 to 2.14); however, the first point

is within the observed range of the data. The first part of the

“Johnson–Neyman Procedure” portion of the MEMORE out-

put includes the Johnson–Neyman points of transition as well

as the percentage of the data that fall above that point.

MEMORE does not print any Johnson–Neyman solutions that

are outside of the observed range of the data. Since one of the

solutions, 11.79, was outside the range of the data, MEMORE

only printed one Johnson–Neyman solution. The point –0.63

is the transition between the significant and nonsignificant

regions. The second part of this portion of the output is a table

of probed values that helps give researchers a sense of the

pattern of effects across the range of the moderator. The table

indicates that points above –0.63 are significant, and those

below are nonsignificant.

A helpful way to use the Johnson–Neyman results is to

graph the conditional effect of treatment on pain across the

range of the moderator, inflammation. If a confidence interval

is included around this line, it is easy to tell that the Johnson–

Neyman transition points are the points at which the confidence

interval around the conditional effect intersects zero on the y-

axis, marking no significant effect of treatment on condition

(see Fig. 2). This kind of visualization can be helpful in

understanding an interaction. Because a negative effect of

treatment on condition means that post-treatment pain is

higher than pre-treatment pain (YD < 0), scores below zero

indicate an ineffective treatment, or even a treatment that

increases pain over time. Positive scores, on the other hand,

mean that pain after treatment is lower than pain before

treatment. On the basis of Fig. 2, those with inflammation

scores below –0.63 are expected to show significant im-

provement (reduction) in pain after the treatment.

Probing the effect of the moderator on the outcome

Estimating the relationship between the between-participant

variableW and the outcome in each of the different conditions

is much simpler than probing the effect of condition on the

outcome. In Eqs. 2 and 3, b11 and b12 represent the relation-

ship between W and Y in the first and second conditions, re-

spectively. There is no need to condition on a specific value of

a variable and then derive the variance of the conditional es-

timate. By estimating Eqs. 2 and 3 separately, b̂11 and b̂12 and

their corresponding hypothesis tests are conditional estimates

of the relationship betweenW and Yand tests of whether these

relationship are different from zero. This is equivalent to the

simple-slopes method and can conveniently be conducted in

any regression program.

Probing the effect of W on Y is automatically conducted in

MEMORE (see Fig. 1, “Conditional Effect ofModerator(s) on

Y in each Condition” heading). Consider two individuals who

are one unit different from each other on baseline inflamma-

tion. The individual with higher baseline inflammation is ex-

pected to be 0.0293 units higher in pain levels at baseline. This

effect is not significantly different from zero, t(38) = 0.20, p =

.84. However, in Condition 2 (i.e., post-treatment measure-

ment period), a one-unit difference in baseline inflammation

is related to a 0.43 unit difference in post-treatment pain

levels, where higher baseline inflammation is related to higher

post-treatment pain levels. This effect is significantly different

from zero, t(38) = 2.22, p = .03. This is particularly interesting

because pre-treatment pain and baseline inflammation were

both measured in the same visit. One might expect that pre-

treatment inflammation would be more related to pain before

treatment than after. However, this shows clear evidence that

the relationship is stronger and more positive for post-

treatment pain, suggesting that some aspect of the treatment

may be less effective for participants with high baseline in-

flammation. The Johnson–Neyman method cannot be used,

because condition is not a continuous variable.

This completes our discussion of probing interactions be-

tween a repeated measures factor and a between-participant

variable in two-instance repeated measures designs. Next, we

move to a discussion of models that incorporate multiple mod-

erators. There I will use additional potential moderators from

Lasselin et al. (2016) as an example.

Multiple-moderator models

Judd et al. (2001, 1996) introduced the regression-based

approach to testing interactions between a repeated mea-

sures factor and a single between-participant variable.

However, they did not generalize beyond a single moder-

ator. When I refer to multiple moderators I mean two or
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Fig. 2 Graph of the conditional effect of treatment (C) on pain (Y) as a

linear function of inflammation (W) including the Johnson–Neyman

transition point (JN). The JN point is where the confidence interval

around the condition effect intersects zero on the y-axis
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more distinct variables that could impact the relationship

between X and Y, rather than the same moderator measured

multiple times. Extensions to multiple moderator models

are very important as currently researchers often test a va-

riety of single moderator models separately or conduct

subgroup analyses (e.g., Blanco, Barberia, & Matute,

2015; Buunk, Ybema, Van Der Zee, Schaufeli, &

Gibbons, 2001). Using separate models or subgroups anal-

ysis results in issues of confounding of interaction effects,

and does not allow simultaneous testing of multiple

moderators and thus can result in imprecise theories

about moderation. Testing multiple moderators all

together is more parsimonious, and gives the most

detailed picture of how the moderators together interact

with the focal predictor and each other to predict the

outcome. Lasselin et al. (2016) posited that the degree to

which effectiveness of treatment depends on inflammation

might itself depend on whether the participants received

AR or ACT (a three-way interaction), but they did not have

the tools available to test this hypothesis. We will test that

question in this section.

Multiple-moderator models can be described as two

types. The first type is additive moderation, which involves

multiple two-way interactions (see Table 1 for a

comparison of simple, additive, and multiplicative

moderation models). Just as in the simple moderation mod-

el (Eq. 4), the researcher needs two observations of the

outcome (one in each instance), as well as a single obser-

vation on each of the moderators. The moderator variables

can be either randomized (e.g., type of therapy) or observed

(e.g., baseline inflammation) variables. In additive moder-

ation, the moderators are not allowed to interact with each

other. In multiplicative moderation, interactions among the

moderators are included. For example, if there were two

moderators, all two-way interactions would be included,

and the three-way interaction between X,W1, andW2 would

also be included (Hayes, 2018). In this section, I generalize

the simple moderation model for two-instance repeated

measures designs to models with two moderators, though

these methods can be generalized to any number of moder-

ators. MEMORE will estimate and test additive and

multiplicative moderation with up to five moderators. I

Table 1 Comparison of three types of moderation models for two-instance repeated measures designs

Multiplicative 

Moderator Model

Additive 

Moderator Model

Simple Moderator 

Model

Model

7

6

4

Equation

Number

3

2

2 or 3

Model Number 

in MEMORE

2+

2+

1

Number of 

Moderators

Conceptual Diagram Path Diagram
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depends the condition C, but it does not depend on the other

moderator W2. The conditional effect of condition would be

θC→Y W1;W2ð Þ ¼ b0 þ b1W1 þ b2W2

The standard errors for these effects become more complex

as the number of moderators increase. However, they are eas-

ily derived using matrix algebra, and these methods generalize

to any number of moderators. Consider the coefficients from

the model as a vector b
*

, where

b
*

¼ b0 b1 b2½ �:

Additionally, consider the covariance matrix of the param-

eter estimates to be Σ, where

Σ ¼

var b̂0

� �
cov b̂0; b̂1

� �
cov b̂0; b̂2

� �

cov b̂0; b̂1

� �
var b̂1

� �
cov b̂1; b̂2

� �

cov b̂0; b̂2

� �
cov b̂1; b̂2

� �
var b̂2

� �

2
6664

3
7775

The parameter θC→ Y (W1,W2) is a linear combination of

the parameters defined by a vector that can be called l
*

, where

l
*

¼ 1 W1 W2½ �

such that

θC→Y W1;W2ð Þ ¼b
*

l0
*

¼ b0 b1 b2½ �
1

W1

W2

2
4

3
5

¼ b0 þ b1W1 þ b2W2

I use the prime symbol to mean “transpose.” The variance

of θ̂C→Y W1;W2ð Þ is

var θC→Y W1;W2ð Þð Þ ¼ l0
*

Σ l
*

arguments (see the documentation at https://

www.akmontoya.com).

Multiplicative moderation

Multiplicative moderation is when the moderators interact

with each other as well as the repeated measures factor. This

means that the model of Y in each condition includes
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provide an example using the data from Lasselin et al.

(2016) with multiple moderators.

Additive moderation

Just as in Judd et al. (2001, 1996), the additive model begins

with a model for each outcome in each condition. Additive

moderation suggests that the effect of each moderator, W1 and

W2, depends on the condition, but the effect of each moderator

does not depend on the other moderator.

Y i1 ¼ b01 þ b11W1i þ b21W2i þ ϵi1

Y i2 ¼ b02 þ b12W1i þ b22W2i þ ϵi2

The effect of each moderator is allowed to vary by con-

dition, but the effect of each moderator is not a function of

the other moderator (i.e., the moderators do not interact

with each other). Taking the difference between these equa-

tions allows us to test a moderation hypothesis.

Y i2−Y i1 ¼ b02−b01 þ b12−b11ð ÞW1i þ b22−b21ð ÞW2i þ ϵi2−ϵi1

YDi ¼ b0 þ b1W1i þ b2W2i þ ϵi
ð6Þ

Equation 6 contains the coefficients of greatest interest

b1 = b12 − b11 and b2 = b22 − b21, as these reflect the degree

to which condition moderates the effect of each moderator.

By symmetry, this is also how each moderator impacts the

effect of condition on the outcome. Hypothesis tests on the

estimates of b1 and b2 will indicate whether the effects of W1

and W2 on Y differ by condition. Again, the symmetry argu-

ment applies: If b̂1 and b̂2 are significantly different from zero,

this indicates that the effect of condition depends on W1 and

W2, respectively. This method can be generalized to any num-

ber of moderators.

A particularly useful application of additive moderation

is when there is a single conceptual moderator, but it is

multicategorical (more than two groups). In this case, the

multicategorical moderator can be coded into k–1 vari-

ables, where k is the number of groups, using a coding

system such as indicator or Helmert coding. Each of these

variables can be included as a separate moderator, and the

test of R2 would be a test of omnibus moderation (Hayes &

Montoya, 2017).

Multiple-moderator models can be probed at different sets

of values of the moderators or in difference conditions, just as

a single moderator model can be probed. In additive modera-

tion, the conditional effect of each moderator remains relative-

ly simple, whereas the conditional effect of condition becomes

more complex. For example, in the case of two moderators the

conditional effect of W1 would be

θW1→Y Cð Þ ¼ b1c

and the variance would be var b̂1c

� �
. Still, the effect of W1

The estimate of the variance of the conditional effect of

condition is calculated by using the estimate of Σ. This is a

general procedure for finding the standard error of any condi-

tional effect, and only requires that the researcher identify l
*

,

the contrast vector that identifies the conditional effect of in-

terest. Researchers can use MEMORE to calculate these ef-

fects automatically using the , and

https://www.akmontoya.com
https://www.akmontoya.com


interaction terms, adding complexity to the model. A model is

defined for the outcome in each condition:

Y i1 ¼ b01 þ b11W1i þ b21W2i þ b31W1iW2i þ ϵi1

Y i2 ¼ b02 þ b12W1i þ b22W2i þ b32W1iW2i þ ϵi2

In these models, we can think of the relationship betweenW1

and Y in each condition as a function of W2, or the relationship

betweenW2 and Yas a function ofW1. The new terms b31 and b32
represent the degree to whichW1 andW2 interact in their respec-

tive conditions. The researcher may be interested in whether the

interaction between W1 and W2 differs across conditions (i.e., is

there a three-way interaction between condition, W1, and W2?).

This could be tested by examining if b31 = b32. To test this hy-

pothesis, the difference between the equations can be used to

define coefficients that estimate the parameters of interest.

Y i2−Y i1 ¼ b02−b01 þ b12−b11ð ÞW1i þ b22−b21ð ÞW2i

þ b32−b31ð ÞW1iW2i þ ϵi2−ϵi1

YDi ¼ b0 þ b1W1i þ b2W2i þ b3W1iW2i þ ϵi

ð7Þ

Estimating Eq. 7 using a linear regression program would

yield estimates of each of these coefficients along with infer-

ential statistics. As was mentioned above, a test on b̂3 would

be a test of whether there is a three-way interaction between

condition, W1, and W2. As additional moderators are added,

the same method could be used to test higher order interac-

tions that include a repeated measures factor.

In all previous analyses, tests on b1 and b2 were tests of

two-way interactions. Now they are tests of conditional two-

way interactions. The coefficient b11 is the effect ofW1 on Y1
conditional onW2 being zero, and b12 is the effect ofW1 on Y2
conditional onW2 being zero. The difference between b11 and

b12, b1, is the degree to which the conditional effect ofW1 on Y

conditional on W2 being zero differs across conditions.

Because the degree to whichW1 affects Y in any given condi-

tion is allowed to depend onW2, there is no single effect ofW1

on Y in a specific condition. So, b1 reflects a conditional two-

way interaction (between condition and W1) conditional on

W2 being zero. Similarly, b2 reflects the degree to which the

effect of W2 on Y conditional on W1 being zero differs across

conditions.

I’ve described how to test a three-way interaction between

a repeated measures factor and two between-participant vari-

ables. This method can be generalized to any number of mod-

erators. In addition to the test of interaction, probing can be

used to better understand the pattern of effects. Especially with

higher order interactions, understanding the pattern of effects

throughout the range of the moderators can be very difficult

by just examining the coefficients. Both Johnson–Neyman

and simple-slopes probing methods can be generalized to

higher order interactions, though the simple-slopes approach

is often more interpretable as the researcher can choose spe-

cific sets of values for the moderators and estimate the effect

of condition on the outcome. Generalizations of the Johnson–

Neyman procedure to multiple-moderator models involve ei-

ther higher dimensional spaces (Hunka & Leighton, 1997) or

regions of significance for interactions (Hayes, 2018), both of

which can be very difficult to interpret. Because of this I focus

on using the pick-a-point procedure in multiple moderator

models.

When moderation is multiplicative, probing becomes

even more important because the effect of each moder-

ator will depend on the value of the other moderators.

For example, in the case of two moderators the condi-

tional effect of W1 would be

θW1→Y C;W2ð Þ ¼ b1c þ b3cW2

and the variance would be

var
�
θW1→Y C;W2ð Þ

�
¼ var b1cð Þ þW2

2var b3cð Þ þ 2W2cov b1c; b3cð Þ:

Now the effect ofW1 is conditional on both the conditionC

and the other moderator W2. Additionally, the conditional ef-

fect of condition would be

θC→Y W1;W2ð Þ ¼ b0 þ b1W1 þ b2W2 þ b3W1W2:

Using the methods outlined in the previous section, we can

identify that l
*

is

l
*

¼ 1 W1 W2 W1W2½ �

such that

θC→Y W1;W2ð Þ ¼b
*

l0
*

¼ b0 b1 b2 b3½ �
1

W1

W2

W1W2

2
664

3
775

¼ b0 þ b1W1 þ b2W2 þ b3W1W2

This also means that

var θ̂C→Y W1;W2ð Þ
� �

¼l0
*

Σ l
*

where Σ is

Σ ¼

var b̂0

� �
cov b̂0; b̂1

� �
cov b̂0; b̂2

� �
cov b̂0; b̂3

� �

cov b̂0; b̂1

� �
var b̂1

� �
cov b̂1; b̂2

� �
cov b̂1; b̂3

� �

cov b̂0; b̂2

� �
cov b̂1; b̂2

� �
var bb2

� �
cov b̂2; b̂3

� �

cov b̂0; b̂3

� �
cov b̂1; b̂3

� �
cov b̂2; b̂3

� �
var b̂3

� �

2
6666664

3
7777775

These calculations are done in MEMORE using the

, and arguments

(see the documentation at https://www.akmontoya.com).
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Example of additive moderation with MEMORE

Lasselin et al. (2016) expressed concerns that perhaps the effects

were stronger for participants whowent throughACT rather than

AR therapy, as had been found in Kemani et al. (2015). By

adding in type of therapy as a moderator, this hypothesis can

be tested. In this analysis, I will use additive moderation. The

MEMORE command for this analysis in SPSS would be

The additional moderator is included by adding

it to the w list in the MEMORE command, and additive mod-

eration is indicated by using Model 2 (see the documentation

for details and SAS commands). Figure 3 contains the output

for the command specified above. The therapy variable is

coded so that ACT is 0 and AR is 1. The first section of the

output gives information about the model: which variables are

assigned to which role, the order of subtraction for the out-

come variable, and the sample size.

The second section of the output is the results from esti-

mating Eq. 6 with the data from Lasselin et al. (2016). This

table is just like the table from the single-moderator analysis,

but now it has multiple predictors. The estimated regression

equation is

ŶD ¼ 0:43−0:38W1−0:50W2 ð8Þ

where inflammation is W1 and therapy type is W2. Pain after

treatment is expected to be 0.43 units lower than pain before

treatment for those who are average on inflammation (W1 = 0)

and in the ACT condition (W2 = 0), but this effect is not sig-

nificant, t(37) = 1.69, p = .10. As inflammation increases by

one unit, the difference between pain before and after treat-

ment decreases by 0.38 units (i.e., treatment becomes less

effective), and this effect is just significant, t(37) = – 2.03, p

= .05. Finally, it seems that participants in the AR condition

have 0.50 units less difference on pain from pre- to post-treat-

ment, but this effect is not significant, t(37) = – 1.34, p = .19. If

this effect were significant, it would indicate that AR therapy

was less effective than ACT therapy at reducing pain, as was

suggested by Kemani et al. (2015).

For both the additive and multiplicative moderation models,

MEMORE probes the effect of condition at a variety of sets of

values of the moderators (see Fig. 3, “Conditional effect of ‘X’

on Y at values of moderator(s)” heading). These results show

that the treatment is most effective when inflammation is low

(W1 = − 1.01) and with ACT therapy (W2 = 0). For this group,

pain levels are expected to decrease 0.81 units over the course

of treatment, t(37) = 2.64, p = .01. However, there is no signif-

icant reduction in pain when inflammation is high or with AR

therapy.

In this section, I’ve described how to estimate and test

moderation in two-instance repeated measures designs with

multiple between-participant moderators. Although through-

out the article I’ve described methods for testing these models

using regression, there are alternative statistical approaches to

answering these types of questions. I now turn to some short

descriptions of these alternatives and where to learn more

about them.

Alternatives

The methods in this article proposed for testing moderation

are not the only possible methods for testing a moderation

hypothesis in a two-instance repeated measures design. Two

particularly important methods require mention: structural

equation modeling and multilevel modeling. Judd et al.

(1996) directly compared the regression methods for testing

an interaction described in this article to structural equation

modeling. Multilevel modeling requires additional multiple

observations of each person in each condition, but if this type

of data is available, then methods for testing and probing

interactions in multilevel models have been discussed in depth

in other articles (Bauer & Curran, 2005; Preacher et al., 2006)

and could be used.

Structural equation modeling

Judd et al. (1996) compared the approach described in this

article to a very basic structural equation modeling (SEM)

approach in which the moderator is allowed to predict each

of the outcomes, and the residuals in these models are allowed

to covary (see Fig. 4). Note the correspondence between Fig. 4

and Eqs. 2 and 3. In a SEM approach, the researcher would

estimate the model in Fig. 4, then fix the two paths b11 and b12
to be equal, and then use a model comparison approach to test

whether the model with free paths fits significantly better than

the model with fixed paths. In a SEM approach, this would be

done by using aχ2 goodness-of-fit statistic to compare the two

models. Note, though, that the null hypothesis in this structur-

al equation model is the same as in the methods proposed in

this article. The concern is whether a model in which b11 = b12
describes the data sufficiently, or would it be better to allow

the relationship between W and Y to vary by condition, thus

allowing b11 ≠ b12.

The SEM analyses could be conducted in a variety of struc-

tural equation modeling programs like LISREL, Mplus,

AMOS, EQS, and so forth. Some of these programs only

use the variance–covariancematrix of the variables to estimate

the paths involved. Judd et al. (1996) found that little to no

difference in statistical power or Type I errors between the

methods proposed in this article and using a SEM approach.
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can handle missing data without using any imputation

methods. This means that individuals with some data can

still contribute to the overall estimates.

An additional advantage of SEM approaches is the ability

to include latent variables. Often the outcome variable or the

moderator is not just one variable, but the combination of

many. For example, Lasselin et al. (2016) conducted principal

components analysis to create the measure of inflammation.

This could have been integrated into the complete analysis by

creating a latent variable that was indicated by each of ob-

served inflammation variables, in which case the whole struc-

tural equation model, including a latent variable for inflamma-

tion, could have been estimated simultaneously. In the case in

which the moderator is a latent variable and the only predictor

in the model, using a structural equation modeling approach

will likely result in better power and more accurate standard

errors for coefficient estimates, since regression methods as-

sume that there is no measurement error in the predictor var-

iables. This is not necessarily the case with additive modera-

tion, as measurement error in multiple variables can have

varying effects on estimation. In the case of multiplicative

moderation, latent moderators will result in latent interactions,

an area of research that is still in development (e.g., Cham,

West, Ma, & Aiken, 2012; Marsh, Wen, Hau, & Nagengast,

2013).

Multilevel modeling

Multilevel modeling approaches to two-instance repeated

measures designs are only possible if there are multiple repli-

cates per condition. For example, in many cognitive psychol-

ogy studies, participants see a variety of visual cues that are

from two different conditions. When there are many trials per

condition, there are many observations of each participant in

each condition. With only one observation per participant per

condition, the multilevel models will not have enough degrees

of freedom to estimate the parameters of interest. The basic

premise of the multilevel model, however, is quite similar to

those models that were described in this article. The multilevel

model used to assess interaction in a two-condition within-

participant design would be

Y ij ¼ b0i þ b1iX ij þ ϵij

where

b0i ¼ γ00 þ γ01W i þ u0i

b1i ¼ γ01 þ γ11W i þ u1i

Here, i denotes individual and j indexes repeated measure-

ments of that same individual. Xij denotes the condition for

person i during replicate j. The coefficients with subscripts i

are random by person. This is one of the great advantages of

76 Behav Res (2019) 51:61–82

To probe the interactions, the intercept is needed, so the

means of the variables are also needed. Many programs

have the functionality to accept either the raw data or the

mean vector of all the variables in the dataset. Either way,

this additional information would be needed to probe the

interaction. Mplus allows the researcher to define additional

parameters that can be combinations of existing parameters,

and will then include inferential tests on these new param-

eters in the output. By choosing specific values of the mod-

erator to probe at, and defining additional parameters using

these values, the simple-slopes method is easy to implement

in Mplus. The Johnson–Neyman procedure is not imple-

mented in any of the existing structural equation modeling

programs, so this method of probing would not be available

in a SEM approach. Below is an example of Mplus code to

estimate all the parameters of interest including the condi-

tional effect of therapy on pain at an inflammation level of

0.85. Though there is not a way to get the exact Johnson–

Neyman transition points in Mplus, there is a fairly simple

way to get plots that align with the Johnson–Neyman pro-

cedure. I’ve also included code that creates the Johnson–

Neyman plots (similar to the one in Fig. 2). The parameter

estimates are identical, but the standard errors are slightly

different, because Mplus uses asymptotic variance esti-

mates (denominator of N) and ordinary least squares uses

sample variance estimates (denominator of N–1).

One advantage of SEM is the superior methods available

for dealing with missing data. Particularly with the methods

described in this article, the use of the difference score

means that if individuals have missing data on either obser-

vation of the outcome, they will not be included in the anal-

ysis when regression analysis is used. SEM allows for

methods like full-information maximum likelihood, which
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Fig. 3 MEMORE SPSS output for an additive moderator model

generated from the command line in the text. The output explores a

model that allows the effect of treatment on pain (PrePain v+s.

PostPain) to be moderated by type of treatment (therapy) and

baseline inflammation (inflame)



multilevel models, in that by including random coefficients,

the dependencies among observations from the same person

can be taken into account. The equations above may look very

different from those used throughout this article, however

when they are combined the resulting equation is quite similar

to the equation used throughout this article, but also including

person-specific errors.

Y ij ¼ γ00 þ γ01W i þ u0ið Þ þ γ01 þ γ11W i þ u1ið ÞX ij þ ϵij

The model above would be quite unstable with only two

observations per person. A more stable model would be to fix

the random coefficient for Xij; however, this would then not

allow for W to moderate the effect of X on Y. But if there are

many replicates per person in each condition, these models

should prove to be superior to the methods proposed in this

article. Bauer and Curran (2005) and Preacher, Curran, and

Fig. 3 (continued)

Fig. 4 Path diagram representing structural equation model for testing

moderation in a two-instance repeated measures design
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Bauer (2006) provide excellent introductions to moderation

analysis in multilevel models and computational tools for both

testing and probing interactions using simple-slopes and

Johnson–Neyman procedure.

Extensions

There are a variety of extensions for the methods proposed in

this article, which could be useful throughout experimental

psychology and other scientific fields. In this section I address

a few of the ones that I expect to be of particular interest. Some

extensions are described below, but others could provide po-

tentially fruitful future directions of research.

When W is expected to change across instances

Throughout this article I have addressed how to conduct moder-

ation analysis when the moderator is a between-participant var-

iable (measured once); however, researchers may wonder what

to do if they believe that their moderator changes across instance.

In this case, the researcher might measure the moderator twice,

one in each instance. The original article by Judd et al. (1996)

addressed “moderation” in this case. Looking more closely,

however, the authors revised their approach to testing modera-

tion when the moderator is measured repeatedly, and in their

2001 article they discussed this analysis as mediation. The

hypothesis of moderation implies that the moderator impacts

the relationship between instance and the outcome. This means

the moderator should have temporal precedence over instance,

and instance should not affect the moderator. If the moderator

varies across instances, that means that instance is affecting the

moderator. In this case it is difficult to discuss how themoderator

affects the relationship between instance and the outcome, when

it is clear that instance is affecting the moderator. Judd et al.

(2001) addressed how to assess mediation when the mediator

is measured in each instance, and Montoya and Hayes (2017)

update this approach to themoremodern path-analytic approach,

providing a computational tool, MEMORE (Model 1), for

conducting inference on the indirect effect in these cases.

Including covariates

In the analysis described in this article, it is unclear how one

should include additional covariates or even if those covari-

ates should be included. An important aspect of this analysis is

that it is a within-person analysis. If there is an effect of a

covariate on the outcome and it does not vary across

conditions, this covariate will cancel out when taking the

difference score. Lasselin et al. (2016) were also interested

in how age might impact pain levels. In the equations below

I denote Age as A. Consider new versions of Eqs. 2 and 3,

which now include age as a covariate:
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Y i1 ¼ b01 þ b11W i þ b21Ai þ ϵi1

Y i2 ¼ b02 þ b12W i þ b22Ai þ ϵi2

In each equation, age is controlled for. However, if the

relationship between age and the outcome is the same across

conditions (i.e., b21 = b22), then when the difference score is

taken age will cancel out and is not required in the final model.

Y i2−Y i1 ¼ b02−b01 þ b12−b11ð ÞW i þ b22−b21ð ÞAi þ ϵi2−ϵi1ð Þ

YDi ¼ b0 þ b1W i þ b2Aþ ϵi

Therefore, if researchers are concerned about controlling

for an additional variable, but they do not believe that the

effect of that variable depends on condition, then that variable

is not needed. If instead they believe that the effect of that

variable depends on condition and they want to control for

it, then age or any other covariate of interest should be treated

as an additional moderator.

More than two instances

This article has focused on two-instance repeated mea-

sures designs; however, there may be situations when

there are more than two conditions. Hayes and Montoya

(2017) describe how to test moderation and probe moder-

ation in a between-participant design when the focal pre-

dictor is multicategorical. In the within-participant case,

including additional conditions involves taking contrasts

of the conditions rather than difference scores (Judd et al.,

2001). Using a structural equation modeling approach,

contrasts of interest can be defined and a likelihood ratio

test can be used to test the significance of the effect. Once

these contrasts are defined, probing the conditional effects

is a simple generalization of the work presented in this

article; however, no published research has addressed this

concern, nor are there computational tools to do so. When

there are more than two conditions, there is also the op-

portunity to probe the omnibus test of group differences,

an issue that is still unresolved in the within-participant

case.

Alternative models of change

The analytical approach described in this article relies on dif-

ference scores to describe change for each individual.

Difference scores can be useful in modeling change; however,

they can be insensitive to phenomena like regression toward

the mean or ceiling and floor effects (Campbell & Kenny,

1999; Cronbach & Furby, 1970; Jamieson, 1995). Many re-

searchers have suggested abandoning the use of difference

scores in favor of alternative methods (e.g., Bonate, 2000;

Cronbach & Furby, 1970; Lord, 1963; Twisk & Proper,

2004; but see Rogosa, 1995; Thomas & Zumbo, 2012;



Zumbo, 1999). Some alternative models include those based

on residualized change scores, in which the second measure-

ment is regressed on the first, and the residuals from this

model are then regressed onto the predictors of interest. This

method could also be used to test and probe moderation,

where instead of predicting the difference score, the

residualized change score would be predicted by the modera-

tor.

Y 2i ¼ iY 2
þ bY 1i þ uY 2i

ûY 2i
¼ b0 þ b1W i þ eY 2i

This model of change corrects for the initial measurement

and expected regression toward the mean (Campbell &

Kenny, 1999). Another alternative is an autoregressive model

(also known as ANCOVA), where the second measure is pre-

dicted by the first as well as by other predictors.

Y 2i ¼ b0 þ b1Y 1i þ b2W i þ eY 2i

It is worth noting that the autoregressive model is equiva-

lent to the difference score model when b1 = 1 (Brogan &

Kutner, 1980). Each of these models represents a different

model of change, and it is likely that different methods will

perform better or worse depending on what the true model of

change is (if there is such a thing). Indeed much of the simu-

lation work in this area has found that the performance of

these different models depends on the generating model and

no method works optimally for all types of data (Jamieson,

1995; Kisbu-Sakarya, MacKinnon, & Aiken, 2013; Petscher

& Schatschneider, 2011). Much of the simulation work has

focused on study designs in which individuals are randomly

assigned to one of two conditions and measured twice (before

and after treatment). The statistical methods described in this

article could be used for that type of study, but also for studies

involving continuous moderators. Future research could ex-

amine how these different models of change perform in inves-

tigating questions of moderation in which the moderator is

continuous and not randomly assigned.

Moderated mediation

The integration of mediation and moderation in between-

participant designs has become a flourishing topic over the

past decade (Edwards & Lambert, 2007; Fairchild &

MacKinnon, 2009; Hayes, 2015; Preacher, Rucker, &

Hayes, 2007). Perhaps one of the most promising future di-

rections from this research would be the integration of medi-

ation and moderation in two-instance repeated measures de-

signs. Recent work has proposed path-analytic approaches for

estimating and testing indirect effects in two-instance repeated

measures designs (MacKinnon, 2008; Montoya & Hayes,

2017; Valente & MacKinnon, 2017). By combining methods

for mediation and moderation, we can estimate and test the

moderation of mechanisms in two-instance repeated measures

designs and probe the indirect effects using methods similar to

those proposed in this article.

Conclusion

Previous research on moderation in between-participant designs

has established both how to test for interactions/moderation and

how to probe these moderation effects to better understand the

pattern of effects across the moderator. Easy-to-use computation-

al tools are available as additions to popular statistical software

(e.g., SPSS and SAS) or available online and have made the

adoption of these methods widespread throughout psychology

and other academic research fields. Previous research on moder-

ation analysis in two-instance repeated measures designs had

only established how to test for an interaction, and been limited

to a single moderator. This article generalized the analysis to

include two probing methods, simple-slopes and the Johnson–

Neyman procedure, as well as generalized the models to any

number of moderators. MEMORE (available at https://www.

akmontoya.com) can conduct inferential tests for moderation,

probe using both methods described in this article, and test

models with up to five moderators, which may either be

additive or multiplicative. With these additional innovations

and tools for two-instance repeated measures moderation analy-

sis, researchers can now conduct their analyses more thoroughly

and accurately, with better understanding of the nature of the

interactions they are investigating.
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