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Abstract 

To ensure adequate reliability (i.e., internal consistency), it is common in studies using event-

related brain potentials (ERPs) to exclude participants for having too few trials. This practice is 

particularly relevant for error-related ERPs, such as error-related negativity (ERN), where the 

number of recorded ERN trials is not entirely under the researcher’s control. Furthermore, there 

is a widespread practice of inferring reliability based on published psychometric research, which 

assumes that internal consistency is a universal property of ERN. The present, preregistered 

reliability generalization study examined whether there is heterogeneity in internal consistency 

estimates of ERN scores and whether contextual factors moderate reliability. A total of 189 

internal consistency estimates from 68 samples nested within 43 studies (n = 4,499 total 

participants) were analyzed. There was substantial heterogeneity in ERN score internal 

consistency, which was partially moderated by the type of paradigm (e.g., Stroop, flanker), the 

clinical status of the sample, the ocular artifact correction procedure, measurement sensors 

(single vs. cluster), and the approach to scoring and estimating reliability, suggesting that 

contextual factors impact internal consistency at the individual study level. Age, sex, year of 

publication, artifact rejection procedure, acquisition system, sample type (undergraduate vs. 

community), and length of mean amplitude window did not significantly moderate reliability. 

Notably, the overall estimated reliability of ERN scores was below established standards. 

Recommendations for improving ERN score reliability are provided, but the routine failure of 

most ERN studies to report internal consistency represents a substantial barrier to understanding 

the factors that impact reliability.  
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1. Introduction 

The National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative 

emphasizes the study of dimensional conceptions of hypothetical constructs (Cuthbert & Insel, 

2013; Cuthbert & Kozak, 2013; Kozak & Cuthbert, 2016). This initiative has focused attention 

on whether measurements of dimensional constructs show adequate psychometric properties for 

such endeavors. Recent findings indicate that some common, robust psychophysiological 

measurements of group or condition differences actually show poor internal consistency 

reliability (e.g., Fröhner, Teckentrup, Smolka, & Kroemer, 2019; Infantolino, Luking, Sauder, 

Curtin, & Hajcak, 2018). This poor internal consistency substantially limits their utility as 

dimensional measures for RDoC-inspired research, because the internal consistency of 

measurements is closely related to how well measurements can differentiate among participants. 

Hence, measures with poor internal consistency are poorly suited for studying individual 

differences. To ensure that psychophysiological measurements demonstrate adequate internal 

consistency, internal consistency should be routinely reported (Clayson & Miller, 2017b; Hajcak, 

Meyer, & Kotov, 2017; Infantolino et al., 2018; Thigpen, Kappenman, & Keil, 2017). In fact, 

Psychophysiology and International Journal of Psychophysiology recently adopted guidelines for 

reporting the internal consistency of measurements when examining individual differences (e.g., 

dimensional constructs).  

An important reason that internal consistency needs to be routinely reported is that 

reliability is a property of scores in a given context, not a property of a measure (Thompson, 

2003; Vacha-Haase, 1998). In studies of event-related brain potentials (ERPs), there is a 

widespread practice of inferring reliability based on published psychometric information, but this 

is based on the incorrect assumption that reliability is a stable property of an ERP. This practice 
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is common in ERP studies, such as when adequate internal consistency is assumed when the 

number of trials retained for averaging satisfies a trial threshold for data inclusion from a 

previous psychometric analysis. Internal consistency estimates of an ERP reflect the stability of 

single-trial measurements within an individual (i.e., within-person variability) and the capability 

of measurements to distinguish between individual-participant measurements (i.e., between-

person variability). For example, studies of the error-related negativity (ERN) often exclude 

participants with fewer than six to eight trials (Olvet & Hajcak, 2009) or fourteen trials (Larson, 

Baldwin, Good, & Fair, 2010) based on these studies of ERN score internal consistency. This 

practice represents a failure to appreciate the many contextual factors, such as sample 

characteristics and EEG data reduction parameters, that can influence ERP score reliability 

(Clayson & Miller, 2017b). The purpose of the present, preregistered study was to assess the 

utility of ERN as an individual-difference measure in healthy and clinical populations and to 

identify the relevant characteristics that influence internal consistency estimates. 

Although excluding participants to achieve adequate internal consistency is common in 

ERP studies, this practice is of particular relevance for error-related ERPs, such as ERN. ERN is 

a negative deflection in the scalp-recorded ERP that occurs within 100 ms of error commission 

and indexes early error detection (Falkenstein, Hohnsbein, Hoormann, & Banke, 1991; Larson, 

Clayson, & Clawson, 2014b; Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001). Although 

ERN follows error commission, the commission of errors is not entirely determined by the 

design of the experimental paradigm. For example, some high-performing participants commit 

relatively few errors, and these participants are often excluded from analyses for having too few 

error trials to achieve adequate internal consistency. Other participants with noisier data might 

have many trials excluded during artifact rejection that prevents all of the participants’ data from 
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being included in participant averages, and these participants are also often excluded from 

analysis. The trial cutoffs for data exclusion are typically based on previous psychometric 

studies, and the number of trials retained for averaging is commonly used as a proxy for 

justifying adequate internal consistency of the recorded data.  

There are many psychometric studies that examine trial cutoffs for obtaining adequate 

ERN internal consistency. However, these trial cutoffs vary considerably, and there is no 

universally applicable cutoff for obtaining adequate ERN score internal consistency. 

Recommendations range from 2 (Steele et al., 2016) to 15 trials (Fischer, Klein, & Ullsperger, 

2017) in studies of healthy undergraduates. In clinical samples, recommendations range from 14 

trials for psychotic disorders (Foti, Kotov, & Hajcak, 2013) to 23 trials for major depressive 

disorder (Baldwin, Larson, & Clayson, 2015) and up to 41 trials for anxiety disorders (Baldwin 

et al., 2015). In a study that compared ERN internal consistency across paradigms, trial-cutoff 

recommendations were 8 trials for the flanker task, 12 trials for the Go/NoGo task, and 18 trials 

for a Stroop task (Meyer, Riesel, & Hajcak, 2013). These studies highlight some of the 

contextual factors (e.g., sample and task) that can influence ERN score reliability by showing the 

number of trials needed to obtain a minimum internal consistency threshold, and the observation 

of different estimates underscores the importance of evaluating internal consistency on a study-

by-study basis. Taken together, adequate internal consistency cannot be assumed based on the 

implementation of a trial cutoff from a previous psychometric analysis (Clayson & Miller, 

2017b; Hajcak et al., 2017; Infantolino et al., 2018; Thigpen et al., 2017). Furthermore, there is a 

need for a synthesis of these disparate internal consistency estimates across different populations 

and paradigms to aid researchers during the planning stages of ERN studies. 
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Evaluating the score reliability of measurements, such as ERN, should be the first step of 

any experiment, because unreliable data can dramatically impact the results of a study. For 

example, unreliable scores can lead to magnitude or sign errors in between-group relationships 

(Flegal, Kit, & Graubard, 2017; Gelman & Carlin, 2014), reduced statistical power (Boudewyn, 

Luck, Farrens, & Kappenman, 2017; Clayson & Miller, 2017b; Fischer et al., 2017; Kolossa & 

Kopp, 2018; Luck & Gaspelin, 2017), and failures to find replicable effects (Cooper, Gonthier, 

Barch, & Braver, 2017; Loken & Gelman, 2017; Thigpen et al., 2017). In RDoC-inspired studies 

of individual differences or dimensional constructs, these problems with unreliable data are 

exacerbated because of larger within-person variability than between-person/within-group 

variability of measurements (Cooper et al., 2017; Fisher, Medaglia, & Jeronimus, 2018; Hedge, 

Powell, & Sumner, 2017; Loken & Gelman, 2017; Rouder & Haaf, 2018; Seghier & Price, 

2018). All of these studies emphasize that the use of unreliable scores calls into question the 

statistical conclusions of a study. 

Given the importance of score reliability, understanding the contextual factors that 

improve or weaken reliability is critical for optimizing ERP paradigms for basic and applied 

research. To identify such contextual factors, the present study used a reliability generalization 

analysis. A reliability generalization analysis synthesizes the reliability of scores across different 

applications of a measure (Botella, Suero, & Gambara, 2010; Thompson, 2003; Vacha-Haase, 

1998). This meta-analytic technique assesses the heterogeneity of score reliability and identifies 

potential sources of this variance across samples. A synthesis of the ERN score reliability 

literature can inform future studies of potential sources of measurement error and provide 

guidance for optimizing measurement approaches for a particular application. An advantage of 

meta-analytic approaches is the capability to pool information across many studies to identify 
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patterns of effects, and this is particularly advantageous for ERP studies which generally include 

few participants (see Clayson, Carbine, Baldwin, & Larson, 2019). In short, a reliability 

generalization analysis is well suited for determining the generalizability of ERN score internal 

consistency and the contextual factors that impact it.  

The present, preregistered reliability generalization study had three aims. The first aim 

was to determine whether there is heterogeneity in ERN score internal consistency across 

samples and studies, and it was predicted that there would be significant heterogeneity. The 

second aim was to determine the influence of three potentially key moderators: paradigm, 

clinical status, and EEG acquisition system. It was predicted that ERN recorded during the 

flanker paradigm would show the highest internal consistency estimates, consistent with a 

previous study (Meyer et al., 2013). Considering that participants with clinical diagnoses tend to 

need more trials to obtain adequate internal consistency than healthy participants (e.g., Baldwin 

et al., 2015), it was predicted that samples including participants with clinical disorders would 

show poorer ERN score internal consistency than samples of healthy participants. There was no 

directional hypothesis regarding which acquisition systems would yield higher internal 

consistency scores; rather, acquisition system was included as a proxy for the various online 

recording characteristics that might impact internal consistency, such as active or passive 

electrodes. This approach was necessary, because such online recording characteristics are 

underreported (Clayson et al., 2019). The third aim was to examine the relationship between 

internal consistency and the numbers of trials retained for analysis. Lastly, exploratory analyses 

examined the impact of various other contextual factors (e.g., demographic characteristics and 

measurement approaches) on ERN score internal consistency. 

2. Method 
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 The present study hypotheses and procedures were preregistered on Open Science 

Framework (OSF; https://osf.io/y3jrv), and deviations from preregistered procedures are 

elaborated below (see Deviations from Preregistration section). The raw data and software 

analysis code to reproduce all analyses are also posted on OSF (https://osf.io/7jwu9/). The 

PRISMA guidelines for transparency and reproducibility were followed for the present meta-

analysis, and the PRISMA checklist is posted on OSF.  

 2.1. Literature Search and Study Selection 

 The following criteria were used to include studies in this reliability generalization 

analysis. 1) The study examined ERN in human participants. 2) The study was written in 

English. 3) The study reported coefficient alpha (also known as Cronbach’s alpha) estimates of 

recorded ERN scores, or the coefficient alpha estimates could be obtained. For example, authors 

of studies that examined test-retest reliability were often willing to compute coefficient alpha 

estimates for the purpose of this meta-analysis. 4) Internal consistency estimates were of the 

minimum number of trials retained for averaging or of a recommended number of trials to use as 

a cutoff for data inclusion/exclusion. Articles were retrieved from Web of Science, PubMed, and 

PsycINFO using the following search phrase: (error-related negativity OR error negativity) AND 

(internal consistency OR test-retest OR Cronbach’s alpha OR icc OR split-half OR reliability). 

Searches were conducted on July 1, 2019. An additional announcement requesting internal 

consistency data for ERN scores was made via social media on February 19, 2020.  

Additionally, the reference list of each identified article was examined for additional 

relevant studies. To circumvent the file-drawer problem, the corresponding authors of each 

article were contacted to determine whether they had any other unpublished ERN internal 

consistency data to contribute. Additional labs that routinely examine the internal consistency of 
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ERPs were also contacted to solicit unpublished ERN internal consistency data. Lastly, when any 

study examined test-retest reliability, had ambiguous results, or contained missing information, 

the corresponding author of the study was contacted for further information. 

A PRISMA diagram showing the selection of studies is shown in Figure 1 (Moher, 

Liberati, Tetzlaff, Altman, & PRISMA Group, 2009). A total of 106 unique articles was found 

from searching each database, and an additional 20 articles/datasets were received through 

contacting labs that routinely examine the internal consistency of ERPs, through examining the 

references of identified articles, or through social media. Nine articles were excluded for not 

reporting coefficient alpha estimates for the number of trials used as a cutoff of data inclusion 

(Cassidy, Robertson, & O'Connell, 2012; Chong & Meyer, 2019; DuPuis et al., 2015; Hill, 

Samuel, & Foti, 2016; Ip et al., 2018; Lin, 2019; Lin, Stephens, Gavin, & Davies, 2018; Riesel, 

Richter, Kaufmann, Kathmann, & Endrass, 2015; Segalowitz et al., 2010). Five articles were 

excluded for having overlapping samples with other studies (Clayson & Miller, 2017a; Larson et 

al., 2010; Larson, Clayson, & Baldwin, 2014a; Llerena, Wynn, Hajcak, Green, & Horan, 2016; 

Riesel, Weinberg, Endrass, Meyer, & Hajcak, 2013). Two articles were excluded for not 

examining ERN (Clayson & Larson, 2013; Marco-Pallares, Cucurell, Münte, Strien, & 

Rodríguez-Fornells, 2011), and two articles were excluded for being review papers (Baldwin, 

2017; Clayson & Miller, 2017b). Taken together, 43 studies were included in the present meta-

analysis. The author coded all studies, because the majority of studies required following up with 

individual authors for more information (e.g., computing coefficient alpha at trial cutoffs). All 

data for the present meta-analysis are posted on OSF. 

<INSERT FIGURE 1 ABOUT HERE> 

2.2. Data Extraction 
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The primary outcome measure of this study was the coefficient alpha estimate for ERN 

scores at the trial cutoff used for data inclusion. For example, if a study excluded all participants 

with fewer than eight error trials, the alpha estimate of eight ERN scores was collected for each 

participant sample in the study. Additionally, the number of trials used for the alpha estimates 

and the number of participants that were included in the estimates were also collected. Studies 

that reported the observed internal consistency were included (internal consistency could not be 

inferred based on other work).  

Studies were also included when authors were willing to provide coefficient alpha 

estimates for the trial cutoffs that were used in either published or unpublished work. For 

example, some authors were willing to compute alpha estimates, despite originally inferring 

internal consistency based on other work. Some published studies plotted the relationship 

between internal consistency and the number of trials retained for averaging but did not exclude 

participants for having too few trials. In such instances, the number of trials needed to obtain an 

internal consistency estimate of .70 was used. When such information was only presented 

graphically, WebPlotDigitizer was used to extract internal consistency coefficients (Drevon, 

Fursa, & Malcolm, 2017). Lastly, studies were not excluded on any basis of potential bias/data 

quality, because internal consistency estimates can be considered measures of data quality. 

Sensitivity analyses were also used to exclude studies with highly influential estimates based on 

Cook’s distance (Viechtbauer & Cheung, 2010). 

Additional information coded for each study included 1) age, 2) sex (% female), 3) 

clinical status, 4) target population (i.e., undergraduate or community sample), 5) experimental 

paradigm (e.g., Stroop, flanker), 6) EEG reference (e.g., average reference, linked mastoid), 7) 

type of amplitude scoring procedure (e.g., mean amplitude, peak amplitude), 8) length of mean 
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amplitude window (when applicable), 9) sensors used for scoring, 10) trial selection procedure 

for computing alpha estimates (first X number of error trials or random subset of X number of 

error trials), 11) whether reliability was the focal outcome of the study, 12) the approach used for 

ocular artifact correction, and 13) the procedure used for artifact rejection. 

2.3 Internal Consistency Estimates 

The number of trials retained for averaging is closely related to the observed internal 

consistency of ERN scores (e.g., Clayson & Miller, 2017a). Because different studies determine 

data inclusion based on different trial cutoffs, coefficient alpha estimates were adjusted to ensure 

that differences across samples were not due to the use of different numbers of trials for 

computing ERN score internal consistency. Hence, all reliability estimates were adjusted to the 

predicted coefficient alpha estimate based on eight trials using the Spearman-Brown prophecy 

formula (Brown, 1910; Spearman, 1910). The original and adjusted alpha estimates are shown 

for each sample in Table 1.  

<INSERT TABLE 1 ABOUT HERE> 

2.4 Data Analysis 

An assumption of the common statistical models used in reliability generalization 

analyses is that effect sizes are normally distributed (Rodriguez & Maeda, 2006), and coefficient 

alpha estimates violate this assumption due to being bounded between 0 and 1. To circumvent 

the normality assumption, each alpha estimate was transformed using Bonett’s transformation, 

which normalizes internal consistency estimates using the number of trials and participants 

(Bonett, 2002). All statistical models used Bonett-transformed alphas during estimation. 

However, for the sake of interpretability both Bonett-transformed (denoted as α̂B) and back-

transformed estimates (denoted as α̂) are reported for each model. When moderators were 
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included in the model, the back-transformed estimates represent the summation of the intercept 

and moderator effect, again for the sake of interpretability (see Greco, O’Boyle, Cockburn, & 

Yuan, 2017; Piqueras, Martín-Vivar, Sandin, San Luis, & Pineda, 2017; Vicent, Rubio-Aparicio, 

Sánchez-Meca, & Gonzálvez, 2019). 

The traditional random effects approach to meta-analysis assume that outcomes are 

independent from each other and only vary due to sampling variation and study variation, which 

results in a two-level meta-analytic model. However, an important methodological characteristic 

of the data used for this meta-analysis is that some studies included multiple groups of 

participants (e.g., a clinical group and healthy control group) or multiple alpha estimates for the 

same group of participants (e.g., internal consistency estimates for multiple scoring procedures 

or paradigms). It is likely that alpha estimates from the same study would be more similar than 

estimates from different studies, and treating dependent estimates as independent introduces bias 

by inflating the variances of the estimates, overweighting studies with multiple alpha estimates, 

and inflating Type I errors (Borenstein, Hedges, Higgins, & Rothstein, 2009). Hence, in order to 

include all internal consistency estimates without violating assumptions of statistical 

independence, a three-level meta-analytic model was used (Assink & Wibbelink, 2016; Cheung, 

2014; Konstantopoulos, 2011). Alpha estimates for participants (Level 1), were nested with 

samples (Level 2), which were nested within studies (Level 3). A significant advantage of this 

approach is the capability to directly compare within-study and between-study moderators using 

all available data.  

Random-effects models were used to simultaneously examine the distribution of variance 

across three levels and were estimated using restricted maximum likelihood (Assink & 

Wibbelink, 2016; Cheung, 2014). Overall variance was partitioned into variability due to 
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sampling error (Level 1), variability due to multiple outcomes within a study (Level 2), and 

variability due to between-study differences (Level 3). After fitting random-effects models for 

Bonett-transformed alpha estimates, separate mixed-effects models were tested for each 

moderator. Parameters of the models were estimated using the rma.mv function of the metafor 

package (Viechtbauer, 2010) in R (R Development Core Team, 2019), and profile likelihood 

plots of the variance components were examined to ensure model fit. Similar to the approach for 

adjusting standard errors developed by Knapp and Hartung (2003), the omnibus test statistic was 

statistically evaluated using an F distribution, and moderators were statistically evaluated using a 

t-distribution (Viechtbauer, 2010). A test for residual heterogeneity without moderators in the 

model (Cochran’s Q test) was used to determine whether Bonett-transformed alpha estimates 

were heterogeneous, and the QE test for residual heterogeneity for the model with moderators 

was used to determine whether the variability not accounted for by the moderator was larger than 

would be expected given the sampling variability alone (Borenstein et al., 2009; Pastor & 

Lazowski, 2018). When the omnibus test of moderators was significant and a moderator included 

more than two levels, pairwise comparisons of each level of the moderator, not including the 

intercept, were performed. The first level of the moderator was entered into each model as the 

intercept, and the t and p values presented in Tables 2 and 3 represent the test between the 

intercept level and the other levels. 

Data Analysis Summary 

In short, a three-level meta-analytic procedure was used to account for the dependencies 

of multiple coefficient alphas culled from single studies. Each coefficient alpha estimate was also 

transformed using Bonett’s transformation, which normalizes internal consistency estimates 

using the number of trials and sample size (Bonett, 2002). For the sake of interpretability both 
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Bonett-transformed (denoted as α̂B) and back-transformed estimates (denoted as α̂) are reported 

for each model. Hence, α̂ are on the same scale as the conventional coefficient alpha and 

interpreted in an identical fashion. 

2.5 Deviations from Preregistration 

A pre-registered inclusion criterion was that coefficient alpha estimates were 

independent. However, many studies reported multiple internal consistency coefficients (e.g., 

separate coefficients for groups or measurement approaches). In order to be as inclusive as 

possible, all estimates from these studies were included in the meta-analysis. To include these 

estimates without violating independence assumptions, three-level models were used to account 

for the dependence of estimates obtained from the same study. Social media was also used to 

solicit data for the meta-analysis. Four additional moderators were coded that were not pre-

registered. These additional moderators were the trial selection procedure for computing alpha 

estimates, whether internal consistency was the focal outcome of the study, the ocular artifact 

correction approach, and the procedure used for rejecting artifact. 

3. Results 

 A total of 189 coefficient alpha estimates were culled from 68 samples nested within 43 

studies. The total number of participants was 4,499 with a mean of 66 participants per study (SD 

= 100, range = 11 to 778). These data are summarized in Table 1. To ensure replicability of 

findings, the complete raw dataset for this reliability generalization study, including all internal 

consistency estimates and moderators, can be found at the OSF link provided above.  

 Prior to any transformation, the average of all coefficient alpha estimates was .63 (SD = 

.17, range = .02 to .91), and these estimates represent the internal consistency using an average 

of 10 ERN trials (SD = 5, range = 2 to 26; see Table 1). Given the wide variability in the 
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numbers of trials used for estimating coefficient alpha across studies, it was a priori decided that 

estimates would be adjusted to the predicted internal consistency based on eight trials. Hence, 

coefficient alpha estimates were adjusted using the Spearman-Brown prophecy formula (Brown, 

1910; Spearman, 1910). The mean of the coefficient alpha estimates adjusted to the predicted 

internal consistency of eight trials was .61 (SD = .17, range = .02 to .94; see Table 1).  

 A random-effects, intercept-only model provided an overall estimate of the average 

coefficient alpha as .68 (95% confidence interval [CI]: .63, .72). As predicted, the test of 

heterogeneity was significant, Q(188) = 1,562.13, p < .001. Forest plots for each internal 

consistency estimate are shown in Figures 2 and 3. The distribution of variance over the three 

levels was also examined (Cheung, 2014). Sampling error variance accounted for 9.75% of the 

total variance (level 1), and within-study heterogeneity was estimated as 9.49% of the total 

variance (level 2). Between-study heterogeneity accounted for 80.76% of the total variance (level 

3). Hence, the variance not attributable to sampling error, total I2, was 90.25%. 

<INSERT FIGURES 2 & 3 ABOUT HERE> 

 A sensitivity analysis was conducted to determine whether any outliers might be highly 

influential on the overall results (Viechtbauer & Cheung, 2010). Cook’s distance combines 

information about leverage and fit of an outcome and was used to identify outliers (Cook & 

Weisberg, 1982). A cutoff of 
4𝑘, where k is the number of outcomes (i.e., estimates) included, was 

used to identify influential studies. Three estimates from two studies were identified as 

influential in the intercept-only model (McDonald, Bozzay, Bresin, & Verona, in press; Steele et 

al., 2016). One estimate was likely influential due to obtaining high internal consistency with 

only two trials (original alpha = .81 using 2 trials; adjusted alpha = .94 using 8 trials) and a 

relatively large sample (n = 100; Steele et al., 2016). The two estimates from the other study 
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were likely influential for having low reliability (original alphas = .11 and .44 using 2 trials; 

adjusted alpha = .33 and .76 using 8 trials) and a fairly large sample (n = 89; McDonald et al., in 

press). After removing these estimates from the intercept-only model, the estimated coefficient 

alpha was .67 (95% CI: .62, .71). Moving forward, models were first fit with all available data, 

and separate sensitivity analyses were then conducted excluding those studies with Cook’s 

distance exceeding the specified threshold, 
4𝑘. 

3.1 Publication Bias 

 There are no well-developed methods for detecting publication bias in three-level meta-

analyses of dependent effect sizes. As a result, two methods were used to identify publication 

bias. First, whether a study was published was included as a moderator to determine whether 

published studies differed from unpublished studies. Second, it is also possible that those 

published studies that included internal consistency as a focal outcome would show higher 

internal consistency than other studies. An additional moderator analysis was conducted 

comparing studies wherein internal consistency was the focal outcome to those studies wherein 

internal consistency was not the focal outcome. Neither publication status nor focal outcome 

status significantly moderated internal consistency estimates, F(1, 187) = 0.42, p = .52; F(1, 187) 

= 1.63, p = .20, respectively (see Table 2). When influential estimates were removed, the 

moderator analyses for publication status and focal outcome remained nonsignificant, F(1, 184) 

= 0.17, p = .68; F(1, 182) = 0.25, p = .62, respectively (see Table 3). 

<INSERT TABLES 2 & 3 ABOUT HERE> 

3.2. Moderator Analyses 

 Substantial heterogeneity was observed for coefficient alpha estimates of ERN scores. 

Moderator analyses were conducted to identify the contextual factors that influence internal 
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consistency, and these results are presented in Table 2. Sensitivity analyses, which removed 

influential estimates as outlined above, are shown in Table 3. Summaries of the number of 

studies, samples, and estimates and of the number of participants included in each moderator 

analysis are also shown in Tables 2 and 3. Notably, none of the moderators fully accounted for 

the observed variability in internal consistency estimates of ERN scores, as evidenced by 

Cochran’s QE in Tables 2 and 3. 

 3.2.1 Paradigm. There were five different levels included in this moderator analysis. The 

levels included the flanker task, Go/NoGo task, picture/work task, Simon task, and Stroop task. 

The paradigm used for recording ERN appeared to be a significant moderator of internal 

consistency, F(4, 184) = 5.77, p < .001. The estimated internal consistency for the Go/NoGo task 

(α̂ = .74) was higher than that of the flanker task (α̂ = .67, t(184) = 3.22, p = .002), and Stroop 

task (α̂ = .56, t(184) = 2.47, p = .01), but it was similar to the Simon task (α̂ = .73, t(184) = 0.14, 

p = .89). The picture/word task level of the moderator (α̂ = .27) was significantly lower than 

flanker task, t(184) = -3.01, p = .003, Go/NoGo task, t(184) = 3.71, p < .001, and Simon task, 

t(184) = -2.47, p = .01, but it was similar to the Stroop task, t(184) = -1.51, p = .13. Significant 

differences in internal consistency were not observed for the Simon and Stroop tasks, t(184) = 

1.36, p = .18. However, the estimate for and comparisons with the picture/word task should be 

interpreted cautiously due to containing only one estimate from two different samples nested 

within the same study. After removing 24 influential estimates from the analysis, ERN score 

internal consistency was no longer significantly moderated by the paradigm used for recording, 

F(4, 160) = 0.53, p = .71. 

 3.2.2 Clinical Status. The clinical status moderator included four levels: healthy, clinical 

high risk, neurological, and psychopathology. Although psychopathology groups (α̂ = .60) 
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demonstrated lower internal consistency than healthy groups (α̂ = .69, t(185) = -2.04, p = .04), 

the omnibus test of the moderator was not significant, F(3, 185) = 1.47, p = .23. Hence, initial 

analyses indicated that clinical status did not significantly moderate ERN score internal 

consistency. The sensitivity analyses yielded 20 influential estimates. After removing these 

influential estimates, the omnibus test of the moderator was significant, F(3, 165) = 2.88, p = .04. 

Internal consistency estimates from psychopathology groups (α̂ = .52) were lower than estimates 

from healthy groups (α̂ = .67, t(165) = -2.77, p = .01), but not significantly different from 

estimates from neurological groups (α̂ = .68, t(165) = 1.97, p = .051) or estimates from the 

clinical high risk group (�̂� = .76, t(165) = 1.76, p = .08). Significant differences were not 

observed for the comparison between the clinical high risk group and the neurological group, 

t(165) = 0.75, p = .45.  The estimates for the clinical high risk group are from one sample and 

should be interpreted with caution. 

 3.2.3 EEG Acquisition System. There were five levels of the EEG acquisition system 

moderator: BioSemi, ANT, Brain Products, Electrical Geodesics, Inc. (EGI), and Neuroscan. The 

omnibus test of moderators was not significant, F(4, 184) = 0.57, p = .68, and it remained 

nonsignificant after excluding 13 influential estimates from analysis, F(4, 171) = 0.94, p = .45.  

3.2.4 Year of Publication. The impact of time since the publication of the first ERN 

score internal consistency paper was examined. The year of publication was examined as a 

continuous moderator and was first centered to the year 2009. Only published studies were 

considered in this analysis. The test of moderators was not significant, F(1, 106) = 0.01, p = .92, 

and this test remained nonsignificant after excluding one estimate during the sensitivity analyses, 

F(1, 105) < 0.01, p = .98.  
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 3.2.5. Age. The mean age of the samples was 27.2 years (SD = 14.6, range = 9.6 to 70.8). 

Information for age was missing from two studies (Olvet & Hajcak, 2009; Rietdijk, Franken, & 

Thurik, 2014), which were excluded from this moderator analysis. Age was tested as a 

continuous moderator and was first centered to the minimum age of the included samples. Age 

did not significantly moderate ERN score internal consistency, F(1, 185) = .004, p = .95. 

Sensitivity analyses identified eight influential estimates. After removing these estimates from 

the moderator analysis, age remained nonsignificant, F(1, 177) = 0.58, p = .81. 

 3.2.6 Percentage of women. The mean percentage of women per study was 51% (SD = 

19%, range = 0% to 100%). One study was missing information about percentage of women 

included (Rietdijk et al., 2014), and this study was not included in the moderator analysis. The 

percentage of women was tested as a continuous moderator, but it was not significant, F(1, 186) 

= 1.09, p = .30. Ten influential estimates were removed for the sensitivity analyses, and the 

percentage of women included in a sample remained nonsignificant, F(1, 176) = 1.57, p = .21. 

 3.2.7 Sample type. The sample type moderator included two levels: undergraduate 

sample and community sample. The omnibus test of the moderator was not significant, F(1, 187) 

= 0.44, p = .51. When five influential estimates were removed, the test of the moderator 

remained nonsignificant, F(1, 182) = 0.22, p = .64. 

 3.2.8 EEG reference. The EEG reference moderator include four levels: average 

reference (of all electrode sites), average ear lobes, average mastoids, and nose. The omnibus test 

of the moderators was significant, F(3, 185) = 5.46, p = .001, and the nose reference (α̂ = .95) 

showed higher estimated internal consistency than the average reference (α̂ = .67, t(185) = 3.99, 

p < .001), average ear lobes (α̂ = .64, t(185) = -3.64, p < .001), and average mastoids (α̂ = .67, 

t(185) = -3.94, p < .001). However, only one estimate was used for the nose reference level. No 
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other contrasts were significant (|ts| < 0.4, ps > .74). The nose-reference estimate and five others 

were excluded during the sensitivity analysis, which subsequently yielded a nonsignificant test of 

moderators, F(2, 179) = 0.03, p = .97. 

 3.2.9 Scoring procedure. The amplitude scoring procedure moderator included four 

levels: mean, adaptive mean (mean around individual participant’s peak amplitude), peak, and 

peak-to-peak. The test of moderators was significant, F(3, 185) = 12.76, p < .001, and each level 

of the moderator was significant. The estimated internal consistency (α̂) for each level of the 

moderator was .67 for the mean amplitude, .70 for the adaptive mean, .71 for the peak amplitude, 

and .62 for the peak-to-peak amplitude. All pairwise contrasts were significant (|ts| > 2.4, ps < 

.02), aside from the contrast between the adaptive mean and the peak amplitude approaches, 

t(185) = -.96, p = .34. However, the sensitivity analyses indicated there were 45 influential 

estimates. Once these estimates were excluded the omnibus test of moderators was not 

significant, F(3, 140) = 1.60, p = .19. 

 3.2.10 Length of mean. The length of the mean amplitude window was examined as a 

moderator for those estimates that used either a mean or adaptive mean scoring procedure. 

Length of mean was tested as a continuous moderator and was first centered to the shortest mean 

amplitude length. The average length of the temporal window used for computing the mean 

amplitude was 80 ms (SD = 35 ms, range = 15 to 130 ms). The test of moderators was not 

significant, F(1, 156) = 1.35, p = .25, and this test remained nonsignificant after excluding 22 

estimates for the sensitivity analyses, F(1, 134) < 0.01, p = .99. 

 3.2.11 Sensors. The sensors moderator examined whether scoring ERN amplitudes from 

one sensor or a cluster of sensors (i.e., region of interest [ROI]) impacted ERN score internal 

consistency. The omnibus test of moderators was significant, F(1, 187) = 5.33, p = .02. Single-
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sensor measurements of ERN scores (α̂ = .69) yielded higher internal consistency estimates than 

ROI measurements (α̂ = .66), t(156) =-2.31, p = .02. After excluding 26 influential estimates, and 

the test of moderators was not significant, F(1, 161) = 0.02, p = .90. 

 3.2.12 Ocular Artifact Correction. There were two levels of the ocular artifact 

correction moderator: independent components analysis (ICA) approaches and regression 

approaches. The test of moderators was significant, F(1, 187) = 5.48, p = .02. Ocular artifact 

correction using ICA (α̂ = .71) yielded a higher reliability estimate than correction using 

regression (α̂ = .57), t(187) = -2.34, p = .02. The sensitivity analyses excluded five estimates, and 

the test of moderators remained significant, F(1, 182) = 6.54, p = .01. Ocular artifact correction 

using ICA approaches similarly (α̂ = .69) resulted in higher reliability estimates than regression 

approaches (α̂ = .55). 

 3.2.13 Artifact Rejection. The approach to the rejection of artifact was also examined, 

and this moderator included four levels: none, automatic rejection, rejection based on visual 

inspection, or semiautomatic rejection (a combination of automatic rejection and rejection based 

on visual inspection). Although no artifact rejection (α̂ = .19) demonstrated lower reliability 

estimates than visual inspection (α̂ = .77) and automatic rejection (α̂ = .69, |ts| > 2.0, ps < .04), 

the test of moderators was not significant, F(3, 185) = 1.89, p = .13. These findings should also 

be interpreted cautiously, because only one study did not use any artifact rejection and only two 

studies used only visual inspection. Eight estimates were excluded in the sensitivity analyses. 

Again, no artifact rejection (α̂ = .19) demonstrated lower reliability estimates than visual 

inspection (α̂ = .74) and automatic rejection (α̂ = .68, |ts| > 2.3, ps < .03), the test of moderators 

was not significant, F(3, 177) = 2.28, p = .08. 
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3.2.14 Trial selection. The trial selection procedure refers to the approach used to 

estimate ERN score internal consistency. There were two approaches (i.e., levels of the 

moderator) examined. The first approach was scoring the first ‘X’ number of trials and 

computing internal consistency estimates for those initial trials. The second approach was to take 

a random subset of ‘X’ number of trials from all error trials and then computing an internal 

consistency estimate for those trials. The test of moderators was significant, F(1, 187) = 35.97, p 

< .001, and higher internal consistency was observed when using a subset of the beginning ERN 

trials (α̂ = .71) than when using a random subset of trials (α̂ = .63). The test of moderators 

remained significant after excluding 23 influential estimates, F(1, 164) = 16.20, p < .001. The 

pattern of effects for the sensitivity analyses remained the same. Internal consistency was higher 

when using a subset of the beginning ERN trials (α̂ = .70) than when using a random subset of 

trials (α̂ = .62). 

3.3 Number of Trials vs. Internal Consistency 

 The relationship between the number of trials used for computing coefficient alpha 

estimates and the overall estimated alpha (α̂) from the intercept-only random effects models was 

examined (see Figure 4). The top panel shows α̂ for all included estimates. It appears that 9 and 

16 trials were required to obtain an internal consistency threshold of .70 and .80, respectively. 

The bottom panel of Figure 4 shows the α̂ after excluding influential estimates. The numbers of 

trials needed to obtain an internal consistency threshold of .70 and .80 were 10 and 17, 

respectively.  

<INSERT FIGURE 4 ABOUT HERE> 

4. Discussion 
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 The present reliability generalization study demonstrated substantial heterogeneity in 

internal consistency estimates of ERN scores, and this heterogeneity was only partially 

accounted for by the examined moderators. There was some support for two a priori moderators 

of interest (i.e., paradigm and clinical status) and for other moderators, such as the approaches to 

estimating reliability and to removing ocular artifact. Using internal consistency estimates from 

all studies, the number of trials needed to obtain an internal consistency threshold of .80 was 16 

(sensitivity analysis: 17), but this should be interpreted with caution and in the context of 

relevant moderators. The present findings highlight the context-dependent nature of ERN score 

internal consistency and the importance of evaluating internal consistency on a study-by-study 

basis. 

 Overall, the estimated coefficient alpha for eight ERN trials was .68 (95% CI: .63, .72; 

sensitivity analyses: .67, 95% CI: .62, .71), which is below the recommended reliability 

threshold of .80 for ERP research in an RDoC-type framework (Clayson & Miller, 2017b). 

Anecdotally speaking, six to eight trials are the most common cutoffs for inclusion of 

participants’ data in ERN studies (see Olvet & Hajcak, 2009). Based on this meta-analysis, these 

cutoffs might be too low to obtain adequate internal consistency of ERN scores for most 

samples. Consistent with the recommendations of many others (Clayson & Miller, 2017b; 

Hajcak et al., 2017; Infantolino et al., 2018; Thigpen et al., 2017), the internal consistency of 

ERP scores needs to be calculated and reported in each study, because poor reliability can lead to 

mistaken inferences. 

The impact of low reliability on statistical analysis can be disconcerting and dramatic. 

Studies using measurements with poor reliability can observe greatly attenuated or exaggerated 

effect sizes (i.e., magnitude error) and can observe effects that are in the opposite direction (i.e., 
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sign error; e.g., patients > controls vs. patients < controls) from what would be observed in the 

population (Gelman & Carlin, 2014; Loken & Gelman, 2017; Schönbrodt & Perugini, 2013). 

These issues are relevant to studies of both between-group differences and within-group 

correlates with external variables and are especially problematic in studies with small samples 

(Baldwin, 2017; Brand & Bradley, 2016; Loken & Gelman, 2017; Schönbrodt & Perugini, 

2013), which are common in ERP research (Clayson et al., 2019). Positive associations between 

internal consistency and effect sizes are observed in between-group (Hajcak et al., 2017) and 

within-person (Clayson & Miller, 2017a) ERN studies. Between-group effect sizes increased 

with increases in internal consistency in people with generalized anxiety disorder (Hajcak et al., 

2017), and within-person effect sizes for correct- and error-trial ERN scores increased with 

increases in internal consistency (Clayson & Miller, 2017a). Taken together, using ERP data 

with poor score reliability can lead to mistaken statistical inferences in the form of magnitude 

and/or sign errors. 

4.1 Moderators of ERN Score Internal Consistency 

Although reliability is dependent on the population sampled, ERP score reliability is also 

intimately related to a host of other factors, including amplifier characteristics, recording 

procedures and processing pipeline, task design, and measurement approach (Boudewyn et al., 

2017; Clayson, Baldwin, & Larson, 2013; Clayson & Miller, 2017b; Kappenman & Luck, 2010; 

Luck & Gaspelin, 2017). A difficulty that arises when considering ERN findings across studies is 

that each study can handle each factor differently. 

The type of paradigm used to elicit ERN initially moderated internal consistency, with 

the Go/NoGo task (α̂ = .74) showing higher internal consistency than either the flanker task (α̂ = 

.67) or Stroop task (α̂ = .56) and similar internal consistency as the Simon task (α̂ = .73). This 
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pattern of internal consistency for the Go/NoGo task, flanker task, and Stroop task is inconsistent 

with a previous study that showed the flanker task needed the fewest trials to achieve adequate 

internal consistency within the same sample of participants (Meyer et al., 2013). When only 

considering the task used for recording, ERN scores obtained from the same participants across 

these three tasks showed modest correlations, and the internal consistency across tasks varied 

considerably (Meyer, Bress, & Proudfit, 2014; Meyer et al., 2013; Riesel et al., 2013). When one 

type of paradigm is used in ERN research (e.g., a flanker task), studies can use different 

“flavors” of the paradigm that vary on a number of characteristics, such as the stimuli presented, 

timing of stimuli and response windows, number of trials, performance feedback, proportion of 

congruent/incongruent trials, and task instruction. This lack of standardization for recording and 

analyzing ERN limits the generalizability of findings across studies and remains a barrier to 

RDoC-inspired research (Weinberg, Dieterich, & Riesel, 2015). Different instantiations of a 

paradigm might lead to better or worse internal consistency, and such paradigm optimization 

would be a useful undertaking before making inferences about ERN score internal consistency 

between tasks. After removing influential estimates from the moderator analysis, the type of 

paradigm used no longer moderated ERN score internal consistency.  

Clinical status significantly moderated ERN score internal consistency after removing 

influential estimates, and psychopathology groups (α̂ = .60; sensitivity analysis: α̂ = .52) showed 

lower internal consistency than healthy groups (α̂ = .69; sensitivity analysis: α̂ = .67). These 

findings suggest that psychopathology groups would generally need more trials than healthy 

participant groups to achieve the same level of internal consistency, which has significant 

implications for RDoC-inspired research. The potential cost of ignoring group differences in the 

psychometric properties of ERP measurements is quite high, and low score internal consistency 
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in either a patient or control group may lead to inappropriate statistical inferences (Clayson & 

Miller, 2017b). A potential limitation of the present findings for ERN score internal consistency 

in psychopathology groups is the low representation of such research in this meta-analysis (i.e., 

360 participants from 7 studies). Furthermore, the psychopathology level of the moderator 

represented a heterogeneous group of people with various diagnoses (see Table 1). This sparse 

and small representation of each diagnostic category prevented the comparison of ERN score 

internal consistency between psychopathology groups. The analysis on psychopathology groups 

as a whole, however, sheds light on the common misconception that the internal consistency of 

ERN scores is similar across psychopathology and healthy control groups. For example, a recent 

meta-analysis on the relationship between depression and ERN emphasized that not a single of 

the 23 examined studies evaluated the internal consistency of ERN scores (Clayson, Carbine, & 

Larson, 2020). Given the potential for mistaken statistical inferences in research with poor score 

reliability highlighted above, the adoption of new standard operating procedures that include 

routine evaluation of ERN score internal consistency in ERN psychopathology research seems 

warranted. 

The lower ERN score internal consistency in psychopathology groups also leads to 

additional concerns above and beyond the potential for mistaken statistical inferences. Excluding 

patient participants based on trial or internal consistency cutoffs might bias the characteristics of 

the remaining sample by excluding high-performing patients (i.e., those patients with the lowest 

error rates and fewest ERN trials) and thereby limit generalizability. Such patients might differ 

on other relevant variables, such as demographic or psychiatric characteristics. Furthermore, by 

excluding high-performing patients, patient vs. control differences might be subsequently 

exaggerated by comparing only the low-performing (and possibly lower functioning) patients to 
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the healthy controls. Unfortunately, it is virtually unknown whether excluding such high-

performing patients based on trial or internal consistency cutoffs results in systematically biased 

samples with limited generalizability. Hence, it would be helpful if relevant characteristics of 

included and excluded participants were examined to determine whether using such cutoffs 

potentially biases the generalizability of the research. 

Ocular artifact correction using ICA-based approaches (α̂ = .71, sensitivity analysis: α̂ = 

.69) yielded higher internal consistency estimates than regression-based approaches (α̂ = .57, 

sensitivity analysis: α̂ = .55). However, the two levels of this moderator represent two broad 

categories of ocular artifact correction. For example, there are a number of ICA-based 

approaches, such as rejecting ICA components based on visual inspection (Delorme & Makeig, 

2004; Jung, Makeig, Bell, & Sejnowski, 1998; Jung et al., 2000), statistical criteria (Nolan, 

Whelan, & Reilly, 2010), or a comparison to user-defined templates (Dien, 2010), and these 

approaches can use different ICA algorithms to identify components. Similarly, there are various 

regression-based approaches to ocular artifact correction (e.g., Gratton, Coles, & Donchin, 1983; 

Miller, Gratton, & Yee, 1988; Semlitsch, Anderer, Schuster, & Presslich, 1986). In light of the 

many procedures for correcting ocular artifact, it is possible that a particular ICA- or regression-

based approach might outperform others, and future research might consider identifying the best 

approaches in an effort to optimize the ERN data processing pipeline.  

The type of EEG system used for recording ERN did not moderate internal consistency. 

This examination was not meant to pit one EEG system against another, but rather it was meant 

as a proxy for a test of online EEG recording characteristics such as type of electrodes, sampling 

rates, reference scheme, and filter characteristics. For example, high electrode impedance 

recordings are more susceptible than low impedance recordings to certain sources of noise, such 
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as skin potentials (Kappenman & Luck, 2010). However, it is difficult to examine these online 

processing characteristics due to the poor reporting of ERP processing pipelines, with the typical 

study only reporting about two thirds of the necessary information (Clayson et al., 2019). 

Moving forward, when all steps of the processing pipeline are reported, it might become clearer 

whether particular online processing characteristics lead to improved ERN score internal 

consistency. Furthermore, most offline processing parameters, including EEG reference, artifact 

rejection approaches, ERN scoring procedure, the length of mean amplitude time window, and 

the sensors used for recording (ROI vs. single channel), did little to impact ERN score internal 

consistency, but these parameters may be more influential in the context of specific system 

setups (e.g., an ROI approach may yield less reliable data when using 32 channels than when 

using 128 channels). As such, it is again emphasized that internal consistency be presented as 

part of individual studies rather than assumed from previous work.  

4.2 Estimation of ERN Score Internal Consistency 

When internal consistency was estimated using the first subset of error trials (α̂ = .71; 

sensitivity analysis: α̂ = .70), internal consistency was higher than when it was estimated using a 

random subset of all error trials (α̂ = .63; sensitivity analysis: α̂ = .62). In a study that used 

multilevel modeling to look at the relationship between error trials across time and ERN 

amplitude, ERN decreased as participants committed more errors within a task (Volpert-Esmond, 

Merkle, Levsen, Ito, & Bartholow, 2017). It seems likely that ERN from the beginning error 

trials would be more similar in amplitude than ERN trials randomly sampled from the entire task. 

Hence, the actual trials selected for computing internal consistency impacts the observed 

estimates. This characteristic of ERN score internal consistency is similar to neuropsychological 
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assessments, which can demonstrate substantial differences in internal consistency based on how 

items are used in its estimation (Kopp, Lange, & Steinke, 2019).  

Although there is variability in the type of reliability coefficient used when estimating 

ERN score internal consistency, the present meta-analysis focused on the most widely used one, 

coefficient alpha. There are a number of assumptions when using coefficient alpha, such as 

unidimensionality, tau-equivalency, uncorrelated error variance, and an equal number of 

observations for each participant (Cho, 2016; Sijtsma, 2008, 2009), and these limitations for ERP 

score reliability estimation have been described in detail elsewhere (Baldwin et al., 2015; 

Clayson & Miller, 2017a, 2017b).  

When it comes to estimating ERN score internal consistency, the key concern is which 

approach is representative of how ERN scores will be statistically analyzed. More often than not, 

all error trials are averaged together and then examined, which suggests that an approach that 

considers the pattern of responding across all trials will be more representative of the data used 

for statistical inferences. Taken together, internal consistency estimates from the initial errors 

might be overestimated due to a sampling bias. Approaches that use a single random selection 

might be similarly biased due to chance, and the estimates included in the meta-analysis are no 

exception. If a researcher would like to use classical test theory, a possible approach to 

circumvent sampling bias is to repeatedly randomly sample subsets of trials and examine the 

central tendency of the distribution of internal consistency estimates (e.g., coefficient alpha or 

split-half reliability) across all subsets or split halves (e.g., Larson et al., 2010). Another 

approach is to use all available error trials in the estimation of score internal consistency, which 

is possible when examining internal consistency using generalizability theory. 
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A significant advantage of generalizability theory over classical test theory for ERP 

research is the ability to use all available trials from all participants (Baldwin et al., 2015; 

Clayson & Miller, 2017a, 2017b), which circumvents the sampling bias endemic to coefficient 

alpha or split-half reliability estimates. Generalizability theory provides a multifaceted 

framework for examining the impact of various characteristics on internal consistency, and its 

goal is to pinpoint sources of systematic variability. The framework is also less restrictive than 

classical test theory and does not require parallel forms for estimating internal consistency, 

which allows for using all trials from all participants. Furthermore, generalizability theory is able 

to easily handle unbalanced designs, which is another common characteristic encountered in 

ERP studies that prevents the use of coefficient alpha estimates for all trials. The application of 

generalizability theory to ERP research has been explained elsewhere (Baldwin et al., 2015; 

Clayson & Miller, 2017a, 2017b), and the ERP Reliability Analysis (ERA) Toolbox was 

developed for researchers interested in applying generalizability theory approaches to ERPs 

(Clayson & Miller, 2017a). 

4.3 Numbers of Trials 

This meta-analysis estimated that 16 to 17 error trials are needed to obtain an internal 

consistency threshold of .80. However, these trial recommendations can be misleading, because 

they ignore potential moderators. For example, it is likely that ERN recorded from participants 

with psychopathology or studies that use regression-based approaches to correct ocular artifact 

will need more trials to achieve adequate internal consistency. To be clear, it is not 

recommended that researchers start to use these trial cutoffs for data inclusion or that these 

cutoffs call into question previous research with lower trial cutoffs. The number of trials retained 

for averaging is often inappropriately used as a proxy for internal consistency, and it is possible 
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that some studies might demonstrate adequate internal consistency with relatively few trials. The 

estimates of 16 to 17 error trials should be used as guideposts when designing studies in an effort 

to record a sufficent number of error trials, but adequate internal consistency still needs to be 

verified on a study-by-study basis (Clayson & Miller, 2017b).  

4.4 Limitations 

There are some limitations to note. First, this reliability generalization analysis was 

conducted using internal consistency estimates from the minimum number of trials used for data 

inclusion. It is possible that once all error trials are included in analysis that internal consistency 

estimates for any single study would be higher. However, this assumption only holds if ERN 

item covariance is constant across the entire task (Cronbach, Gleser, Nanda, & Rajaratnum, 

1972), which does not appear to be the case (Volpert-Esmond et al., 2017). Second, internal 

consistency estimates from large samples are weighted more heavily than those from small 

samples in the meta-analysis. Given that studies that used higher trial cutoffs for data inclusion 

likely excluded more participants, it is possible that the meta-analytic internal consistency 

estimates might be biased upward by the exclusion of participants with poorer score internal 

consistency. Third, with regard to the sensors moderator, some studies used large ROIs that 

covered a large portion of the scalp. ERN score internal consistency should improve only insofar 

as the signal of interest is being captured by the ROI (Clayson & Miller, 2017b), and the 

inclusion of studies with large ROIs or few electrodes spaced far apart might have led to better 

internal consistency estimates for a single sensor than for an ROI. Fourth, some levels of some 

moderators had very few estimates included in the analysis, and such findings should be 

interpreted with caution. Similarly, there is overlap in levels between some moderators that 

prevent interaction effects from being meaningfully examined. As more studies begin to 
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routinely report ERN score internal consistency, all levels of these moderators and interactions 

between moderators could be analyzed in future reliability generalization studies.  

Lastly, some research labs are interested in the psychometric analysis of ERN and have 

published multiple such studies. Other labs have a routine practice of reporting internal 

consistency estimates of ERPs. As a result, internal consistency estimates from these labs 

constitute a large portion of data in the present meta-analysis. When focal outcome, whether the 

focus of the study was the internal consistency of ERN scores, was examined as a moderator, the 

initial analysis and sensitivity analysis were not significant. This suggests that psychometric 

studies of ERN scores are likely not inflated due to publication bias. However, it is a possibility 

that such labs that conduct psychometric studies and routinely report internal consistency 

estimates give greater attention to the data processing steps that yield better reliability estimates. 

However, until internal consistency is routinely reported, and possibly until EEG data become 

more widely shared, it is difficult to know whether the internal consistency estimates included in 

this meta-analysis are inflated due to a reporting bias. 

4.5 Moving Forward 

 Although inferring reliability based on previous psychometric research is a widespread 

practice, the substantial heterogeneity of ERN score internal consistency calls this practice into 

question. Contextual factors are clearly important. Furthermore, this practice is inappropriate on 

theoretical grounds, because score reliability is the property of the data in hand, not the property 

of a particular measure or ERP (Thompson, 2003; Vacha-Haase, 1998). Poor internal 

consistency substantially limits the utility of ERPs as dimensional measures for RDoC-inspired 

research, because the internal consistency of measurements is closely related to how well 
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measurements can differentiate among participants. Hence, measures with poor internal 

consistency are poorly suited for studying individual differences. 

Simply including more trials is an unlikely panacea for problematic ERN score internal 

consistency, because the relationship between internal consistency and the number of trials 

included in subject averages asymptotes (Clayson & Miller, 2017a). Adequate internal 

consistency can be achieved with few trials when data have a high signal-to-noise ratio. For 

example, there was a wide range of internal consistency estimates in the studies examined (see 

Table 1), and some studies were able to achieve adequate internal consistency with fewer trials 

than others. Thus, any efforts toward improving the signal-to-noise ratio of EEG data during 

recording, processing, and analysis should benefit score reliability (Boudewyn et al., 2017; 

Clayson & Miller, 2017b; Kappenman & Luck, 2010; Luck & Gaspelin, 2017; Thigpen et al., 

2017). The present meta-analysis provides support for using ICA-based ocular artifact correction 

over regression-based ocular artifact correction for improving ERN score internal consistency. 

Future research that examines the impact of data recording, processing, and analysis procedures 

on ERN score reliability would be helpful for optimizing paradigms for the study of individual 

differences (e.g., Klawohn, Meyer, Weinberg, & Hajcak, 2020; Sandre, Banica, Riesel, 

Klawohn, & Weinberg, under review), and such research could consider any of the data 

processing steps outlined in the recent ERP publication guidelines paper (Keil et al., 2014) as 

potential moderators of internal consistency. 

The approach to estimating ERN score internal consistency substantially impacted 

observed estimates. Moving forward approaches to estimating internal consistency that minimize 

the potential for sampling error should be used. If a researcher is interested in using classical test 

theory approaches, a coefficient alpha could be computed on numerous random samples of ‘X’ 
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number of ERN scores without replacement from each participant, and the central tendency of 

estimates could then be used to identify appropriate cutoffs (see Larson et al., 2010). When using 

a split-half reliability estimates, numerous different split halves (e.g., odd vs even trials or first 

half vs. second half) could be computed in the same fashion, because any one split-half estimate 

is still suspect due to sampling bias. This is particularly the case when few trials are used in each 

split half, which is common for ERN studies. Another approach is to use generalizability theory 

estimates of internal consistency, and the advantage of this approach is that these estimates use 

all trials from all participants, which circumvents the sampling bias endemic to classical test 

theory approaches (Baldwin et al., 2015; Clayson & Miller, 2017a, 2017b). The ERA Toolbox is 

open-source MATLAB software that can compute internal consistency of ERP scores using 

generalizability theory, and it was specifically developed with ERP scores in mind (Clayson & 

Miller, 2017a). 

Although the framing of this reliability generalization study focused on individual 

differences (i.e., RDoC-inspired research), it is also important to ensure that internal consistency 

is similar across groups, when between-group differences are of interest. Group differences in 

ERN score internal consistency have been observed between healthy and psychopathology 

groups in all published psychometric evaluations of ERN (e.g., Baldwin et al., 2015; Foti et al., 

2013; Hajcak et al., 2017), and this meta-analysis confirmed such differences. Ignoring between-

group differences in the internal consistency of ERP scores can lead to mistaken statistical 

inferences (Brakenhoff, van Smeden, Visseren, & Groenwold, 2018; Gelman & Carlin, 2014; 

Loken & Gelman, 2017). For example, group differences can be observed simply due to poor 

score reliability in one or both groups (Cooper et al., 2017; Hedge et al., 2017). Thus, it is 

important to ensure similar score reliability across groups. 
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Anecdotally speaking, a barrier to reporting internal consistency estimates that was 

apparent after contacting many authors for data was the inability of popular EEG/ERP 

processing software to easily compute reliability estimates. Computing internal consistency 

estimates typically requires exporting single-trial estimates for each event and person, compiling 

the estimates into a single dataset, and using statistical software packages to calculate the 

estimates. These first two steps can be a substantial obstacle to overcome using some software, 

unless the user has programming or data management expertise. The reporting of reliability 

estimates in the literature would likely improve if software developers facilitated the exporting of 

compiled single-trial estimates (in a wide format, separate single-trial measurements down rows, 

and in a long format, separate single-trial measurements across columns) or included functions to 

compute reliability estimates.  

The substantial heterogeneity in ERN score internal consistency estimates definitively 

demonstrates that internal consistency cannot be inferred by obtaining a trial threshold 

recommended from a previous psychometric analysis. Unfortunately, this practice is widespread. 

The present analyses of 4,499 participants from 43 studies indicates that at least 16-17 trials are 

needed to obtain a coefficient alpha of .80, and these numbers are much higher than the 

commonly used thresholds of six to eight trials based off of studies with many fewer participants 

than this meta-analysis (see Table 1). The implications of these findings for previous ERN 

research on individual differences is disconcerting. However, some studies are able to obtain 

adequate internal consistency with fewer than eight trials (e.g., Pontifex et al., 2010; Seer et al., 

2017; Steele et al., 2016). As such, the present analyses should not be used to oppugn prior 

research that used low trial cutoffs, because doing so would be based on the same fallacious 

practice of inferring reliability based on trial cutoffs. The glaring issue in the literature is the 
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failure to routinely report internal consistency estimates in ERN studies of individual differences. 

That is a practice that must change. Notably, the outlook moving forward appears hopeful, 

because journals are beginning to adopt guidelines for the reporting of internal consistency on a 

study-by-study basis.  

Hence, the last recommendation is to routinely report ERP score reliability in all 

research, particularly individual differences research. Considering the importance of 

measurement internal consistency in RDoC-inspired research of dimensional constructs, the 

routine reporting of internal consistency is valuable for identifying candidate measures. 

Furthermore, the considerable heterogeneity in ERN score internal consistency supports the 

adoption and enforcement of guidelines for routinely reporting score reliability of 

psychophysiological measures (e.g., author guidelines of Psychophysiology and International 

Journal of Psychophysiology). Reliability cannot be inferred based on previous psychometric 

analyses. Within a single study, information about internal consistency provides a context for 

interpreting statistical inferences (LeBel & Paunonen, 2011; Thompson, 2003; Wilkinson & The 

APA Task Force on Statistical Inference, 1999). Across studies, such information aids in the 

selection of ERP components and paradigms for examining individual differences and can be 

synthesized in reliability generalization studies to determine moderators of internal consistency.      
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Table 1 
 

Summary Information for Included Datasets 

 

Author 
Study 

Number n 

Mean 
Age % Female Diagnosis Group 

Sample  
Type 

# of  
Estimates Original Reliability SB Reliability Trials 

Bailey and Larson 
(in prep) 

1 144 22.14 54% -- healthy undergraduate 9 0.69 (0.44, 0.82) 0.65 (0.36, 0.77) 10 (8, 11) 

Baldwin et al. 
(2015) 

2 239 21.93 52% -- healthy community 2 0.78 (0.76, 0.80) 0.59 (0.56, 0.62) 20 (20, 20) 

  31 21.87 65% MDD psychopathology community 2 0.66 (0.52, 0.79) 0.45 (0.30, 0.60) 20 (20, 20) 

  23 22.61 83% 
Anxiety 

Disorders 
psychopathology community 2 0.52 (0.52, 0.52) 0.30 (0.30, 0.30) 20 (20, 20) 

Boudewyn et al. 
(2017) 

3 32 21 66% -- healthy undergraduate 1 0.70 0.70 8 

Bresin and Verona 
(in press) 

4 43 30.09 53% SUDs/AUDs psychopathology community 2 0.28 (0.27, 0.29) 0.61 (0.6, 0.62) 2 (2, 2) 

  11 21.63 55% -- healthy community 1 0.06 0.2 2 

Burwell et al. 
(2016) 

5 85 15.4 51% -- healthy community 2 0.56 (0.55, 0.58) 0.63 (0.62, 0.65) 6 (6, 6) 

Carbine and Larson 
(in prep) 

6 48 19.65 65% -- healthy undergraduate 3 0.71 (0.67, 0.73) 0.80 (0.76, 0.81) 5 (5, 5) 

Cavanagh et al. 
(2010) 

7 23 19 48% -- healthy undergraduate 4 0.16 (0.07, 0.32) 0.15 (0.06, 0.29) 9 (9, 9) 

  23 19.13 30% OCD psychopathology undergraduate 4 0.24 (0.02, 0.34) 0.22 (0.02, 0.31) 9 (9, 9) 

Cavanagh et al. 
(2012) 

8 40 19.18 30% -- healthy undergraduate 4 0.49 (0.29, 0.76) 0.77 (0.62, 0.93) 2 (2, 2) 

Cavanagh et al. 
(2014) 

9 67 20.26 36% -- healthy undergraduate 2 0.31 (0.27, 0.35) 0.64 (0.6, 0.68) 2 (2, 2) 

  32 20.91 44% -- healthy undergraduate 4 0.48 (0.32, 0.68) 0.78 (0.65, 0.89) 2 (2, 2) 

Clayson et al. 
(2018) 

10 52 47.79 40% -- healthy community 2 0.64 (0.61, 0.67) 0.67 (0.64, 0.70) 7 (7, 7) 

  60 50.17 22% Schizophrenia psychopathology community 2 0.69 (0.67, 0.71) 0.54 (0.52, 0.57) 15 (15, 15) 

Clayson and Larson 
(2019) 

11 28 21 50% -- healthy undergraduate 2 0.72 (0.71, 0.73) 0.56 (0.55, 0.57) 16 (16, 16) 
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  31 21 62% -- healthy undergraduate 2 0.72 (0.61, 0.83) 0.62 (0.49, 0.75) 13 (13, 13) 

Clayson and Larson 
(in prep) 

12 21 22.71 52% OCD psychopathology community 2 0.68 (0.66, 0.69) 0.45 (0.44, 0.47) 20 (20, 20) 

  29 21.9 80% MDD psychopathology community 2 0.62 (0.56, 0.67) 0.40 (0.35, 0.46) 19 (19, 19) 

  29 21.66 93% GAD psychopathology community 2 0.57 (0.53, 0.61) 0.37 (0.33, 0.41) 18 (18, 18) 

  27 21.04 62% -- healthy undergraduate 2 0.77 (0.71, 0.84) 0.65 (0.57, 0.74) 15 (15, 15) 

Elkins-Brown et al. 
(2018) 

13 38 20.02 58% -- healthy undergraduate 2 0.68 (0.68, 0.69) 0.74 (0.74, 0.75) 6 (6, 6) 

  39 19.97 69% -- healthy undergraduate 2 0.55 (0.45, 0.64) 0.61 (0.52, 0.70) 6 (6, 6) 

Fischer et al. (2017) 14 778 24.1 50% -- healthy community 6 0.90 (0.89, 0.91) 0.82 (0.78, 0.85) 16 (14, 18) 

Foti et al. (2013) 15 76 43.34 33% 
Psychotic  
Disorders 

psychopathology community 2 0.68 (0.68, 0.69) 0.62 (0.46, 0.78) 12.5 (5, 20) 

  52 39 50% -- healthy community 2 0.68 (0.65, 0.72) 0.57 (0.43, 0.72) 14 (8, 20) 

García Alanis et al. 
(2019) 

16 30 24 0% -- healthy undergraduate 1 0.70 0.76 6 

  35 23 0% -- healthy undergraduate 1 0.68 0.74 6 

Glazer and 
Nusslock 
(unpublished) 

17 54 20.24 70% -- healthy community 2 0.67 (0.66, 0.67) 0.67 (0.66, 0.67) 8 (8, 8) 

Hajcak et al. (2017) 18 36 23.58 83% -- healthy community 1 0.70 0.47 21 

  25 26.48 96% GAD psychopathology community 1 0.70 0.42 26 

Larson et al. (2012) 19 33 21.84 42% mTBI neurological community 4 0.58 (0.50, 0.68) 0.44 (0.36, 0.55) 14 (14, 14) 

  44 20.77 52% -- healthy community 4 0.72 (0.70, 0.75) 0.60 (0.57, 0.63) 14 (14, 14) 

Larson et al. 
(2014c) 

20 90 21.78 46% -- healthy community 8 0.61 (0.49, 0.72) 0.61 (0.49, 0.72) 8 (8, 8) 

Larson and Clayson 
(in prep) 

21 48 19.92 48% -- healthy community 8 0.66 (0.52, 0.72) 0.50 (0.35, 0.56) 16 (16, 16) 

  59 20.46 61% mTBI neurological community 8 0.64 (0.37, 0.76) 0.62 (0.34, 0.74) 9 (9, 9) 
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Larson 
(unpublished-a) 

22 29 23.34 100% -- healthy undergraduate 4 0.64 (0.57, 0.67) 0.64 (0.57, 0.67) 8 (8, 8) 

Larson 
(unpublished-b) 

23 104 20.37 49% -- healthy undergraduate 4 0.58 (0.50, 0.65) 0.58 (0.5, 0.65) 8 (8, 8) 

Larson 
(unpublished-c) 

24 41 11.76 66% -- healthy community 2 0.61 (0.59, 0.63) 0.61 (0.59, 0.63) 8 (8, 8) 

  31 21.74 52% -- healthy community 2 0.70 (0.70, 0.71) 0.70 (0.70, 0.71) 8 (8, 8) 

Larson 
(unpublished-d) 

25 122 70.8 53% -- healthy community 8 0.58 (0.50, 0.65) 0.58 (0.50, 0.65) 8 (8, 8) 

McDonald et al. (in 
press) 

26 89 34.15 36% -- healthy community 2 0.28 (0.11, 0.44) 0.54 (0.33, 0.76) 2 (2, 2) 

Meyer et al. (2013) 27 43 19.14 44% -- healthy undergraduate 3 0.62 (0.48, 0.71) 0.57 (0.42, 0.66) 10 (10, 10) 

Meyer et al. (2014) 28 43 12.74 34% -- healthy community 4 0.51 (0.39, 0.61) 0.44 (0.20, 0.68) 13 (6, 20) 

Moser et al. (2019) 29 92 18.79 47% -- healthy undergraduate 2 0.77 (0.69, 0.86) 0.64 (0.53, 0.75) 16 (16, 16) 

  102 21.02 57% -- healthy undergraduate 2 0.77 (0.70, 0.84) 0.58 (0.48, 0.68) 20 (20, 20) 

  104 19.36 73% -- healthy undergraduate 2 0.73 (0.66, 0.79) 0.53 (0.45, 0.61) 19 (19, 19) 

Moser (in prep) 30 162 35.33 62% -- clinical high risk community 6 0.74 (0.63, 0.80) 0.74 (0.63, 0.80) 8 (8, 8) 

Muir et al. (2019) 31 128 20.62 53% -- healthy undergraduate 2 0.54 (0.49, 0.60) 0.61 (0.56, 0.67) 6 (6, 6) 

Olson et al. (2018) 32 20 20.3 45% -- healthy undergraduate 1 0.85 0.88 6 

  25 21 20% mTBI neurological undergraduate 1 0.82 0.85 6 

Olvet and Hajcak 
(2009) 

33 53 -- 62% -- healthy undergraduate 1 0.62 0.69 6 

Pontifex et al. 
(2010) 

34 56 9.6 43% -- healthy community 1 0.90 0.92 6 

  57 19.9 60% -- healthy community 1 0.91 0.93 6 

  26 65.7 46% -- healthy community 1 0.87 0.90 6 

Rietdijk et al. 
(2014) 

35 70 -- -- -- healthy undergraduate 1 0.61 0.61 8 
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Sandre et al. (under 
review) 

36 263 20.1 41% -- healthy undergraduate 12 0.68 (0.62, 0.77) 0.74 (0.69, 0.82) 6 (6, 6) 

Seer et al. (2017) 37 13 63.15 23% -- healthy community 2 0.82 (0.80, 0.84) 0.82 (0.80, 0.84) 8 (8, 8) 

  13 64.31 23% 
Parkinson's 

Disease 
neurological community 2 0.68 (0.66, 0.71) 0.68 (0.66, 0.71) 8 (8, 8) 

Singh et al. (2018) 38 28 69.2 39% NA healthy community 2 0.38 (0.31, 0.45) 0.55 (0.47, 0.62) 4 (4, 4) 

  28 69.8 39% 
Parkinson's 

Disease 
neurological community 2 0.49 (0.39, 0.59) 0.65 (0.56, 0.74) 4 (4, 4) 

Steele et al. (2016) 39 100 26.78 52% -- healthy community 1 0.81 0.94 2 

Suchan et al. (2018) 40 14 23.5 64% -- healthy community 2 0.69 (0.69, 0.69) 0.53 (0.53, 0.53) 16 (16, 16) 

Valadez and Simons 
(2018) 

41 41 20.07 76% -- healthy undergraduate 1 0.62 0.72 5 

Warren et al. (2020) 42 19 32.68 37% -- healthy community 2 0.82 (0.78, 0.87) 0.82 (0.78, 0.87) 8 (8, 8) 

  16 30.69 38% 
Gilles-de-la- 

Tourette 
Syndrome 

neurological community 2 0.76 (0.74, 0.77) 0.76 (0.74, 0.77) 8 (8, 8) 

Xu and Inzlicht 
(2015) 

43 12 18.09 33% -- healthy undergraduate 1 0.59 0.49 12 

Note. The study number column provides an ID for each study. This ID is used to indicate which studies were excluded during the sensitivity 
analyses presented in Table 3. The ‘n’ column refers to the sample size of a given group. Some demographic information was missing for certain 
samples, and these samples were excluded from moderator analyses for the relevant missing characteristic. ‘# of Estimates’ refers to the number of 
internal consistency estimates that were obtained for a given sample. The ‘Original Reliability’ column shows the original coefficient alpha estimates 
for a given study. The ‘SB Reliability’ column shows the transformed coefficient alpha estimates for a given study using eight trials. Alpha estimates 
were transformed using the Spearman-Brown prophecy formula. The last three columns show the point estimates (mean) and range (minimum to 
maximum), when multiple internal consistency estimates were used from a given sample. Articles included in the meta-analysis are marked with an 
asterisk in the Reference section. All information for each sample and study is posted in the supplementary material on Open Science Framework. 
MDD = major depressive disorder, SUDs/AUDs = a mixed sample of participants with substance or alcohol use disorders, OCD = obsessive-
compulsive disorder, GAD = generalized anxiety disorder, mTBI = mild traumatic brain injury 
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Table 2 
 
Moderator Analyses for Coefficient Alpha Estimates of the Error-Related Negativity 

 
Moderator kstudy ksamples kestimates n α̂𝐵 (95% CI) α̂ (95% CI) t p QE (df) p 

Publication Status         1,442 (187) < .001 
  Published 31 51 105 3,198 1.17 (0.99, 1.35) .69 (.63, .74) 12.95 < .001 - - 
  Unpublished 12 17 84 1,301 -.11 (-.44, 0.22) .65 (.52, .75) -.65 .52 - - 
           

Focal Outcome         1,139 (187) < .001 
  Not Focal 29 47 139 2,299 1.07 (0.89, 1.25) .66 (.59, .71) 11.76 < .001 - - 
  Focal 14 21 50 2,200 0.20 (-.11, 0.52) .72 (.62, .80) 1.28 .20 - - 
           

Paradigm1         1,484 (184) < .001 
  Flanker 31 50 127 3,709 1.12 (0.95, 1.28) .67 (.61, .72) 13.53 < .001 - - 
  Go/NoGo 11 13 29 709 0.22 (0.09, 0.35) .74 (.70, .77) 3.22 .002 - - 
  Picture/Word Task 1 2 2 46 -.80 (-1.33, -.28) .27 (.00, .57) -3.01 .003 - - 
  Simon 3 5 14 195 0.18 (-.40, 0.76) .73 (.51, .85) 0.60 .55 - - 
  Stroop 4 6 17 296 -.30 (-.70, 0.11) .56 (.34, .71) -1.44 .15 - - 
           

Clinical Status1         1,436 (185) < .001 
  Healthy 42 51 143 3,703 1.16 (1.01, 1.31) .69 (.63, .73) 15.15 < .001 - - 
  Clinical High Risk 1 1 6 162 0.21 (-.73, 1.15) .74 (.35, .90) 0.44 .66 - - 
  Neurological 6 6 19 174 -.01 (-.28, 0.26) .68 (.58, .76) -.09 .93 - - 
  Psychopathology 7 10 21 360 -.24 (-.47, -.01) .60 (.50, .68) -2.04 .04 - - 
           

EEG System1         967 (184) < .001 
  BioSemi 13 17 33 1,058 1.10 (0.85, 1.35) .67 (.57, .74) 8.64 < .001 - - 
  ANT 4 5 8 222 0.12 (-.29, 0.54) .71 (.56, .81) 0.58 .56 - - 
  Brain Products 7 11 38 1,271 0.22 (-.23, 0.67) .73 (.58, .83) 0.95 .34 - - 
  EGI 15 25 88 1,426 -.07 (-.38, 0.25) .65 (.52, .74) -.42 .68 - - 
  Neuroscan 6 10 22 422 0.11 (-.36, 0.58) .70 (.52, .81) 0.45 .65 - - 
           

Age         1,530 (185) < .001 
  Intercept - - - - 1.15 (0.93, 1.37) .68 (.61, .75) 10.34 < .001 - - 
  Age  41 66 187 4,376 -.00 (-.01, .01) .68 (.68, .69) -.07 .95 - - 
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Percent Women         1,538 (186) < .001 
  Intercept - - - - 1.30 (0.96, 1.64) .73 (.62, .81) 7.58 < .001 - - 
  Percent Women 42 67 188 4,429 -.32 (-.91, 0.28) .63 (.32, .80) -1.04 .30 - - 
           

Sample Type         1,524 (187) < .001 
  Undergraduate 21 29 80 1,623 1.19 (0.98, 1.40) .70 (.62, .75) 11.08 < .001 - - 
  Community 23 39 109 2,776 -.09 (-.37, 0.18) .67 (.56, .75) -.66 .51 - - 
           

EEG Reference         1,437 (185) < .001 
  Average Reference 23 38 126 2,666 1.10 (0.93, 1.27) .67 (.60, .72) 12.42 < .001 - - 
  Average Ear Lobes 3 4 7 174 -.09 (-.65, 0.48) .64 (.36, .79) -.31 .76 - - 
  Average Mastoids 16 25 55 1,459 0.01 (-.27, 0.28) .67 (.56, .75) 0.05 .96 - - 
  Nose 1 1 1 100 1.79 (0.91, 2.68) .95 (.87, .98) 3.99 < .001 - - 
           

Scoring Procedure1         1,494 (185) < .001 
  Mean 37 57 110 4,066 1.11 (0.96, 1.26) .67 (.62, .72) 14.56 < .001 - - 
  Adaptive Mean 14 22 48 1,910 0.08 (0.01, 0.14) .70 (.68, .72) 2.41 .02 - - 
  Peak 9 13 25 945 0.13 (0.04, 0.21) .71 (.68, .73) 2.93 .004 - - 
  Peak-to-Peak 2 2 6 1,041 -.14 (-.22, -.06) .62 (.59, .65) -3.54 < .001 - - 
           

Length of Mean1         1,369 (156) < .001 
  Intercept - - - - 1.14 (0.97, 1.32) .68 (.62, .73) 13.15 < .001 - - 
  Size of Mean 41 64 160 5,976 -.001 (-.002, 0.00) .68 (.68, .68) -1.16 .25 - - 
           

Sensors1         1,361 (187) < .001 
  Single Sensor 33 50 108 3,695 1.17 (1.02, 1.32) .69 (.64, .73) 15.38 < .001 - - 
  Cluster of Sensors 21 36 81 2,006 -.08 (-.15, -.01) .66 (.64, .69) -2.31 .02 - - 
           

Trial Selection1         1,426 (187) < .001 
  Initial 33 53 123 2,946 1.25 (1.08, 1.41) .71 (.66, .76) 14.92 < .001 - - 
  Random 28 41 66 2,727 -.25 (-.33, -.17) .63 (.60, .66) -6.00 < .001 - - 
           

Year of Publication         1,038 (106)  
  Intercept - - - - 1.16 (0.65, 1.67)  .69 (.48, .81) 4.53 < .001 - - 
  Year of Publication 30 49 108 3,145 0.003 (-.07, 0.07) .69 (.67, .71) 0.10 .92 - - 
           

Ocular Artifact 

Correction 

        1,553 (187) < .001 
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  ICA 31 52 146 3,523 1.24 (1.07, 1.40) .71 (.66, .75) 14.73 < .001 - - 
  Regression 12 16 43 876 -.39 (-.71, -.06) .57 (.41, .69) -2.34 .02 - - 
           

Artifact Rejection         1,476 (185) < .001 
  Automatic 30 49 135 3,410 1.18 (1.01, 1.36) .69 (.64, .74) 13.50 < .001 - - 
  None 1 2 8 46 -.97 (-1.90, -.04) .19 (.00, .68) -2.05 .04 - - 
  Semiautomatic 10 14 36 804 -.15 (-.50, 0.20) .64 (.50, .75) -.85 .39 - - 
  Visual 2 3 10 139 0.28 (-.40, 0.95) .77 (.54, .88) 0.81 .42 - - 

Note. The first listed moderator of each set was entered as the intercept in the model. The Bonett-transformed coefficient alpha 
estimates (α̂B) and their 95% confidence intervals (CIs) are shown for the intercept in the mixed model with each additional level 
showing the deviation from that intercept. The predicted coefficient alpha estimates (α̂) represent the back-transformed estimates. For 
ease of interpretation, each �̂� represents the estimate for that level of the moderator, rather than the deviation from the intercept. The 
sample size (n), number of alpha estimates (kestimates), number of participant samples (ksamples), and number of studies (kstudy) are shown 
for each level of a moderator. The Cochran’s QE test for residual heterogeneity was used to determine whether the variability not 
accounted for by the moderator was larger than would be expected given the sampling variability alone. 1Indicates moderator analysis 
wherein some studies or samples have estimates for more than one moderator. In such instances, the number of studies and/or samples 
for each moderator might be higher than the total studies and/or samples included in the meta-analysis due to overlap among levels. 
ICA = independent components analysis 
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Table 3 
 
Sensitivity Analyses for Each Moderator of Coefficient Alpha Estimates of the Error-Related Negativity 

 

Moderator 
Excluded 
Estimates kstudy ksamples kestimates n α̂𝐵 (95% CI) α̂ (95% CI) t p QE (df) p 

Publication Status 26, 39         1,308 (184) < .001 
  Published  29 49 102 3,009 1.12 (0.96, 1.28) .67 (.62, .72) 13.81 < .001 - - 
  Unpublished  12 17 84 1,301 -.06 (-.35, 0.23) .65 (.54, .74) -.41 .68 - - 
            

Focal Outcome 15, 26, 35, 39         1,024 (182) < .001 
  Not Focal  28 46 137 2,210 1.08 (0.91, 1.24) .66 (.60, .71) 13.05 < .001 - - 
  Focal  12 19 47 1,979 0.08 (-.22, 0.37) .68 (.57, .77) 0.50 .62 - - 
            

Paradigm1 1, 5, 8, 9, 15, 
26, 27, 28, 

30, 39 

        1,132 (160) < .001 

  Flanker  28 46 116 3,449 1.11 (0.95, 1.27) .67 (.62, .72) 13.99 < .001 - - 
  Go/NoGo  7 9 20 324 0.03 (-.26, 0.32) .68 (.57, .76) 0.21 .84 - - 
  Picture/Word Task  1 2 2 46 -.52 (-1.45, 0.41) .44 (.00, .78) -1.11 .27 - - 
  Simon  3 5 11 195 0.08 (-.43, 0.59) .70 (.49, .82) 0.32 .75   
  Stroop  3 5 16 253 -.21 (-.71, 0.29) .59 (.33, .75) -.83 .41 - - 
            

Clinical Status1 2, 4, 12, 15, 
18, 19, 21, 
26, 30, 32, 
38, 39, 42 

        1,204 (165) < .001 

  Healthy  37 46 133 3,447 1.11 (0.99, 1.24) .67 (.63, .71) 17.10 < .001 - - 
  Clinical High Risk  1 1 5 162 0.33 (-.42, 1.07) .76 (.50, .89) 0.86 .39 - - 
  Neurological  4 4 14 121 0.02 (-.28, 0.32) .68 (.57, .76) 0.14 .89 - - 
  Psychopathology  6 8 17 253 -.37 (-.64, -.11) .52 (.38, .64) -2.77 .006 - - 
            

EEG System1 8, 26, 29, 34, 
39, 43 

        689 (171) < .001 

  BioSemi  11 15 30 854 1.03 (0.78, 1.27) .64 (.54, .72) 8.20 < .001 - - 
  ANT  2 3 5 118 0.19 (-.45, 0.83) .70 (.44, .84) 0.59 .56 - - 
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  Brain Products  7 11 38 1,271 0.30 (-.09, 0.70) .74 (.61, .82) 1.51 .13 - - 
  EGI  14 24 86 1,324 -.02 (-.35, 0.30) .63 (.49, .74) -.14 .89 - - 
  Neuroscan  5 8 17 276 0.17 (-.27, 0.61) .70 (.53, .81) 0.75 .45 - - 
            

Age 15, 26, 34, 39         1,285 (177) < .001 
  Intercept  - - - - 1.04 (0.87, 1.21) .65 (.58, .70) 12.29 < .001 - - 
  Age  38 61 179 3,997 0.001 (-.007, 0.01) .65 (.64, .65) 0.24 .81 - - 
            

Percent Women 15, 26, 29, 
34, 39 

        1,303 (176) < .001 

  Intercept  - - - - 1.29 (0.96, 1.61) .72 (.62, .80) 7.83 < .001 - - 
  Percent Women  40 62 178 4,015 -.37 (-.95, 0.21) .60 (.29, .78) -1.25 .21 - - 
            

Sample Type 8, 12, 26, 39         1,351 (182) < .001 
  Undergraduate  21 29 78 1,623 1.12 (0.94, 1.31) .68 (.61, .73) 11.98 < .001 - - 
  Community  21 37 106 2,587 -.06 (-.31, 0.19) .65 (.56, .73) -.47 .64 - - 
            

EEG Reference 8, 13, 15, 26, 
43 

        1,374 (179) < .001 

  Average Reference  23 38 125 2,666 1.09 (0.91, 1.26) .66 (.60, .72) 12.24 < .001 - - 
  Average Ear Lobes  2 3 5 162 0.07 (-.55, 0.69) .69 (.41, .83) 0.22 .82 - - 
  Average Mastoids  15 24 52 1,319 0.02 (-.27, 0.30) .67 (.56, .75) 0.10 .92 - - 
  Nose2  0 0 0 - - - - - - - 
            

Scoring Procedure1 1, 8, 14, 20, 
21, 23, 25, 
26, 29, 30, 

36, 39 

        875 (140) < .001 

  Mean  33 51 89 3,417 1.06 (0.92, 1.20) .65 (.60, .70) 15.04 < .001 - - 
  Adaptive Mean  13 21 41 1,748 0.05 (-.03, 0.14) .67 (.64, .70) 1.27 .21 - - 
  Peak  6 8 13 282 0.22 (-.06, 0.50) .72 (.63, .79) 1.53 .13 - - 
  Peak-to-Peak  1 1 1 263 -.15 (-.41, 0.11) .60 (.48, .69) -1.13 .26 - - 
            

Length of Mean1 1, 12, 14, 20, 
21, 23, 25, 

30, 39 

        849 (134) < .001 

  Intercept  - - - - 1.05 (0.88, 1.21) .65 (.59, .70) 12.60 < .001 - - 
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  Size of Mean  39 62 136 5,525 0.00 (-.001, 0.001) .65 (.65, .65) .02 .99 - - 
            

Sensors1 2, 9, 20, 21, 
23, 25, 26, 

36, 39 

        1,032 (161) < .001 

  Single Sensor  30 46 93 3,177 1.10 (0.96, 1.24) .67 (.62, .71) 15.65 < .001 - - 
  Cluster of Sensors  21 34 70 1,700 0.01 (-.09, 0.11) .67 (.63, .70) 0.13 .90 - - 
            

Trial Selection1 1, 8, 9, 10, 
20, 21, 25, 

26, 39 

        1,011 (164) < .001 

  Initial  32 51 114 2,797 1.19 (1.04, 1.33) .70 (.65, .74) 16.25 < .001 - - 
  Random  24 37 52 2,354 -.22 (-.32, -.11) .62 (.58, .66) -4.03 < .001 - - 
            

Year of Publication 4         937 (105) < .001 
  Intercept  - - - - 1.12 (0.69, 1.55) .67 (.50, .79) 5.17 < .001 - - 
  Year of Publication  29 48 107 3,045 0.001 (-.06, 0.06) .67 (.65, .69) 0.02 .98 - - 
            

Ocular Artifact 

Correction 
15, 26, 33, 39         1,413 (182) < .001 

  ICA  30 51 145 3,423 1.18 (1.04, 1.33) .69 (.65, .74) 16.08 < .001 - - 
  Regression  10 14 39 683 -.39 (-.70, -.09) .55 (.38, .67) -2.56 .01 - - 
            

Artifact Rejection 8, 9, 15, 26, 
39 

        1,287 (177) < .001 

  Automatic  28 47 132 3,221 1.13 (0.98, 1.28) .68 (.63, .72) 14.96 < .001 - - 
  None  1 2 8 46 -.92 (-1.69, -.14) .19 (.00, .63) -2.34 .02 - - 
  Semiautomatic  10 14 35 753 -.13 (-.42, 0.17) .63 (.51, .73) -.84 .40 - - 
  Visual  2 3 10 139 0.23 (-.35, 0.81) .74 (.54, .86) 0.79 .43 - - 

Note. Sensitivity analyses mirror the results presented in Table 2, with the exception that influential estimates were removed from 
these moderator analyses. The ID for the studies with estimates removed from analyses are shown in the ‘Excluded Estimates’ 
column, and th study corresponding to that ID can be found in Table 1. When a study had multiple estimates, it is possible that some 
estimates, but not others, were included in the sensitivity analyses. The first listed moderator of each set was entered as the intercept in 
the model. The Bonett-transformed coefficient alpha estimates (α̂B) and their 95% confidence intervals (CIs) are shown for the 
intercept in the mixed model with each additional level showing the deviation from that intercept. The predicted coefficient alpha 
estimates (α̂) represent the back-transformed estimates. For ease of interpretation, each �̂� represents the estimate for that level of the 
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moderator, rather than the deviation from the intercept. The sample size (n), number of alpha estimates (kestimates), number of 
participant samples (ksamples), and number of studies (kstudy) are shown for each level of a moderator. The Cochran’s QE test for residual 
heterogeneity was used to determine whether the variability not accounted for by the moderator was larger than would be expected 
given the sampling variability alone.  1Indicates moderator analysis wherein some samples have estimates for more than one 
moderator. In such instances, the number of studies and/or samples for each moderator might be higher than the total studies and/or 
samples included in the meta-analysis due to overlap among levels. 2 There were no levels left in the dataset after excluding influential 
estimates. ICA = independent components analysis 
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Figure Captions 
 

Figure 1. PRISMA Flow Diagram 

 

Figure 2. Forest plot of the coefficient alpha point estimates and 95% confidence intervals for the 

first half of all estimates included in the reliability generalization study. The estimate for the 

random effects (RE) intercept-only model for all included studies from Figures 2 and 3 is shown 

at the bottom. A dotted line is shown for the lower limit of coefficient alpha, the value of the 

summary estimate (.68), and the upper limit of coefficient alpha, respectively. 

 

Figure 3. Forest plot of the coefficient alpha point estimates and 95% confidence intervals for the 

second half of all estimates included in the reliability generalization study. The estimate for the 

random effects (RE) intercept-only model for all included studies from Figures 2 and 3 is shown 

at the bottom. A dotted line is shown for the lower limit of coefficient alpha, the value of the 

summary estimate (.68), and the upper limit of coefficient alpha, respectively. 

 

Figure 4. Line plots showing the relationship between the numbers of trials (four to twenty trials) 

used for computing internal consistency estimates and the estimated internal consistency (α̂) 

using an intercept-only random effects model. The plot on the top (A) uses all estimates from the 

meta-analysis. The plot on the bottom (B) excludes influential estimates from the model. Shaded 

areas represent 95% confidence intervals. The dotted line shows the internal consistency at .70, 

and the dashed line shows internal consistency at .80. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
 

 
 


